

j7qrk0

Address Matching System API User Guide • July 2003 i

Table of Contents

Section 1: Introduction and Overview .. 1

Introduction .. 1

USPS Address Matching System Developer’s Kit... 1

AMS CD-ROM Technical Support .. 1

Section 2: Installation Procedures .. 2

Installation Procedures for Windows 32-bit... 2

Installation Procedures for Macintosh .. 4

Installation Procedures for SUN UNIX .. 5

Installation Procedures for OSF UNIX ... 7

Installation Procedures for AIX UNIX ... 9

Installation Procedures for LINUX ..11

Section 3: API Functions ...13

Functions ..13

Open the Address Matching System..14

Open the Address Matching System with Special Parameters ..15

Address Inquiry ...17

Address Sort Key ..21

9-digit Inquiry ...23

Address Standardization ...25

Close the Address Matching System ...27

Read City/State File By Key ..28

Read City/State File Next ..29

Read ZIP+4 File By Key ..31

Read ZIP+4 File Next ...32

Get ZIP Codes from a City/State ...34

Terminate Active Address Inquiry ...36

Get Date of ZIP+4 Database ...37

Get CD-ROM Expiration Information ..38

Get API Code Version ..39

ii Address Matching System API User Guide • July 2003

Multiple Response Stack ...40

Get Last Error ...42

Get Environment ...44

Section 4: Footnote Flag, Record Type & Return Code Definitions.........................45

Footnote Flags ..45

Record Types ...48

Return Codes ..49

Appendix A: Interface Definition ..50

Appendix B: File Names and Locations ..59

Address Matching System API User Guide • July 2003 1

Introduction

The USPS Address Matching System Application Programming Interface User Guide is the primary
reference document for the USPS National Customer Support Center’s Address Matching System prod-
uct. The guide contains installation instructions for each platform as well as function descriptions.

The USPS Address Matching System (AMS) is an application programming interface (API). As such, this
guide should be used when the user wants to interface an application with the Address Matching System.

USPS Address Matching System Developer’s Kit

The USPS Address Matching System Developer’s Kit contains the following:

• API library(s) for each specific computer platform
• Interface definition file (ZIP4.H)
• Test utility (SAMPLE.EXE)
• Test utility source code
• Sample configuration data files
• User documentation

The test utility can be used to ensure that the Address Matching System and data files have been installed
correctly and to provide access to our matching logic, which displays the standardized address returned
by the matching engine. This enables you to verify the accuracy of the ZIP+4 results returned from your
product.

The AMS software, including, but not limited to, .DLLs, shared objects and static objects all expire and
cease functionality based on USPS Coding Accuracy Support System (CASS) guidelines. The AMS
software expires July 31st each year. The AMS data expires 105 days from the release date of the CD-
ROM, which is the 15th day of each month.

AMS CD-ROM Technical Support

If there are any questions regarding the Address Matching System API, please call the USPS’ National
Customer Support Center, AMS CD-ROM Technical Support at 800-233-5866. Hours of operation are
8am to 4pm CST.

Section 1: Introduction and Overview

2 Address Matching System API User Guide • July 2003

Section 2: Installation Procedures

Installation Procedures for Windows 32-Bit
1. Create a directory on your hard drive in which to store the API files.

Ex. MD C:\AMS

2. Copy the Address Matching System files to your hard drive using the decryption program DEV_W32.EXE
located on the CD-ROM in the DEV_KITS directory.

Ex. DEV_W32 CUST_ID OUTPUT_PATH PRODUCT_FILE

Note: A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The
customer ID must be entered in uppercase letters.

The installation program must be executed from within the CD-ROM directory. This step needs to be
performed once for each file listed in the file description in step 7. Following initial installation, the only
files that need to be installed with subsequent CD-ROM updates are the header files and libraries. A batch
file is recommended to simplify this install process.

Note: The customer ID provided by AMS CD-ROM Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation,
you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique
customer ID will not change for the duration of the AMS API license unless otherwise specified.

A. OUTPUT_PATH is the directory created in step 1.

B. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. (See Appendix C for a description of this file layout.)

Example file for W32:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 D:\AMSDATA\
ADDRESS2
ADDRESS3
ADDRINDEX D:\AMSDATA\
CDROM
CITYSTATE D:\AMSDATA\
CROSSREF D:\AMSDATA\
SYSTEM C:\AMS\
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Run SAMPLE.EXE to test AMS.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for W32:

Address Matching System API User Guide • July 2003 3

a. ZIP4_W32.DLL ZIP4 dynamic-link library

b. ZIP4_W32.LIB Stub library to link with the user application

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

f. SAMPLE.C Sample C source file

g. SAMPLE.EXE Sample executable

Special Notes for Windows 32-bit

The Windows 32-bit version of the Address Matching System DLL was built with all export functions
having the ‘_cdecl’ calling convention, which has caused problems with some programming languages
that do not support this convention. To provide access to the address matching routines in the DLL for
non C and C++ languages, the DLL now contains a set of routines with the proper DLL calling conven-
tion ‘_stdcall.’ These routines have separate names from the original routines to preserve linkage with
existing programs, and the new names are a concatenation of the original function name and ‘STD,’
which implies the _stdcall calling convention, e.g.,

_cdecl function name _stdcall function name

z4open() z4openSTD()

z4adrinq() z4adrinqSTD()

z4close() z4closeSTD()

All of the _stdcall functions map directly to the original functions, so there is no loss in functionality. All
existing functions have an associated _stdcall version, and all future additions to the DLL will contain
both a _cdecl version and a _stdcall version.

Section 2: Installation Procedures

4 Address Matching System API User Guide • July 2003

Section 2: Installation Procedures

Installation Procedures for Macintosh
This platform is scheduled for discontinuation as of July 2004.

1. Create a folder on your hard drive in which to store the API files by selecting File > New Folder
from the desktop pull-down menu or pressing COMMAND+N.

2. Copy the Address Matching System files to your hard drive.

Note: The Macintosh AMS files are provided on diskette because the format of the Address Matching
System CD-ROM cannot support the Macintosh executable file format. See #6 for a list of files.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. The delimiter “:” is used to separate the folder names in the Macintosh hierarchical
folder system. The device volume name must appear at the beginning of each applicable listing, and a
colon (:) must appear at the end of each listing. (See Appendix C for a description of this file layout.)

Example file for MAC:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 USPS_97255:
ADDRESS2
ADDRESS3
ADDRINDEX USPS_97255:
CDROM
CITYSTATE USPS_97255:
CROSSREF USPS_97255:
SYSTEM My_Hd:AMS_Folder:
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Use SAMPLE.C to create your own API application.

5. Refer to Section 3, API Functions, to test other API applications.

6. The following is an explanation of the API files for Macintosh:

a. ZIP4_MAC.SHL ZIP4 shared library
b. SAMPLE.C Sample C source file
c. Z4CONFIG.DAT File location file
d Z4CXLOG.DAT Date time file
e. SAMPLE Sample executable

f. ZIP4.H Interface header file

Note: When performing CD-ROM updates of the Address Matching System API library, follow steps 2B
through 3D. When selecting the files to update in 3D, select only ZIP4_MAC.SHL and ZIP4.H.
These are the only two files that will periodically change in the Macintosh Developer’s Kit.

Address Matching System API User Guide • July 2003 5

Section 2: Installation Procedures

Installation Procedures for SUN UNIX (SUN for Sparc)
1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program
DEV_SUN.EXE located on the CD-ROM in the DEV_KITS directory.

Ex. DEV_SUN.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

Note: A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The
customer ID must be entered in uppercase letters.

The installation program must be executed from within the CD-ROM directory. This step needs to be
performed once for each file listed in the file description in step 7 on the next page. Following initial
installation, the only files that need to be installed with subsequent CD-ROM updates are the header files
and libraries. A batch file is recommended to simplify this install process.

Note: The customer ID provided by AMS CD-ROM Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation,
you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique
customer ID will not change for the duration of the AMS API license unless otherwise specified.

A. OUTPUT_PATH is the directory created in step 1.

B. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. (See Appendix C for a description of this file layout.)

Example file for SUN:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 /mount/cdrom/
ADDRESS2
ADDRESS3
ADDRINDEX /mount/cdrom/
CDROM
CITYSTATE /mount/cdrom/
CROSSREF /mount/cdrom/
SYSTEM /usr/src/ams/
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Run SAMPLESH and SAMPLEST to test the Address Matching System.

A. CHMOD on SAMPLESH and SAMPLEST to rwx.

B. CHMOD on Z4CXLOG.DAT to rw.

6 Address Matching System API User Guide • July 2003

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function calls.

7. The following is an explanation of the API files for SUN UNIX:

a. LIBZ4SUN.SO ZIP4 shared library

b. ZIP4_SUN.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

f. SAMPLE.C Sample C source file

g. SAMPLESH Sample executable linked with LIBZ4SUN.SO

h. SAMPLEST Sample executable built with ZIP4_SUN.A

Special Notes for SUN UNIX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in
uppercase letters with a version control number appended to the end. The API requires that the CD-ROM
file names appear in lowercase letters without the version number. Some versions of UNIX will automati-
cally accommodate file name conversion during the mount process, but some require the user to specify
the conversion explicitly with the options of the “mount” command. Please see the man pages on mount
for more information on these options.

The Address Matching System SUN API Developer’s Kit contains both a static-link and a shared library.
The static-link library is provided for compatibility with older programs written before the shared library
was available. The USPS does not recommend use of the static-link library because logic changes are
often made to the API, and the user would have to re-link the executable file with the AMS static-link
library every time there is an update. Also, in compliance with CASS rules, the API code is set to expire
at the end of the current CASS cycle, each August. If this date is reached without re-linking with a newer
API, a user’s application will stop functioning.

To avoid these problems the USPS recommends using the AMS shared library so that user applications
can gain immediate access to any logic changes simply by installing the new shared library. User appli-
cations do not need to be re-linked when a new shared library is provided on CD-ROM updates.

Section 2: Installation Procedures

Address Matching System API User Guide • July 2003 7

Installation Procedures for OSF UNIX
1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the DEV_OSF.EXE located on the CD-ROM in the DEV_KITS directory.

Ex. DEV_OSF.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

Note: A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The
customer ID must be entered in uppercase letters.

The installation program must be executed from within the CD-ROM directory. This step needs to be
performed once for each file listed in the file description in step 7 on the next page. Following initial
installation, the only files that need to be installed with subsequent CD-ROM updates are the header files
and libraries. A batch file is recommended to simplify this install process.

Note: The customer ID provided by AMS CD-ROM Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation,
you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique
customer ID will not change for the duration of the AMS API license unless otherwise specified.

A. OUTPUT_PATH is the directory created in step 1.

B. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. (See Appendix C for a description of this file layout.)

Example file for OSF:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 /mount/cdrom/
ADDRESS2
ADDRESS3
ADDRINDEX /mount/cdrom/
CDROM
CITYSTATE /mount/cdrom/
CROSSREF /mount/cdrom/
SYSTEM /usr/src/ams/
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Run SAMPLESH and SAMPLEST to test Address Matching System.

A. CHMOD on SAMPLESH and SAMPLEST to rwx.

B. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

Section 2: Installation Procedures

8 Address Matching System API User Guide • July 2003

Section 2: Installation Procedures

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for OSF UNIX:

a. LIBZ4OSF.SO ZIP4 shared library

b. ZIP4_OSF.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

f. SAMPLE.C Sample C source file

g. SAMPLESH Sample executable linked with LIBZ4OSF.SO

h. SAMPLEST Sample executable built with ZIP4_OSF.A

Special Notes for OSF UNIX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in
uppercase letters with a version control number appended to the end. However, the API requires that the
CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will
automatically accommodate file-name conversion during the mount process, but some require the user to
specify the conversion explicitly with the options of the “mount” command. Please see the man pages on
mount for more information on these options.

Address Matching System API User Guide • July 2003 9

Installation Procedures for AIX UNIX

This platform is scheduled for discontinuation as of June 2003.

1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program
DEV_AIX.EXE located on the CD-ROM in the DEV_KITS directory.

Ex. DEV_AIX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

Note: A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The
customer ID must be entered in uppercase letters.

The installation program must be executed from within the CD-ROM directory. This step needs to be
performed once for each file listed in the file description in step 7 on the next page. Following initial
installation, the only files that need to be installed with subsequent CD-ROM updates are the header files
and libraries. A batch file is recommended to simplify this install process.

Note: The customer ID provided by AMS CD-ROM Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation,
you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique
customer ID will not change for the duration of the AMS API license unless otherwise specified.

A. OUTPUT_PATH is the directory created in step 1.

B. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. (See Appendix C for a description of this file layout.)

Example file for AIX:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 /mount/cdrom/
ADDRESS2
ADDRESS3
ADDRINDEX /mount/cdrom/
CDROM
CITYSTATE /mount/cdrom/
CROSSREF /mount/cdrom/
SYSTEM /usr/src/ams/
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Run SAMPLEST to test Address Matching System.

A. CHMOD on SAMPLEST to rwx.

Section 2: Installation Procedures

10 Address Matching System API User Guide • July 2003

Section 2: Installation Procedures

B. CHMOD on Z4CXLOG.DAT to rw.

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for AIX UNIX:

a. ZIP4_AIX.A Static-link library

b. ZIP4.H Interface header file

c. Z4CONFIG.DAT File location file

d. Z4CXLOG.DAT Date time file

e. SAMPLE.C Sample C source file

f. SAMPLEST Sample executable built with ZIP4_AIX.A

Special Notes for AIX UNIX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in
uppercase letters with a version control number appended to the end. However, the API requires that the
CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will
automatically accommodate file-name conversion during the mount process, but some require the user to
specify the conversion explicitly with the options of the “mount” command. Please see the man pages on
mount for more information on these options.

Address Matching System API User Guide • July 2003 11

Installation Procedures for LINUX
1. Create a directory on your hard drive in which to store the API files.

Ex. mkdir /usr/src/ams

2. Copy the Address Matching System files to your hard drive using the decryption program
DEV_LNX.EXE located on the CD-ROM in the DEV_KITS directory.

Ex. DEV_LNX.EXE CUST_ID OUTPUT_PATH PRODUCT_FILE

Note: A customer ID (CUST_ID) should be obtained from AMS CD-ROM Technical Support. The
customer ID must be entered in uppercase letters.

The installation program must be executed from within the CD-ROM directory. This step needs to be
performed once for each file listed in the file description in step 7 on the next page. Following initial
installation, the only files that need to be installed with subsequent CD-ROM updates are the header files
and libraries. A batch file is recommended to simplify this install process.

Note: The customer ID provided by AMS CD-ROM Technical Support will change each month. We do
not recommend hard-coding the customer ID into an install program. For program installation,
you may obtain a unique customer ID from AMS CD-ROM Technical Support. This unique
customer ID will not change for the duration of the AMS API license unless otherwise specified.

A. OUTPUT_PATH is the directory created in step 1.

B. PRODUCT_FILE is the file from the list in step 7. This should not include any directory paths.

3. Change the directory locations in the Z4CONFIG.DAT file to the locations of the Address Matching
System data files. (See Appendix C for a description of this file layout.)

Example file for LNX:

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 /mount/cdrom/
ADDRESS2
ADDRESS3
ADDRINDEX /mount/cdrom/
CDROM
CITYSTATE /mount/cdrom/
CROSSREF /mount/cdrom/
SYSTEM /usr/src/ams/
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH

4. Run SAMPLESH and SAMPLEST to test Address Matching System.

A. CHMOD on SAMPLESH and SAMPLEST to rwx.

B. CHMOD on Z4CXLOG.DAT to rw.

Section 2: Installation Procedures

12 Address Matching System API User Guide • July 2003

5. Use SAMPLE.C as an example to create your own API application.

6. Refer to Section 3, API Functions, to test other API function commands.

7. The following is an explanation of the API files for LNX:

a. LIBZ4LNX.SO ZIP4 shared library

b. ZIP4_LNX.A Static link library; not recommended

c. ZIP4.H Interface header file

d. Z4CONFIG.DAT File location file

e. Z4CXLOG.DAT Date time file

f. SAMPLE.C Sample C source file

g. SAMPLESH Sample executable linked with LIBZ4LNX.SO

h. SAMPLEST Sample executable built with ZIP4_LNX.A

Special Notes for LINUX

The Address Matching System CD-ROM uses the ISO9660 file-system format, which stores file names in
uppercase letters with a version control number appended to the end. However, the API requires that the
CD-ROM file names appear in lowercase letters without the version number. Some versions of UNIX will
automatically accommodate file-name conversion during the mount process, but some require the user to
specify the conversion explicitly with the options of the “mount” command. Please see the man pages on
mount for more information on these options.

The Address Matching System LINUX API Developer’s Kit contains both a static-link and a shared
library. The static-link library is provided for compatibility with older programs written before the shared
library was available. The USPS does not recommend use of the static-link library because logic changes
are often made to the API, and the user would have to re-link the executable files with the AMS static-
link library every time there is an update. Also, in compliance with CASS rules, the API code is set to
expire at the end of the current CASS cycle, each August. If this date is reached without re-linking with a
newer API, a user’s application will stop functioning.

To avoid these problems, the USPS recommends using the AMS shared library so that user applications
can gain immediate access to any logic changes simply by installing the new shared library. User applica-
tions do not need to be re-linked when a new shared library is provided on CD-ROM updates.

Section 2: Installation Procedures

Address Matching System API User Guide • July 2003 13

Section 3: API Functions

Functions
The following functions are used to perform inquiries on addresses and 9-digit ZIP Codes:

• z4open() Open the Address Matching System

• z4opencfg() Open the Address Matching System with a Special Configuration File

• z4adrinq() Address Inquiry

• z4adrkey() Address Sort Key

• z4xrfinq() 9-digit Inquiry

• z4adrstd() Address Standardization

• z4close() Close the Address Matching System

• z4ctyget() Read City/State File by Key

• z4ctynxt() Read City/State File Next

• z4adrget() Read ZIP+4 File by Key

• z4adrnxt() Read ZIP+4 File Next

• z4getzip() Get a ZIP Code range for a City/St

• z4abort() Terminate Active Address Inquiry

• z4date() Get Date of ZIP+4 Database

• z4expire() Get CD ROM Expiration Information

• z4ver() Get the Version of the API code

• z4scroll() Multiple Response Stack

• z4geterror() Get error information

• z4getenv() Get environment information

14 Address Matching System API User Guide • July 2003

Section 3: API Functions

Open the Address Matching System
The z4open() function opens the Address Matching System for application use. This function must be
called before attempting to use any of the inquiry functions. During system opening, the Address Match-
ing System allocates memory buffers and file handles for disk I/O. The function returns a code summariz-
ing the results of the open operation.

It is recommended that you use the z4opencfg() function (see page 15) instead of the z4open() function.
The z4open() function searches the systems for a configuration file and will use the first one found. This
function can cause unexpected operation by using a configuration file that was not expected to be in its
search path.

Note: The Address Matching System does not allocate memory until the z4open() function is called. See
Section 2, Installation Procedures (pages 3–12), for information on specific memory requirements
for the Address Matching System.

Syntax

#include <zip4.h>
int z4open(void);

Input

None

Output

None

Return

 -1 - The USPS Address Matching System is already open

 0 - The USPS Address Matching System opened successfully

 1 - The USPS Address Matching System is not in sync

 2 - The USPS Address Matching System has expired

Example

#include <stdio.h>
#include <zip4.h>
void main(void)
{

/*open The USPS Address Matching System */
if (z4open() == 0)

printf(“The USPS Address Matching System Open.\n”);
else

printf(“Error opening the USPS Address Matching System.\n”);
}

Address Matching System API User Guide • July 2003 15

Open Address Matching System with Special Parameters
The z4opencfg() function opens the Address Matching System in the same manner as z4open(), but it
gives the user more control over the configuration file and Enhanced Line of Travel (eLOT) processing.

Enhanced Line of Travel is available through the USPS AMS API, but it is turned off by default. To
enable eLOT processing, you must first call z4opencfg() and set the elotflag variable to ‘Y’. You must
also use the CONFIG_PARM to specify the paths to the AMS database.

The configuration file can be changed by using the character pointer fname to point to the path and
filename for a configuration file on your system, or by specifying the paths in the CONIG_PARM charac-
ter pointers.

Syntax

#include <zip4.h>
int z4opencfg(Z4OPEN_PARM*openparm, ...);

Input

openparm pointer to a Z4OPEN_PARM structure

. . . optional parameters for future elements

If a field in the Z4OPEN_PARM is not used, then it must be initialized to zero (see example code).

Output

Z4OPEN_PARM.status will be set to 1, 2 or 9 to indicate which value was used for the configuration file.

Name Value Meaning
Z4_FNAME 1 Used the value pointed to by the fname character pointer
Z4_CONFIG 2 Used the values pointed to by the CONFIG_PARM structure
Z4_SEARCH 9 Searched for a file named z4config.dat

Return

See z4open().

Example

#include <stdio.h>
#include <zip4.h>

void main(void)
{

Z4OPEN_PARM openparm;
int rtn=0;

memset(&openparm, 0, sizeof(openparm));

Section 3: API Functions

16 Address Matching System API User Guide • July 2003

Section 3: API Functions

/*Use the fname character pointer to point to a file on the user’s
system*/

openparm.fname = “c:\\ams\\special.cfg”;

/*open the USPS Adress Matching System*/
rtn = z4opencfg(&openparm);

if(rtn==0)
printf(“\nThe USPS Address Matching System Opened Successfully.”);

else
printf(“\nError Opening the USPS Address Matching System.”);

/*close the USPS Address Matching System*/
z4close();

/*Open with the paths embedded in the CONFIG_PARM structure*/
/*reset variables*/
memset(&openparm, 0, sizeof(openparm));
rtn=0;

/*Setting up paths instead of using the configuration file*/
openparm.config.address1 =”c:\\amsdata\\”;
openparm.config.addrindex =”c:\\amsdata\\”;
openparm.config.cdrom =”d:\\”;
openparm.config.citystate =”c:\\amsdata\\”;
openparm.config.crossref =”c:\\amsdata\\”;
openparm.config.system =”c:\\amsdata\\”;

/*Turn eLOT processing on*/
openparm.elotflag = ‘Y’;
rtn = z4opencfg(&openparm);
if(rtn==0)

printf(“\nThe USPS Address Matching System Opened Successfully.”);
else

printf(“\nError Opening the USPS Address Matching System.”);

/*close the USPS Address Matching System*/
z4close();

}

Address Matching System API User Guide • July 2003 17

Address Inquiry
The z4adrinq() function commands the Address Matching System to perform an address inquiry using
firm name (optional), address, and city/state/ZIP information. Before performing this function, the input
address information must be copied into the corresponding input fields outlined below. Note that the City,
State, and ZIP fields may be placed either within the parm.ictyi field or copied to the parm.ictyi,
parm.stai, and parm.izipc fields, respectively. Following the address inquiry, the parm.retcc field contains
a response code summarizing the inquiry results. If an address response was found, standardized address
information will be located in the output fields described below.

Syntax

#include <zip4.h>
int z4adrinq(ZIP4_PARM *parm);

Input

The parm argument must point to a ZIP4_PARM structure. The following fields must be initialized before
calling the z4adrinq() function. If a field is not used, it must be initialized to zero.

parm.iadl1 Street Address
parm.iadl2 Firm Name
parm.iad13 Secondary Address
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/State/ZIP
parm.istai State or empty
parm.izipc ZIP or empty

Output

parm.retcc Response code

Z4_SINGLE 31 — A single address was found

Z4_DEFAULT 32 — An address was found, but a more specific address could be found with
more information

parm.retcc Response Code

Z4_INVADDR 10 — Invalid input address (i.e., contained a dual address)

Z4_INVZIP 11 — Invalid input 5-digit ZIP Code

Z4_INVSTATE 12 — Invalid input state abbreviation code

Z4_INVCITY 13 — Invalid input city name

Z4_NOTFND 21 — No match found using input address

Z4_MULTIPLE 22 — Multiple responses were found and more specific information is
required to select a single or default response

parm.foot Footnotes

Section 3: API Functions

18 Address Matching System API User Guide • July 2003

Section 3: API Functions

parm.foot.a = “A” ZIP Code Corrected

parm.foot.b = “B” City/State Corrected

parm.foot.c = “C” Invalid City/State/ZIP

parm.foot.d = “D” No ZIP+4 Code Assigned

parm.foot.e = “E” ZIP Code Assigned with a Multiple Response

parm.foot.f = “F” Address Not Found

parm.foot.g = “G” All or Part of the Firm Line Used For Address Line

parm.foot.h = “H” Missing Secondary Number

parm.foot.i = “I” Insufficient/Incorrect Data

parm.foot.j = “J” PO Box Dual Address

parm.foot.k = “K” Non-PO Box Dual Address

parm.foot.l = “L” Address Component Changed

parm.foot.m = “M” Street Name Changed

parm foot.n = “N” Address Standardized

parm.foot.p = “P” Better Address Exists

parm.foot.r = “R” No Match due to EWS

parm.foot.s = “S” Incorrect Secondary Number

parm.foot.t = “T” Multiple response due to Magnet Street Syndrome

parm.foot.u = “U” Unofficial Post Office Name

parm.foot.v = “V” Unverifiable City/State

parm.foot.w = “W” Small Town Default

parm.foot.x = “X” Unique ZIP Code Default

parm.foot.z = “Z” ZIP Move Match

Return Address Description

parm.dadl1 Standardized Output Address

parm.dadl2 Standardized Output Firm Name

parm.dad13 Standardized Secondary Address

parm.dprurb Standardized Puerto Rican Urbanization Name

parm.dctya Standardized Output City

parm.dstaa Standardized Output State

parm.zipc 5-digit ZIP Code

parm.addon 4-digit Add-on Code

parm.cris 4-digit Carrier Route Code

Address Matching System API User Guide • July 2003 19

parm.county 3-digit County Code

parm.dpbc 2-digit Delivery Point Barcode and 1-digit Check Digit

parm.mpnum Matched Primary Number

parm.msnum Matched Secondary Number

parm.auto_zone_ind Carrier Route Rate Sort Indicator (Y or N)

parm.elot_num Enhanced Line of Trave (eLOT) number

parm.elot_code eLOT Ascending/Descending Flag (A/D)

Parsed Input Description

ppnum Primary Number

psnum Secondary Number

prote Rural Route Number

punit Secondary Number Unit

ppre1 First or Left Pre-direction

ppre2 Second or Right Pre-direction

psuf1 First or Left Suffix

psuf2 Second or Right Suffix

ppst1 First or Left Post-direction

ppst2 Second or Right Post-direction

ppnam Primary Name

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready

3 - CD-ROM has expired

Additional Information About Z4ADRINQ()

If parm.retcc is Z4_INVADDR, Z4_INVZIP, Z4_INVSTATE, Z4_INVCITY, Z4_NOTFND, or
Z4_MULTIPLE, then the return address fields will contain the input address. If the input address is
unambiguously a rural route, highway contract, PO box, or general delivery address, then the return fields
will contain the normalized version of the input address.

If parm.retcc is Z4_MULTIPLE, then parm.foot, parm.respon, and parm.stack are also returned by the
system. The parm.zipc and/or parm.cris fields may contain data if all records in the stack have the same
ZIP Code and/or carrier route ID.

If parm.retcc is Z4_SINGLE or Z4_DEFAULT, then all fields in the returned data section are returned by
the Address Matching System. The first record in the parm.stack structure will contain the ZIP+4 record

Section 3: API Functions

20 Address Matching System API User Guide • July 2003

Section 3: API Functions

to which the system matched. This record may be used to access the individual fields from the matched
record, such as primary name, suffix, post-directional, etc.

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <zip4.h>
ZIP4_PARM parm;
void main(void)
{

/* open The USPS Address Matching System */
if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, ”323 S 152ND ST”);
strcpy(parm.iad13, ”STE 200”);
strcpy(parm.iadl2, ”ACME TOOL AND DIE”);
strcpy(parm.iprurb, ””);
strcpy(parm.ictyi, ”OMAHA, NE 68154");
/* request address inquiry */
z4adrinq(&parm);
/* if a response found (either single or default) */
if(parm.retcc==Z4_SINGLE || parm.retcc==Z4_DEFAULT)
{

printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“S Addr: %s\n”, parm.dad13);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);
printf(“Pre Dir: %s\n”, parm.stack[0].pre_dir);
printf(“Str Name: %s\n”, parm.stack[0].str_name);
printf(“Suffix: %s\n”, parm.stack[0].suffix);
printf(“Post Dir: %s\n”, parm.stack[0].post_dir);
printf(“Lacs Ind: %c\n”, parm.stack[0].lacs_status);

}

/* close The USPS Address Matching System */
z4close();
exit(0)

}

Address Matching System API User Guide • July 2003 21

Address Sort Key
The z4adrkey() function creates a sort key for an address. This function can be used in batch processes to
sort an input file in the order that addresses are contained on the Address Matching System data files.
However, the function does not sort your file; it produces a key field to assist your software in sortation.
Sorting an input file usually produces a dramatic increase in processing throughput.

Syntax

#include <zip4.h>
int z4adrkey(ZIP4_PARM *parm);

Input

The parm argument must point to a ZIP4_PARM structure. The following fields must be initialized before
calling the z4adrkey() function.

parm.iadl1 Street Address
parm.iadl2 Firm Name
parm.iprurb Puerto Rican Urbanization Name
parm.ictyi City or City/ State/ ZIP
parm.istai State or empty
parm.izipc ZIP or empty

Output

parm.adrkey Address Sort Key

Note: The contents and length of the address sort key are subject to change at any time. The key con-
tains binary data and should be used in its entirety for the sort process.

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <zip4.h>

ZIP4_PARM parm;

void main(void)
{

int i;

/* open The USPS Address Matching System */

Section 3: API Functions

22 Address Matching System API User Guide • July 2003

Section 3: API Functions

if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));

strcpy(parm.iadl1, ”323 S 152ND ST”);
strcpy(parm.iadl2, ”ACME TOOL AND DIE”);
strcpy(parm.ictyi, ”OMAHA, NE 68154");

/* request address sort key */
z4adrkey(&parm);

/* print the address sort key in hex */
for(i=0; i<sizeof(parm.adrkey); i++)

printf(“%02X“, parm.adrkey[i]);
printf(“\n”);

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Address Matching System API User Guide • July 2003 23

9-digit Inquiry
The z4xrfinq() (9-digit Inquiry) function commands the Address Matching System to perform an address
inquiry using an input 9-digit ZIP Code. Before using this function, the input 9-digit ZIP Code must be
copied into the parm.iad11 field outlined below. Following the 9-digit inquiry, the parm.retcc field
displays a return code summarizing the result of the inquiry. If an address response was found, standard-
ized address information can be found in the output fields described in the Address Inquiry function
description (see page 24).

Syntax

#include <zip4.h>
int z4xrfinq(ZIP4_PARM *parm);

Input

The parm argument must point to a ZIP4_PARM structure. The following field must be initialized before
calling the z4xrfinq() function:

parm.iadl1 9-digit ZIP Code.

Note: Return Code 22 denotes multiple responses. The address fields contain the first of a stack of ten
possible responses (or matches). It is recommended that the first address in the output fields not
be used as a mailing address because it is not an exact match.

Output

parm.retcc Response code

Z4_SINGLE A single address was found

Z4_DEFAULT A default address was found, but more specific addresses exist

Z4_NOTFND No match found; considered a not found address

Z4_MULTIPLE Multiple responses were found

Refer to the Address Inquiry function description for other output fields (see page 29).

Return

0 - The USPS Address Matching System resident

1 - The USPS Address Matching System issued a system error

2 - The USPS Address Matching System not ready

3 - The USPS Address Matching System has expired

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <zip4.h>

Section 3: API Functions

24 Address Matching System API User Guide • July 2003

Section 3: API Functions

ZIP4_PARM parm;
void main(void)
{

/* check for The USPS Address Matching System residence */
if(z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* load input 9-digit ZIP parameter */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, ”681642815");

/* request address inquiry */
z4xrfinq(&parm);

/* if a response found (either single or default) */
if(parm.retcc == Z4_SINGLE || parm.retcc == Z4_DEFAULT)
{

printf(“Found response.\n”);
printf(“Name: %s\n”, parm.dadl2);
printf(“Addr: %s\n”, parm.dadl1);
printf(“PRUrb: %s\n”, parm.dprurb);
printf(“City: %s\n”, parm.dctya);
printf(“ST: %s\n”, parm.dstaa);
printf(“ZIP: %s\n”, parm.zipc);
printf(“Addon: %s\n”, parm.addon);
printf(“DPBC: %s\n”, parm.dpbc);

}

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Address Matching System API User Guide • July 2003 25

Address Standardization
The z4adrstd() (Address Standardization) function instructs the Address Matching System to standardize
an address. This function can be used when a Z4_MULTIPLE response is returned from the z4adrinq()
function. Use this function to standardize an address from the stack, but use it with caution. The index
parameter is relative to zero and must be in increments of ten for each Z4scroll() function called. There-
fore, the index will have a value between zero and parm.respn minus one. Do not use the offset into the
current stack of ten records.

When this function is called, the record corresponding to the index value is moved to the first position on
the stack (offset zero). If components from the ADDR_REC structure are needed for the current record
that was processed through z4adrstd(), they may be retrieved from the first stack record. Do not use the
modulus 10 of the index (index % 10) to retrieve the ADDR_REC components from the stack.

Note: This function should only be used when an operator is reviewing the multiple responses returned
and selecting the record to be standardized. Please be advised that using this function in an
unattended (batch) mode may result in inaccurate matches and possible failure to CASS certify.

Syntax

#include <zip4.h>
int z4adrstd(ZIP4_PARM *parm, int index)

Input

parm Unmodified parameter list from previous call to z4adrinq().

index Index of stack record to standardize address (refer to the description above).
This must be less than parm.respn.

Output

parm.dadl1 Standardized Street Address

parm.dadl2 Standardized Firm Name

parm.dprurb Standardized Puerto Rican Urbanization Name

parm.dlast Standardized City/State/ZIP

Return

0 - Success

1 - Failure (i.e., invalid index parameter)

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <zip4.h>
ZIP4_PARM parm;

Section 3: API Functions

26 Address Matching System API User Guide • July 2003

Section 3: API Functions

void main(void)
{

/* check for The USPS Address Matching System residence */
if(z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* load input address parameters */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, ”DODGE ST”);
strcpy(parm.iadl2, ””);
strcpy(parm.iprurb, ””);
strcpy(parm.ictyi, ”OMAHA NE”);

/* request address inquiry */
z4adrinq(&parm);

/* standardize second address */
z4adrstd(&parm, 1);

/* display address */
printf(“Found response.\n”);
printf(“Name: %s\n”,parm.dadl2);
printf(“Addr: %s\n”,parm.dadl1);
printf(“PRUrb: %s\n”,parm.dprurb);
printf(“City: %s\n”,parm.dctya);
printf(“ST: %s\n”,parm.dstaa);
printf(“ZIP: %s\n”,parm.zipc);
printf(“Addon: %s\n”,parm.addon);
printf(“DPBC: %s\n”,parm.dpbc);
/* close The USPS Address Matching System */
z4close();
exit(0);

}

Address Matching System API User Guide • July 2003 27

Close the Address Matching System
The z4close() function closes the Address Matching System and is called when address inquiries have
been completed and the interface is no longer needed. During execution of this function, memory buffers
and file handles allocated during the z4open() function are de-allocated and closed.

Syntax

#include <zip4.h>
int z4close(void);

Input

None

Output

None

Return

0 - The USPS Address Matching System closed

1 - The USPS Address Matching System not resident

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <zip4.h>

void main(void)
{

/* close The USPS Address Matching System */
if(z4close() == 0)

printf(“The USPS Address Matching System closed.\n”);
else

printf(“Error closing the USPS Address Matching System.\n”);
}

Section 3: API Functions

28 Address Matching System API User Guide • July 2003

Section 3: API Functions

Read City/State File By Key
The z4ctyget() (Read City/State File By Key) function initiates a read of the City/State File. A specific
ZIP Code can be selected as a starting point in a read of the City/State File. To read subsequent records,
the Read City/State File Next function is used. For documentation on the City/State File, please refer to
the Address Information System Products Technical Guide, which is available from the USPS National
Customer Support Center’s Customer Support Department at 800-238-3150. It is also available on the
Internet at ribbs.usps.gove/files/addressing/pubs

Syntax

#include <zip4.h>
int z4ctyget(CITY_REC *cityrec, char *zipcode);

Input

The CITYREC argument must point to a CITY_REC structure. The contents of the structure will be
altered to contain the first city for the requested ZIP Code. The ZIP Code argument must point to a valid
5-digit ZIP Code or “00000.”

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Address Matching System API User Guide • July 2003 29

Read City/State File Next
The z4ctynxt() (Read City/State File Next) function reads subsequent records of the City/State File. It can
only be used after the z4ctyget() function has been called.

Syntax

#include <zip4.h>
int z4ctynxt(CITY_REC *cityrec);

Input

The CITYREC argument must point to a CITY_REC structure. The contents of the structure will be
altered to contain the next city.

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <stdlib.h>
#include <zip4.h>

CITY_REC city;

void main(void)
{

int i;
/* open The USPS Address Matching System */
if(z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}
/* read first city */
z4ctyget(&city, “00000”);
/* read 10 more cities */
for(i=0; i<10 && z4ctynext(&city) == 0; ++i)
{

printf(“%s %-28.28s %s %s\n”, city.zip_code, city.city_name,
city.state_abbrev, city.finance);

}

Section 3: API Functions

30 Address Matching System API User Guide • July 2003

Section 3: API Functions

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Address Matching System API User Guide • July 2003 31

Read ZIP+4 File By Key
The z4adrget() (Read ZIP+4 File by Key) function is used to read the ZIP+4 File. For documentation on
the ZIP+4 File, please refer to the Address Information Products Technical Guide, which is available from
the USPS National Customer Support Center’s Customer Support Department at 800-238-3150. It is also
available on the Internet at ribbs.usps.gov/files/addressing/pubs

A specific postal finance number can be selected as a starting point in a read of the ZIP+4 File. To read
subsequent records, the z4adrnxt() function is used.

Syntax

#include <zip4.h>
int z4adrget(ADDR_REC *addrrec, char *finance);

Input

The ADDRREC argument must point to an ADDR_REC structure. The contents of the structure will be
altered to contain the first address for the requested postal finance number. The finance argument must
contain a valid postal finance number or “000000.”

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

See example code for “Read ZIP+4 File Next”.

Section 3: API Functions

32 Address Matching System API User Guide • July 2003

Section 3: API Functions

Read ZIP+4 File Next
The z4adrnxt() (Read ZIP+4 File Next) function reads subsequent records of the ZIP+4 File. It can only
be used after the z4adrget() function has been called.

Syntax

#include <zip4.h>
int z4adrnxt(ADDR_REC *addrrec);

Input

The ADDRREC argument must point to a ADDR_REC structure. The contents of the structure will be
altered to contain the next address.

Output

None

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zip4.h>

CITY_REC city;
ADDR_REC addr;

void main(void)
{

/* open The USPS Address Matching System */
if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* read a city */
z4ctyget(&city, “00000”);

/* read first address record for this city */
z4adrget(&addr, city.finance);

Address Matching System API User Guide • July 2003 33

/* read remaining addrs for this finance number */
while(z4adrnxt(&addr) == 0)
{

/* check if finance number has changed */
if (memcmp(addr.finance, city.finance, 6) != 0)

break;

/* Code to process the current address record. */
}

/* close The USPS Address Matching System */
z4close();
exit(0);

Section 3: API Functions

34 Address Matching System API User Guide • July 2003

Section 3: API Functions

Get ZIP Codes from a City/State
The z4getzip() (Get ZIP Codes) from a City/State function retrieves a range of ZIP Codes for a city or
state and returns the valid high and the low values for the input city/state. The standardized form of the
input city/state as well as the finance number are also returned.

Note: All ZIP Codes within the range are not necessarily valid.

Syntax

#include <zip4.h>
int z4getzip(GET_ZIPCODE_STRUCT *parm);

Input

The parm argument must point to a GET_ZIPCODE_STRUCT structure. The contents of the structure
will be altered to contain the ZIP Code range for the input city/state.

parm.input_cityst Input city/state to lookup

Output

parm.output_cityst Standardized city/state

parm.low_zipcode Low ZIP Code value

parm.high_zipcode High ZIP Code value

parm.finance_num Finance number

Return

0 - Success

1 - Failure

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zip4.h>

GET_ZIPCODE_STRUCT parm;

void main(void)
{

int result;

/* open The USPS Address Matching System */
if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

Address Matching System API User Guide • July 2003 35

}

/* read a city */
strcpy(parm.input_cityst, “MEMPHIS TN”);
result=z4getzip(&parm);

/* Display the ZIP codes found */
if(result == 0)
{

printf(“CITY FOUND: %s\n”,parm.output_cityst);
printf(“LOW ZIP: %s\n”,parm.low_zipcode);
printf(“HIGH ZIP: %s\n”,parm.high_zipcode);
printf(“FINANCE: %s\n”,parm.finance_num);

}

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

36 Address Matching System API User Guide • July 2003

Section 3: API Functions

Terminate Active Address Inquiry
The z4abort() (Terminate Active Address Inquiry) function terminates an active address inquiry and is
useful in real-time applications where each inquiry must be completed within a specified period of time.
This function would normally be called from within a timer interrupt handler (i.e., INT 08H or INT 1CH
for DOS). The zadrinq() call in progress is terminated by the function call. The zadrinq() function has a
Return Code 21 (Not Found).

Syntax

#include <zip4.h>
int z4abort(void);

Input

None

Output

None

Return

None

Address Matching System API User Guide • July 2003 37

Get Date of ZIP+4 Database
The z4date() (Get Date of ZIP+4 Database) function returns the date of the ZIP+4 database and prints the date
for PS Form 3553 (CASS certificate). The date is returned as an 8-byte character string in the “YYYYMMDD”
format.

Syntax

#include <zip4.h>
int z4date(char *date);

Input

Address of field to return the date of the ZIP+4 database. This field must be at least nine bytes in length.

Output

The date of the ZIP+4 database. This field must be at least nine bytes in length.

Return

0 - Success

1 - Failure

2 - The USPS Address Matching System not ready

Example

#include <stdio.h>
#include <stdlib.h>
#include <zip4.h>
char date[9];
void main(void)
{

/* open The USPS Address Matching System */
if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(5);

}

/* get release date */
z4date(date);
printf(“Release date: %s\n”, date);

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

38 Address Matching System API User Guide • July 2003

Section 3: API Functions

Get CD-ROM Expiration Information
The z4expire() (Get CD-ROM Expiration Information) function instructs the Address Matching System
to return the number of days until the CD-ROM expires. Because the function can be used periodically to
check the number of days remaining until CD-ROM expiration, it is strongly recommended that you
integrate this function into your software.

Syntax

#include <zip4.h>
int z4expire(void);

Input

None

Output

None

Return

-1 - CD-ROM has expired. Otherwise, the function returns the number of days until CD-ROM expiration.

Example

#include <stdio.h>
#include <stdlib.h>
#include <zip4.h>

void main(void)
{

int days;
/* open The USPS Address Matching System */
if (z4open() != 0)
{

printf(“The USPS Address Matching System not resident.\n”);
exit(1);

}

/* get number of days until CD-ROM expiration */
days = z4expire();
if (days == -1)

printf(“CD-ROM has already expired.\n”);
else

printf(“%d days until CD-ROM expiration.\n”, days);

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Address Matching System API User Guide • July 2003 39

Get API Code Version
The z4ver() (Get API Code Version) function commands the program to retrieve the version string of the
API code. This string is in compliance with the CASS requirements for address-matching software
version information and may be used when generating a PS Form 3553 for mailing discounts.

Syntax

#include <zip4.h>
int z4ver(char *str);

Input

none

Output

str pointer to data buffer to receive the string

Return

0 - Success

Example

#include <stdio.h>
#include <zip4.h>

void main(void)
{

char version[32];
/* get the Address Matching System version */
z4ver(version) ;

printf(“The Address Matching System version is %s\n”, version) ;
exit (0);

}

Section 3: API Functions

40 Address Matching System API User Guide • July 2003

Section 3: API Functions

Multiple Response Stack

Scroll the Stack of Address Records

The z4scroll() (Scroll the Stack of Address Records) function commands the Address Matching System to
access additional stacks of ten address records each. The function is related to the z4adrinq() and z4xrfinq()
functions, which return up to ten records when the Z4_MULTIPLE or Z4_DEFAULT return codes are set.
When the parm.respn field contains a number greater than ten, your program can use this function to obtain
additional stacks of ten address records (up to the number of records specified in the parm.respn return field).
This function may only be called immediately after a call to the z4adrinq() or z4xrfinq() functions.

Syntax

#include <zip4.h>
int z4scroll(parm);
ZIP4_PARM *parm;

Input

The parm argument must point to a ZIP4_PARM structure. This structure should not be modified after
the call to z4adrinq().

Output

The parm.stack field will be updated to contain the next ten records (fewer records may be returned if less
than ten records remain).

Return

0 - Success

1 - The USPS Address Matching System not installed

2 - The USPS Address Matching System not open

3 - Stack access not allowed

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zip4.h>

ZIP4_PARM parm;

void main(void)
{

int i;

/* open The USPS Address Matching System */
if (z4open())

Address Matching System API User Guide • July 2003 41

{
printf(“Error opening The USPS Address Matching System\n”);
exit(1);

}
/* create parameter list and call The USPS Address Matching System */
memset(&parm, 0, sizeof(parm));
strcpy(parm.iadl1, “350 5TH AVE”);
strcpy(parm.ictyi, “NEW YORK NY”);
z4adrinq(&parm);

/* process all addresses returned by The USPS Address Matching System */
for(i=0; i<parm.respn; i++)
{

/* check if stack needs to be refreshed */
if (i != 0 && (i% 10) == 0)

{
if(z4scroll(&parm))

break;
}

/* examine each address returned by The USPS Address Matching System */
...
}

/* close The USPS Address Matching System */
z4close();
exit(0);

}

Section 3: API Functions

42 Address Matching System API User Guide • July 2003

Get Last Error
The z4geterror() (Get Last Error) function retrieves the last error that was encountered after a failed
z4open () or z4opencfg() function call.

Syntax

#include <zip4.h>
int z4geterror(Z4_ERROR *pError);

Input

Pointer to an empty Z4_ERROR structure.

Output

pError will be populated with the last error that was encountered.

Return

The value of iErrorCode

#defines for the iErrorCode values and their meanings:

ERROR_FILE_OPEN 1 Error opening a file

ERROR_FILE_READ 2 Error reading a file

ERROR_FILE_WRITE 3 Error writing to a file

ERROR_FILE_FIND 4 Error finding a file

ERROR_FILE_EXPIRE 5 AMS library has expired

ERROR_FILE_SYNC 6 AMS Database files are out of sync

ERROR_SECURITY 7 AMS Security error

Example

#include <stdio.h>
#include <string.h>
#include <zip4.h>

int main(void)
{

Z4_ERROR errorparm;
Z4_ENV envparm;

memset(&errorparm, 0, sizeof(Z4_ERROR));
memset(&envparm, 0, sizeof(Z4_ENV));

Section 3: API Functions

Address Matching System API User Guide • July 2003 43

if(z4open())
{

printf(“\nError opening USPS AMS API\n\n”);

z4getenv(&envparm);
z4geterror(&errorparm);

/* Detailed Error Information */
printf(“\n\nDETAILED ERROR INFORMATION\n”);
printf(“--------------------------\n”)
printf(“Error Message: %s\n”, errorparm.strErrorMessage);
printf(“File Name: %s\n”, errorparm.strFileName);
printf(“Diagnostics: %s\n”, errorparm.strDiagnostics);

/* Detailed Environment Information */
printf(“\n\nDETAILED ENVIRONMENT INFORMATION\n”);
printf(“--------------------------------\n”);
printf(“Configuration File: %s\n”, envparm.strConfigFile);
printf(“Address1: %s\n”, envparm.address1);
printf(“AddrIndex: %s\n”, envparm.addrindex);
printf(“CityState: %s\n”, envparm.citystate);
printf(“CrossRef: %s\n”, envparm.crossref);
printf(“System: %s\n”, envparm.system);
printf(“eLOT: %s\n”, envparm.elot);
printf(“eLOTIndex: %s\n”, envparm.elotindex);
printf(“EWS Path: %s\n”, envparm.ewspath);
printf(“eLOT Flag: %s\n”, envparm.elotflag);

}
else
{

printf(“The USPS Address Matching System opened successfully\n”);
}

return 0;
}

Section 3: API Functions

44 Address Matching System API User Guide • July 2003

Get Environment
The z4getenv() (Get Environment) function retrieves the environment for the Address Matching System.

Syntax

#include <zip4.h>
int z4getenv(Z4_ENV *pEnv);

Input

Pointer to an empty Z4_ENV structure.

Output

pEnv will be populated with the environment for the Address Matching System.

Return

0 - Success

Example

See example for function z4geterror().

Section 3: API Functions

Address Matching System API User Guide • July 2003 45

Section 4: Footnote Flags

Section 4: Footnote Flags

A ZIP CODE CORRECTED

The address was found to have a different 5-digit ZIP Code than given in the submitted list. The
correct ZIP Code is shown in the output address.

B CITY / STATE SPELLING CORRECTED

The spelling of the city name and/or state abbreviation in the submitted address was found to be
different than the standard spelling. The standard spelling of the city name and state abbreviation
are shown in the output address.

C INVALID CITY / STATE / ZIP

The ZIP Code in the submitted address could not be found because neither a valid city, state, nor
valid 5-digit ZIP Code was present. It is also recommended that the requestor check the submitted
address for accuracy.

D NO ZIP+4 ASSIGNED

This is a record listed by the United States Postal Service on the national ZIP+4 file as a non-
deliverable location. It is recommended that the requestor verify the accuracy of the submitted
address.

E ZIP CODE ASSIGNED FOR MULTIPLE RESPONSE

Multiple records were returned, but each shares the same 5-digit ZIP Code.

F ADDRESS COULD NOT BE FOUND IN THE NATIONAL DIRECTORY FILE
DATABASE

The address, exactly as submitted, could not be found in the city, state, or ZIP Code provided. It
is also recommended that the requestor check the submitted address for accuracy. For example,
the street address line may be abbreviated excessively and may not be fully recognizable.

G INFORMATION IN FIRM LINE USED FOR MATCHING

Information in the firm line was determined to be a part of the address. It was moved out of the
firm line and incorporated into the address line.

H MISSING SECONDARY NUMBER

ZIP+4 information indicates this address is a building. The address as submitted does not contain
an apartment/suite number. It is recommended that the requestor check the submitted address and
add the missing apartment or suite number to ensure the correct Delivery Point Barcode (DPBC).

I INSUFFICIENT / INCORRECT ADDRESS DATA

More than one ZIP+4 Code was found to satisfy the address as submitted. The submitted address
did not contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is
recommended that the requestor check the address for accuracy and completeness. For example,
firm name, or institution name, doctor’s name, suite number, apartment number, box number,
floor number, etc. may be missing or incorrect. Also pre-directional or post-directional indicators
(North = N, South = S, East = E, West = W, etc.) and/or street suffixes (Street = ST, Avenue =
AVE, Road = RD, Circle = CIR, etc.) may be missing or incorrect.

46 Address Matching System API User Guide • July 2003

Section 4: Footnote Flags

J PO BOX DUAL ADDRESS

The input address contained both a PO BOX address and a non-PO BOX address. A match was
made using the PO BOX address. For example, if the input address were 123 MAIN ST PO BOX
99, the output address would be PO BOX 99.

K NON-PO BOX DUAL ADDRESS

The input address contained both a PO BOX address and a non-PO BOX address. A match was
made using the non-PO BOX address. For example, if the input address were 123 MAIN ST PO
BOX 99, the output address would be 123 MAIN ST.

L ADDRESS COMPONENT CHANGED

An address component (i.e., directional or suffix only) was added, changed, or deleted in order to
achieve a match.

M STREET NAME CHANGED

The spelling of the street name was changed in order to achieve a match.

N ADDRESS STANDARDIZED

The delivery address was standardized. For example, if STREET was in the delivery address, the
system will return ST as its standard spelling.

P BETTER ADDRESS EXISTS

The delivery address is matchable, but is known by another (preferred) name. For example, in
New York, NY, AVENUE OF THE AMERICAS is also known as 6TH AVE. An inquiry using a
delivery address of 55 AVE OF THE AMERICAS would be flagged with a Footnote Flag P.

R NO MATCH DUE TO EWS

The delivery address is matchable, but the EWS file indicates that an exact match will be avail-
able soon.

S INCORRECT SECONDARY ADDRESS

The secondary information (i.e., floor, suite, apartment, or box number) does not match that on
the national ZIP+4 file. This secondary information, although present on the input address, was
not valid in the range found on the national ZIP+4 file.

T MULTIPLE RESPONSE DUE TO MAGNET STREET SYNDROME

The search resulted in a single response; however, the record matched was flagged as having
magnet street syndrome and the input street name components (pre-directional, primary street
name, post-directional, and suffix) did not exactly match those of the record. A “magnet street” is
one having a primary street name that is also a suffix or a directional word, having either a post-
directional or a suffix (i.e., 2200 PARK MEMPHIS TN logically matches to a ZIP+4 record
2200-2258 PARK AVE MEMPHIS TN 38114-6610), but the input address lacks the suffix ‘AVE’
which is present on the ZIP + 4 record. The primary street name ‘PARK’ is a suffix word. The

Address Matching System API User Guide • July 2003 47

record has either a suffix or a post-directional present. Therefore, in accordance with CASS
requirements, a ZIP + 4 Code must not be returned. The multiple response return code is given
since a “no match” would prevent access to the best candidate.

U UNOFFICIAL POST OFFICE NAME

The city or post office name in the submitted address is not recognized by the United States
Postal Service as an official last line name (preferred city name), and is not acceptable as an
alternate name. This does denote an error and the preferred city name will be provided as output.

V UNVERIFIABLE CITY / STATE

The city and state in the submitted address could not be verified as corresponding to the given 5-
digit ZIP Code. This comment does not necessarily denote an error; however, it is recommended
that the requestor check the city and state in the submitted address for accuracy.

W INVALID DELIVERY ADDRESS

The input address record contains a delivery address other than a PO BOX, General Delivery, or
Postmaster 5-digit ZIP Code that is identified as a “small town default”. The United States Postal
Service does not provide street delivery for this ZIP Code. The United States Postal Service
requires use of PO BOX, General Delivery, or Postmaster for delivery within this ZIP Code.

X UNIQUE ZIP CODE DEFAULT

Default match inside a unique ZIP Code.

Z MATCH MADE USING THE ZIPMOVE PRODUCT DATA

The ZIPMOVE product shows which ZIP + 4 records have moved from one ZIP Code to another.
If an input address matches to a ZIP + 4 record which the ZIPMOVE product indicates as having
moved, the search is performed again in the new ZIP Code.

Section 4: Footnote Flags

48 Address Matching System API User Guide • July 2003

Section 4: Return Codes

Section 4: Record Types

F FIRM

This is a match to a Firm Record, which is the finest level of match available for an address.

.

G GENERAL DELIVERY

This is a match to a General Delivery record.

H BUILDING / APARTMENT

This is a match to a Building or Apartment record.

P POST OFFICE BOX

This is a match to a Post Office Box.

R RURAL ROUTE or HIGHWAY CONTRACT

This is a match to either a Rural Route or a Highway Contract record, both of which may have
associated Box Number ranges.

S STREET RECORD

This is a match to a Street record containing a valid primary number range.

Address Matching System API User Guide • July 2003 49

Section 4: Return Codes

10 INVALID DUAL ADDRESS

Information presented could not be processed in current format. Corrective action is needed. Be
sure that the address line components are correct. For example, the input address line may contain
more than one delivery address.

11 INVALID CITY/ST/ZIP
The ZIP Code in the submitted address could not be found because neither a valid city, state, nor
valid 5-digit ZIP Code was present. Corrective action is needed. It is also recommended that the
requestor check the submitted address for accuracy.

12 INVALID STATE
The state in the submitted address is invalid. Corrective action is needed. It is also recommended
that the requestor check the submitted address for accuracy.

13 INVALID CITY
The city in the submitted address is invalid. Corrective action is needed. It is also recommended
that the requestor check the submitted address for accuracy.

21 NOT FOUND
The address, exactly as submitted, could not be found in the national ZIP+4 file. It is recom-
mended that the requestor check the submitted address for accuracy. For example, the street
address line may be abbreviated excessively and may not be fully recognizable.

22 MULTIPLE RESPONSE
More than one ZIP+4 Code was found to satisfy the address submitted. The submitted address did
not contain sufficiently complete or correct data to determine a single ZIP+4 Code. It is recom-
mended that the requestor check the address for accuracy and completeness. Address elements
may be missing.

31 EXACT MATCH
Single response based on input information. No corrective action is needed since an exact match
was found in the national ZIP+4 file.

32 DEFAULT MATCH
A match was made to a default record in the national ZIP+4 file. A more specific match may be
available if a secondary number (i.e., apartment, suite, etc.) exists.

Section 4: Record Types

50 Address Matching System API User Guide • July 2003

Appendix A - Interface Definition
#ifndef ZIP4_H /* avoid redefinition */
#define ZIP4_H
#define RELVER 0xabcdef03L
/**/
/* This record describes an address record. The record format is */
/* the same as the USPS ZIP+4 File. Please see the USPS Address */
/* Information Products Technical Guide for information on this record. */
/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the null */
/* terminator. */
/**/
typedef struct
{

char detail_code; /* copyright detail code */
char zip_code[5+1]; /* zip code */
char update_key[10+1]; /* update key number */
char action_code; /* action code */
char rec_type; /* record type */
char carr_rt[4+1]; /* carrier route */
char pre_dir[2+1]; /* pre-direction abbrev */
char str_name[28+1]; /* street name */
char suffix[4+1]; /* suffix abbrev */
char post_dir[2+1]; /* post-direction abbrev */
char prim_low[10+1]; /* primary low range */
char prim_high[10+1]; /* primary high range */
char prim_code; /* primary even odd code */
char sec_name[40+1]; /* bldg or firm name */
char unit[4+1]; /* secondary abbreviation */
char sec_low[8+1]; /* secondary low range */
char sec_high[8+1]; /* secondary high range */
char sec_code; /* secondary even odd code */
char addon_low[4+1]; /* add on low */
char addon_high[4+1]; /* add on high */
char base_alt_code; /* base alternate code */
char lacs_status; /* LACS converted status */
char finance[6+1]; /* finance code */
char state_abbrev[2+1]; /* state abbreviation (not filled) */
char county_no[3+1]; /* county number */
char congress_dist[2+1]; /* congressional district */
char municipality[6+1]; /* municip. city/state key (not filled) */
char urbanization[6+1]; /* urb. city/state key */
char last_line[6+1]; /* last line city/state key*/

} ADDR_REC;

/* NOTE: The GovtBldgInd (Government Building Indicator) field is not */
/* available in the ADDR_REC structure. */

Appendix A

Address Matching System API User Guide • July 2003 51

Appendix A

/**/
/* This record describes a city/state record. The record format is the */
/* same as the USPS City State File. Please see the USPS Address */
/* Infomation Products Technical Guide for information on this record. */
/* NOTE: All ‘char’ array fields contain an extra byte (+1) for the */
/* null terminator. */
/**/
typedef struct
{

char detail_code; /* copyright detail code */
char zip_code[5+1]; /* zip code */
char city_key[6+1]; /* city/state key */
char zip_class_code; /* zip classification code */

/* blank = non-unique zip */
/* M=APO/FPO military zip */
/* P=PO BOX zip */
/* U=Unique zip */

char city_name[28+1]; /* city/state name */
char city_abbrev[13+1]; /* city/state name abbrev */
char facility_cd; /* facility code */

/* A=Airport mail facility */
/* B=Branch */
/* C=Community post office */
/* D=Area distrib. center */
/* E=Sect. center facility */
/* F=General distrib. center */
/* G=General mail facility */
/* K=Bulk mail center */
/* M=Money order unit */
/* N=Non-postal name */
/* community name, */
/* former postal facility, */
/* or place name */
/* P=Post office */
/* S=Station */
/* U=Urbanization */

char mailing_name_ind; /* mailing name indicator */
/* Y=Mailing name */
/* N=Non-mailing name */

char last_line_num[6+1]; /* preferred last line key */
char last_line_name[28+1]; /* preferred city name */
char city_delv_ind; /* city delivery indicator */

/* Y=Office has city */
/* delivery carrier rts */
/* N=Office does not have */

52 Address Matching System API User Guide • July 2003

/* city delivery carrier */
/* routes */

char auto_zone_ind; /* automated zone indicator */
/* A=CR Sort Rates Apply */
/* Merge Allowed */
/* B=CR Sort Rates Apply */
/* Merge Not Allowed */
/* C=CR Sort Rates Do Not Apply */
/* Merge Allowed */
/* D=CR Sort Rates Do Not Apply */
/* Merge Not Allowed */

char unique_zip_ind; /* unique zip name indicator */
/* Y=Unique zip name */
/* blank=not applicable */

char finance[6+1]; /* finance code */
char state_abbrev[2+1]; /* state abbreviation */
char county_no[3+1]; /* county number */
char county_name[25+1]; /* county name */

} CITY_REC;

/**/
/* Parameter list for z4adrinq() and z4xrfinq() calls. Reserved */
/* fields are for future use, do not access these fields. Size of this */
/* record cannot be changed. */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/**/

typedef struct
{

/*************** input data **************/
char rsvd0[4]; /* reserve fore future use */
char iadl1[50+1]; /* input delivery address */
char iadl2[50+1]; /* input firm name */
char ictyi[50+1]; /* input city */
char istai[2+1]; /* input state */
char izipc[10+1]; /* input ZIP+4 code */
char iprurb[28+1]; /* input urbanization name */
char iad13[50+1]; /* input second address line */
char rsvd1[98]; /* reserved for future use */

/************* returned data *************/
char dadl3[50+1]; /* standardized 2nd delivery address */
char dadl1[50+1]; /* standardized delivery address */
char dadl2[50+1]; /* standardized firm name */
char dlast[50+1]; /* standardized city/state/zip */
char dprurb[28+1]; /* output PR urbanization name */

Appendix A

Address Matching System API User Guide • July 2003 53

char dctys[28+1]; /* main post office city */
char dstas[2+1]; /* main post office state */
char dctya[28+1]; /* standardized city */
char abcty[13+1]; /* standardized city abbreviation */
char dstaa[2+1]; /* standardized state */
char zipc[5+1]; /* 5-digit zip code */
char addon[4+1]; /* ZIP+4 addon code */
char dpbc[3+1]; /* delivery point bar code */
char cris[4+1]; /* carrier route */
char county[3+1]; /* FIPS county code */
short respn; /* number of returned responses */
char retcc; /* return code */
char adrkey[12]; /* address key (for indexing) */
char auto_zone_ind; /* A, B, C or D */
char elot_num[4+1]; /* eLOT Number */
char elot_code; /* eLOT Ascending/Descending Flag */

/************ parsed input data **********/
char ppnum[10+1]; /* Primary Number */
char psnum[8+1]; /* Secondary Number */
char prote[3+1]; /* Rural Route Number */
char punit[4+1]; /* Secondary Number Unit */
char ppre1[2+1]; /* First or Left Pre-direction */
char ppre2[2+1]; /* Second or Right Pre-direction */
char psuf1[4+1]; /* First or Left Suffix */
char psuf2[4+1]; /* Second or Right Suffix */
char ppst1[2+1]; /* First or Left Post-direction */
char ppst2[2+1]; /* Second or Right Post-direction */
char ppnam[28+1]; /* Primary Name */

char mpnum[10+1]; /* Matched primary number. */
char msnum[8+1]; /* Matched secondary number */
char pmb[3+1]; /* PMB Unit Designator */
char pmbnum[8+1]; /* PMB Number */
char rsvd2[86]; /* reserved for future use */

struct { /************** footnotes ****************/
char a; /* zip corrected */
char b; /* city/state corrected */
char c; /* invalid city/state/zip */
char d; /* no zip assigned */
char e; /* ZIP assigned for mult response */
char f; /* no zip available */
char g; /* part of firm moved to address */

Appendix A

54 Address Matching System API User Guide • July 2003

char h; /* secondary number missing */
char i; /* insufficient/incorrect data */
char j; /* dual input - used PO BOX */
char k; /* dual input - used non-PO BOX */
char l; /* del addr component add/del/chg */
char m; /* street name spelling changed */
char n; /* delivery addr was standardized */
char o; /* reserved for future use */
char p; /* better delivery addr exists */
char q; /* reserved for future use */
char r; /* no match caused by EWS */
char s; /* invalid secondary number */
char t; /* magnet street */
char u; /* unofficial PO name */
char v; /* unverifiable city/state */
char w; /* small town default */
char x; /* unique ZIP Code default */
char y; /* reserved for future use */
char z; /* ZIP Move Match */
char rsvd3[6]; /* reserved for future use */
} foot;

ADDR_REC stack[10]; /************ record stack **************/
char rsvd4[194]; /* reserved for future use */

} ZIP4_PARM;

/**/
/* Parameter list for z4getzip() */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/**/

typedef struct
{
 char input_cityst[50+1];
 char output_cityst[50+1];
 char low_zipcode[5+1];
 char high_zipcode[5+1];
 char finance_num[6+1];
} GET_ZIPCODE_STRUCT;

/***/
/* Error Codes for the iErrorCode variable inside the Z4_ERROR structure */
/***/

#define ERROR_FILE_OPEN 1 /* Error opening a file */
#define ERROR_FILE_READ 2 /* Error reading a file */

Appendix A

Address Matching System API User Guide • July 2003 55

#define ERROR_FILE_WRITE 3 /* Error writing to a file */
#define ERROR_FILE_FIND 4 /* Error finding a file */
#define ERROR_FILE_EXPIRE 5 /* AMS library has expired */
#define ERROR_FILE_SYNC 6 /* AMS Database files out of sync */
#define ERROR_SECURITY 7 /* AMS Security Error */

/***/
/* Parameter list for z4geterror() */
/* NOTE: Only fields containing +1 in the length are null terminated */
/***/
typedef struct
{

int iErrorcode; /* Error Code */
char strErrorMessage[100+1]; /* Error Message */
int iFileCode; /* File Code */
char strFileName[26+1]; /* File Name */
char strDiagnostics[300+1]; /* Diagnostic Message */

} Z4_ERROR;

/***/
/* Paramter list for z4getenv() */
/* NOTE: Only fields containing +1 in length are null terminated */
/***/
typedef struct
{

char strConfigFile[300+1];
char address1[300+1]; /* Contains the full path of the ZADRFLE.DAT file */
char addrindex[300+1]; /* Contains the full path of the ZADRFLE.NDX file */
char cdrom[300+1]; /* Contains the drive letter of the CD-ROM drive */

/* that contains the ZIP+4/carrier route data */
/* May be blank */

char citystate[300+1]; /* Contains the full path of the following files: */
/* CTYSTATE.DAT - CITYSTATE.NDX */
/* ZIP5FLE.DAT - ZIP5FLE.NDX */

char crossref[300+1]; /* Contains full path of the ZXREFDTL.DAT file */
char system[300+1]; /* Contains the full path of the Z4CXLOG.DAT file */

char elot[300+1]; /* Contains the full path of the ltrvfle.dat file */
char elotindex[300=1]; /* Contains the full path of the ltrvfle.ndx file */
char ewspath[300+1]; /* Contains the full path of the ews.txt file */
char rsvd1[301]; /* reserved for future use */
char elotflag;
char dpvflag;

}Z4_ENV;

Appendix A

56 Address Matching System API User Guide • July 2003

/**/
/* Parameter list for z4opencfg() */
/* NOTE: Only fields containing +1 in the length are null terminated. */
/**/

/*Use of this structure will replace a physical copy of the configuration */
/*file on the hard drive */

typedef struct
{

char *address1; /*Contains the full path of the ZADRFLE.DAT file */
char *addrindex; /*Contains the full path of the ZADRFLE.NDX file */
char *cdrom; /*Contains the drive letter of the CD-ROM drive that */

/*contains the ZIP+4/carrier route data;may be blank */
char *citystate; /*Contains the full path of the following files: */

/*CTYSTATE.DAT - CTYSTATE.NDX */
/*ZIP5FILE.DAT - ZIP5FLE.NDX */

char *crossref; /*Contains the full path of the ZXREFDTL.DAT file */
char *system; /*Contains the full path of the Z4CXLOG.DAT file */
char *elot; /*Contains the full path of the ELTRVFLE.DAT file */
char *elotindex; /*Contains the full path of the ELTRVFLE.NDX file */
char *ewspath; /*Contains the full path of the EWS.TXT file */

}CONFIG_PARM;

typedef struct
{

char rsvd1[50]; /*reserved for future use */
short status; /*1 - Used value point to by fname */

/*2 - Used values in CONFIG_PARM */
/*9 - No values found. Search for z4config.dat */

char *fname; /*pointer to a NULL terminated string that */
/*contains the full path and filename for a custom */
/*config file. If fname contains a leading space */
/*or NULL then it is ignored and the CONFIG_PARM */
/*is evaluated for path names */

CONFIG_PARM config /*Contains the path name for the config file */
char elotflag; /*Y Enables LOT else Disable eLOT */
char rsvd2[50]; /*reserved for future use */

}Z4OPEN_PARM

/**/
/*Z4OPEN_PARM.status values for z4opencfg() */
/**/

#define Z4_FNAME 1 /*Used the value in fname as the path and filename */

Appendix A

Address Matching System API User Guide • July 2003 57

#define Z4_CONFIG 2 /*Used the paths in the CONFIG_PARM structure */
#define Z4_SEARCH 9 /*Used neither, searched for z4config.dat */

/***/
/* Return Codes for z4adrinq() and z4xrfinq() calls */
/***/
#define Z4_INVADDR 10 /* invalid address */
#define Z4_INVZIP 11 /* invalid ZIP Code */
#define Z4_INVSTATE 12 /* invalid state code */
#define Z4_INVCITY 13 /* invalid city */
#define Z4_NOTFND 14 /* address not found */
#define Z4_MULTIPLE 22 /* multiple response - no default */
#define Z4_SINGLE 31 /* single response - exact match */
#define Z4_DEFAULT 32 /* default response */

/**/
/* Function prototypes for the ZIP+4 retrieval engine. */
/**/
#if defined(OS2_32)
#define Z4FUNC
#elif defined(WIN32)
#define Z4FUNC _cdecl
#elif defined(_WINDOWS) || defined(_WINDLL)
#define Z4FUNC __far __pascal __export
#elif defined(OS2)
#define Z4FUNC _far _pascal _loadds _export
#elif defined(_MAC)
#define Z4FUNC
#elif defined(ANSI_STRICT) || defined(UNIX) || defined(I370)
#define Z4FUNC
#else
#define Z4FUNC _cdecl
#endif

int Z4FUNC z4ready(void); /* check presence of retrieval engine */
int Z4FUNC z4remove(void); /* terminate the retrieval engine */
int Z4FUNC z4open(void); /* open the retrieval engine for use */
int Z4FUNC z4opencfg(Z4OPEN_PARM *, ...);/*open with custom parameters */
int Z4FUNC z4close(void); /* close the retrieval engine */
int Z4FUNC z4abort(void); /* abort the current inquiry */
int Z4FUNC z4adrinq(ZIP4_PARM *); /* address inquiry */
int Z4FUNC z4scroll(ZIP4_PARM *); /* address inquiry */
int Z4FUNC z4adrkey(ZIP4_PARM *); /* address key (for indexing) */
int Z4FUNC z4xrfinq(ZIP4_PARM *); /* nine digit cross reference inquiry */
int Z4FUNC z4adrstd(ZIP4_PARM *, int);/* address standardization */
int Z4FUNC z4ctyget(CITY_REC *, void *);/* get first city for a state */

Appendix A

58 Address Matching System API User Guide • July 2003

Appendix A

int Z4FUNC z4ctynxt(CITY_REC *); /* get next city for a state */
int Z4FUNC z4adrget(ADDR_REC *, void *);/* get first address for a finance no */
int Z4FUNC z4adrnxt(ADDR_REC *); /* get next address for a finance no */
int Z4FUNC z4date(char *); /* get date of ZIP+4 database */
int Z4FUNC z4expire(void); /* number of days until expiration */
int Z4FUNC z4getzip(GET_ZIPCODE_STRUCT *);/* get zip code range for cityst */
int Z4FUNC z4ver(char *); /* get the version of the API code */
int Z4FUNC z4geterror(Z4_ERROR *); /* get the last error msg and code */
int Z4FUNC z4getenv(Z4_ENV *); /* get the environment for AMS */

#endif /* ZIP4_H */

Address Matching System API User Guide • July 2003 59

Appendix B – File Names and Locations

Z4CONFIG.DAT

Data file used to specify the location of the Address Matching System data files. You are responsible for
creating this file, or you may use the skeleton file provided with the Developer’s Kit. This file should be
located in the current working directory of the application using the API.

SAMPLE Z4CONFIG.DAT

APPLICATION OTHER - ZIP+4
COMPUTER OTHER
ADDRESS1 D:\AMSDATA\
ADDRESS2
ADDRESS3
ADDRINDEX D:\AMSDATA\
CDROM
CITYSTATE D:\AMSDATA\
CROSSREF D:\AMSDATA\
SYSTEM C:\AMS_KIT\
TABLE
USER
ADDR1SIZE
ADDR2SIZE
ADDR3SIZE
EWSPATH D:\AMSDATA\

Depending on the capacity of your hard drive, copy the files identified in the next step from the CD-
ROM. Directory and drive listings should be entered according to the specific computer platform being
used. Each directory listing must contain a trailing directory delimiter. See the Section 2, Installation
Procedures, for a sample Z4CONFIG.DAT listing for each supported computer platform.

SAMPLE Z4CONFIG.DAT LINE DESCRIPTION

Sample File Line Description

APPLICATION Not used by the Address Matching System API

COMPUTER Not used by the Address Matching System API

ADDRESS1 Contains the full path of the ZADRFLE.DAT file

ADDRESS2 Must be present and empty

ADDRESS3 Must be present and empty

ADDRINDEX Contains the full path of the ZADRFLE.NDX file

CDROM Contains the drive letter of the CD-ROM drive that contains the
ZIP+4/ carrier route data; this listing may be blank

CITYSTATE Contains the full path of the following files:
CTYSTATE.DAT
CTYSTATE.NDX

Appendix B

60 Address Matching System API User Guide • July 2003

ZIP5FLE.DAT
ZIP5FLE.NDX

CROSSREF Contains the full path of the following files:

ZXREFDTL.DAT

LTRVFLE.DAT

LTRVFLE.NDX

SYSTEM Contains the full path of the Z4CXLOG.DAT file

TABLE Not used by the Address Matching System API

USER Not used by the Address Matching System API

ADDR1SIZE Not used by the Address Matching System API

ADDR2SIZE Not used by the Address Matching System API

ADDR3SIZE Not used by the Address Matching System API

EWSPATH Contains the full path of the EWS.TXT file

Note: If you change the location of any of the files in this list, you must also change the corresponding
path in your Z4CONFIG.DAT.

Appendix B

	Address Matching System Application Program Interface
	Jul 2003 U.S. Postal Service
	Table of Contents
	Section 1: Introduction and Overview
	Introduction
	USPS Address Matching System Developer s Kit
	AMS CD-ROM Technical Support

	Section 2: Installation Procedures
	Special Notes for Windows 32-bit
	Special Notes for SUN UNIX
	Special Notes for OSF UNIX
	Special Notes for AIX UNIX
	Special Notes for LINUX

	Section 3: API Functions
	Functions
	Open the Address Matching System
	Syntax
	Input
	Output
	Return
	Example

	Open Address Matching System with Special Parameters
	Syntax
	Input
	Output
	Return
	Example

	Address Inquiry
	Syntax
	Input
	Output
	Return
	Additional Information About Z4ADRINQ()
	Example

	Address Sort Key
	Syntax
	Input
	Output
	Return
	Example

	9-digit Inquiry
	Syntax
	Input
	Output
	Return
	Example

	Address Standardization
	Syntax
	Input
	Output
	Return
	Example

	Close the Address Matching System
	Syntax
	Input
	Output
	Return
	Example

	Read City/State File By Key
	Syntax
	Input
	Output
	Return

	Read City/State File Next
	Syntax
	Input
	Output
	Return
	Example

	Read ZIP+4 File By Key
	Syntax
	Input
	Output
	Return
	Example

	Read ZIP+4 File Next
	Syntax
	Input
	Output
	Return
	Example

	Get ZIP Codes from a City/State
	Syntax
	Input
	Output
	Return
	Example

	Terminate Active Address Inquiry
	Syntax
	Input
	Output
	Return

	Get Date of ZIP+4 Database
	Syntax
	Input
	Output
	Return
	Example

	Get CD-ROM Expiration Information
	Syntax
	Input
	Output
	Return
	Example

	Get API Code Version
	Syntax
	Input
	Output
	Return
	Example

	Multiple Response Stack
	Scroll the Stack of Address Records
	Syntax
	Input
	Output
	Return
	Example

	Get Last Error
	Syntax
	Input
	Output
	Return
	Example

	Get Environment
	Syntax
	Input
	Output
	Return
	Example

	Section 4: Footnote Flags
	Section 4: Return Codes
	Section 4: Record Types
	Appendix A - Interface Definition
	Appendix B - File Names and Locations
	Z4CONFIG.DAT
	SAMPLE Z4CONFIG.DAT
	SAMPLE Z4CONFIG.DAT LINE DESCRIPTION

	
	USPS Title Page

