

JavaTM Portlet Specification

 Version 2.0 Early Draft 1

Send comments about this document to: jsr-286-comments@jcp.org

 5

 10

May July 171019, 20065
Stefan Hepper (sthepper@de.ibm.com) 15

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 2

Java(TM) Portlet Specification ("Specification") Version: 2.0
Status: Early Draft, Specification Lead: IBM Corp.

Copyright 2006 IBM Corp. All rights reserved.

This draft specification for the JSR 286 specification is not
final. Any final specification that may be published will likely 5
contain differences, some of which may be substantial.
Publication of this draft specification is not intended to
provide the basis for implementations of the specification. This
draft specification is provided AS IS, with all faults. THERE
ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF 10
CONDITION OF TITLE OR NON-INFRINGEMENT. You may copy and display
this draft specification provided that you include this notice
and any existing copyright notice. Except for the limited
copyright license granted above, there are no other licenses
granted to any intellectual property owned or controlled by any 15
of the authors or developers of this material. No other rights
are granted by implication, estoppel or otherwise.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 3

Contents

JavaTM Portlet Specification.. 1
PLT.1 Preface .. 9

PLT.1.1 Additional Sources.. 9 5
PLT.1.2 Who Should Read This Specification... 9
PLT.1.3 API Reference... 10
PLT.1.4 Other Java™ Platform Specifications... 10
PLT.1.5 Other Important References.. 10
PLT.1.6 Terminology ... 11 10
PLT.1.7 Providing Feedback .. 11
PLT.1.8 Acknowledgements... 11

PLT.2 Overview... 13
PLT.2.1 What is a Portal? ... 13
PLT.2.2 What is a Portlet?.. 13 15
PLT.2.3 What is a Portlet Container? ... 13
PLT.2.4 An Example .. 14
PLT.2.5 Compatibility .. 14
PLT.2.6 Major changes introduced with V 2.0... 14
PLT.2.7 Relationship with Java 2 Platform, Standard and Enterprise Edition............. 15 20

PLT.3 Relationship with the Servlet Specification.. 17
PLT.3.1 Bridging from Portlets to Servlets/JSPs ... 18
PLT.3.2 Relationship Between the Servlet Container and the Portlet Container 20

PLT.4 Portlet Concepts.. 21
PLT.4.1 Portlets .. 21 25
PLT.4.2 Embedding Portlets as Elements of a Portal Page .. 21

PLT.4.2.1 Portal Page Creation .. 22
PLT.4.2.2 Portal Page Request Sequence... 23

PLT.4.3 Portlets and Web Frameworks.. 23
PLT.5 The Portlet Interface and Additional Life Cycle Interfaces.................................. 25 30

PLT.5.1 Number of Portlet Instances ... 25
PLT.5.2 Portlet Life Cycle.. 25

PLT.5.2.1 Loading and Instantiation .. 27
PLT.5.2.2 Initialization ... 27
PLT.5.2.3 End of Service.. 28 35

PLT.5.3 Portlet Customization Levels.. 28
PLT.5.3.1 Portlet Definition and Portlet Entity .. 29
PLT.5.3.2 Portlet Window .. 29

PLT.5.4 Request Handling.. 32
PLT.5.4.1 Action Request... 34 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 4

PLT.5.4.2 Event Request .. 35
PLT.5.4.3 Render Request .. 35
PLT.5.4.4 Resource Request... 36
PLT.5.4.5 GenericPortlet .. 36
PLT.5.4.6 Multithreading Issues During Request Handling..................................... 37 5
PLT.5.4.7 Exceptions During Request Handling.. 37
PLT.5.4.8 Thread Safety... 38

PLT.6 Portlet Config.. 41
PLT.6.1 Initialization Parameters ... 41
PLT.6.2 Portlet Resource Bundle ... 41 10

PLT.7 Portlet URLs ... 43
PLT.7.1 Portlet URLs ... 43

PLT.7.1.1 BaseURL interface... 44
PLT.7.1.2 Including a Portlet Mode or a Window State .. 45
PLT.7.1.3 Portlet URL security .. 45 15

PLT.8 Portlet Modes.. 47
PLT.8.1 VIEW Portlet Mode ... 47
PLT.8.2 EDIT Portlet Mode ... 47
PLT.8.3 HELP Portlet Mode ... 48
PLT.8.4 Custom Portlet Modes .. 48 20
PLT.8.5 GenericPortlet Render Handling... 48
PLT.8.6 Defining Portlet Modes Support... 49

PLT.9 Window States .. 51
PLT.9.1 NORMAL Window State... 51
PLT.9.2 MAXIMIZED Window State.. 51 25
PLT.9.3 MINIMIZED Window State.. 51
PLT.9.4 Custom Window States... 51

PLT.10 Portlet Context .. 53
PLT.10.1 Scope of the Portlet Context ... 53
PLT.10.2 Portlet Context functionality... 53 30
PLT.10.3 Relationship with the Servlet Context .. 53

PLT.10.3.1 Correspondence between ServletContext and PortletContext methods 54
PLT.11 Portlet Requests .. 55

PLT.11.1 PortletRequest Interface.. 55
PLT.11.1.1 Request Parameters.. 55 35
PLT.11.1.2 Extra Request Parameters .. 58
PLT.11.1.3 Request Attributes.. 59
PLT.11.1.4 Request Properties ... 59
PLT.11.1.5 Request Context Path... 60
PLT.11.1.6 Security Attributes ... 60 40
PLT.11.1.7 Response Content Types.. 60
PLT.11.1.8 Internationalization .. 61
PLT.11.1.9 Portlet Mode .. 61
PLT.11.1.10 Window State... 61

PLT.11.2 ClientHttpRequest Interface ... 61 45
PLT.11.2.1 Retrieving Uploaded Data ... 62

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 5

PLT.11.3 ActionRequest Interface ... 63
PLT.11.4 ResourceRequest Interface ... 63
PLT.11.5 EventRequest Interface... 63
PLT.11.6 RenderRequest Interface... 64
PLT.11.7 Lifetime of the Request Objects ... 64 5

PLT.12 Portlet Responses.. 65
PLT.12.1 PortletResponse Interface ... 65

PLT.12.1.1 Response Properties ... 65
PLT.12.1.2 Encoding of URLs ... 65
PLT.12.1.3 Namespacing.. 66 10

PLT.12.2 StateAwareResponse Interface ... 66
PLT.12.2.1 Render Parameters ... 66
PLT.12.2.2 Portlet Modes and Window State Changes.. 66
PLT.12.2.3 Publishing Events .. 67

PLT.12.3 ActionResponse Interface... 67 15
PLT.12.3.1 Redirections ... 67

PLT.12.4 EventResponse Interface .. 68
PLT.12.5 RenderResponse Interface .. 68
PLT.12.6 ResourceResponse Interface... 69

PLT.12.6.1 Content Type.. 69 20
PLT.12.6.2 Output Stream and Writer Objects... 69
PLT.12.6.3 Buffering.. 69
PLT.12.6.4 Portlet Title .. 71

PLT.12.7 Lifetime of Response Objects... 71
PLT.13 Resource Serving .. 72 25

PLT.13.1 ResourceServingPortlet Interface ... 72
PLT.13.2 Access to Request and Response Headers.. 73
PLT.13.3 Resource URLs... 73

PLT.14 Coordination between portlets .. 74
PLT.14.1 Shared Session State ... 74 30
PLT.14.2 Shared Render Parameters.. 74
PLT.14.3 Portlet Events.. 75

PLT.14.3.1 EventPortlet Interface .. 75
PLT.14.3.2 Receiving and sending events.. 76
PLT.14.3.3 Event declaration ... 77 35
PLT.14.3.4 Event processing .. 78
PLT.14.3.5 Exceptions during event processing .. 79
PLT.14.3.6 GenericPortlet support ... 80

PLT.15 Portal Context ... 81
PLT.16 Portlet Preferences .. 83 40

PLT.16.1 PortletPreferences Interface.. 83
PLT.16.2 Preference Attributes Scopes.. 85
PLT.16.3 Preference Attributes definition.. 85

PLT.16.3.1 Localizing Preference Attributes ... 86
PLT.16.4 Validating Preference values .. 87 45

PLT.17 Sessions... 89

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 6

PLT.17.1 Creating a Session... 89
PLT.17.2 Session Scope ... 90
PLT.17.3 Binding Attributes into a Session ... 90
PLT.17.4 Relationship with the Web Application HttpSession 91

PLT.17.4.1 HttpSession Method Mapping ... 91 5
PLT.17.5 Shared session attributes... 92

PLT.17.5.1 Declaration in the deployment descriptor .. 93
PLT.17.5.2 Example ... 94

PLT.17.6 Writing to the Portlet Session ... 95
PLT.17.6.1 Process action and process event phase... 95 10
PLT.17.6.2 Rendering phase... 95

PLT.17.7 Reserved HttpSession Attribute Names.. 95
PLT.17.8 Session Timeouts .. 96
PLT.17.9 Last Accessed Times .. 96
PLT.17.10 Important Session Semantics.. 96 15

PLT.18 Dispatching Requests to Servlets and JSPs .. 97
PLT.18.1 Obtaining a PortletRequestDispatcher.. 97

PLT.18.1.1 Query Strings in Request Dispatcher Paths ... 97
PLT.18.2 Using a Request Dispatcher.. 98
PLT.18.3 The Include Method.. 98 20

PLT.18.3.1 Included Request Parameters... 98
PLT.18.3.2 Included Request Attributes... 99
PLT.18.3.3 Request and Response objects for Included Servlets/JSPs from within
the Render method .. 99
PLT.18.3.4 Request and Response objects for Included Servlets/JSPs from within 25
the ServeResource method.. 100
PLT.18.3.5 Error Handling ... 102

PLT.18.4 Servlet filters and Request Dispatching.. 102
PLT.19 Portlet Filter .. 104

PLT.19.1 What is a portlet filter? ... 104 30
PLT.19.2 Main Concepts .. 104

PLT.19.2.1 Filter Lifecycle... 104
PLT.19.2.2 Wrapping Requests and Responses ... 106
PLT.19.2.3 Filter Environment ... 106
PLT.19.2.4 Configuration of Filters in a Portlet Application 106 35
PLT.19.2.5 Defining the Target Lifecycle Method for a Portlet Filter................... 108

PLT.20 User Information... 109
PLT.20.1 Defining User Attributes... 109
PLT.20.2 Accessing User Attributes .. 110
PLT.20.3 Important Note on User Information .. 110 40

PLT.21 Caching ... 111
PLT.21.1 Expiration Cache .. 111

PLT.22 Portlet Applications .. 113
PLT.22.1 Relationship with Web Applications .. 113
PLT.22.2 Relationship to PortletContext.. 113 45
PLT.22.3 Elements of a Portlet Application... 113

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 7

PLT.22.4 Directory Structure ... 113
PLT.22.5 Portlet Application Classloader .. 114
PLT.22.6 Portlet Application Archive File... 114
PLT.22.7 Portlet Application Deployment Descriptor ... 114
PLT.22.8 Replacing a Portlet Application.. 114 5
PLT.22.9 Error Handling .. 114
PLT.22.10 Portlet Application Environment.. 114

PLT.23 Security ... 115
PLT.23.1 Introduction... 115
PLT.23.2 Roles ... 115 10
PLT.23.3 Programmatic Security ... 115
PLT.23.4 Specifying Security Constraints ... 116
PLT.23.5 Propagation of Security Identity in EJBTM Calls .. 117

PLT.24 Packaging and Deployment Descriptor .. 119
PLT.24.1 Portlet and Web Application Deployment Descriptor................................ 119 15
PLT.24.2 Packaging.. 119

PLT.24.2.1 Example Directory Structure ... 120
PLT.24.2.2 Version Information... 120

PLT.24.3 Portlet Deployment Descriptor Elements ... 120
PLT.24.4 Rules for processing the Portlet Deployment Descriptor 121 20
PLT.24.5 Portlet Deployment Descriptor ... 121
PLT.24.6 Pictures of the structure of a Deployment Descriptor 155
PLT.24.7 Uniqueness of Deployment Descriptor Values... 161
PLT.24.8 Localization .. 161

PLT.24.8.1 Localization of Deployment Descriptor Values 161 25
PLT.24.8.2 Locales Supported by the Portlet ... 162

PLT.24.9 Deployment Descriptor Example ... 162
PLT.24.10 Resource Bundles ... 163
PLT.24.11 Resource Bundle Example.. 166

PLT.25 Portlet Tag Library.. 167 30
PLT.25.1 defineObjects Tag... 167
PLT.25.2 actionURL Tag ... 168
PLT.25.3 renderURL Tag... 169
PLT.25.4 resourceURL Tag.. 170
PLT.25.5 namespace Tag.. 171 35
PLT.25.6 param Tag ... 171

 Leveraging JAXB for Event and Shared Session payloads ... 173
PLT.26 .. 173
PLT.27 Technology Compatibility Kit Requirements... 174

PLT.27.1 TCK Test Components ... 174 40
PLT.27.2 TCK Requirements ... 175

PLT.27.2.1 Declarative configuration of the portal page for a TCK test 175
PLT.27.2.2 Programmatic configuration of the portal page for a test 177
PLT.27.2.3 Test Portlets Content.. 178
PLT.27.2.4 Test Cases that Require User Identity.. 178 45

PLT.A Custom Portlet Modes.. 179

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 8

PLT.B Markup Fragments ... 183
PLT.C CSS Style Definitions .. 185
PLT.D User Information Attribute Names .. 191
PLT.E TCK Assertions .. 206
 5

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 9

PLT.1

Preface

This document is the JavaTM Portlet Specification, v12..0. The standard for the JavaTM
Portlet API is described here. 5

NOTE: This first early draft only covers a subset of features that the Expert Group
wanted to add in this JSR. The features that are part of this early draft addresses the
often raised requirement for more coordination support between portlets and the new
Web Services for Remote Portlets (WSRP) 2.0 features. Additional features, like a 10
better AJAX support, will be added in the next draft version.

PLT.1.1 Additional Sources
The specification is intended to be a complete and clear explanation of Java portlets, but
if questions remain the following may be consulted: 15

• A reference implementation (RI) has been made available which provides a
behavioral benchmark for this specification. Where the specification leaves
implementation of a particular feature open to interpretation, implementators may
use the reference implementation as a model of how to carry out the intention of
the specification 20

• A Technology Compatibility Kit (TCK) has been provided for assessing whether
implementations meet the compatibility requirements of the JavaTM Portlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard

• If further clarification is required, the working group for the JavaTM Portlet API 25
under the Java Community Process should be consulted, and is the final arbiter of
such issues

Comments and feedback are welcomed, and will be used to improve future versions.

PLT.1.2 Who Should Read This Specification
The intended audience for this specification includes the following groups: 30

• Portal server vendors that want to provide portlet engines containers that conform
to this standard

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 10

• Authoring tool developers that want to support web applications that conform to
this specification

• Experienced portlet authors who want to understand the underlying mechanisms
of portlet technology

We emphasize that this specification is not a user’s guide for portlet developers and is not 5
intended to be used as such.

PLT.1.3 API Reference
An accompanying javadoc™, includes the full specifications of classes, interfaces, and
method signatures.

PLT.1.4 Other Java™ Platform Specifications 10

The following Java API specifications are referenced throughout this specification:
• Java 2 Platform, Enterprise Edition, v1.3 4 (J2EE™)
• Java Servlet™, v2.34
• JavaServer Pages™, v1.22.0 (JSP™)
• The Java™ Architecture for XML Binding (JAXB) 2.0 15

These specifications may be found at the Java 2 Platform Enterprise Edition website:
http://java.sun.com/j2ee/.

PLT.1.5 Other Important References
The following Internet specifications provide information relevant to the development
and implementation of the Portlet API and standard portlet engines: 20

• RFC 1630 Uniform Resource Identifiers (URI)
• RFC 1776 1766 Tags for the Identification of Languages
• RFC 1738 Uniform Resource Locators (URL)
• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
• RFC 1808 Relative Uniform Resource Locators 25
• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)
• RFC 2045 MIME Part One: Format of Internet Message Bodies
• RFC 2046 MIME Part Two: Media Types
• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
• RFC 2048 MIME Part Four: Registration Procedures 30
• RFC 2049 MIME Part Five: Conformance Criteria and Examples
• RFC 2109 HTTP State Management Mechanism
• RFC 2145 Use and Interpretation of HTTP Version Numbers
• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)
• RFC 2617 HTTP Authentication: Basic and Digest Authentication 35
• ISO 639 Code for the representation of names of languages
• ISO 3166 Code (Country) list
• OASIS Web Services for Remote Portlets (WSRP)

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 11

Online versions of these RFC and ISO documents are at:
• http://www.rfc-editor.org/
• http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

• http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html 5
The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information affecting this specification and its implementations.

The WSRP Specification can be found in the OASIS web site
(http://www.oasis-open.org/).

The Extensible Markup Language (XML) is used for the specification of the Deployment 10
Descriptors described in Chapter 13 of this specification. More information about XML
can be found at the following websites:
http://java.sun.com/xml
http://www.xml.org/

PLT.1.6 Terminology 15

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in [RFC2119].

PLT.1.7 Providing Feedback
We welcome any and all feedback about this specification. Please e-mail your comments 20
to jsr-1681286-comments@sun.comjcp.org.

Please note that due to the volume of feedback that we receive, you will not normally
receive a reply from an engineer. However, each and every comment is read, evaluated,
and archived by the specification team.

PLT.1.8 Acknowledgements 25

The Portlet Specification is the result of the work of JSR168 JSR2868 Expert Group.,
Subbu Allamaraju (BEA), Chris Braun (Novell), Don Chapman (SAS), Michael
Freedman (Oracle), Laurent Guiraud (SAP), Randal Hanford (Boeing), Andre Kramer
(Citrix), Axel Kratel (Borland), Danny Machak (TIBCO), Kris Meukens (EDS), Wes
Mitchell (Broadvision), Takao Mohri (Fujitsu), Dean Moses (Vignette), Andrew Rickard 30
(ATG), William Seiger (Sybase), David Sean Taylor (Apache), Stefan Hepper (IBM) and
Alejandro Abdelnur (Sun).

We want to give special thanks to (as members of the Expert Group) Subbu Allamaraju,
Henning Blohm, Chris Braun, Don Chapman, Adrian Fletcher, Michael Freedman,
Laurent Guiraud, Andre Kramer, Danny Machak, Wes Mitchell, Takao Mohri, Dean 35
Moses, Peter Petersen, Andrew Rickard and David Sean Taylor for their contributions.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 12

We would like to thank OASIS WSRP Technical Committee, JSR127 Java Server Faces
Expert Group and JSR154 Servlet Specification Expert Group for their cooperation.

We would also like to thank all the people who have sent us feedback during the
Community Review and Public Review stages.

Finally we would like to thank Maneesha Jain (Sun) and Stephan Hesmer (IBM) who led 5
the TCK and RI efforts.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 13

PLT.1PLT.2

Overview

PLT.1.1PLT.2.1 What is a Portal?
A portal is a web based application that –commonly- provides personalization, single
sign onauthentication, content aggregation from different sources and hosts the 5
presentation layer of Information information Systemssystems. Aggregation is the action
of integrating content from different sources within a web page. A portal may have
sophisticated personalization features to provide customized content to users. Portal
pages may have different set of portlets creating content for different users.

PLT.1.2PLT.2.2 What is a Portlet? 10

A portlet is a Java technology based web component, an application that provides a
specific piece of content (information or service) to be included as part of a portal page. It
is managed by a portlet container, that processes requests and generates dynamic content.
Portlets are used by portals as pluggable user interface components that provide a
presentation layer to Information information Systemssystems. 15

The content generated by a portlet is also called a fragment. A fragment is a piece of
markup (e.g. HTML, XHTML, WML) adhering to certain rules and can be aggregated
with other fragments to form a complete document. The content of a portlet is normally
aggregated with the content of other portlets to form the portal page. The lifecycle of a
portlet is managed by the portlet container. 20

Web clients interact with portlets via a request/response paradigm implemented by the
portal. Normally, users interact with content produced by portlets, for example by
following links or submitting forms, resulting in portlet actions being received by the
portal, which are forwarded by it to the portlets targeted by the user's interactions.

The content generated by a portlet may vary from one user to another depending on the 25
user configuration for the portlet.

This specification will deal with Portlets as Java technology based web components.

PLT.1.3PLT.2.3 What is a Portlet Container?
A portlet container runs portlets and provides them with the required runtime
environment. A portlet container contains portlets and manages their lifecycle. It also 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 14

provides persistent storage for portlet preferences. A portlet container receives requests
from the portal to execute requests on the portlets hosted by it.

A portlet container is not responsible for aggregating the content produced by the
portlets. It is the responsibility of the portal to handle the aggregation.

A portal and a portlet container can be built together as a single component of an 5
application suite or as two separate components of a portal application.

PLT.1.4PLT.2.4 An Example
The following is a typical sequence of events, initiated when users access their portal
page:

• A client (e.g., a web browser) after being authenticated makes an HTTP request to 10
the portal

• The request is received by the portal
• The portal determines if the request contains an action targeted to any of the

portlets associated with the portal page
• If there is an action targeted to a portlet, the portal requests the portlet container to 15

invoke the portlet to process the action
• A portal invokes portlets, through the portlet container, to obtain content

fragments that can be included in the resulting portal page
• The portal aggregates the output of the portlets in the portal page and sends the

portal page back to the client 20

PLT.2.5 Compatibility
The Java Portlet Specification V 2.0 does not break binary compatibility with V 1.0. This
means that all portlets written against the V 1.0 specification can run unchanged. Portlet
V2.0 containers must support deploying JSR 168 portlets and the JSR 168 deployment
descriptor. i 25

PLT.2.6 Major changes introduced with V 2.0
The Java Portlet Specification V 2.0 does not break binary compatibility with V 1.0. This
means that all portlets written against the V 1.0 specification can run unchanged. Portlet
V2.0 containers must support deploying JSR 168 portlets and the JSR 168 deployment
descriptor. ii 30

The major new features of version 2.0 include:

• Events – enabling portlet to send and receive events and perform state changes or
send further events as result of processing an event.

• sShared session attributes – allowing portlets to share session attributes beyond 35
the current web application.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 15

• sShared render parameters – allowing portlets to share render parameters with
other portlets.

• Resource serving – provides ability for a portlet to serve a resource.enabling
resource serving in the context of the portal with access to the portlet API objects.

• Portlet filter – allowing on the fly transformations of information in both the 5
request to and the response from a portlet

 Leveraging JAXB for Event and Shared Session payloads
The Java Portlet Specification 2.0 leverages the Java Architecture for

XML Binding (JAXB) 2.0 for defining payload data that needs to be transferred across
different types of portlet container via the Web Services for Remote Portlets (WSRP) 2.0 10
specification. These are the event payload and the shared session attribute value.

The event payload and the shared session attribute value must be defined by either the
following alternativesiii:

 using the JAXB annotations in the Java object and defining the Java object class
name in the deployment descript via the java-class element. Defining the Java 15
object class name in the deployment descriptor is optional for publishing events
and mandatory for consuming events. iv

 providing an XML schema in the deployment descriptor via the xml-schema
element and optionally a JAXB mapping via the jaxb-mapping element

PLT.1.5PLT.2.7 Relationship with Java 2 Platform, Standard 20
and Enterprise Edition
The Portlet API v21.0 is based on the Java 2 Platform, Standard Edition 5.0 and
Enterprise Edition, v1.43. Portlet containers and portletsshould at least meet the
requirements, described in v 1.4 of the J2EE Specification, for executing in a J2EE
environment. 25

Due to the analogous functionality of servlets, concepts, names and behavior of the
portlet will be similar to the ones defined in the Servlet Specification 2.3 4 whenever
applicable.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 17

PLT.3

Relationship with the Servlet Specification

The Servlet Specification v2.3 defines servlets as follows:

“A servlet is a Java technology based web component, managed by a container, that
generates dynamic content. Like other Java-based components, servlets are platform 5
independent Java classes that are compiled to platform neutral bytecode that can be
loaded dynamically into and run by a Java enabled web server. Containers, sometimes
called servlet engines, are web server extensions that provide servlet functionality.
Servlets interact with web clients via a request/response paradigm implemented by the
servlet container.” 10

Portlets share many similarities with servlets:
• Portlets are Java technology based web components
• Portlets are managed by a specialized container
• Portlets generate dynamic content 15
• Portlets lifecycle is managed by a container
• Portlets interact with web client via a request/response paradigm

Portlets differ in the following aspects from servlets:

• Portlets only generate markup fragments, not complete documents. The Portal 20
aggregates portlet markup fragments into a complete portal page

• Portlets are not directly bound to a URLcan only be invoked through URLs
constructed via the portlet API.

• Web clients interact with portlets through a portal system
• Portlets have a more refined request handling, action requests, event request, 25

resource requests and render requests
• Portlets have predefined portlet modes and window states that indicate the

function the portlet is performing and the amount of real state in the portal page
• Portlets can exist many times in a portal page

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 18

Portlets have access to the following extra functionality not provided by servlets:
• Portlets have means for accessing and storing persistent configuration and

customization data
• Portlets have access to user profile information 5
• Portlets have URL rewriting functions for creating hyperlinks within their

content, which allow portal server agnostic creation of links and actions in page
fragments

• Portlets can store transient data in the portlet session in two different scopes: the
application-wide scope and the portlet private scope. They can in addition allow 10
the portlet container to share application-wide scoped attributes beyond the
current web application.

• Send and receive events from other portlets or container defined events.

Portlets do not have access to the following functionality provided by servlets in their 15
render method:

• Setting the character set encoding of the response
• Setting HTTP headers on the response
• The URL of the client request to the portal

 20

The portlet has full control over the response when rendering resources via the
serverenderResource call.

Because of these differences, the Expert Group has decided that portlets needs to be a
new component. Therefore, a portlet is not a servlet. This allows defining a clear 25
interface and behavior for portlets.

In order to reuse as much as possible of the existing servlet infrastructure, the Portlet
Specification leverages functionality provided by the Servlet Specification wherever
possible. This includes deployment, classloading, web applications, web application
lifecycle management, session management and request dispatching. Many concepts and 30
parts of the Portlet API have been modeled after the Servlet API.

Portlets, servlets and JSPs are bundled in an extended web application called portlet
application. Portlets, servlets and JSPs within the same portlet application share
classloader, application context and session.

PLT.3.1 Bridging from Portlets to Servlets/JSPs 35

Portlets can leverage servlets, JSPs and JSP tag-libraries for generating content.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 19

A portlet can call servlets and JSPs just like a servlet can invoke other servlets and JSPs
using a request dispatcher (see PLT.16 Dispatching Requests to Servlets and JSPs
Chapter). To enable a seamless integration between portlets and servlets the Portlet
Specification leverages many of the servlet objects.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 20

When a servlet or JSP is called from within a portlet, the servlet request given to the
servlet or JSP is based on the portlet request and the servlet response given to the servlet
or JSP is based on the portlet response. For example, per default:

• Attributes set in the portlet request are available in the included servlet request
(see PLT.16 Dispatching Requests to Servlets and JSPs Chapter), 5

• The portlet and the included servlet or JSP share the same output stream (see
PLT.16 Dispatching Requests to Servlets and JSPs Chapter).

• Attributes set in the portlet session are accessible from the servlet session and vice
versa (see PLT.15 Portlet Session Chapter).

PLT.3.2 Relationship Between the Servlet Container and the 10
Portlet Container
The portlet container is an extension of the servlet container. As such, a portlet container
can be built on top of an existing servlet container or it may implement all the
functionality of a servlet container. Regardless of how a portlet container is implemented,
its runtime environment is assumed to support at least Servlet Specification 2.34. 15

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 21

PLT.4

Portlet Concepts

PLT.4.1 Portlets
The concept of a pPortlets allow you to is to provide a componentized Uuser Iinterface
(UI) for services. In a Service Oriented Architecture (SOA) you don’one does not write 5
monolithic applications anymore, but separate services that can be orchestrated together
into applications,. This service orchestration requires componentized UIs for the services,
monolithic web UIs based on servlets are no longer sufficient.

Portlets provide such a component UI model that is intended to aggregate the component
UIs into a larger UI with consistent look and feel (see Appendix PLT.C Style Sheet 10
Definitions). The Java Portlet Specification allows coordination on the UI layer with
different means, such as events, shared sessions, and shared render parameters, in order
to provide a deep and seamless integration between the different services.

The predominant applications using portlets today are portals aggregating the portlet
markup into portal pages, but the Java Portlet Specification and portlets itself are not 15
restricted to portals.

PLT.4.1PLT.4.2 Embedding Portlets as Elements of a Portal
Page
A portlet generates markup fragments. A portal normally may adds a title, control buttons
and other decorations to the markup fragment generated by the portlet, this new fragment 20
is called a portlet window. Then the portal may aggregates portlet windows into a
complete document, the portal page.

Figure 4-1 Elements of a Portal Page

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 22

A

B C

D

Portal Page

Portlet Windows

Portal
Server

Portlet A

Portlet B

Portlet C

Portlet D

Client Device

Portlet
Container

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ

<Portlet content>

<Title> M m E Hδ Portal page

Portlet fragment

Portlet window

Decorations and controls

Note that this is only one example on how a portal could make use of the portlet markup
fragment. There may exist other portlet implementations with a complete different
rendering approach. The important part of the portal page concept in regards to this
specification is that the markup fragment of the portlet may not be not the only markup 5
returned in the document to the client. Thus the portlet markup needs to co-exist with
whatever other markup the portal produces.

PLT.4.2PLT.4.2.1 Portal Page Creation
Portlets run within a portlet container. The portlet container receives the content
generated by the portlets. Typically, the portlet container hands the portlet content to a 10
portal. The portal server creates the portal page with the content generated by the portlets
and sends it to the client device (i.e. a browser) where it is displayed to the user.

FIGURE 4-2 Portal Page Creation

 15

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 23

 5

 10

PLT.4.3PLT.4.2.2 Portal Page Request Sequence
Users access a portal by using a client device such as an HTML browser or a
web-enabled phone. Upon receiving the request, the portal determines the list of portlets
that need to be executed to satisfy the request. The portal, through the portlet container,
invokes the portlets. The portal creates the portal page with the fragments generated by 15
the portlets and the page is returned to the client where it is presented to the user.

PLT.4.3 Portlets and Web Frameworks
The portlet model provides a clear separation of the state changing logic that is embedded
in the processAction and processEvent methods and the rendering of the markup
which is performed via the render and renderserveResource methods. The portlet 20
model thus follows the popular Model-View-Controller pattern which separates the
controller logic from the part that generates the view.

The default model that the Java Portlet Specification provides for rendering views is
JSPs. However, once one starts creating advanced portlets, existing web frameworks, like
Java Server Faces (JSF), Struts, WebWorks, Spring, or others may be used. When using 25
such a web framework the portlet acts as a bridge between the portlet environment and
the web framework.

Version 2.0 of this specification provides additional means making the implementation of
such bridges simpler.

 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 25

PLT.1PLT.5

The Portlet Interface and Additional Life

Cycle Interfaces

The Portlet interface is the main abstraction of the Portlet API. All portlets implement
this interface either directly or, more commonly, by extending a class that implements the 5
interface.

The portlet can optionally implement the additional life cycle interfaces
PortletEventsEventPortlet and
PortletResourceServingResourceServingPortlet in order to leverage additional
functionality like receiving / sending eventings or serving resource servings. 10

The Portlet API includes a GenericPortlet class that implements the Portlet interface
and provides default functionality. Developers should extend, directly or indirectly, the
GenericPortlet class to implement their portlets.

PLT.1.1PLT.5.1 Number of Portlet Instances
The portlet definition sections in the deployment descriptor of a portlet application 15
control how the portlet container creates portlet instances.

For a portlet, not hosted in a distributed environment (the default), the portlet container
mustv instantiate and use only one portlet object per portlet definition.

In the case where a portlet is deployed as part of a portlet application marked as
distributable, in the web.xml deployment descriptor, a portlet container may instantiate 20
only one portlet object per portlet definition -in the deployment descriptor- per virtual
machine (VM). vi

PLT.1.2PLT.5.2 Portlet Life Cycle
A portlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, how it handles requests from clients, and how it is taken out 25
of service. This life cycle of a portlet is expressed through the init, processAction,
render and destroy methods of the Portlet interface.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 26

The Java Portlet Specification V2.0 provides the additional optional lifecycle interfaces
PortletEventsEventPortlet and
PortletResourceServingResourceServingPortlet that the portlet can implement.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 27

PLT.1.2.1PLT.5.2.1 Loading and Instantiation
The portlet container is responsible for loading and instantiating portlets. The loading and
instantiation can occur when the portlet container starts the portlet application, or delayed
until the portlet container determines the portlet is needed to service a request.

The portlet container must load the portlet class using the same ClassLoader the servlet 5
container uses for the web application part of the portlet application.vii After loading the
portlet classes, the portlet container instantiates them for use.

PLT.1.2.2PLT.5.2.2 Initialization
After the portlet object is instantiated, the portlet container must initialize the portlet
before invoking it to handle requests.viii Initialization is provided so that portlets can 10
initialize costly resources (such as backend connections), and perform other one-time
activities. The portlet container must initialize the portlet object by calling the init method
of the Portlet interface with a unique (per portlet definition) object implementing the
PortletConfig interface. This configuration object provides access to the initialization
parameters and the ResourceBundle defined in the portlet definition in the deployment 15
descriptor. Refer to PLT.6 Portlet Config Chapter for information about the
PortletConfig interface. The configuration object also gives the portlet access to a
context object that describes the portlet’s runtime environment. Refer to PLT.10 Portlet
Context Chapter for information about the PortletContext interface.

PLT.1.2.2.1PLT.5.2.2.1 Error Conditions on Initialization 20

During initialization, the portlet object may throw an UnavailableException or a
PortletException. In this case, the portlet container must not place the portlet object
into active service and it must release the portlet object.ix The destroy method must not
be called because the initialization is considered unsuccessful.x

The portlet container may reattempt to instantiate and initialize the portlets at any time 25
after a failure. The exception to this rule is when an UnavailableException indicates a
minimum time of unavailability. When this happens the portlet container must wait for
the specified time to pass before creating and initializing a new portlet object.xi

A RuntimeException thrown during initialization must be handled as a
PortletException.xii 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 28

PLT.1.2.2.2PLT.5.2.2.2 Tools Considerations

The triggering of static initialization methods when a tool loads and introspects a portlet
application is to be distinguished from the calling of the init method. Developers should
not assume that a portlet is in an active portlet container runtime until the init method of
the Portlet interface is called. For example, a portlet should not try to establish 5
connections to databases or Enterprise JavaBeans™ containers when static (class)
initialization happens.

PLT.5.2.3 End of Service
The portlet container is not required to keep a portlet loaded for any particular period of
time. A portlet object may be kept active in a portlet container for a period of 10
milliseconds, for the lifetime of the portlet container (which could be a number of days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service, it
calls the destroy method of the Portlet interface to allow the portlet to release any
resources it is using and save any persistent state. For example, the portlet container may 15
do this when it wants to conserve memory resources, or when it is being shut down.

Before the portlet container calls the destroy method, it should allow any threads that
are currently processing requests within the portlet object to complete execution.To avoid
waiting forever, the portlet container can optionally wait for a predefined time before
destroying the portlet object. 20

Once the destroy method is called on a portlet object, the portlet container must not
route any requests to that portlet object.xiii If the portlet container needs to enable the
portlet again, it must do so with a new portlet object, which is a new instance of the
portlet’s class.xiv

If the portlet object throws a RuntimeException within the execution of the destroy 25
method the portlet container must consider the portlet object successfully destroyed.xv

After the destroy method completes, the portlet container must release the portlet object
so that it is eligible for garbage collection.xvi Portlet implementations should not use
finalizers.

 30

PLT.5.3 Portlet Customization Levels
The portlet model leverages the flyweight pattern and provides the Java instance of the
portlet class with all needed data in each request. This keeps the number of Java instances
small and thus allows better scalability for large user numbers. In order to distinct
between the different customization levels of customization the terms portlet definition, 35
portlet entity and portlet window are introduced in this section.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 29

PLT.5.3.1 Portlet Definition and Portlet Entity
The portlet definition may include a set of preference attributes with their default values.
They are used to create preferences objects (see PLT.14 Portlet Preferences Chapter).

At runtime, when serving requests, a portletreference object is associated with a
preferences objectportlet. The resulting association is called the portlet entity. This 5
concept is abstract. There is not a concrete object that represents the portlet entity. The
portal / portlet container merely associates the proper preference object with the context
that is passed to the executing portlet.

Normally, a portlet customizes its behavior and the content it produces based on the
attributes of the associated preference object. The portlet may read, modify and add 10
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative means to create new preferences objects based on existing ones.
Portal/portlet-container created preferences objects may have their attributes further 15
customized.

Administration, management and configuration of preferences objects are left to the
portal/portlet-container implementation. It is also left to the implementation to provide
advanced features, such as hierarchical management of preferences objects or cascading
changes on preference attributes. 20

PLT.5.3.2 Portlet Window
Consuming applications, like portals, typically have a more concrete concept of portlets
thean the model of this specification. In a consuming application portlets are
customizable, visual components used within portal pages. Such a usage within a portal
page is termed a portlet window. Because of the customizable aspects of portlets, each 25
portlet window can have many preference objects associated with it; i.e. there is a 1:N
relationship between a portlet window and portlet entities. For example some portal
implementations may group the read-only preferences that are managed by the
administrator to a portlet entity and the read-write preferences that are managed by the
portlet user to a different portlet entity. 30

However, at runtime the portlet will not be able to distinguish these different preference
objects as the portlet container will provide always one aggregated set of preferences to
the portlet. Though typically portlet windows maintain distinct sets of portlet entities
from other portlet windows (based on the same portlet), this need not be the case. Two
(or more) portlet windows can share the same portlet entity set and thus provide distinct 35
views onto the same thing. From a developer's perspective, portlet windows are important
because they define distinct runtime views. Hence runtime state (transient state) such as
render parameters, portlet mode, window state, and the portlet-scoped session state are
maintained based on a portlet window. For example the user may want to reference the

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 30

same portlet entity from different pages, but does not want to have the runtime state
shared between these two.

Each portlet window gets a unique ID assigned by the portal / portlet container that is
valid for the lifetime of this portlet window. The portlet window ID can be accessed by
the portlet via the PortletRequest.getWindowID() call and is used by the portlet 5
container for keying the portlet-scoped session data. The portlet window ID returned by
PortletRequest.getWindowID()must not contain a ‘?’ character in order to comply
with the requirement for the portlet scope session ID (see PLT.17.3)

 10

 Portlet Definition and Portlet Entity
The portlet definition may include a set of preference attributes with their default values.
They are used to create preferences objects (see PLT.14 Portlet Preferences Chapter).

At runtime, when serving requests, a portlet object is associated with a preferences
object. The resulting association is called the portlet entity. This concept is abstract. 15
There is not a concrete object that represents the portlet entity. The portal / portlet
container merely associates the proper preference object with the context that is passed to
the executing portlet. This pattern is often referred to as flyweight pattern in the literature.

Normally, a portlet customizes its behavior and the content it produces based on the
attributes of the associated preference object. The portlet may read, modify and add 20
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative means to create new preferences objects based on existing ones.
Portal/portlet-container created preferences objects may have their attributes further 25
customized.

Administration, management and configuration of preferences objects is left to the
portal/portlet-container implementation. It is also left to the implementation to provide
advanced features, such as hierarchical management of preferences objects or cascading
changes on preference attributes. 30

PLT.5.2.3Portlet Window
Consuming applications, like portals, typically have a more concrete concept of portlets
then the model of this specification. In a consuming application portlets are
customizable, visual components used within portal pages. Such a usage within a portal
page is termed a portlet window. Because of the customizable aspects of portlets, each 35
portlet window can have many preferences associated with it; i.e. there is a 1:N
relationship between a portlet window and portlet entities. Though typically portlet
windows maintain distinct sets of portlet entities from other portlet windows (based on

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 31

the same portlet), this need not be the case. Two (or more) portlet windows can share the
same portlet entity set and thus provide distinct views onto the same thing. From a
developer's perspective, portlet windows are important because they define distinct
runtime views. Hence runtime state (transient state) such as render parameters, portlet
mode, window state, and the portlet-scoped session state are maintained based on a 5
portlet window.

The portlet definition may include a set of preference attributes with their default values.
They are used to create preferences objects (see PLT.14 Portlet Preferences Chapter).

At runtime, when serving requests, a portlet object is associated with a preferences
object. Normally, a portlet customizes its behavior and the content it produces based on 10
the attributes of the associated preference object. The portlet may read, modify and add
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative means to create new preferences objects based on existing ones. 15
Portal/portlet-container created preferences objects may have their attributes further
customized.

When a portlet is placed in a portal page, a preferences object is also associated with it.
The occurrence of a portlet and preferences-object in a portal page is called a portlet
window. The portal/portlet-container implementation manages this association. 20

A portal page may contain more than one portlet window that references the same portlet
and preferences-object.
Administration, management and configuration of preferences objects and creation of
portlet windows is left to the portal/portlet-container implementation. It is also left to the
implementation to provide advanced features, such as hierarchical management of 25
preferences objects or cascading changes on preference attributes.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 32

PLT.1.2.4PLT.5.4 Request Handling
After a portlet object is properly initialized, the portlet container may invoke the portlet
to handle client requests.

The Portlet interface defines two methods for handling requests, the processAction
method and the render method. In addition the portlet may implement one of the 5
optional interfaces EventPortlet and ResourceServingPortlet that define the
additional lifecycle methods processEvent and serveResource.

When a portal/portlet-container invokes the processAction method of a portlet, the
portlet request is referred to as an action request. As a result of an action, or triggered by
the portal/portlet container,the portlet may publish one or more events can be published, 10
which result in one or more invocations of the processEvent method of a portlet with
the portlet request referred to as an event requests. In addition to these portlet initiated
events the portal/portlet container may issue portal/portlet container specific events.
When a portal/portlet-container invokes the render method of a portlet, the portlet
request is referred to as a render request. When a portal/portlet-container invokes the 15
serveResource method of a portlet, the portlet request is referred to as a resource
request.

Commonly, client requests are triggered by URLs created by portlets. These URLs are
called portlet URLs. A portlet URL is targeted to a particular portlet. Portlet URLs may
be of two three types, action URLs or, render URLs, or resource URLs. Refer to PLT.7 20
Portlet URLs Chapter for details on portlet URLs.

Normally, a client request triggered by an action URL translates into one action request,
zero or more event requests and many render requests, one per portlet in the portal page.
These render requests may be followed by zero or more resource requests. A client
request triggered by a render URL translates into many render requests, one per portlet in 25
the portal page. These render requests may be followed by zero or more resource
requests. A client request trigged by a resource URL translates into a render resource
request.

If the client request is triggered by an action URL, the portal/portlet-container must first
trigger the action request by invoking the processAction method of the targeted 30
portlet.xvii The portal/portlet-container must wait until the action request finishes. Then,
the portal/portlet-container may call the processEvent methods of the event receiving
portlets and after the event processing is finished must trigger the render request by
invoking the render method for all the portlets in the portal page with the possible
exception of portlets for which their content is being cached.xviii The render requests may 35
be executed sequentially or in parallel without any guaranteed order.

If the client request is triggered by a render URL, the portal/portlet-container must invoke
the render method for all the portlets in the portal page with the possible exception of
portlets for which their content is being cached.xix The portal/portlet-container must not
invoke the processAction of any of the portlets in the portal page for that client request. 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 33

If the client request is triggered by a resource URL, the portal/portlet-container must
invoke the serveResource method of the target portlet.xx The portal/portlet-container
must not invoke the processAction of any of the portlets in the portal page for that
client request.

If a portlet has caching enabled, the portal/portlet-container may choose not to invoke the 5
render or serveResource method. The portal/portlet-container may instead use the
portlet’s cached content. Refer to PLT.18 21 Caching Chapter for details on caching.

A portlet object placed into service by a portlet container may end up handling no request
during its lifetime.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 34

Figure 5-1 Request Handling Sequence (needs to be updated)

Portal/
Portlet Container

Portlet
AClient

Portlet
B

Client Request

Portlet
C

Portal Page

processAction()

The render requests
are triggered in no
specific order.
They may be fired
one after the other or
in parallel.

NOT DEFINED BY THE PORTLET SPECIFICATION

Fragment

Fragment

render()

render()

The action request
must finish before the
render requests start.

render()

Fragment

PLT.1.2.4.1PLT.5.4.1 Action Request
Typically, in response to an action request, a portlet updates state based on the 5
information sent in the action request parameters.

The processAction method of the Portlet interface receives two parameters,
ActionRequest and ActionResponse.

The ActionRequest object provides access to information such as the parameters of the
action request, the window state, the portlet mode, the portal context, the portlet session 10
and the portlet preferences data.

While processing an action request, the portlet may instruct the portal/portlet-container to
redirect the user to a specific URL. If the portlet issues a redirection, when the
processAction method concludes, the portal/portlet-container must send the redirection
back to the user agentxxi and it must finalize the processing of the client request. 15

A portlet may change its portlet mode and its window state during an action request. This
is done using the ActionResponse object. The change of portlet mode must be effective
for the following render request the portlet receives. There are some exceptional

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 35

circumstances, such as changes of access control privileges, that could prevent the portlet
mode change from happening. The change of window state should be effective for the
following render request the portlet receives. The portlet should not assume that the
subsequent request will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet 5
modes and window states.

The portlet may also set, in the ActionResponse object, render parameters during the
processing of an action request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters.

The portlet may publish events via the ActionResponse setEvent or setEvents 10
methods and thus publish state changes to other portlets. See PLT.14 for more details on
sending and receiving events.

PLT.5.4.2 Event Request
Events can be used to coordinate state between different portlets. The processEvent
method of the EventPortlet interface receives two parameters, EventRequest and 15
EventResponse.

The EventRequest object provides access to information such as the event payload, the
window state, the portlet mode, the current render parameters, the portal context, the
portlet session and the portlet preferences data.

A portlet may change its portlet mode and its window state during an event request. This 20
is done using the EventResponse object. The change of portlet mode must be effective
for the following request the portlet receives. There are some exceptional circumstances,
such as changes of access control privileges, that could prevent the portlet mode change
from happening. The change of window state should be effective for the following
request the portlet receives. The portlet should not assume that the subsequent request 25
will be in the window state set as the portal/portlet-container could override the window
state because of implementation dependencies between portlet modes and window states.

The portlet may also set, in the EventResponse object, new render parameters during the
processing of an event request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters. 30

The portlet may publish events via the EventResponse setEvent or setEvents
methods and thus publish state changes to other portlets. See PLT.14 for more details on
sending and receiving events.

PLT.1.2.4.2PLT.5.4.3 Render Request 35

Commonly, during a render request, portlets generate content based on their current state.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 36

The render method of the Portlet interface receives two parameters, RenderRequest
and RenderResponse.

The RenderRequest object provides access to information such as the parameters of the
render request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data. 5

The portlet can produce content using the RenderResponse writer or it may delegate the
generation of content to a servlet or a JSP. Refer to PLT.16 Dispatching Requests to
Servlets and JSPs Chapter for details on this.

PLT.5.4.4 Resource Request
In order to render resources via the portlet the portlet can implement the 10
ResourceServingPortlet interface and create resource URLs that will trigger the
serveResource method on this interface. The serveResource method of the
ResourceServingPortlet interface receives two parameters, ResourceRequest and
RenderResponse.

The ResourceRequest object provides access to information such as the parameters of 15
the resource request, the input stream, the window state, the portlet mode, the portal
context, the portlet session and the portlet preferences data.

The portlet can produce content using the RendersourceResponse writer or output
stream, or it may delegate the generation of content to a servlet or a JSP. Refer to PLT.16
Dispatching Requests to Servlets and JSPs Chapter for details on this. 20

PLT.5.4.5 GenericPortlet
The GenericPortlet abstract class provides default functionality and convenience
methods for handling events and render requests.

The processEvent method in the GenericPortlet class tries to dispatch to methods 25
annotated with the tag @ProcessEvent(Retention=RUNTIME, name=<event name>)
and following signature:

void <methodname> (EventRequest, EventResponse) throws
PortletException, java.io.IOException; 30

Typically, portlets will extend the GenericPortlet class directly or indirectly and they
will provide one method per consuming event that complies with the above definition in
order to have the events dispatched to different methods.

The render method in the GenericPortlet class sets the title specified in the portlet
definition in the deployment descriptor and invokes the doDispatch method. 35

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 37

The doDispatch method in the GenericPortlet class implements functionality to aid in
the processing of requests based on the portlet mode the portlet is currently in (see PLT.8
Portlet Modes Chapter). These methods are:

• doView for handling VIEW requestsxxii
• doEdit for handling EDIT requestsxxiii 5
• doHelp for handling HELP requestsxxiv

If the window state of the portlet (see PLT.9 Window States Chapter) is MINIMIZED, the
render method of the GenericPortlet does not invoke any of the portlet mode
rendering methods.xxv

Typically, portlets will extend the GenericPortlet class directly or indirectly and they 10
will override the doView, doEdit, doHelp and getTitle methods instead of the render
and doDispatch methods.

PLT.1.2.4.3PLT.5.4.6 Multithreading Issues During Request
Handling
The portlet container handles concurrent requests to the same portlet by concurrent 15
execution of the request handling methods on different threads. Portlet developers must
design their portlets to handle concurrent execution from multiple threads from within the
processAction and render methods at any particular time.

PLT.1.2.4.4PLT.5.4.7 Exceptions During Request Handling
A portlet may throw either a PortletException, a PortletSecurityException or an 20
UnavailableException during the processing of a request.

A PortletException signals that an error has occurred during the processing of the
request and that the portlet container should take appropriate measures to clean up the
request. If a portlet throws an exception in the processAction method, all operations on
the ActionResponse must be ignored and the render method must not be invoked within 25
the current client request.xxvi The portal/portlet-container should continue processing the
other portlets visible in the portal page.

A PortletSecurityException indicates that the request has been aborted because the user
does not have sufficient rights. Upon receiving a PortletSecurityException, the portlet-
container should handle this exception in an appropriate manner. 30

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object.xxvii A portlet that throws a permanent 35
UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 38

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent, thereby 5
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the request handling must be handled as a
PortletException.xxviii

When a portlet throws an exception, or when a portlet becomes unavailable, the
portal/portlet-container may include a proper error message in the portal page returned to 10
the user.

PLT.1.2.4.5PLT.5.4.8 Thread Safety
Implementations of the request and response objects are not guaranteed to be thread safe.
This means that they must only be used within the scope of the thread invoking the
processAction and render methods. 15

To remain portable, portlet applications should not give references of the request and
response objects to objects executing in other threads as the resulting behavior may be
non-deterministic.

PLT.5.2.5End of Service
The portlet container is not required to keep a portlet loaded for any particular period of 20
time. A portlet object may be kept active in a portlet container for a period of
milliseconds, for the lifetime of the portlet container (which could be a number of days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service, it
calls the destroy method of the Portlet interface to allow the portlet to release any 25
resources it is using and save any persistent state. For example, the portlet container may
do this when it wants to conserve memory resources, or when it is being shut down.

Before the portlet container calls the destroy method, it should allow any threads that
are currently processing requests within the portlet object to complete execution.To avoid
waiting forever, the portlet container can optionally wait for a predefined time before 30
destroying the portlet object.

Once the destroy method is called on a portlet object, the portlet container must not
route any requests to that portlet object.xxix If the portlet container needs to enable the
portlet again, it must do so with a new portlet object, which is a new instance of the
portlet’s class.xxx 35

If the portlet object throws a RuntimeException within the execution of the destroy
method the portlet container must consider the portlet object successfully destroyed.xxxi

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 39

After the destroy method completes, the portlet container must release the portlet object
so that it is eligible for garbage collection.xxxii Portlet implementations should not use
finalizers.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 41

PLT.6

Portlet Config

The PortletConfig object provides the portlet object with information to be used during
initialization. It also provides access to the portlet context and the resource bundle that
provides title-bar resources. 5

PLT.6.1 Initialization Parameters
The getInitParameterNames and getInitParameter methods of the PortletConfig
interface return the initialization parameter names and values found in the portlet
definition in the deployment descriptor.

PLT.6.2 Portlet Resource Bundle 10

Portlets may specify, in their deployment descriptor definition, some basic information
that can be used for the portlet title-bar and for the portal’s categorization of the portlet.
The specification defines a few resource elements for these purposes, title, short-title and
keywords (see the PLT.21.10 Resource Bundles Section).

These resource elements can be directly included in the portlet definition in the 15
deployment descriptor, or they can be placed in a resource bundle.

An example of a deployment descriptor defining portlet information inline could be:
<portlet>
 ...
 <portlet-info> 20
 <title>Stock Quote Portlet</title>
 <short-title>Stock</short-title>
 <keywords>finance,stock market</keywords>
 </portlet-info>
 ... 25
</portlet>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 42

If the resources are defined in a resource bundle, the portlet must provide the name of the
resource bundle. An example of a deployment descriptor defining portlet information in
resource bundles could be:

<portlet>
 ... 5
 <resource-bundle>com.foo.myApp.QuotePortlet</resource-bundle>
 ...
</portlet>

If the portlet definition defines a resource bundle, the portlet-container must look up these
values in the ResourceBundle. If the root resource bundle does not contain the resources 10
for these values and the values are defined inline, the portlet container must add the inline
values as resources of the root resource bundle.xxxiii

If the portlet definition does not define a resource bundle and the information is defined
inline in the deployment descriptor, the portlet container must create a ResourceBundle
and populate it, with the inline values, using the keys defined in the PLT.21.10 Resource 15
Bundles Section.xxxiv

The render method of the GenericPortlet uses the ResourceBundle object of the
PortletConfig to retrieve the title of the portlet from the associated ResourceBundle or
the inline information in the portlet definition.

 20

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 43

PLT.1PLT.7

Portlet URLs

As part of its content, a portlet may need to create URLs that reference the portlet itself.
For example, when a user acts on a URL that references a portlet (i.e., by clicking a link
or submitting a form) the result is a new client request to the portal targeted to the portlet. 5
Those URLs are called portlet URLs.

PLT.1.1PLT.7.1 Portlet URLs
The Portlet API defines the PortletURL and ResourceURL interface. Portlets must create
portlet URLs either using PortletURL or the ResourceURL objects. A portlet creates
PortletURL objects invoking the createActionURL, and the createRenderURL, and the 10
createResourceURL methods of the RenderResponse PortletResponse interface. The
createActionURL method creates action URLs. The createRenderURL method creates
render URLs. The createResourceURL creates render resource URLs.

Because some portal/portlet-containers implementations may encode internal state as part
of the URL query string, portlet developers should not code forms using the HTTP GET 15
method.

A render URL is an optimization for a special type of action URLs. The portal/portlet-
container must not invoke the processAction method of the targeted portlet.xxxv The
portal/portlet-container must ensure that all the parameters set when constructing the
render URL become render parameters of the subsequent render requests for the 20
portlet.xxxvi

Render URLs should not be used for tasks that are not idempotent from the portlet
perspective. Error conditions, cache expirations and changes of external data may affect
the content generated by a portlet as result of a request triggered by a render URL.
Render URLs should be accessed via HTTP method GET as they should not change any 25
state on the server. As a consequence, render URLs become bookmarkable.

 Render URLs should not be used within forms as the portal/portlet-container may ignore
form parameters.

A resource URL allows the portlet rendering resources with access to information of the
portlet request. When rendering resources the portlet has full control over the 30
outputstream and can render binary markup. Resource URLs should be accessed via
HTTP method GET as they should not change any state on the server.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 44

Note that portlet URLs are only valid within the current request and need to be either
written to the outputstream or passed in Portlet API methods that are capable of re-
writing the portlet URL token into a real URL, like as parameter on a redirect URL in the
sendRedirect method of the ActionResponse.

PLT.7.1.1 BaseURL interface 5

The BaseURL interface provides the basic methods that are common for all URLs
pointing back to the portlet, like ResourceURLs, ActionURLs, and RenderURLs.
BaseURLs are always created as instances of either as an Rresource URL, Aaction URL,
or Rrender URL.

Portlets can add application specific parameters to the PortletBaseURL objects using the 10
setParameter and setParameters methods. A call to any of the setParameter
methods must replace any parameter with the same name previously set.xxxvii All the
parameters a portlet adds to a PortletURL BaseURL object must be made available to the
portlet as request parameters.xxxviii Portlet developers should note that the parameters of
the current render request are not carried over when creating a PortletBaseURL, except 15
when creating a ResourceURL that contains the current render parameters.

The portlet-container must “x-www-form-urlencoded” encode parameter names and
values added to a PortletURL BaseURL object.xxxix

If Portlet portlet developers should not encodenamespace parameter names or values
before adding them to a PortletURL BaseURL object they are also responsible for 20
removing the namespace. The portlet container will not remove any namespacing the
portlet has done on these parameters..

If a portal/portlet-container encodes additional information as parameters, it must encode
namespace them properly to avoid collisions with the parameters set and used by the
portlet.xl 25

If the portlet mode is not set for a URL, it must stay the same as the mode of the current
request. xli

If the window state is not set for a URL, it should stay the same as the window state of
the current request.

Using the toString method, a portlet can obtain the string representation of the 30
PortletURL for its inclusion in the portlet content.

An example of creating a portlet URI would be:
...
PortletURL url = response.createRenderURL();
url.setParameter(“customer”,”foo.com”); 35
url.setParameter(“show”,”summary”);
writer.print(“Summary”);
...

Portlet developers should be aware that the string representation of a PortletURL may not
be a well formed URL but a special token at the time the portlet is generating its content. 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 45

Portal servers often use a technique called URL rewriting that post-processes the content
resolving tokens into real URLs.

PLT.1.1.1PLT.7.1.2 Including a Portlet Mode or a Window State
A portlet URL can include a specific portlet mode (see PLT.8 Portlet Modes Chapter) or
window state (see PLT.9 Window States Chapter). The PortletURL interface has the 5
setWindowState and setPortletMode methods for setting the portlet mode and window
state in the portlet URL. For example:

...
PortletURL url = response.createActionURL();
url.setParameter(“paymentMethod”,”creditCardInProfile”); 10
url.setWindowState(WindowState.MAXIMIZED);
writer.print(“<FORM METHOD=\”POST\” ACTION=\””+ url.toString()+”\”>”);
...

A portlet cannot create a portlet URL using a portlet mode that is not defined as
supported by the portlet or that the user it is not allowed to use. The setPortletMode 15
methods must throw a PortletModeException in that situation.xlii. The change of portlet
mode must be effective for the request triggered by the portlet URL.xliii There are some
exceptional circumstances, such as changes access control privileges, that could prevent
the portlet mode change from happening. If the portlet mode is not set for a URL, it must
have the portlet mode of the current request as defaultxliv. 20

A portlet cannot create a portlet URL using a window state that is not supported by the
portlet container. The setWindowState method must throw a WindowStateException if
that is the case.xlv The change of window state should be effective for the request
triggered by the portlet URL. The portlet should not assume that the request triggered by
the portlet URL will be in the window state set as the portal/portlet-container could 25
override the window state because of implementation dependencies between portlet
modes and window states. If the window state is not set for a URL, it must have the
window state of the current request as defaultxlvi.

PLT.1.1.2PLT.7.1.3 Portlet URL security
The setSecure method of the PortletURL interface allows a portlet to indicate if the 30
portlet URL has to be a secure URL or not (i.e. HTTPS or HTTP). If the setSecure
method is not used, the portlet URL must be of the same security level of the current
request.xlvii

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 47

PLT.8

Portlet Modes

A portlet mode indicates the function a portlet is performing. Normally, portlets perform
different tasks and create different content depending on the function they are currently
performing. A portlet mode advises the portlet what task it should perform and what 5
content it should generate. When invoking a portlet, the portlet container provides the
current portlet mode to the portlet. Portlets can programmatically change their portlet
mode when processing an action request.

The Portlet Specification defines three portlet modes, VIEW, EDIT, and HELP. The
PortletMode class defines constants for these portlet modes. 10

The availability of the portlet modes, for a portlet, may be restricted to specific user roles
by the portal. For example, anonymous users could be allowed to use the VIEW and HELP
portlet modes but only authenticated users could use the EDIT portlet mode.

PLT.8.1 VIEW Portlet Mode
The expected functionality for a portlet in VIEW portlet mode is to generate markup 15
reflecting the current state of the portlet. For example, the VIEW portlet mode of a portlet
may include one or more screens that the user can navigate and interact with, or it may
consist of static content that does not require any user interaction.

Portlet developers should implement the VIEW portlet mode functionality by overriding
the doView method of the GenericPortlet class. 20

Portlets must support the VIEW portlet mode.

PLT.8.2 EDIT Portlet Mode
Within the EDIT portlet mode, a portlet should provide content and logic that lets a user
customize the behavior of the portlet. The EDIT portlet mode may include one or more
screens among which users can navigate to enter their customization data. 25

Typically, portlets in EDIT portlet mode will set or update portlet preferences. Refer to
PLT.14 Portlet Preferences Chapter for details on portlet preferences.

Portlet developers should implement the EDIT portlet mode functionality by overriding
the doEdit method of the GenericPortlet class.

Portlets are not required to support the EDIT portlet mode. 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 48

PLT.8.3 HELP Portlet Mode
When in HELP portlet mode, a portlet should provide help information about the portlet.
This help information could be a simple help screen explaining the entire portlet in
coherent text or it could be context-sensitive help.

Portlet developers should implement the HELP portlet mode functionality by overriding 5
the doHelp method of the GenericPortlet class.

Portlets are not required to support the HELP portlet mode.

PLT.8.4 Custom Portlet Modes
Portal vendors may define custom portlet modes for vendor specific functionality.

Portlets can only use portlet modes that are defined by the portal. Portlets must define the 10
custom portlet modes they intend to use in the deployment descriptor using the custom-
portlet-mode element. At deployment time, the custom portlet modes defined in the
deployment descriptors should be mapped to custom portlet modes supported by the
portal implementation.

If a custom portlet mode defined in the deployment descriptor is not mapped to a custom 15
portlet mode provided by the portal, portlets must not be invoked in that portlet mode.

For example, the deployment descriptor for a portlet application containing portlets that
support clipboard and config custom portlet modes would have the following definition:

<portlet-app>
 ... 20
 <custom-portlet-mode>
 <description>Creates content for Cut and Paste</description>
 <name>clipboard</name>
 </custom-portlet-mode>
 25
 <custom-portlet-mode>
 <description>Provides administration functions</description>
 <name>config</name>
 </custom-portlet-mode>
 ... 30
</portlet-app>

The PLT.A Extended Portlet Modes appendix defines a list of portlet mode names and
their suggested utilization. Portals implementing these predefined custom portlet modes
could do an automatic mapping when custom portlet modes with those names are defined
in the deployment descriptor. 35

PLT.8.5 GenericPortlet Render Handling
The GenericPortlet class implementation of the render method dispatches requests
to the doView, doEdit or doHelp method depending on the portlet mode indicated in the
request using the doDispatch method.xlviii If the portlet provides support for custom
portlet modes, the portlet should override the doDispatch method of the 40
GenericPortlet.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 49

PLT.8.6 Defining Portlet Modes Support
Portlets must describe within their definition, in the deployment descriptor, the portlet
modes they can handle for each markup type they support. As all portlets must support
the VIEW portlet mode, VIEW does not have to be indicated.xlix The portlet must not be
invoked in a portlet mode that has not been declared as supported for a given markup 5
type.l

The following example shows a snippet of the portlet modes a portlet defines as
supporting in its deployment descriptor definition:

... 10
<supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 ... 15
</supports>
<supports>
 <mime-type>text/vnd.wap.wml</mime-type>
 <portlet-mode>help</portlet-mode>
 ... 20
</supports>
...

For HTML markup, this portlet supports the EDIT and HELP portlet modes in addition to
the required VIEW portlet mode. For WML markup, it supports the VIEW and HELP portlet
modes. 25

The portlet container must ignore all references to custom portlet modes that are not
supported by the portal implementation, or that have no mapping to portlet modes
supported by the portal.li

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 51

PLT.9

Window States

A window state is an indicator of the amount of portal page space that will be assigned to
the content generated by a portlet. When invoking a portlet, the portlet-container provides
the current window state to the portlet. The portlet may use the window state to decide 5
how much information it should render. Portlets can programmatically change their
window state when processing an action request.

The Portlet Specification defines three window states, NORMAL, MAXIMIZED and

MINIMIZED. The WindowState class defines constants for these window states.

PLT.9.1 NORMAL Window State 10

The NORMAL window state indicates that a portlet may be sharing the page with other
portlets. It may also indicate that the target device has limited display capabilities.
Therefore, a portlet should restrict the size of its rendered output in this window state.

PLT.9.2 MAXIMIZED Window State
The MAXIMIZED window state is an indication that a portlet may be the only portlet being 15
rendered in the portal page, or that the portlet has more space compared to other portlets
in the portal page. A portlet may generate richer content when its window state is
MAXIMIZED.

PLT.9.3 MINIMIZED Window State
When a portlet is in MINIMIZED window state, the portlet should only render minimal 20
output or no output at all.

PLT.9.4 Custom Window States
Portal vendors may define custom window states.

Portlets can only use window states that are defined by the portal. Portlets must define the
custom window states they intend to use in the deployment descriptor using the custom-25
window-state element. At deployment time, the custom window states defined in the
deployment descriptors should be mapped to custom window states supported by the
portal implementation.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 52

If a custom window state defined in the deployment descriptor is not mapped to a custom
window state provided by the portal, portlets must not be invoked in that window state.lii

For example, the deployment descriptor for a portlet application containing portlets that
use a custom half_page window state would have the following definition:

<portlet-app> 5
 ...
 <custom-window-state>
 <description>Occupies 50% of the portal page</description>
 <name>half_page</name>
 </custom-window-state> 10
 ...
</portlet-app>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 53

PLT.10

Portlet Context

The PortletContext interface defines a portlet’s view of the portlet application within
which the portlet is running. Using the PortletContext object, a portlet can log events,
obtain portlet application resources, and set and store attributes that other portlets and 5
servlets in the portlet application can access.

PLT.10.1 Scope of the Portlet Context
There is one instance of the PortletContext interface associated with each portlet
application deployed into a portlet container.liii In cases where the container is distributed
over many virtual machines, a portlet application will have an instance of the 10
PortletContext interface for each VM.liv

PLT.10.2 Portlet Context functionality
Through the PortletContext interface, it is possible to access context initialization
parameters, retrieve and store context attributes, obtain static resources from the portlet
application and obtain a request dispatcher to include servlets and JSPs. 15

PLT.10.3 Relationship with the Servlet Context
A portlet application is an extended web application. As a web application, a portlet
application also has a servlet context. The portlet context leverages most of its
functionality from the servlet context of the portlet application.

The context-wide initialization parameters are the same as initialization parameters of the 20
servlet context and the context attributes are shared with the servlet context. Therefore,
they must be defined in the web application deployment descriptor (the web.xml file).
The initialization parameters accessible through the PortletContext must be the same
that are accessible through the ServletContext of the portlet application.lv

Context attributes set using the PortletContext must be stored in the ServletContext 25
of the portlet application. A direct consequence of this is that data stored in the
ServletContext by servlets or JSPs is accessible to portlets through the
PortletContext and vice versa.lvi

The PortletContext must offer access to the same set of resources the
ServletContext exposes.lvii 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 54

The PortletContext must handle the same temporary working directory the
ServletContext handles. It must be accessible as a context attribute using the same
constant defined in the Servlet Specification 2.3 SVR 3 Servlet Context Chapter,
javax.servlet.context.tempdir.lviii The portlet context must follow the same
behavior and functionality that the servlet context has for virtual hosting and reloading 5
considerations. (see Servlet Specification 2.3 SVR 3 Servlet Context Chapter)lix:

PLT.10.3.1 Correspondence between ServletContext and
PortletContext methods
The following methods of the PortletContext should provide the same functionality as
the methods of the ServletContext of similar name: getAttribute, 10
getAttributeNames, getInitParameter, getInitParameterNames, getMimeType,
getRealPath, getResource, getResourcePaths, getResourceAsStream, log,
removeAttribute and setAttribute.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 55

PLT.11

Portlet Requests

The request objects encapsulate all information about the client request, parameters,
request content data, portlet mode, window state, etc. A request object is passed to the
processAction, processEvent, serveResource and render methods of the portlet. 5

PLT.1.1PLT.11.1 PortletRequest Interface
The PortletRequest interface defines the common functionality for the all the request
ActionRequest and RenderRequest interfaces.

PLT.1.1.1PLT.11.1.1 Request Parameters
If a portlet receives a request from a client request targeted to the portlet itself, the 10
parameters must be the string parameters encoded in the URL (added when creating the
PortletURL) and the string parameters sent by the client to the portlet as part of the client
request.lx The parameters the request object returns must be "x-www-form-urlencoded"
decoded.lxi

The parameters are stored as a set of name-value pairs. Multiple parameter values can 15
exist for any given parameter name. The following methods of the PortletRequest
interface are available to access parameters:

• getParameter
• getParameterNames
• getParameterValues 20
• getParameterMap

The getParameterValues method returns an array of String objects containing all the
parameter values associated with a parameter name. The value returned from the
getParameter method must be the first value in the array of String objects returned by
getParameterValues lxii. If there is a single parameter value associated with a parameter 25
name the method returns must return an array of size one containing the parameter
value.lxiii. The getParameterMap method must return an unmodifiable Map objectlxiv. If
the request does not have any parameter, the getParameterMap must return an empty
Map objectlxv.The values in the returned Map object are from type String array.

PLT.11.1.1.1 Action, Resource and Event Request Parameters 30

The portlet-container must not propagate parameters received in an action, resource or
event request to subsequent render requests of the portlet.lxvi

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 56

If a portlet wants to do that in either the processAction or processEvent, it can use
render URLs or it must use the setRenderParameter or setRenderParameters
methods of the ActionStateModifyingResponseStateAwareResponse object within
the processAction or processEvent call.

PLT.11.1.1.2 Render Request Parameters 5

If a portlet receives a render request that is the result of a client request targeted to
another portlet in the portal page or an event, the parameters must should be the same
parameters as of the previous render request from this client.lxvii

If a portlet receives a render request following an action or event request as part of the
same client request, the parameters received with render request must be the render 10
parameters set during the action request.lxviii

If a portlet receives a render request that is the result of clicking on a render URL
targeting this portlet the render parameters received with the render request must be the
parameters set on the render URL.lxix

Commonly, portals provide controls to change the portlet mode and the window state of 15
portlets. The URLs these controls use are generated by the portal. Client requests
triggered by those URLs must be treated as render URLs and the existing render
parameters must be preserved.lxx

A portlet must not see any non-shared parameter targeted to other portlets.lxxi If Pportlets
should not namespace or encode URL parameters or form parameters they are also 20
responsible for removing the namespace. The portlet container will not remove any
namespacing the portlet has done on these parameters.

The parameters are stored as a set of name-value pairs. Multiple parameter values can
exist for any given parameter name. The following methods of the PortletRequest
interface are available to access parameters: 25

•getParameter
•getParameterNames
•getParameterValues
•getParameterMap

The getParameterValues method returns an array of String objects containing all the 30
parameter values associated with a parameter name. The value returned from the
getParameter method must be the first value in the array of String objects returned by
getParameterValues lxxii. If there is a single parameter value associated with a
parameter name the method returns must return an array of size one containing the
parameter value.lxxiii. The getParameterMap method must return an unmodifiable Map 35
object. If the request does not have any parameter, the getParameterMap must return an
empty Map object.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 57

PLT.11.1.1.3 Shared Render Parameters

In order to allow co-ordination of render parameters with other portlets the portlet can
declare shared render parameters in its deployment descriptor using the shared-render-
parameter tagelement oin the portlet application levelsection. OnIn the portlet
levelsection each portlet can specify the shared render parameters it would like to receive 5
or set via the supported-shared-render-parameter tagelement. The supported-
shared-render- parameter tagelement must reference a shared render parameter
defined atin portlet application levelsection with the first name entry of thein that
shared-render-parameter tagelementlxxiv.

Example: 10

<shared-render-parameter>

 <name>foo</name>

 <name>foo2</name>

</shared-render-parameter>

<shared-render-parameter> 15

 <name>bar</name>

</shared-render-parameter>

<portlet>

 <portlet-name>portletA</portlet-name>

 … 20

 <supported-shared-render-parameter>foo</supported-shared-render-parameter>

</portlet>

<portlet>

 <portlet-name>portletB</portlet-name>

 … 25

 <supported-shared-render-parameter>bar</supported-shared-render-parameter>

</portlet>

The portlet container must only send those shared render parameter to a portlet which the
portlet has defined support for using the first name entry in the supported-shared-30
render-parameter tagelement as parameter name in the portlet.xmllxxv. The portlet

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 58

container must only share those render parameters of a portlet which the portlet has
declared as supported shared render parameters using supported-shared-render-
parameter element in the portlet.xml lxxvi. The portlet container is free to only provide a
subset of the defined shared render parameters to portlets that are not target of a render
URL. A shared render parameter that is not supplied for this request should be viewed by 5
the portlet as having the value null.

If the portlet was the target of a render URL and this render URL has set a specific shared
render parameter the portlet must receive at least this render parameter, however, the
value may have been changed in the meantime and the portlet thus may get a different
value than the one specified in the URL. lxxvii 10

If a portlet sets a render parameter to null it must be treated by the portlet container /
portal as deleted. lxxviii

Portlet should only set shared render parameters on a URL that it wants to change, as the
non-changed shared render parameters are provided by the portlet container to the portlet
per default. 15

All statements previously made about render parameters also apply to shared render
parameters, as they are render parameterslxxix. The parameter name should uniquely
identify the shared render parameter and use the Java package naming standard (INSERT
REF HERE) and character restrictions.

It is up to the portal implementation to decide which portlets may share the same shared 20
render parameters. The portal should use additionalthe information provided in the
deployment descriptor, like the aliasnames and description , in order to perform such a
mapping between shared render parameters of different portlets. It is also an
implementation choice of the portal whether different portlet instanceentities of the same
portlet will receive the same shared render parameters. An example where different 25
portlet entities may not want to share the same render parameters is a generic viewer
portlet that takes as shared render parameter the news article ID to display. The user may
have several of this viewer portlets on her pages that may be connected to different
content systems.

To enable localization support of publicshared parameters for administration and 30
configuration tools, developers should provide a display name in the portlet application
ResourceBundle (see the PLT.XXXXX24.10 Resource Bundles Section). The entry for the
display name should be constructed as ‘javax.portlet.app.shared-render-
parameter.<param-name>.display-name'.

PLT.1.1.2PLT.11.1.2 Extra Request Parameters 35

The portal/portlet-container implementation may add extra parameters to portlet URLs to
help the portal/portlet-container route and process client requests.

Extra parameters used by the portal/portlet-container must be invisible to the portlets
receiving the request. lxxx It is the responsibility of the portal/portlet-container to properly

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 59

encode namespace these extra parameters to avoid name collisions with parameters the
portlets define.

Parameter names beginning with the “javax.portlet.” prefix are reserved for
definition by this specification for use by portal/portlet-container implementations.

PLT.1.1.3PLT.11.1.3 Request Attributes 5

Request attributes are objects associated with a portlet during a single portlet request.
Portlets can not assume that attributes are shared between action, resource, event and
render requests. Request attributes may be set by the portlet or the portlet container to
express information that otherwise could not be expressed via the API. Request attributes
can be used to share information with a servlet or JSP being included via the 10
PortletRequestDispatcher.

Attributes are set, obtained and removed using the following methods of the
PortletRequest interface:

• getAttribute
• getAttributeNames 15
• setAttribute
• removeAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the “javax.portlet.” prefix are reserved for definition
by this specification. It is suggested that all attributes placed into the attribute set be 20
named in accordance with the reverse domain name convention suggested by the Java
Programming Language Specification 1 for package naming.

PLT.1.1.4PLT.11.1.4 Request Properties
A portlet can access portal/portlet-container specific properties and, if available, the
headers of the HTTP client request through the following methods of the methods of the 25
PortletRequest interface:

• getProperty
• getProperties
• getPropertyNames

There can be multiple properties with the same name. If there are multiple properties with 30
the same name, the getProperty method returns the first property value. The
getProperties method allows access to all the property values associated with a
particular property name, returning an Enumeration of String objects.

Depending on the underlying web-server/servlet-container and the portal/portlet-
container implementation, client request HTTP headers may not be always available. 35
Portlets should not rely on the presence of headers to function properly. The
PortletRequest interface provides specific methods to access information normally
available as HTTP headers: content-length, content-type, accept-language. Portlets
should use the specific methods for retrieving those values as the portal/portlet-container
implementation may use other means to determine that information. 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 60

PLT.1.1.5PLT.11.1.5 Request Context Path
The context path of a request is exposed via the request object. The context path is the
path prefix associated with the deployed portlet application. If the portlet application is
rooted at the base of the web server URL namespace (also known as "default" context),
this path must be an empty string.lxxxi Otherwise, it must be the path the portlet 5
application is rooted to, the path must start with a '/' and it must not end with a '/'
character.lxxxii

PLT.1.1.6PLT.11.1.6 Security Attributes
The PortletRequest interface offers a set of methods that provide security information
about the user and the connection between the user and the portal. These methods are: 10

• getAuthType
• getRemoteUser
• getUserPrincipal
• isUserInRole
• isSecure 15

The getAuthType indicates the authentication scheme being used between the user and
the portal. It may return one of the defined constants (BASIC_AUTH, DIGEST_AUTH,
CERT_AUTH and FORM_AUTH) or another String value that represents a vendor provided
authentication type. If the user is not authenticated the getAuthType method must return
null.lxxxiii 20

The getRemoteUser method returns the login name of the user making this request.

The getUserPrincipal method returns a java.security.Principal object containing
the name of the authenticated user.

The isUserInRole method indicates if an authenticated user is included in the specified
logical role. 25

The isSecure method indicates if the request has been transmitted over a secure protocol
such as HTTPS.

PLT.1.1.7PLT.11.1.7 Response Content Types
Portlet developers may code portlets to support multiple content types. A portlet can
obtain, using the getResponseContentType method of the request object, a string 30
representing the default content type the portlet container assumes for the output.

If the portlet container supports additional content types for the portlet’s output, it must
declare the additional content types through the getResponseContentTypes method of
the request object. The returned Enumeration of strings should contain the content types
the portlet container supports in order of preference. The first element of the enumeration 35
must be the same content type returned by the getResponseContentType method.lxxxiv

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 61

If a portlet defines support for all content types using a wildcard and the portlet container
supports all content types, the getResponseContentType may return the wildcard or the
portlet container preferred content type.

The getResponseContentTypes method must return only the content types supported by
the current portlet mode of the portlet.lxxxv 5

PLT.1.1.8PLT.11.1.8 Internationalization
The portal/portlet-container decides what locale will be used for creating the response for
a user. The portal/portlet-container may use information that the client sends with the
request. For example the Accept-Language header along with other mechanisms
described in the HTTP/1.1 specification. The getLocale method is provided in the 10
PortletRequest interface to inform the portlet about the locale of user the portal/portlet-
container has chosen.

PLT.1.1.9PLT.11.1.9 Portlet Mode
The getPortletMode method of the PortletRequest interface allows a portlet to find
out its current portlet mode. A portlet may be restricted to work with a subset of the 15
portlet modes supported by the portal/portlet-container. A portlet can use the
isPortletModeAllowed method of the PortletRequest interface to find out if the
portlet is allowed to use a portlet mode. A portlet mode is not allowed if the portlet mode
is not in the portlet definition or, the portlet or the user has been constrained further by
the portal. 20

PLT.1.1.10PLT.11.1.10 Window State
The getWindowState method of the PortletRequest interface allows a portlet to find
out its current window state.

A portlet may be restricted to work with a subset of the window states supported by the
portal/portlet-container. A portlet can use the isWindowStateAllowed method of the 25
PortletRequest interface to find out if the portlet is allowed to use a window state.

PLT.1.2PLT.11.2 ActionRequest ClientHttpRequest Interface
The ActionRequest ClientHttpRequest interface extends the PortletRequest
interface and it is used as base class for the ActionRequest and ResourceRequestin the
processAction method of the Portlet interface. In addition to the functionality 30
provided by the PortletRequest interface, the ActionRequest ClientHttpRequest
interface represents the request information of the HTTP request issued from the client to
the consuming application / portal, such as gives access to the input stream of the request.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 62

PLT.1.2.1PLT.11.2.1 Retrieving Uploaded Data
The input stream is useful when the client request contains HTTP POST data of type
other than application/x-www-form-urlencoded. For example, when a file is
uploaded to the portlet as part of a user interaction.

As a convenience to the portlet developer, the ActionRClientHttpRequest interface also 5
provides a getReader method that retrieves the HTTP POST data as character data
according to the character encoding defined in the user request.

Only one of the two methods, getPortletInputStream or getReader, can be used
during an action request. If the input stream is obtained, a call to the getReader must
throw an IllegalStateException. Similarly, if the reader is obtained, a call to the 10
getPortletInputStream must throw an IllegalStateException.lxxxvi

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 63

To help manage the input stream, the ActionClientHttpRequest interface also
provides the following methods:

• getContentType
• getCharacterEncoding
• setCharacterEncoding 5
• getContentLength

The setCharacterEncoding method only sets the character set for the Reader that the
getReader method returns.

If the user request HTTP POST data is of type application/x-www-form-urlencoded,
this data has been already processed by the portal/portlet-container and is available as 10
request parameters. The getPortletInputStream and getReader methods must throw
an IllegalStateException if called.lxxxvii

PLT.11.3 ActionRequest Interface
The ActionRequest interface extends the ClientHttpRequest interface and is used in
the processAction method of the Portlet interface. Currently, the ActionRequest 15
interface does not define any additional method.

PLT.11.4 ResourceRequest Interface
The ResourceRequest interface extends the ClientHttpRequest interface and is used
in the serveResource method of the
PortletResourceServingResourceServingPortlet interface. Currently, the 20
ResourceRequest interface does not define any additional method.

PLT.11.5 EventRequest Interface
The EventRequest interface extends the PortletRequest interface and provides
current render parameters via one of the getParameter methods. If the portlet wants to
maintain render parameters it needs to set them again in the EventResponse interface 25
with the of the setRenderParameters methods. If no render parameters are set during
the processEvent invocation, the following processEvent or render requests must not
contain any non-shared requestrender parameters.lxxxviii Note that the container may
provide shared render parameters for following processEvent or render requests even
if the portlet did not set any new render parameters, as other portlets may have set new 30
values to the shared render parameters.

The EventRequest interface provides the event that triggered the processEvent call via
the getEvent method which returns an Event object. The Event object provides the
event name via getName and the name should match one of the receiving events defined
by the portlet with <supported-processing-event> element. If the event is declared 35
with a type in the deployment descriptor Event.getValue must return a serializable Java
object that implements the specified Java type, or if the type is defined as JAXB XML
type or schema, the corresponding JAXB mapping.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 64

If the portlet does not set a new portlet or window state at the EventResponse interface
the current portlet mode and window state are preserved.

PLT.1.3PLT.11.6 RenderRequest Interface
The RenderRequest interface extends the PortletRequest interface and is used in the
render method of the Portlet interface. Currently, the RenderRequest interface does 5
not define any additional method.

PLT.1.4PLT.11.7 Lifetime of the Request Objects
Each request object is valid only within the scope of a particular processAction,
processEvent, serveResource or render method call. Containers commonly recycle
request objects in order to avoid the performance overhead of request object creation. The 10
developer must be aware that maintaining references to request objects outside the scope
described above may lead to non-deterministic behavior.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 65

PLT.12

Portlet Responses

The response objects encapsulate all information to be returned from the portlet to the
portlet container during a request: a redirection, a portlet mode change, title, content, etc.
The portal/portlet-container will use this information to construct the response -usually a 5
portal page- to be returned to the client. A response object is passed to the
processAction and the render methods of the portlet.

PLT.1.1PLT.12.1 PortletResponse Interface
The PortletResponse interface defines the common functionality for the
ActionResponse and RenderResponse interfaces. 10

PLT.1.1.1PLT.12.1.1 Response Properties
Properties can be used by portlets to send vendor specific information to the
portal/portlet-container.

A portlet can set properties using the following methods of the PortletResponse
interface: 15

• setProperty
• addProperty

The setProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addProperty method 20
adds a property value to the set with a given name. If there are no property values already
associated with the name, a new set is created.

PLT.1.1.2PLT.12.1.2 Encoding of URLs
Portlets may generate content with URLs referring to other resources within the portal,
such as servlets, JSPs, images and other static files. Some portal/portlet-container 25
implementations may require those URLs to contain implementation specific data
encoded in it. Because of that, portlets should use the encodeURL method to create such
URLs. The encodeURL method may include the session ID and other portal/portlet-
container specific information into the URL. If encoding is not needed, it returns the URL
unchanged. 30

Portlet developer should be aware that the returned URL may not be a well formed URL
but a special token at the time the portlet is generating its content. Thus portlets should

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 66

not add additional parameters on the resulting URL or expect to be able to parse the
URL.

PLT.12.1.3 Namespacing
Within their content, portlets may include elements that must be unique within the whole
portal page. JavaScript functions and variables are an example of this. 5

The getNamespace method must provide the portlet with a mechanism that ensures the
uniqueness of the returned string in the whole portal page.lxxxix For example, the
getNamespace method would return a unique string that could be prefixed to a
JavaScript variable name within the content generated by the portlet, ensuring its
uniqueness in the whole page. The getNamespace method must return the same value for 10
the lifetime of the portlet window.xc

The getNamespace method must return a valid identifier as defined in the 3.8 Identifier
Section of the Java Language Specification Second Edition.xci

PLT.12.2 StateModifyingResponseStateAwareResponse
Interface 15

The StateModifyingResponseStateAwareResponse interface extends the
PortletResponse interface and in addition provides methods to set new render
parameters, a new portlet mode, or window state. ActionResponse and EventResponse
both extend this interface.

PLT.12.2.1 Render Parameters 20

Using the setRenderParameter and setRenderParameters methods portlets may set
render parameters. A call to any of the setRenderParameter methods must replace any
parameter with the same name previously set. xcii Subsequent lifecycle calls, like
processEvent or render that are part of the current client request should contain the
newly set render parameters. If no other requests that influence render parameters, like 25
subsequent processEvent calls of this client request, occur these parameters will be used
in all subsequent render requests until a new client request or event targets the portlet.

Portlet developers do not need to “x-www-form-urlencoded” encode render parameters
names and values set in the StateModifyingResponseStateAwareResponse.

PLT.12.2.2 Portlet Modes and Window State Changes 30

The setPortletMode method allows a portlet to change its current portlet mode. The
new portlet mode would be effective in the following processEvent and render
requests. If a portlet attempts to set a portlet mode that it is not allowed to switch to, a
PortletModeException must be thrown.xciii

The setWindowState method allows a portlet to change its current window state. The 35
new window state would be effective in the following processEvent and render

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 67

requests. If a portlet attempts to set a window state that it is not allowed to switch to, a
WindowStateException must be thrown.xciv

Portlets cannot assume that subsequent processEvent or render calls will be called with
the set portlet mode or window state as the portal/portlet-container could override these
changes. 5

PLT.12.2.3 Publishing Events
The portlet can publish events via the setEvent method for a single event, or with
setEvents for multiple events. It is also valid to call setEvent multiple times in the
current processAction or processEvent method and thus publish multiple events. Note
that neither the order of the event in the events Map of the setEvents method nor the 10
order of calling setEvent multiple times implies any order on how these events may be
delivered to target portlets. The event payload must have a valid JAXB binding and
implement java.io.Serializable. xcv

PLT.1.2PLT.12.3 ActionResponse Interface 15

The ActionResponse interface extends the
PortletStateModifyingResponseStateAwareResponse interface and it is used in the
processAction method of the Portlet interface. This interface allows a portlet to
redirect the user to another URL, set render parameters, change the window state of the
portlet and change the portlet mode of the portlet. 20

PLT.1.2.1PLT.12.3.1 Redirections
The sendRedirect method instructs the portal/portlet-container to set the appropriate
headers and content body to redirect the user to a different URL. A fully qualified URL
or a full path URL must be specified. If a relative path URL is given, an
IllegalArgumentException must be thrown.xcvi 25

If the sendRedirect method is called after the setPortletMode, setWindowState,
setRenderParameter or setRenderParameters methods of the ActionResponse
interface, an IllegalStateException must be thrown and the redirection must not be
executed.xcvii

PLT.12.2.2Portlet Modes and Window State Changes 30

The setPortletMode method allows a portlet to change its current portlet mode. The
new portlet mode would be effective in the following render request. If a portlet attempts
to set a portlet mode that is not allowed to switch to, a PortletModeException must be
thrown.xcviii

The setWindowState method allows a portlet to change its current window state. The 35
new window state would be effective in the following render request. If a portlet attempts

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 68

to set a window state that it is not allowed to switch to, a WindowStateException must
be thrown.xcix

Portlets cannot assume that subsequent renders will be called in the set portlet mode or
window state as the portal/portlet-container could override these changes.

If the setPortletMode or setWindowState methods are called after the sendRedirect 5
method has been called an IllegalStateException must be thrown.c If the exception
is caught by the portlet, the redirection must be executed.ci If the exception is propagated
back to the portlet-container, the redirection must not be executed.cii

PLT.12.2.3Render Parameters
Using the setRenderParameter and setRenderParameters methods of the 10
ActionResponse interface portlets may set render parameters during an action request. A
call to any of the setRenderParameter methods must replace any parameter with the
same name previously set. ciiiThese parameters will be used in all subsequent render
requests until a new client request targets the portlet. If no render parameters are set
during the processAction invocation, the render request must not contain any request 15
parameters.civ

Portlet developers do not need to “x-www-form-urlencoded” encode render parameters
names and values set in the ActionResponse.

If the setRenderParameter or setRenderParameters methods are called after the
sendRedirect method has been called an IllegalStateException must be thrown.cv 20
If the exception is caught by the portlet, the redirection must be executed. If the exception
is propagated back to the portlet-container, the redirection must not be executed.cvi

PLT.12.4 EventResponse Interface
The EventResponse interface extends the
StateModifyingResponseStateAwareResponse interface and and does not add any 25
additional methods. One thing to note is that if a portlet receives multiple processEvent
callsevents while processing one client request the new portlet mode or window state that
the portlet may have set, may not be not validated if they are valid by the portal between
these differentmultiple processEvent calls. This means that even if the portlet container
may not throw an exception when the portlet sets a new portlet mode or window state that 30
the portal may still not approve this portlet mode or window state change and call the
portlet render method with a different portlet mode or window state.

PLT.1.3PLT.12.5 RenderResponse Interface
The RenderResponse interface extends the PortletResponse interface and it is used in
the render method of the Portlet interface. This interface allows a portlet to set its title 35
and generate content.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 69

PLT.12.6 ResourceResponse Interface
The ResourceResponse interface extends the RenderResponse interface and it is used in
the serveResource method of the ResourceServingPortlet interface. This interface
allows a portlet to generate content that is directly served to the client, including binary
content. 5

PLT.1.3.1PLT.12.6.1 Content Type
A portlet must set the content type of the response using the setContentType method of
the RenderResponse interface. The setContentType method must throw an
IllegalArgumentException if the content type set does not match (including wildcard
matching) any of the content types returned by the getResponseContentType method of 10
the PortleRequest objectcvii. The portlet container should ignore any character encoding
specified as part of the content type.

If the getWriter or getPortletOutputStream methods are called before the
setContentType method, they must throw an IllegalStateException.cviii

The setContentType method must be called before the getWriter or 15
getPortletOutputStream methods. If called after, it should be ignored.

If the portlet has set a content type, the getContentType method must return it.
Otherwise, the getContentType method must return null.cix

PLT.1.3.2PLT.12.6.2 Output Stream and Writer Objects
A portlet may generate its content by writing to the OutputStream or to the Writer of 20
the RenderResponse object. A portlet must use only one of these objects. The portlet
container must throw an IllegalStateException if a portlet attempts to use both.cx

The termination of the render method of the portlet indicates that the portlet has satisfied
the request and that the output object is to be closed.

The raw OutputStream is available because of some servlet container implementations 25
requirements and for portlets that do not generate markup fragments. If a portlet utilizes
the OutputStream, the portlet is responsible of using the proper character encoding.

PLT.1.3.3PLT.12.6.3 Buffering
A portlet container is allowed, but not required, to buffer output going to the client for
efficiency purposes. Typically servers that do buffering make it the default, but allow 30
portlets to specify buffering parameters.

The following methods in the RenderResponse interface allow a portlet to access and set
buffering information:

• getBufferSize
• setBufferSize 35
• isCommitted

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 70

• reset
• resetBuffer
• flushBuffer

These methods are provided on the RenderResponse interface to allow buffering
operations to be performed whether the portlet is using an OutputStream or a Writer. 5

The getBufferSize method returns the size of the underlying buffer being used. If no
buffering is being used, this method must return the int value of 0 (zero).cxi

The portlet can request a preferred buffer size by using the setBufferSize method. The
buffer assigned is not required to be the size requested by the portlet, but must be at least
as large as the size requested.cxii This allows the container to reuse a set of fixed size 10
buffers, providing a larger buffer than requested if appropriate. The method should be
called before any content is written using a OutputStream or Writer. If any content has
been written, this method may throw an IllegalStateException.

The isCommitted method returns a boolean value indicating whether any response bytes
have been returned to the client. The flushBuffer method forces content in the buffer to 15
be written to the client.

The reset method clears data in the buffer when the response is not committed.
Properties set by the portlet prior to the reset call must be cleared as well.cxiii The
resetBuffer method clears content in the buffer if the response is not committed
without clearing the properties. 20

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown.cxiv The response and its associated buffer
must be unchanged.cxv

When using a buffer, the container must immediately flush the contents of a filled buffer
to the client.cxvi If this is the first data that is sent to the client, the response must be 25
considered as committed.

PLT.12.3.4Namespace encoding
Within their content, portlets may include elements that must be unique within the whole
portal page. JavaScript functions and variables are an example of this.

The getNamespace method must provide the portlet with a mechanism that ensures the 30
uniqueness of the returned string in the whole portal page.cxvii For example, the
getNamespace method would return a unique string that could be prefixed to a
JavaScript variable name within the content generated by the portlet, ensuring its
uniqueness in the whole page. The getNamespace method must return the same value if
invoked multiple times within a render request.cxviii 35

The getNamespace method must return a valid identifier as defined in the 3.8 Identifier
Section of the Java Language Specification Second Edition.cxix

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 71

PLT.1.3.5PLT.12.6.4 Portlet Title
A portlet may indicate to the portal/portlet-container its preferred title. It is up to the
portal/portlet-container to use the preferred title set by the portlet.

The setTitle method must be called before the output of the portlet has been
committed, if called after it should be ignored.cxx 5

PLT.1.4PLT.12.7 Lifetime of Response Objects
Each response object is valid only within the scope of a particular processAction,
processEvent or render method call. Containers commonly recycle response objects
in order to avoid the performance overhead of response object creation. The developer
must be aware that maintaining references to response objects outside the scope described 10
above may lead to non-deterministic behavior.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 72

PLT.13

Resource RenderingServing

Portlets can create two different kinds of resource links in order to serve resources:
1. Direct links to the resource in the same portlet WAR fileweb application. These

links are constructed by the portlet and encoded with the 5
PortletResponse.encodeURL() method.
Note that this method may not return a valid URL.
Direct links will notare not guaranteed to pass through the portal server and thus
cannot assumed will notto be protected by the portal security and . Direct links
will not have the portlet context available. 10
Direct links should be used for use cases where the access to the portlet context
and access through the portal is not needed, as they are more efficient than
resource serving requests through the portal.

2. Resource URL links pointing back to the portlet. Via thisthese links the
renderReserveResource method of the portletResourceServingPortlet 15
interface is called and the portlet can serve the resource. Thus resources served
via resource URLs aremay be protected by the portal security and can leverage the
portlet context. Static resources should still be served with direct links in order to
allow portals to configure and optimize static resource serving in a consistent
manner. 20

The remainder of this chapter defines how resource URL links can be created and how
the portlet is called to renderserve the resource.

PLT.13.1 PortletResourceServingResourceServingPortlet
Interface
A portlet that wants to server resources addressed via a resource URL must implement 25
the PortletResourceServingResourceServingPortlet interface with the method
renderserveResource. The portal / portlet container must not render any output in
addition to the content returned by the portletserveResource call. The portal / portlet
container should expect that the portlet may return binary content for a
renderReserveResource call. 30

The renderResourceserveResource call is outside of the basic action processing /
rendering part of the render phasesnormally following a render call and can be viewed
as a logical extension therefore part of the render phase. and tThus the same restrictions
as for render calls apply: the portlet shouldmustshould not change any state in the
renderResourceserveResource call via the Portlet API. The 35
renderResourceserveResource call should be provided with the current portlet mode

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 73

and window state. The renderResourceserveResource call should also be provided
with the current render parameters.

The serveResource call can also be used to implement Asynchronous Javascript and
XML (AJAX) use cases that want to fetch markup from the portlet without a complete
page refresh. The supported use case types for serveResource includes retrieving new 5
markup fragments based on the current portlet state and allows the portlet to include
portlet URLs in the returned markup fragment. Use cases that modify any state via the
Portlet API are not supported with serveResouce method.

NOTE: For portlet state changing AJAX use cases a different mechanism will be 10
introduced in a future draft of V 2.0.

PLT.13.2 Access to Request and Response Headers
Given that the portal / portlet container do not render any additional markup for a render
resource response it is important for the portlet to be able to access the incoming request
headers and to be able to set new headers for the response. 15

A portlet can access the headers of the HTTP client request through the getProperty or
getProperties call, like all portlet requests (see ChapterPLT XXXX11.1.4).

A portlet can set HTTP headers for the response via the setProperty or addProperty call in
the PortletResponse. To be successfully transmitted back to the client, headers must be
set before the response is committed. Headers set after the response is committed will be 20
ignored by the portlet container.

PLT.13.3 Resource URLs
The portlet can create resource URLs pointing back to itself via the createResourceURL
method on the RenderPortletResponse. When an end user invokes such a resource
URL the portlet container must call the renderResourceserveResource method of the 25
portlet or return a valid cached result for this resource URLcxxi If the portlet does not
implement the PortletResourceServing interface it is left to the portal / portlet
container to either provide some meaningful error handling or ignore the URL.

The portlet container must not call the processAction or handleEvent methodcxxii.
Besides this the resource URL should be seen as a specific render URL and all statements 30
made in the Chapter XXXX Portlet URLs section BaseURL applycxxiii.

Resource URLs are provided with the current portlet mode and, window state, and render
parameters that the portlet can access via the PortletResourceRequest with
getPortletMode and, getWindowState, or one of the getParameter methods. cxxiv
ResourceURLs cannot change the current portlet mode, window state or render 35
parameterscxxv. Parameters set on a resource URL are not render parameters but
parameters for rendering this resource and will last olny for only thisthe current
serveResource request.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 74

If a parameter is set that has the same name as a render parameter that this resource URL
contains, the render parameter must be the last entry in the parameter value array. cxxvi

Resource URLs should be accessed via HTTP method GET as they should not change
any state on the server.

 5

PLT.14

Coordination between portlets

In order to provide coordination between portlets the Java Portlet Specification
introduces differentthe following mechanisms:

• sharing data between artifacts in the same web application via the session in the 10
application scope (see Chapter XXXXPLT.17.2)

•
• sharing data across webportlet applications in the session scope via the shared

session attributes (see Chapter XXXXPLT.17.5)
• 15
• publicshared render parameters in order to share render state between portlets (see

Chapter XXXXPLT.11.1.1.1.3)
•
• portlet events that a portlet can receive and send

In this chapter we’ll cover the portlet events in more detail. 20

PLT.14.1 Shared Session State
Shared session state is intended to allowing portlets to share state that is related to the
current user session and independent of the current navigation. An example for this
would be a shopping cart that stores items the user would like to purchase. Items should
not be removed if the user navigates back to previous views and thus should not be stored 25
using shared render parameters. For more details on shared session attributes see the
Session Chapter XXXXPLT.17.5.

PLT.14.2 Shared Render Parameters
Shared render parameters are intended for sharing view state across portlets. Using
shared render parameters instead of events avoids the additional process actionevent call 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 75

and enables the end-user using the browser navigation and bookmarking if the portal
stores the render parameters in the URL.

An example where shared render parameters are useful is the following: a weather portlet
wants to display the weather of a selected city. It therefore uses the shared render
parameters for encoding the zip code. The user now adds additional portlets on the page 5
that also have zip code as one of their shared render parameters, like a map portlet
displaying the location of the city or selecting a city and a tourist information portlet
displaying tourist information for the selected city. If the portal encodes the zip code into
the URL the user can noweven bookmark these information for specific cities.

For more details on shared render parameters see the Chapter XXXXPLT.11.1.1.1.3. 10

PLT.14.3 Portlet Events
Portlet events are intended to allowing portlets to react on actions or state changes not
directly related to an interaction of the user with the portlet. Events could be either portal
or portlet container generated or the result of a user interaction with other portlets. The
portlet event model is a loosely coupled, brokered, model that allows creating portlets as 15
stand-alone portlets that can be wired together with other portlets at runtime. Portlet
programmers should therefore not make any specific assumptions about the environment
of portlets they are running together with. The means of wiring different portlets together
is portal implementation specific.

Portlet events are not a replacement for reliable messaging (see other JEE APIs, like Java 20
Message Service, JMS, for providing reliable messaging). Portlet events are not
guaranteed to be delivered and thus the portlet should always work in a meaningful
manner even if some or all events are not being delivered.

In response to an event a portlet may publish new events that should be delivered to other
portlets and thus may trigger state changes on these other portlets. 25

PLT.14.3.1 PortletEventsPortlet Interface
In order to receive events the portlet must implement the PortletEventsEventPortlet
interface in the javax.portlet package. The portlet container will call the
processEvent method for each event targeted to the portlet with an EventRequest and
EventResponse object. Events are targeted by the portal / portlet container to a specific 30
portlet window in the current user request.

Events are a new lifecycle operation that occurs before the rendering phase. A portlet that
is target of a user action can optionally receive container specific events before the action
processing. The portlet may issue events via the setEvent or setEvents method during
the action processing which will be processed by the portlet container after the action 35
processing has finished.After the action processing is finished the portlet may issue
events via the sendEvent method. As a result of issuing an event the portlet may
optionally receive events from other portlets or container events. A portlet that is not

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 76

target of a user action may optionally receive container events or events from other
portlets.

PLT.14.3.2 Receiving and sending events
The portlet can access the event that triggered the current process event call by using the
EventRequest.getEvent method. This method returns an object of type Event 5
representing the current event. The event must always have a name and may optionally
have a value. cxxvii

If the event has a value it is based on the type defined in the deployment descriptor. The
type in the deployment descriptor can either be a Java type or a XML type defined in the
JAXB specification or a schema. If the type is XML-based the portlet container is 10
responsible for instantiating the correct Java object based on the XML type defined. The
de-serialized Java object must implement the java.io.Serializable interface. cxxviii
The default XML to Java mapping that every container must support is the JAXB
mapping (see XXXXXPLT.26).cxxix Portlet containers are free to support additional
mapping mechanisms beyond the JAXB mapping. If the value of the event is not null it 15
must reflect the type defined for this event in the deployment descriptor.cxxx If a Java
class is specified as type in the deployment descriptor the event payload object must be of
this declared type.cxxxi

For optimization purposes in local Java runtime environments the portlet container can
use Java Serialization or direct Java object passing for the event payload. The portlet 20
must not make any assumptions on the mechanism the portlet container chooses to pass
the event payload.

Example for receiving an event:

event defined in the DD: 25
<event-definition>
 <name>com.acme.foo</name>
 <java-type>java.lang.String</java-type>
</event-definition>
.... 30
<portlet>
...
<supported-processing-event>
 <name>com.acme.foo></name>
</supported-processing-event> 35
...
</portlet>

event processing in the portlet:
void processEvent(EventRequest req, EventResponse resp)
{ 40
...
Event event = req.getEvent();
if (event.getName().equals(“com.acme.foo”))
 {
 String payload = (String) event.getValue(); 45
 ...

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 77

 }

The portlet can publish events via the EventResponse.setEvent for a single event, or
with EventResponse.setEvents for multiple events. It is also valid to call
EventResponse.setEvent multiple times in the current processEvent method. Note 5
that neither the order of the event in the events Map of the EventResponse.setEvents
method nor the order of calling EventResponse.setEvent multiple times implies any
order on how these events may be delivered to target portlets. The event payload must
have a valid JAXB binding and implement java.io.Serializable., otherwise a
java.lang.IllegalArgumentException must be thrown. cxxxii 10

Example for sending an event:

event defined in the DD:
<event-definition>
 <name>com.acme.bar</name> 15
 <java-type>com.acme.Address</java-type>
</event-definition>
....
<portlet>
... 20
<supported-publishing-event>
 <name>com.acme.bar></name>
</supported-publishing-event>
...
</portlet> 25

event processing in the portlet:
@XmlRootElement
 public class Address implements Serializable
 {
 private String street; 30
 private String city;
 public void setStreet(String s) {street = s;}
 public String getStreet() { return street;}
 public void setCity(String c) { city = c;}
 public String getCity() { return city;} 35
 }

void processEvent(EventRequest req, EventResponse resp)
{ 40
...
Address sampleAddress = new Address();
sampleAddress.setStreet(“myStreet”);
sampleAddress.setCity(“myCity”);
resp.setEvent(“com.acme,bar”, ecsampleAddress); 45

PLT.14.3.3 Event declaration
The portlet should declare all events that it would like to receive and the ones it would
like to initiate. The portlet container should only distribute events that the portlet has
declared as processing events, but the portlet implementation should however be robust
enough to deal with receiving events that it did not declare. 50

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 78

The portlet may declare events either statically in the deployment descriptor or
dynamically via sending new events not previously defined.

PLT.14.3.3.1 Declaration in the deployment descriptor

The portlet can declare static events in the portlet.xml deployment descriptor (see
Chapter XXXXPLT.24 Deployment Descriptor). On the application level the portlet 5
should define the basic event definition with the portlet:event-definition
tagelement. The event definition must contain at least one event name. cxxxiii The portlet
container must use the first event name entry in the portlet deployment descriptor as
event name when submitting an event to the portlet. The portlet can specify additional
names beyond the first preferred name in order to enable portals performing an automatic 10
wiring between events.

The event definition mustshould be referenced on the portlet level where the portlet can
define the processing events with the supported-processing-event tagelement and the
events being published with the supported-publishing-event tagelement. Event
definitions are valid for all instanceentities created based on the portlet definition. 15

Portlet container or portal defined events do not need to be declared on the application
level with the event-definition element, but can be directly referenced on the portlet
level with the supported-processing-event element.

The event name should uniquely identify the event and use the Java package naming
standard (INSERT REF HERE) and character restrictions. The portlet is encouraged to 20
organize the event names in a hierarchical manner using the dot ‘.’ as separator. The
portlet must not specify events with the same name but different types. Receiving event
parameter names are allowed to end with a “*” character to indicate the portlet is willing
to process any event whose name starts with the characters before the “*” character.

A localized display name for the portlet event definition should be provided in the 25
application level resource bundle (see Chapter XXXXPLT.24.10) with an entry of the
name javax.portlet.app.event-definition.<event-name>.display-name.

PLT.14.3.3.2 Dynamic, non-declared events declaration

The portlet can senddeclare dynamic events, which are not declared in the portlet
deployment descriptor, at runtime using the StateModifyingResponse.setEvent or 30
StateModifyingResponse.setEvents methods on either the ActionResponse or
EventResponse. An event is called a dynamic event if the event name is not defined in
the portlet deployment descriptor. The portlet should note that by using dynamic events
the abilities of the portal for distributing the event to other portlets may be limited or even
non-existent. 35

PLT.14.3.4 Event processing
Events are valid only in the current user request and the portlet container must therefore
deliver all events within the current request. Event delivery is not guaranteed and the
container may restrict event delivery in a meaningful manner, e.g. in order to prevent

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 79

endless loops. Events are not ordered and the container may re-order the received events
before distributing them. Event distribution is non-blocking and can happen in parallel
for different portlet instanceentitiewindows.

Event distribution must be serialized for a specific portlet instanceentitywindow per
client request so that at any given time a portlet instanceentitywindow is only processing 5
one event in the processEvent method for the current client request scope. The portlet
container should therefore queue the events for one portlet instanceentitywindow for one
user. When processing the queue the container should take any previously returned event
response data, like render parameters, portlet mode, window state, into account and
supply these updated values with the event request. 10

Portlet Eevent processing may appear after the processing of the action and must be
finished before the render phase.at the following phases of the overall request processing:

 processEvent, for container raised events
 processAction, for the portlet that is target of the current user action, after

container raised event processing is finished. Action processing must be finished 15
before processEvent is called for this portlet entity in the current request scope.

 processEvent, for events raised by portlets after processAction has finished or
container raised events.

• render, serveResource after all processAction and processEvent calls are
finished or terminated 20

Container raised events are issued by the portlet container and not a portlet. The portlet
should not publish container events, only process them. If a portlet would like to receive
a container raised event it mustshould declare the event in the portlet deployment
descriptor with the <supported-processing-event> tagelement.

PLT.14.3.5 Exceptions during event processing 25

A portlet may throw either a PortletException, a PortletSecurityException or an
UnavailableException during the processEvent.

A PortletException signals that an error has occurred during the processing of the
event and that the portlet container should take appropriate measures to clean up the
event processing. If a portlet throws an exception in the processEvent method, all 30
operations on the EventResponse must be ignored. The portal/portlet-container should
continue processing the other portlets participating in the current client request.
Otherwise it is up to the portlet container implementation if the error is faced to the end
user, the portlet is removed from the current request cycle or if the render method of the
portlet is called. 35

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object. A portlet that throws a permanent 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 80

UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted.

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability. 5

The portlet container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent, thereby
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the event handling must be handled as a
PortletException. 10

When a portlet throws an exception, or when a portlet becomes unavailable, the
portal/portlet-container may include a proper error message in the portal page returned to
the user.

PLT.14.3.6 GenericPortlet support
The GenericPortlet implements the PortletEventsEventPortlet interface and 15
provides a default event handling. For a given event the GenericPortlet tries to
dispatch to methods annotated with the tag @ProcessEvent(Retention=RUNTIME,
name=<event name>) and following signature:

void <methodname> (EventRequest, EventResponse) throws 20
PortletException, java.io.IOException;

Note that the annotation must contain the Retention=RUNTIME metadata in order to allow
GenericPortlet accessing the information at runtime. If no such method can be found
the GenericPortlet just sets the received render parameters as new render parameters. 25

Example:

@ProcessEvent(Retention=RUNTIME, name="com.acme.foo")

public void processFoo(EventRequest request, EventResponse response) throws 30
PortletException, java.io.IOException {

 // process event foo

}

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 81

PLT.15

Portal Context

The PortalContext interface provides information about the portal that is invoking the
portlet.

The getPortalInfo method returns information such as the portal vendor and portal 5
version.

The getProperty and getPropertyNames methods return portal properties.

The getSupportedPortletModes method returns the portlet modes supported by the
portal.

The getSupportedWindowStates method returns the window states supported by the 10
portal.

A portlet obtains a PortalContext object from the request object using
getPortalContext method.

 15

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 83

PLT.16

Portlet Preferences

Portlets are commonly configured to provide a customized view or behavior for different
users. This configuration is represented as a persistent set of name-value pairs and it is
referred to as portlet preferences. The portlet container is responsible for the details of 5
retrieving and storing these preferences.

Portlet preferences are intended to store basic configuration data for portlets. It is not the
purpose of the portlet preferences to replace general purpose databases.

PLT.1.1PLT.16.1 PortletPreferences Interface
Portlets have access to their preferences attributes through the PortletPreferences 10
interface. Portlets have access to the associated PortletPreferences object while they
are processing requests. Portlets may only modify preferences attributes during a
processAction or processEvent invocation.

Preference attributes are String array objects. Preferences attributes can be set to
null.cxxxiv 15

To access and manipulate preference attributes, the PortletPreferences interface
provides the following methods:

• getNames
• getValue
• setValue 20
• getValues
• setValues
• getMap
• isReadOnly
• reset 25
• store

The getMap method returns an immutable Map of String keys and String[] values
containing all current preference values. Preferences values must not be modified if the
values in the Map are altered.cxxxv The getValue and setValue methods are
convenience methods for dealing with single values. If a preference attribute has multiple 30
values, the getValue method returns the first value. The setValue method sets a single
value into a preferences attribute. If setValues method has been called with multiple
values, the subsequent setValue method overwrites all existing values replacing them
with the new single value.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 84

The following code sample demonstrates how a stock quote portlet would retrieve from
its preferences object, the preferred stock symbols, the URL of the backend quoting
services and the quote refresh frequency.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 85

PortletPreferences prefs = req.getPreferences();
String[] symbols =
 prefs.getValues(”preferredStockSymbols”,
 new String[]{”ACME”,”FOO”});
String url = prefs.getValue(”quotesFeedURL”,null); 5
int refreshInterval =
 Integer.parseInt(prefs.getValue(”refresh”,”10”));

The reset method must reset a preference attribute to its default value. If there is no
default value, the preference attribute must be deleted.cxxxvi It is left to the vendor to
specify how and from where the default value is obtained. 10

If a preference attribute is read only, the setValue, setValues and reset methods must
throw a ReadOnlyException when the portlet is in any of the standard modes.cxxxvii

The store method must persist all the changes made to the PortletPreferences object
in the persistent store.cxxxviii If the call returns successfully, it is safe to assume the
changes are permanent. The store method must be conducted as an atomic transaction 15
regardless of how many preference attributes have been modified.cxxxix The portlet
container implementation is responsible for handling concurrent writes to avoid
inconsistency in portlet preference attributes. All changes made to PortletPreferences
object not followed by a call to the store method must be discarded when the portlet
finishes the processAction or processEvent method. cxl If the store method is 20
invoked within the scope of a render or serveResource method invocation, it must
throw an IllegalStateException.cxli

The PortletPreferences object must reflect the current values of the persistent store
when the portlet container invokes the processAction, processEvent, render and
rserveResourceender methods of the portlet. cxlii 25

PLT.1.2PLT.16.2 Preference Attributes Scopes
Portlet Specification assumes preference attributes are user specific, it does not make any
provision at API level or at semantic level for sharing preference attributes among users.
If a portal/portlet-container implementation provides an extension mechanism for sharing
preference attributes, it should be well documented how the sharing of preference 30
attributes works. Sharing preference attributes may have significant impact on the
behavior of a portlet. In many circumstances it could be inappropriate sharing attributes
that are meant to be private or confidential to the user.

PLT.1.3PLT.16.3 Preference Attributes definition
The portlet definition may define the preference attributes a portlet uses. 35

A preference attribute definition may include initial default values. A preference attribute
definition may also indicate if the attribute is read only.

An example of a fragment of preferences attributes definition in the deployment
descriptor would be:

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 86

<portlet>
...
 <!—- Portlet Preferences -->
 <portlet-preferences>
 <preference> 5
 <name>PreferredStockSymbols</name>
 <value>FOO</value>
 <value>XYZ</value>
 <read-only>true</read-only>
 </preference> 10
 <preference>
 <name>quotesFeedURL</name>
 <value>http://www.foomarket.com/quotes</value>
 </preference>
 </portlet-preferences> 15
</portlet>

If a preference attribute definition does not contain the read-only element set to true,
the preference attribute is modifiable when the portlet is processing an action request in
any of the standard portlet modes (VIEW, EDIT or HELP).cxliii Portlets may change the value
of modifiable preference attributes using the setValue, setValues and reset methods 20
of the PortletPreferences interface. Deployers may use the read-only element set to
true to fix certain preference values at deployment time. Portal/portlet-containers may
allow changing read-only preference attributes while performing administration tasks.

Portlets are not restricted to use preference attributes defined in the deployment
descriptor. They can programmatically add preference attributes using names not defined 25
in the deployment descriptor. These preferences attributes must be treated as modifiable
attributes. cxliv

Portal administration and configuration tools may use and change, default preference
attributes when creating a new portlet preferences objects. In addition, the portal may
further constraint the modifiability of preferences values. 30

PLT.1.3.1PLT.16.3.1 Localizing Preference Attributes
The Portlet Specification does not define a specific mechanism for localizing preference
attributes. It leverages the J2SE ResourceBundle classes.

To enable localization support of preference attributes for administration and
configuration tools, developers should adhere to the following naming convention for 35
entries in the portlet’s ResourceBundle (see the PLT.2124.10 Resource Bundles Section).

Entries for preference attribute descriptions should be constructed as
‘javax.portlet.preference.description.<attribute-name>', where
<attribute-name> is the preference attribute name.

Entries for preference attribute names should be constructed as 40
‘javax.portlet.preference.name.<attribute-name>', where <attribute-name>
is the preference attribute name. These values should be used as localized preference
display names.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 87

Entries for preference attribute values that require localization should be constructed as
'javax.portlet.preference.value.<attribute-name>.<attribute-value>',
where <attribute-name> is the preference attribute name and <attribute-value> is
the localized preference attribute value.

PLT.1.4PLT.16.4 Validating Preference values 5

A class implementing the PreferencesValidator interface can be associated with the
preferences definition in the deployment descriptor, as shown in the following example:

<!—- Portlet Preferences -->
<portlet-preferences>
 ... 10
 <preferences-validator>
 com.foo.portlets.XYZValidator
 </preferences-validator>
</portlet-preferences>

A PreferencesValidator implementation must be coded in a thread safe manner as the 15
portlet container may invoke concurrently from several requests. If a portlet definition
includes a validator, the portlet container must create a single validator instance per
portlet definition.cxlv If the application is a distributed application, the portlet container
must create an instance per portlet definition per VM.cxlvi

When a validator is associated with the preferences of a portlet definition, the store 20
method of the PortletPreferences implementation must invoke the validate method
of the validator before writing the changes to the persistent store.cxlvii If the validation
fails, the PreferencesValidator implementation must throw a ValidatorException.
If a ValidatorException is thrown, the portlet container must cancel the store
operation and it must propagate the exception to the portlet.cxlviii If the validation is 25
successful, the store operation must be completed.cxlix Portlet preferences cannotshould
not be modified when they are being validated by a PreferencesValidator object. If
the store method is invoked within the scope of the PreferenceValidator's validate
method invocation, an IllegalStateException must be thrown.

When creating a ValidatorException, portlet developers may include the set of 30
preference attributes that caused the validator to fail. It is left to the developers to indicate
the first preference attribute that failed or the name of all the invalid preference attributes.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 89

PLT.17

Sessions

To build effective portlet applications, it is imperative that requests from a particular
client be associated with each other. There are many session tracking approaches such as
HTTP Cookies, SSL Sessions or URL rewriting. To free the programmer from having to 5
deal with session tracking directly, this specification defines a PortletSession interface
that allows a portal/portlet-container to use any of the approaches to track a user’s session
without involving the developers in the nuances of any one approach.

PLT.1.1PLT.17.1 Creating a Session
A session is considered “new” when it is only a prospective session and has not been 10
established. Because the Portlet Specification is designed around a request-response
based protocol (HTTP would be an example of this type of protocol) a session is
considered to be new until a client “joins” it. A client joins a session when session
tracking information has been returned to the server indicating that a session has been
established. Until the client joins a session, it cannot be assumed that the next request 15
from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:
• The client does not yet know about the session
• The client chooses not to join a session

These conditions define the situation where the portlet container has no mechanism by 20
which to associate a request with a previous request. A portlet developer must design the
application to handle a situation where a client has not, cannot, or will not join a session.

For portlets within the same portlet application, a portlet container must ensure that every
portlet request generated as result of a group of requests originated from the portal to
complete a single client request receive or acquire the same session.cl In addition, if 25
within these portlet requests more than one portlet creates a session, the session object
must be the same for all the portlets in the same portlet application.cli

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 90

PLT.1.2PLT.17.2 Session Scope
PortletSession objects must be scoped at the portlet application context level.clii

Each portlet application has its own distinct PortletSession object per user session.
The portlet container must not share the PortletSession object or the attributes stored
in it among different portlet applications or among different user sessions.cliii 5

PLT.1.3PLT.17.3 Binding Attributes into a Session
A portlet can bind an object attribute into a PortletSession by name.

The PortletSession interface defines two scopes for storing objects,
APPLICATION_SCOPE and PORTLET_SCOPE.

Any object stored in the session using the APPLICATION_SCOPE is available to any other 10
portlet that belongs to the same portlet application and that handles a request identified as
being a part of the same session.cliv The portlet should take into account that objects that
are stored in the application scope can be accessed by other portlets in parallel and thus
should synchronize write access to these objects.

Portlets can allow portlet containers to share APPLICATION_SCOPE even beyond the 15
current web application by declaring them as shared session parameters in the portlet
deployment descriptor with the <shared-session-attribute> tagelement. Attributes
that are not primitive Java types and should be shared across web applications must
implement the java.lang.Serializable interface and be JAXB serializable (see
1.5PLT.23). 20

In order to ensure that application scope attributes are propagated in distributed session
environment an explicit setAttribute or removeAttribute call must be done for
changed attributes, even if these attributes can be changed implicitly like in the case of
Java Collections.

Objects stored in the session using the PORTLET_SCOPE must be available to the portlet 25
during requests for the same portlet window that the objects where stored from.clv The
object must be stored in the APPLICATION_SCOPE with the following fabricated attribute
name ‘javax.portlet.p.<ID>?<ATTRIBUTE_NAME>’. <ID> is a unique identification for
the portlet window (assigned by the portal/portlet-container) that must be equal to the ID
returned by the PortletRequest.getWindowID() method and not contain a ‘?’ 30
character.clvi <ATTRIBUTE_NAME> is the attribute name used to set the object in the
PORTLET_SCOPE of the portlet session.

Attributes stored in the PORTLET_SCOPE are not protected from other web components of
the portlet application. They are just conveniently namespaced.

The setAttribute method of the PortletSession interface binds an object to the 35
session into the specified scope. For example:

PortletSession session = request.getSession(true);
URL url = new URL(“http://www.foo.com”);

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 91

session.setAttribute(“home.url”,url,PortletSession.APPLICATION_SCOPE);
session.setAttribute(“bkg.color”,”RED”,PortletSession.PORTLET_SCOPE);

The getAttribute method from the PortletSession interface is used to retrieve
attributes stored in the session.

To remove objects from the session, the removeAttribute method is provided by the 5
PortletSession interface.

Objects that need to know when they are placed into a session, or removed from a session
must implement the HttpSessionBindingListener of the servlet API (see Servlet
Specification 2.3, SRV.7.4 Section). The PortletSessionUtil class provides utility
methods to help determine the scope of the object in the PortletSession. If the object 10
was stored in the PORTLET_SCOPE, the decodeAttributeName method of the
PortletSessionUtil class allows retrieving the attribute name without any portlet-
container fabricated prefix. Portlet developers should always use the
PortletSessionUtil class to deal with attributes in the PORTLET_SCOPE when accessing
them through the servlet API. 15

PLT.1.4PLT.17.4 Relationship with the Web Application
HttpSession
A Portlet Application is also a Web Application. The Portlet Application may contain
servlets and JSPs in addition to portlets. Portlets, servlets and JSPs may share information
through their session. 20

The container must ensure that all attributes placed in the PortletSession are also
available in the HttpSession of the portlet application.The PortletSession must store
all attributes in the HttpSession of the portlet application. A direct consequence of this
is that data stored in the HttpSession by servlets or JSPs is accessible to portlets through
the PortletSession in the portlet application scope.clvii Conversely, data stored by 25
portlets in the PortletSession in the portlet application scope is accessible to servlets
and JSPs through the HttpSession. clviii

If the HttpSession object is invalidated, the PortletSession object must also be invalidated
by the portlet container.clix If the PortletSession object is invalidated by a portlet, the
portlet container must invalidate the associated HttpSession object.clx 30

PLT.1.4.1PLT.17.4.1 HttpSession Method Mapping
The getCreationTime, getId, getLastAccessedTime, getMaxInactiveInterval,
invalidate, isNew and setMaxInactiveInterval methods of the PortletSession
interface must provide the same functionality as the methods of the HttpSession
interface with identical names. 35

The getAttribute, setAttribute, removeAttribute and getAttributeNames
methods of the PortletSession interface must provide the same functionality as the
methods of the HttpSession interface with identical names adhering to the following
rules:

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 92

• The attribute names must be the same if APPLICATION_SCOPE scope is
used.clxi

• The attribute name has to conform with the specified prefixing if
PORTLET_SCOPE is used.clxii

• The variant of these methods that does not receive a scope must be treated as 5

PORTLET_SCOPE.clxiii

PLT.17.5 Shared session attributes
The portlet canmay define shared session attributes that can be shared across portlet web
applications. Shared session attributes should be scoped at least to the current end user
and thus allow a sharing of data on the portal level for a given user. They can be viewed 10
as portal managed session data in contrary to the portlet session data, which is managed
by the portlet container and only visible to artifacts within the same web application.

At a minimum shared session attributes must have the same visibility scope as non-
shared APPLICATION_SCOPE session attributes, i.e. be accessible for all artifacts
within the current web application. 15

It is up to the portal implementation to decide which portlets outside the current web
application may share the same attributes. The portal should use additional information
provided in the deployment descriptor, like the type and alias, in order to perform such a
mapping between shared session attributes of different portlets.

The portlet should note that session sharing beyond the current web application is not 20
reliable, e.g. they maywhen connecting to remote systems that may currently not be
available. It is not guaranteed that shared session attributes are at any point in time
synchronized between different web applications as events like session time outs of a
web application session may occur.

The propagation of shared attributes should be done by the portal / portlet container after 25
a specific lifecycle method has finished (e.g. processAction), but within the scope of the
current client request.

Shared session attributes are set, obtained and removed using the PORTLET_SCOPE or
APPLICATION_SCOPE portlet session methods. If an attribute is set to null the portal
should treat this value as being removed. This removal should be propagated to all other 30
participants of the shared session. Session timeouts of one participant of a shared session
attribute should not effect the value of this shared session attribute for participants that
still have a valid session.

The HttpSession listeners also apply to the shared session attributes, like for normal
APPLICATION_SCOPE attributes. The portlet should take into account that via shared 35

NOTE: The JSR 286 EG seeks feedback on this feature of shared session
attributes. Given that you can achieve a similar behavior with events is such a
feature of value?

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 93

attributes a session creation or HttSession listener can be triggered from a portlet outside
the current web application.

Shared attributes values must be serializable and in addition must have a valid JAXB
binding (see also the OverviewJAXB chapter XXXXPLT.26) in order to allow a sharing
with portlets running on different VMs or remotely via WSRP. 5

As a user may have many portlets in use and the storage for these shared attributes on the
portal is definite, the portlet should try to minimize the amount of data it stores in
portalshared session attributes. If the portal runs out of storage space it may ignore or
delay the propagation of the shared session attribute to other portlets outside the current
web application. The same restriction applies to shared session attributes that are set via 10
the rendering phase in either the render or serveResource method. In general it is
strongly discouraged to set application scoped attributes in the rendering phase (see
below).

Shared session attributes set in included servlets or JSPs should be treated like they were
set in the portlet. 15

Components, like servlets, that access the shared session attributes outside the portlet
context, i.e. not via a include from the portlet, should be able to read the attribute, but
changes to the attribute are not likely to be propagated outside the current web
application.

PLT.17.5.1 Declaration in the deployment descriptor 20

The portlet must declare shared session attributes in the portlet.xml deployment
descriptor (see Chapter XXXXPLT.24 Deployment Descriptor). For sharing attributes
Oon the application level the portlet must define the shared session attribute definition
with the <shared-application-session-attribute> tagelement.

For sharing attributes on the portlet level the portlet must define the shared session 25
attribute definition with the <shared-portlet-session-attribute> tagelement.

The shared session attribute definition must contain at least one attribute name. clxiv The
portlet must use the first shared session attribute name entry in the portlet deployment
descriptor as attribute name when accessing the portlet session.

The shared session attribute should uniquely identify the attribute and use the Java 30
package naming standard (INSERT REF HERE) and character restrictions.

A localized display name for the shared application session attribute definition should be
provided in the application level resource bundle (see Chapter XXXXPLT.24.10) with an
entry of the name

‘javax.portlet.app.shared-application-session-attribute.<attribute-35
name>.display-name'.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 94

A localized display name for the shared portlet session attribute definition should be
provided in the portlet resource bundle (see Chapter XXXXPLT.24.10) with an entry of
the name

 ‘javax.portlet. app.shared-portlet-session-attribute.<name>.display-
name'. 5

PLT.17.5.2 Example
The following code snippets show an example for using shared application session
attributes:

declaring the application session attribute in the deployment descriptor:

<shared-application-session-attribute> 10

 <name>com.acme.bar</name>

</shared-application-session-attribute>

using the shared application session attribute in the portlet:

@XmlRootElement 15

 public class Address implements Serializable

 {

 private String street;

 private String city;

 public void setStreet(String s) {street = s;} 20

 public String getStreet() { return street;}

 public void setCity(String c) { city = c;}

 public String getCity() { return city;}

 }

 25

void processAction(ActionRequest req, ActionResponse resp)

{

...

Address sampleAddress = new Address();

sampleAddress.setStreet(“myStreet”); 30

sampleAddress.setCity(“myCity”);

PortletSession session = req.getPortletSession();

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 95

session.setAttribute(“com.acme.bar”, sampleAddress,

 PortletSession.APPLICATION_SCOPE);

....

}

 5

PLT.17.6 Writing to the Portlet Session
When writing to the portlet session the distinct lifecycle phases action and render should
be taken into account, as writing in the render phase may create issues as explained
below.

PLT.17.6.1 Process action and process event phase 10

Setting attributes in the action or event phase to the portlet session in the
PORTLET_SCOPE will likely not create any concurrency issues. Setting attributes in the
APPLICATION_SCOPE or the shared APPLICATION_SCOPE mayare more likely to
create concurrency issues as these scopes are shared with other portlets that may run in
parallel and also change the same attribute. 15

TheA set or remove attribute calls must be conducted as an atomic transactions. The
portlet container implementation is responsible for handling concurrent writes to avoid
inconsistency in portlet session attributes.

PLT.17.6.2 Rendering phase
The portlet API allows portlets writing to the portlet session even in the rendering phase 20
in either render or serveResource. The ability to write to the session in the rendering
phase is merely introduced in order to allow easier migration of existing, servlet-based,
web applications and the implementation of bridges frameworks that bridge from the
portlet environment to web application frameworks.

In general the usage of the set methods on the portlet session in render is strongly 25
discouraged as it breaks the concept of rendering being idempotent and re-playable. This
is especially true for APPLICATION_SCOPE attributes and shared
APPLICATION_SCOPE attributes as different portlets share these attributes. For shared
session attributes the portal maywill likely not propagate the new settings to entities
outside the current web application in the current client request. The changes may be 30
propagated in a subsequent request.

PLT.1.5PLT.17.7 Reserved HttpSession Attribute Names
Session attribute names starting with “javax.portlet.” are reserved for usage by the
Portlet Specification and for Portlet Container vendors. A Portlet Container vendor may
use this reserved namespace to store implementation specific components. Application 35
Developers must not use attribute names starting with this prefix.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 96

PLT.1.6PLT.17.8 Session Timeouts
The portlet session follows the timeout behavior of the servlet session as defined in the
Servlet Specification 2.3, SRV.7.5 Section.

PLT.1.7PLT.17.9 Last Accessed Times
The portlet session follows the last accessed times behavior of the servlet session as 5
defined in the Servlet Specification 2.3, SRV.7.6 Section.

PLT.1.8PLT.17.10 Important Session Semantics
The portlet session follows the same semantic considerations as the servlet session as
defined in the Servlet Specification 2.3, SRV.7.7.3 Section.

These considerations include Threading Issues, Distributed Environments and Client 10
Semantics.clxv

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 97

PLT.18

Dispatching Requests to Servlets and JSPs

Portlets can delegate the creation of content to servlets and JSPs. The
PortletRequestDispatcher interface provides a mechanism to accomplish this.

Servlets and JSPs invoked from within portlet should generate markup fragments 5
following the recommendations of the PLT.B Markup Fragment Appendix.

PLT.1.1PLT.18.1 Obtaining a PortletRequestDispatcher
A portlet may use a PortletRequestDispatcher object only when executing the
render method of the Portlet interface. PortletRequestDispatcher objects may be
obtained using one of the following methods of the PortletContext object: 10

• getRequestDispatcher
• getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a path within
the scope of the PortletContext of a portlet application. This path must begin with a ‘/’
and it is relative to the PortletContext root. clxvi 15

The getNamedDispatcher method takes a String argument indicating the name of a
servlet known to the PortletContext of the portlet application.

If no resource can be resolved based on the given path or name the methods must return
null.clxvii

A PortletRequestDispatcher can be used in either the render or the serveResource 20
method or any methods called by these methods, like doView.

PLT.1.1.1PLT.18.1.1 Query Strings in Request Dispatcher Paths
The getRequestDispatcher method of the PortletContext that creates
PortletRequestDispatcher objects using path information allows the optional
attachment of query string information to the path. For example, a Developer may obtain 25
a PortletRequestDispatcher by using the following code:

String path = "/raisons.jsp?orderno=5";
PortletRequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(renderRequest, renderResponse);

Parameters specified in the query string used to create the PortletRequestDispatcher 30
must be aggregated with the portlet render parameters and take precedence over other
portlet render parameters of the same name passed to the included servlet or JSP. The

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 98

parameters associated with a PortletRequestDispatcher are scoped to apply only for
the duration of the include call.clxviii

PLT.1.2PLT.18.2 Using a Request Dispatcher
To include a servlet or a JSP, a portlet calls the include method of the
PortletRequestDispatcher interface. The parameters to these methods must be the 5
request and response arguments that were passed in via the render method of the
Portlet interface or the serveResource method of the ResourceServingPortlet
interface or instances of the corresponding subclasses of the request and response wrapper
classes that were introduced for version 2.0 of the specification. clxix In the latter case, the
wrapper instances must wrap the request or response objects that the container passed into the 10
render or serveResource method.clxx

The portlet container must ensure that the servlet or JSP called through a
PortletRequestDispatcher is called in the same thread as the
PortletRequestDispatcher include invocation.clxxi

PLT.1.3PLT.18.3 The Include Method 15

The include method of the PortletRequestDispatcher interface may be called at any
time and multiple times within the render method of the Portlet interface or the
serveResource method of the ResourceServingPortlet interface.. The servlet or JSP
being included can make a limited use of the received HttpServletRequest and
HttpServletResponse objects. 20

Servlets and JSPs included from portlets should not use the servlet RequestDispatcher
forward method as its behavior may be non-deterministic.

Servlets and JSPs included from portlets must be handled as HTTP GET requests.clxxii

The lookup of the servlet given a path is done according to the servlet path matching rule
defined in SRV.11 section of the servlet specification. 25

PLT.1.3.1PLT.18.3.1 Included Request Parameters
Except for servlets obtained by using the getNamedDispatcher method, a servlet or JSP
being used from within an include call has access to the path used to obtain the
PortletRequestDispatcher. The following request attributes must be setclxxiii:

javax.servlet.include.request_uri 30
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet via the getAttribute method 35
on the request object.

If the included servlet was obtained by using the getNamedDispatcher method these
attributes are not set.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 99

PLT.1.3.2PLT.18.3.2 Included Request Attributes
In addition to the request attributes specified in Servlet Specification 2.3, SRV.8.3.1
Section, the included servlet or JSP must have the following request attributes set:

Request Attribute Type 5

javax.portlet.config javax.portlet.PortletConfig
javax.portlet.request javax.portlet.RenderRequest
javax.portlet.response javax.portlet.RenderResponse

 10
For includes from the render method the following additional attributes must be set:

Request Attribute Type

javax.portlet.request javax.portlet.RenderRequest 15

For includes from the serveResource method the following additional attribute must be
set:

Request Attribute Type 20

javax.portlet.request javax.portlet.ResourceRequest

These attributes must be the same Portlet API objects accessible to the portlet doing the
include call.clxxiv They are accessible from the included servlet or JSP via the 25
getAttribute method on the HttpServletRequest object.

PLT.1.3.3PLT.18.3.3 Request and Response objects for Included
Servlets/JSPs from within the Render method
The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the 30
render method.

The following methods of the HttpServletRequest must return null: getProtocol,
getRemoteAddr, getRemoteHost, getRealPath, and getRequestURL.clxxv

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object: 35
getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.clxxvi

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute, 40
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid.clxxvii

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 100

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.1618.1.1
Query Strings in Request Dispatcher Paths Section: getParameter,
getParameterNames, getParameterValues and getParameterMap.clxxviii

The following methods of the HttpServletRequest must do no operations and return 5
null: getCharacterEncoding, setCharacterEncoding, getContentType,

getInputStream and getReader.clxxix The getContentLength method of the
HttpServletRequest must return 0.clxxx

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader, 10
getHeaders, getHeaderNames, getCookies, getDateHeader and
getIntHeader.clxxxi.

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification 2.3: getRequestDispatcher, getMethod,
isUserInRole, getSession, isRequestedSessionIdFromCookie, 15
isRequestedSessionIdFromURL and isRequestedSessionIdFromUrl.clxxxii

The getMethod method of the HttpServletRequest must always return ‘GET’.clxxxiii

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.clxxxivThe following methods of the
HttpServletResponse must be equivalent to the methods of the RenderResponse of 20
similar name: getCharacterEncoding, setBufferSize, flushBuffer,

resetBuffer, reset, getBufferSize, isCommitted, getOutputStream,

getWriter, encodeURL and encodeUrl.clxxxv

The following methods of the HttpServletResponse must perform no operations:
setContentType, setContentLength, setLocale, addCookie, sendError, 25
sendRedirect, setDateHeader, addDateHeader, setHeader, addHeader,
setIntHeader, addIntHeader and setStatus.clxxxvi The containsHeader method
of the HttpServletResponse must return false.

The getLocale method of the HttpServletResponse must be based on the getLocale
method of the RenderResponse.clxxxvii 30

PLT.18.3.4 Request and Response objects for Included Servlets/JSPs
from within the ServeResource method
The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
serveResource method. 35

The following methods of the HttpServletRequest must return null: getProtocol,
getRemoteAddr, getRemoteHost, getRealPath, and getRequestURL.clxxxviii

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 101

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.clxxxix

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute, 5
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdValid.cxc

The following methods of the HttpServletRequest must be equivalent to the methods
of the ResourceRequest of similar name: getCharacterEncoding, 10
setCharacterEncoding, getContentType and getReader. cxci The
HttpServletRequest getInputStream must be equivalent to the method
getPortletInputStream of the ResourceRequest.

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query 15
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
getParameterValues and getParameterMap.cxcii

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getCookies, getDateHeader and getIntHeader.cxciii. 20

The following methods of the HttpServletRequest must provide the functionality
defined by the Servlet Specification: getRequestDispatcher, getMethod,
isUserInRole, getSession, isRequestedSessionIdFromCookie,
isRequestedSessionIdFromURL and isRequestedSessionIdFromUrl.cxciv

The getMethod method of the HttpServletRequest must always return ‘GET’.cxcv
 25

The following methods of the HttpServletResponse must return null:

encodeRedirectURL and encodeRedirectUrl.cxcviThe following methods of the
HttpServletResponse must be equivalent to the methods of the RenderResponse of
similar name: getCharacterEncoding, setContentType, setBufferSize,

flushBuffer, resetBuffer, reset, getBufferSize, isCommitted, 30
getOutputStream, getWriter, encodeURL and encodeUrl.cxcvii

The following methods of the HttpServletResponse must perform no operations:,
setContentLength, setLocale, addCookie, sendError, sendRedirect, 35
setDateHeader, addDateHeader, setHeader, addHeader, setIntHeader,
addIntHeader and setStatus.cxcviii The containsHeader method of the
HttpServletResponse must return false.

********* NOTE: the above section needs to be updated once we introduce support for
HTTP headers ************* 40

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 102

The getLocale method of the HttpServletResponse must be based on the getLocale
method of the RenderResponse.cxcix

PLT.1.3.4PLT.18.3.5 Error Handling 5

If the servlet or JSP that is the target of a request dispatcher throws a runtime exception
or a checked exception of type IOException, it must be propagated to the calling
portlet.cc All other exceptions, including a ServletException, must be wrapped with a
PortletException. The root cause of the exception must be set to the original
exception before being propagated.cci 10

PLT.18.4 Servlet filters and Request Dispatching
Since the Java Servlet Specification V2.4 you can specify servlet filters for request
dispatcher include calls. Portlet container must support this capability for included
servlets via the PortletRequestDispatcher. ccii The servlet filters for the servlets
included via the PortletRequestDispatcher must be defined as described in the Java 15
Servlet Specification. See SRV.6.2.5 in the Java Servlet Specification for more
information.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 103

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 104

PLT.19

Portlet Filter

Filters are Java components that allow on the fly transformations of information in both
the request to and the response from a portlet.

PLT.19.1 What is a portlet filter?
A filter is a reusable piece of code that can transform the content of portlet requests and
portlet responses. Filters do not generally create a response or respond to a request as
portlets do, rather they modify or adapt the requests, and modify or adapt the response.

Among the types of functionality available to the developer needing to use filters are the
following:

• The modification of request data by wrapping the request in customized versions
of the request object.

• The modification of response data by providing customized versions of the
response object.

• The interception of an invocation of a portlet after its call.
Portlet filters are modeled after the servlet filters in order to make them easy to
understand for people already familiar with the servlet model and to have one consistent
filter concept in JEE.

PLT.19.2 Main Concepts
The main concepts of this filtering model are described in this section. The application
developer creates a filter by implementing the javax.portlet.Filter interface and
providing a public constructor taking no arguments. The class is packaged in the portlet
application WAR along with the static content and portlets that make up the portlet
application. A filter is declared using the <filter> element in the portlet deployment
descriptor. A filter or collection of filters can be configured for invocation by defining
<filter-mapping> elements in the portlet deployment descriptor. This is done by
mapping filters to a particular portlet by the portlet’s logical name, or mapping to a group
of portlets using the ‘*’ as a wildcard.

PLT.19.2.1 Filter Lifecycle
After deployment of the portlet application, and before a request causes the portlet
container to access a portlet, the portlet container must locate the list of portlet filters that

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 105

must be applied to the portlet as described belowcciii. The portlet container must ensure
that it has instantiated a filter of the appropriate class for each filter in the list, and called
its

init(FilterConfig config) methodcciv. The filter may throw an exception to indicate
that it cannot function properly. If the exception is of type UnavailableException, the
container may examine the isPermanent attribute of the exception and may choose to
retry the filter at some later time.

Only one instance per <filter> declaration in the deployment descriptor is instantiated
per Java Virtual Machine of the portlet container. The container provides the filter
config as declared in the filter’s deployment descriptor, the reference to the
PortletContext for the portlet application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter instance in the
list and calls its doFilter method, passing in the PortletRequest and
PortletResponse, and a reference to the FilterChain object it will use.

Depending on the target method of doFilter call the PortletRequest and
PortletResponse must be instances of the following interfacesccv:

• ActionRequest and ActionResponse for processAction calls
• EventRequest and EventResponse for processEvent calls
• RenderRequest and RenderResponse for render calls
• ResourceRequest and RenderResourceResponse for serveResource calls

The doFilter method of a filter will typically be implemented following this or some
subset of the following pattern:

1. The method examines the request information.
2. The method may wrap the request object passed in to its doFilter method with a

customized implementation of one of the request wrappers
(ActionRequestWrapper, EventRequestWrapper, RenderRequestWrapper,
ResourceRequestWrapper) in order to modify request data.

3. The method may wrap the response object passed in to its doFilter method with
a customized implementation of one of the response wrappers (ActionResponse,
EventResponse, RenderResponse) to modify response data.

4. The filter may invoke the next component in the filter chain. The next component
may be another filter, or if the filter making the invocation is the last filter
configured in the deployment descriptor for this chain, the next component is the
target method of the portlet. The invocation of the next component is effected by
calling the doFilter method on the FilterChain object, and passing in the
request and response with which it was called or passing in wrapped versions it
may have created. The filter chain’s implementation of the doFilter method,
provided by the portlet container, must locate the next component in the filter
chain and invoke its doFilter method, passing in the appropriate request and
response objects. Alternatively, the filter chain can block the request by not
making the call to invoke the next component, leaving the filter responsible for
filling out the response object.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 106

5. After invocation of the next filter in the chain, the filter may examine the response
data.

6. Alternatively, the filter may have thrown an exception to indicate an error in
processing. If the filter throws ana UnavailableException during its doFilter
processing, the portlet container must not attempt continued processing down the
filter chain. It may choose to retry the whole chain at a later time if the exception
is not marked permanent.

7. When the last filter in the chain has been invoked, the next component accessed is
the target method on the portlet at the end of the chain.

8. Before a filter instance can be removed from service by the portlet container, the
portlet container must first call the destroy method on the filter to enable the
filter to release any resources and perform other cleanup operations. ccvi

PLT.19.2.2 Wrapping Requests and Responses
Central to the notion of filtering is the concept of wrapping a request or response in order
that it can override behavior to perform a filtering task. In this model, the developer not
only has the ability to override existing methods on the request and response objects, but
to provide new API suited to a particular filtering task to a filter or the target portlet down
the chain. In order to support this style of filter the container must support the following
requirement. When a filter invokes the doFilter method on the portlet container’s filter
chain implementation, the container must ensure that the request and response object that
it passes to the next component in the filter chain, or to the target portlet if the filter was
the last in the chain, is the same object that was passed into the doFilter method by the
calling filter or one of the above mentioned wrappers. ccvii

PLT.19.2.3 Filter Environment
A set of initialization parameters can be associated with a filter using the <init-params>
element in the portlet deployment descriptor. The names and values of these parameters
are available to the filter at runtime via the getInitParameter and
getInitParameterNames methods on the filter’s FilterConfig object. Additionally, the
FilterConfig affords access to the PortletContext of the portlet application for the
loading of resources, for logging functionality, and for storage of state in the
PortletContext’s attribute list.

PLT.19.2.4 Configuration of Filters in a Portlet Application
A filter is defined in the deployment descriptor using the <filter> element. In this
element, the programmer declares the following:

• filter-name: used to map the filter to a portlet
• filter-class: used by the portlet container to identify the filter type
• init-params: initialization parameters for a filter

Optionally, the programmer can specify a textual description, and a display name for tool
manipulation. The portlet container must instantiate exactly one instance of the Java class
defining the filter per filter declaration in the deployment descriptorccviii. Hence, two

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 107

instances of the same filter class will be instantiated by the portlet container if the
developer makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

<filter>

<filter-name>Log Filter</filter-name>

<filter-class>com.acme.LogFilter</filter-class>

</filter>

Once a filter has been declared in the portlet deployment descriptor, the <filter-
mapping> element is used to define portlets in the portlet application to which the filter is
to be applied. Filters can be associated with a portlet using the <portlet-name> element.
For example, the following code example maps the Log Filter filter to the
SamplePortlet portlet:

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>SamplePortlet</portlet-name>

</filter-mapping>

Filters can be associated with groups of portlets using the ‘*’ character as a wildcard at
the end of a string to indicate that the filter must be applied to any portlet whose name
starts with the characters before the “*” characterccix. Example:

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>*</portlet-name>

</filter-mapping>

Here the Log Filter is applied to all the portlets portlet application, because every portlet
name matches the ‘*’ pattern.

The order the container uses in building the chain of filters to be applied for a particular
request is as follows: the <portlet-name> matching filter mappings in the same order
that these elements appear in the deployment descriptor. The portlet container is free to
add additional filters at any place in this filter chain, but must not remove filters matching
a specific portlet. ccx.

It is expected that high performance portlet containers will cache filter chains so that they
do not need to compute them on a per-request basis.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 108

PLT.19.2.5 Defining the Target Lifecycle Method for a Portlet
Filter
Per default a defined portlet filter matching a portlet must be applied to all lifecycle
method calls: processAction, processEvent, render, serveResourceccxi. In case
the filter should only be applied to a subset of the lifecycle methods the <lifecycle>
element in the <filter-mapping> element can be used. The following constants are
valid values for the <lifecycle> element:

• ACTION requesting that the portlet container processes this filter for the
processAction lifecycle method.

• EVENT requesting that the portlet container processes this filter for the
processEvent lifecycle method.

• RENDER requesting that the portlet container processes this filter for the render
lifecycle method.

• RESOURCE requesting that the portlet container processes this filter for the
serveResource lifecycle method.

The portlet container must apply the matching filter for at least the lifecycle phases
defined in the <lifecycle> elements, but is free to apply the matching filter to additional
lifecycle methodsccxii. The filter implementation should take this possibility into account.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 109

PLT.19PLT.20

User Information

Commonly, portlets provide content personalized to the user making the request. To do 5
this effectively they may require access to user attributes such as the name, email, phone
or address of the user. Portlet containers provide a mechanism to expose available user
information to portlets.

PLT.19.1PLT.20.1 Defining User Attributes
The deployment descriptor of a portlet application must define the user attribute names 10
the portlets use. The following example shows a section of a deployment descriptor
defining a few user attributes:

<portlet-app>
 …
 <user-attribute> 15
 <description>User Given Name</description>
 <name>user.name.given</name>
 </user-attribute>
 <user-attribute>
 <description>User Last Name</description> 20
 <name>user.name.family</name>
 </user-attribute>
 <user-attribute>
 <description>User eMail</description>
 <name>user.home-info.online.email</name> 25
 </user-attribute>
 <user-attribute>
 <description>Company Organization</description>
 <name>user.business-info.postal.organization</name>
 </user-attribute> 30
 …
<portlet-app>

A deployer must map the portlet application’s logical user attributes to the corresponding
user attributes offered by the runtime environment. At runtime, the portlet container uses
this mapping to expose user attributes to the portlets of the portlet application. User 35
attributes of the runtime environment not mapped as part of the deployment process must
not be exposed to portlets.ccxiii

Refer to PLT.D User Information Attribute Names Appendix for a list of recommended
names.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 110

PLT.19.2PLT.20.2 Accessing User Attributes
Portlets can obtain an unmodifiable Map object containing the user attributes, of user
associated with the current request, from the request attributes. The Map object can be
retrieved using the USER_INFO constant defined in the PortletRequest interface. If the
request is done in the context of an un-authenticated user, calls to the getAttribute 5
method of the request using the USER_INFO constant must return null.ccxiv. If the user is
authenticated and there are no user attributes available, the Map must be an empty Map.

The Map object must contain a String name value pair for each available user attribute.
The Map object should only contain user attributes that have been mapped during
deployment..ccxv 10

An example of a portlet retrieving user attributes would be:
...
Map userInfo = (Map) request.getAttribute(PortletRequest.USER_INFO);
String givenName = (userInfo!=null)
 ? (String) userInfo.get(“user.name.given”) : “”; 15
String lastName = (userInfo!=null)
 ? (String) userInfo.get(“user.name.family”) : “”;
...

PLT.19.3PLT.20.3 Important Note on User Information
The Portlet Specification expert group is aware of the fact that user information is outside 20
of the scope of this specification. As there is no standard Java standard to access user
information, and until such Java standard is defined, the Portlet Specification will provide
this mechanism that is considered to be the least intrusive from the Portlet API
perspective. At a latter time, when a Java standard for user information is defined, the
current mechanism will be deprecated in favor of it. 25

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 111

PLT.1PLT.21

Caching

Caching content helps improve the Portal response time for users. It also helps to reduce
the load on servers.

The Portlet Specification defines an expiration based caching mechanism. This caching 5
mechanism is per portlet per user client. Cached content must not be shared across
different user clients displaying the same portlet.

Portlet containers are not required to implement expiration caching. Portlet containers
implementing this caching mechanism may disable it, partially or completely, at any time
to free memory resources. 10

PLT.1.1PLT.21.1 Expiration Cache
Portlets that want their content to be cached using expiration cache must should define
the default duration (in seconds) of the expiration cache in the deployment descriptor.
The portlet container should treat portlets with no default duration in the deployment
descriptor as always expired as default. 15

The following is an example of a portlet definition where the portlet defines that its
content should be cached for 5 minutes (300 seconds).

 ...
 <portlet>
 ... 20
 <expiration-cache>300</expiration-cache>
 ...
 </portlet>
 ...

A portlet that has defined an expiration cache in its portlet definition may 25
programmatically alter the expiration time by setting a property in the RenderResponse
object using the EXPIRATION_CACHE constant defined in the PortletResponse
RenderResponse interface. If the expiration property is set to 0, caching is disabled for
the portletthe returned markup fragment should be treated as always expired. If the
expiration cache property is set to –1, the cache does not expire. If during a render 30
invocation the expiration cache property is not set, the expiration time defined in the
deployment descriptor must should be used. For a portlet that has not defined expiration
cache in the deployment descriptor, if the expiration cache property is set it must be
ignored by the portlet-container.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 112

If the content of a portlet is cached, the cache has not expired and the portlet is not the
target of an action or event the client request, then the request handling methods of the
portlet should not be invoked as part of the client request. Instead, the portlet-container
should use the data from the cache.

If the content of a portlet is cached and a client request is targeted to the portlet is target 5
of an action or event call, the portlet container must should discard the cache and invoke
the corresponding request handling methods of the portlet (processAction or
processEvent).

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 113

PLT.21PLT.22

Portlet Applications

A portlet application is a web application, as defined in Servlet Specification 2.3, SRV.9
Chapter, containing portlets and a portlet deployment descriptor in addition to servlets,
JSPs, HTML pages, classes and other resources normally found in a web application. A 5
bundled portlet application can run in multiple portlet containers implementations.

PLT.21.1PLT.22.1 Relationship with Web Applications
All the portlet application components and resources other than portlets are managed by
the servlet container the portlet container is built upon.

PLT.21.2PLT.22.2 Relationship to PortletContext 10

The portlet container must enforce a one to one correspondence between a portlet
application and a PortletContext.ccxvi If the application is a distributed application, the
portlet container must create an instance per VM.ccxvii A PortletContext object
provides a portlet with its view of the application.

PLT.21.3PLT.22.3 Elements of a Portlet Application 15

A portlet application may consist of portlets plus other elements that may be included in
web applications, such as servlets, JSPTM pages, classes, static documents.

Besides the web application specific meta information, the portlet application must
include descriptive meta information about the portlets it contains.

PLT.21.4PLT.22.4 Directory Structure 20

A portlet application follows the same directory hierarchy structure as web applications.

In addition it must contain a /WEB-INF/portlet.xml deployment descriptor file.

Portlet classes, utility classes and other resources accessed through the portlet application
classloader must reside within the /WEB-INF/classes directory or within a JAR file in
the /WEB-INF/lib/ directory. 25

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 114

PLT.21.5PLT.22.5 Portlet Application Classloader
The portlet container must use the same classloader the servlet container uses for the web
application resources for loading the portlets and related resources within the portlet
application.ccxviii

The portlet container must ensure that requirements defined in the Servlet Specification 5
2.3 SRV.9.7.1 and SRV.9.7.2 Sections are fulfilled.ccxix

PLT.21.6PLT.22.6 Portlet Application Archive File
Portlet applications are packaged as web application archives (WAR) as defined in the
Servlet Specification 2.3 SRV.9.6 Chapter.

PLT.21.7PLT.22.7 Portlet Application Deployment Descriptor 10

In addition to a web application deployment descriptor, a portlet application contains a
portlet application deployment descriptor. The portlet deployment descriptor contains
configuration information for the portlets contained in the application.

Refer to PLT.21 Packaging and Deployment Descriptor Chapter for more details on the
portlet application deployment descriptor. 15

PLT.21.8PLT.22.8 Replacing a Portlet Application
A portlet container should be able to replace a portlet application with a new version
without restarting the container. In addition, the portlet container should provide a robust
method for preserving session data within that portlet application, when the replacement
of the portlet application happens. 20

PLT.21.9PLT.22.9 Error Handling
It is left to the portal/portlet-container implementation how to react when a portlet throws
an exception while processing a request. For example, the portal/portlet-container could
render an error page instead of the portal page, render an error message in the portlet
window of the portlet that threw the exception or remove the portlet from the portal page 25
and log an error message for the administrator.

PLT.21.10PLT.22.10 Portlet Application Environment
The Portlet Specification leverages the provisions made by the Servlet Specification 2.3
SRV.9.11 Section.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 115

PLT.1PLT.23

Security

Portlet applications are created by Application Developers who license the application to
a Deployer for installation into a runtime environment. Application Developers need to
communicate to Deployers how the security is to be set up for the deployed application.

PLT.1.1PLT.23.1 Introduction
A portlet application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of portlet applications will have security requirements.

The portlet container is responsible for informing portlets of the roles users are in when
accessing them. The portlet container does not deal with user authentication. It should
leverage the authentication mechanisms provided by the underlying servlet container
defined in the Servlet Specification 2.3, SRV.12.1 Section.

PLT.1.2PLT.23.2 Roles
The Portlet Specification shares the same definition as roles of the Servlet Specification
2.3, SRV.12.4 Section.

PLT.1.3PLT.23.3 Programmatic Security
Programmatic security consists of the following methods of the Request interface:

• getRemoteUser
• isUserInRole
• getUserPrincipal

The getRemoteUser method returns the user name the client used for authentication. The
isUserInRole method determines if a remote user is in a specified security role. The
getUserPrincipal method determines the principal name of the current user and returns
a java.security.Principal object. These APIs allow portlets to make business logic
decisions based on the information obtained.

The values that the Portlet API getRemoteUser and getUserPrincipal methods return
the same values returned by the equivalent methods of the servlet response object.ccxx
Refer to the Servlet Specification 2.3, SRV.12.3 Section for more details on these
methods.

The isUserInRole method expects a string parameter with the role-name. A
security-role-ref element must be declared by the portlet in deployment descriptor

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 116

with a role-name sub-element containing the role-name to be passed to the method. The
security-role-ref element should contain a role-link sub-element whose value is
the name of the application security role that the user may be mapped into. This mapping
is specified in the web.xml deployment descriptor file. The container uses the mapping
of security-role-ref to security-role when determining the return value of the
call.ccxxi

For example, to map the security role reference "FOO" to the security role with
role-name "manager" the syntax would be:

<portlet-app>
 ...
 <portlet>
 ...
 <security-role-ref>
 <role-name>FOO</role-name>
 <role-link>manager</managerrole-link>
 </security-role-ref>
 </portlet>
 ...
 ...
</portlet-app>

In this case, if the portlet called by a user belonging to the "manager" security role made
the API call isUserInRole("FOO"), then the result would be true.

If the security-role-ref element does not define a role-link element, the container
must default to checking the role-name element argument against the list of security-
role elements defined in the web.xml deployment descriptor of the portlet
application.ccxxii The isUserInRole method references the list to determine whether the
caller is mapped to a security role. The developer must be aware that the use of this
default mechanism may limit the flexibility in changing role-names in the application
without having to recompile the portlet making the call.

PLT.1.4PLT.23.4 Specifying Security Constraints
Security constraints are a declarative way of annotating the intended protection of
portlets. A constraint consists of the following elements:

• portlet collection
• user data constraint

A portlets collection is a set of portlet names that describe a set of resources to be
protected. All requests targeted to portlets listed in the portlets collection are subject to
the constraint.

A user data constraint describes requirements for the transport layer for the portlets
collection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit).
The container must at least use SSL to respond to requests to resources marked integral
or confidential.

For example, to define that a portlet requires a confindential transport the syntax would
be:

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 117

<portlet-app>
 ...
 <portlet>
 <portlet-name>accountSummary</portlet-name>
 ...
 </portlet>
 ...
 <security-constraint>
 <display-name>Secure Portlets</display-name>
 <portlet-collection>
 <portlet-name>accountSummary</portlet-name>
 </portlet-collection>
 <user-data-constraint/>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 ...
</portlet-app>

PLT.1.5PLT.23.5 Propagation of Security Identity in EJBTM
Calls
A security identity, or principal, must always be provided for use in a call to an enterprise
bean.

The default mode in calls to EJBs from portlet applications should be for the security
identity of a user, in the portlet container, to be propagated to the EJBTM container.

Portlet containers, running as part of a J2EE platform, are required to allow users that are
not known to the portlet container to make calls to the the EJBTM container. In these
scenarios, the portlet application may specify a run-as element in the web.xml
deployment descriptor. When it is specified, the container must propagate the security
identity of the caller to the EJB layer in terms of the security role name defined in the
run-as element.ccxxiii The security role name must be one of the security role names
defined for the web.xml deployment descriptor.ccxxiv Alternatively, portlet application
code may be the sole processor of the signon into the EJBTM container.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 119

PLT.1PLT.24

Packaging and Deployment Descriptor

The deployment descriptor conveys the elements and configuration information of a
portlet application between Application Developers, Application Assemblers, and
Deployers. Portlet applications are self-contained applications that are intended to work 5
without further resources. Portlet applications are managed by the portlet container.

In the case of portlet applications, there are two deployment descriptors: one to specify
the web application resources (web.xml) and one to specify the portlet resources
(portlet.xml). The web application deployment descriptor is explained in detail in the
Servlet Specification 2.34, SRV.13Deployment Descriptor Chapter. 10

For backwards compatibility of portlet applications written to the 1.0 version of the Java Portlet
Specification, portlet containers are also required to support the 1.0 version of the

deployment descriptor. The 1.0 version is defined in the appendix.

PLT.1.1PLT.24.1 Portlet and Web Application Deployment
Descriptor 15

For In the Portlet Specification version 1.0 there is a clear distinction between web
resources, like servlets, JSPs, static markup pages, etc., and portlets. This is due to the
fact that, in the Servlet Specification 2.3, the web application deployment descriptor is not
extensible. All web resources that are not portlets must be specified in the web.xml
deployment descriptor. All portlets and portlet related settings must be specified in an 20
additional file called portlet.xml. The format of this additional file is described in
detail below.

The following portlet web application properties need to be set in the web.xml
deployment descriptor:

• portlet application description using the <description> tagelement 25
• portlet application name using the <display-name> tagelement
• portlet application security role mapping using the <security-role> tagelement

PLT.1.2PLT.24.2 Packaging
All resources, portlets and the deployment descriptors are packaged together in one web
application archive (WAR file). This format is described in Servlet Specification 2.3, 30
SRV.9 Web Application Chapter.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 120

In addition to the resources described in the Servlet Specification 2.3, SRV.9 Web
Application Chapter a portlet application WEB-INF directory consists of:

• The /WEB-INF/portlet.xml deployment descriptor.
• Portlet classes in the /WEB-INF/classes directory.
• Portlet Java ARchive files /WEB-INF/lib/*.jar 5

PLT.1.2.1PLT.24.2.1 Example Directory Structure
The following is a listing of all the files in a sample portlet application:

/images/myButton.gif
/META-INF/MANIFEST.MF
/WEB-INF/web.xml 10
/WEB-INF/portlet.xml
/WEB-INF/lib/myHelpers.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/portlets/MyPortlet.class
/WEB-INF/jsp/myHelp.jsp 15

Portlet applications that need additional resources that cannot be packaged in the WAR
file, like EJBs, may be packaged together with these resources in an EAR file.

PLT.1.2.2PLT.24.2.2 Version Information
If portlet application providers want to provide version information about the portlet
application it is recommended to provide a META-INF/MANIFEST.MF entry in the WAR 20
file. The ‘Implementation-*’ attributes should be used to define the version
information. The version information should follow the format defined by the Java
Product Versioning Specification (http://java.sun.com/j2se/1.4/pdf/versioning.pdf)

Example:
Implementation-Title: myPortletApplication 25
Implementation-Version: 1.1.2
Implementation-Vendor: SunMicrosystems. Inc.

PLT.1.3PLT.24.3 Portlet Deployment Descriptor Elements
The following types of configuration and deployment information are required to be
supported in the portlet deployment descriptor for all portlet containers: 30

• Portlet Application Definition
• Portlet Definition

Security information, which may also appear in the deployment descriptor is not required
to be supported unless the portlet container is part of an implementation of the J2EE
Specification. 35

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 121

PLT.1.4PLT.24.4 Rules for processing the Portlet Deployment
Descriptor
In this section is a listing of some general rules that portlet containers and developers
must note concerning the processing of the deployment descriptor for a portlet
application: 5

• Portlet containers should ignore all leading whitespace characters before the first
non-whitespace character, and all trailing whitespace characters after the last non-
whitespace character for PCDATA within text nodes of a deployment descriptor.

• Portlet containers and tools that manipulate portlet applications have a wide range
of options for checking the validity of a WAR. This includes checking the validity 10
of the web application and portlet deployment descriptor documents held within.
It is recommended, but not required, that portlet containers and tools validate both
deployment descriptors against the corresponding DTD and XML Schema
definitions for structural correctness. Additionally, it is recommended that they
provide a level of semantic checking. For example, it should be checked that a 15
role referenced in a security constraint has the same name as one of the security
roles defined in the deployment descriptor. In cases of non-conformant portlet
applications, tools and containers should inform the developer with descriptive
error messages. High end application server vendors are encouraged to supply this
kind of validity checking in the form of a tool separate from the container. 20

In elements whose value is an "enumerated type", the value is case sensitive.

PLT.24.5 Portlet Deployment Descriptor
• <?xml version="1.0" encoding="UTF-8"?>

• <!-- edited with XMLSpy v2005 sp1 U (http://www.xmlspy.com) by Stefan Hepper (IBM Entwicklung GmbH) -
-> 25

• <schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-
app_2_0.xsd" elementFormDefault="qualified" attributeFormDefault="unqualified" version="2.0"
xml:lang="en"> 30

• <annotation>

• <documentation>

• is the XML Schema for the Portlet 2.0 deployment descriptor.

• </documentation>

• </annotation> 35

• <annotation>

• <documentation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 122

• following conventions apply to all J2EE

• descriptor elements unless indicated otherwise.

• In elements that specify a pathname to a file within the

• same JAR file, relative filenames (i.e., those not

• starting with "/") are considered relative to the root of 5

• the JAR file's namespace. Absolute filenames (i.e., those

• starting with "/") also specify names in the root of the

• JAR file's namespace. In general, relative names are

• preferred. The exception is .war files where absolute

• names are preferred for consistency with the Servlet API. 10

• </documentation>

• </annotation>

• <!-- *** -->

• <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/> 15

• <element name="portlet-app" type="portlet:portlet-appType">

• <annotation>

• <documentation>

• portlet-app element is the root of the deployment descriptor

• a portlet application. This element has a required attribute version 20

• specify to which version of the schema the deployment descriptor

• .

• </documentation>

• </annotation>

• <unique name="portlet-name-uniqueness"> 25

• <annotation>

• <documentation>

• portlet element contains the name of a portlet.

• name must be unique within the portlet application.

• </documentation> 30

• </annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 123

• <selector xpath="portlet:portlet"/>

• <field xpath="portlet:portlet-name"/>

• </unique>

• <unique name="custom-portlet-mode-uniqueness">

• <annotation> 5

• <documentation>

• custom-portlet-mode element contains the portlet-mode.

• portlet mode must be unique within the portlet application.

• </documentation>

• </annotation> 10

• <selector xpath="portlet:custom-portlet-mode"/>

• <field xpath="portlet:portlet-mode"/>

• </unique>

• <unique name="custom-window-state-uniqueness">

• <annotation> 15

• <documentation>

• custom-window-state element contains the window-state.

• window state must be unique within the portlet application.

• </documentation>

• </annotation> 20

• <selector xpath="portlet:custom-window-state"/>

• <field xpath="portlet:window-state"/>

• </unique>

• <unique name="user-attribute-name-uniqueness">

• <annotation> 25

• <documentation>

• user-attribute element contains the name the attribute.

• name must be unique within the portlet application.

• </documentation>

• </annotation> 30

• <selector xpath="portlet:user-attribute"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 124

• <field xpath="portlet:name"/>

• </unique>

• </element>

• <complexType name="portlet-appType">

• <sequence> 5

• <element name="portlet" type="portlet:portletType" minOccurs="0"
maxOccurs="unbounded">

• <unique name="init-param-name-uniqueness">

• <annotation>

• <documentation> 10

• init-param element contains the name the attribute.

• name must be unique within the portlet.

• </documentation>

• </annotation>

• <selector xpath="portlet:init-param"/> 15

• <field xpath="portlet:name"/>

• </unique>

• <unique name="supports-mime-type-uniqueness">

• <annotation>

• <documentation> 20

• supports element contains the supported mime-type.

• mime type must be unique within the portlet.

• </documentation>

• </annotation>

• <selector xpath="portlet:supports"/> 25

• <field xpath="mime-type"/>

• </unique>

• <unique name="preference-name-uniqueness">

• <annotation>

• <documentation> 30

• preference element contains the name the preference.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 125

• name must be unique within the portlet.

• </documentation>

• </annotation>

• <selector xpath="portlet:portlet-preferences/portlet:preference"/>

• <field xpath="portlet:name"/> 5

• </unique>

• <unique name="security-role-ref-name-uniqueness">

• <annotation>

• <documentation>

• security-role-ref element contains the role-name. 10

• role name must be unique within the portlet.

• </documentation>

• </annotation>

• <selector xpath="portlet:security-role-ref"/>

• <field xpath="portlet:role-name"/> 15

• </unique>

• </element>

• <element name="custom-portlet-mode" type="portlet:custom-portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>

• <element name="custom-window-state" type="portlet:custom-window-stateType" 20
minOccurs="0" maxOccurs="unbounded"/>

• <element name="user-attribute" type="portlet:user-attributeType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="security-constraint" type="portlet:security-constraintType"
minOccurs="0" maxOccurs="unbounded"/> 25

• <element name="event-definition" type="portlet:event-definitionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="shared-application-session-attribute" type="portlet:shared-session-
attributeType" minOccurs="0" maxOccurs="unbounded"/>

• <element name="shared-render-parameter" type="portlet:shared-render-parameterType" 30
minOccurs="0" maxOccurs="unbounded"/>

• </sequence>

• <attribute name="version" type="string" use="required"/>

• <attribute name="id" type="string" use="optional"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 126

• </complexType>

• <complexType name="custom-portlet-modeType">

• <annotation>

• <documentation>

• custom portlet mode that one or more portlets in 5

• portlet application supports.

• in: portlet-app

• </documentation>

• </annotation>

• <sequence> 10

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="portlet-mode" type="portlet:portlet-modeType"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/> 15

• </complexType>

• <complexType name="custom-window-stateType">

• <annotation>

• <documentation>

• custom window state that one or more portlets in this 20

• application supports.

• in: portlet-app

• </documentation>

• </annotation>

• <sequence> 25

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="window-state" type="portlet:window-stateType"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/> 30

• </complexType>

• <complexType name="expiration-cacheType">

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 127

• <annotation>

• <documentation>

• cache defines expiration-based caching for this

• . The parameter indicates

• time in seconds after which the portlet output expires. 5

• indicates that the output never expires.

• in: portlet

• </documentation>

• </annotation>

• <simpleContent> 10

• <extension base="int"/>

• </simpleContent>

• </complexType>

• <complexType name="init-paramType">

• <annotation> 15

• <documentation>

• init-param element contains a name/value pair as an

• param of the portlet

• in:portlet

• </documentation> 20

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="name" type="portlet:nameType"/> 25

• <element name="value" type="portlet:valueType"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="keywordsType"> 30

• <annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 128

• <documentation>

• specific keywords associated with this portlet.

• kewords are separated by commas.

• in: portlet-info

• </documentation> 5

• </annotation>

• <simpleContent>

• <extension base="string"/>

• </simpleContent>

• </complexType> 10

• <complexType name="mime-typeType">

• <annotation>

• <documentation>

• type name, e.g. "text/html".

• MIME type may also contain the wildcard 15

• '*', like "text/*" or "*/*".

• in: supports

• </documentation>

• </annotation>

• <simpleContent> 20

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="nameType">

• <annotation> 25

• <documentation>

• name element contains the name of a parameter.

• in: init-param, ...

• </documentation>

• </annotation> 30

• <simpleContent>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 129

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="portletType">

• <annotation> 5

• <documentation>

• portlet element contains the declarative data of a portlet.

• in: portlet-app

• </documentation>

• </annotation> 10

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="portlet-name" type="portlet:portlet-nameType"/>

• <element name="display-name" type="portlet:display-nameType" minOccurs="0" 15
maxOccurs="unbounded"/>

• <element name="portlet-class" type="portlet:portlet-classType"/>

• <element name="init-param" type="portlet:init-paramType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="expiration-cache" type="portlet:expiration-cacheType" 20
minOccurs="0"/>

• <element name="supports" type="portlet:supportsType" maxOccurs="unbounded"/>

• <element name="supported-locale" type="portlet:supported-localeType" minOccurs="0"
maxOccurs="unbounded"/>

• <choice> 25

• <sequence>

• <element name="resource-bundle" type="portlet:resource-
bundleType"/>

• <element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/> 30

• </sequence>

• <element name="portlet-info" type="portlet:portlet-infoType"/>

• </choice>

• <element name="portlet-preferences" type="portlet:portlet-preferencesType"
minOccurs="0"/> 35

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 130

• <element name="security-role-ref" type="portlet:security-role-refType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="supported-processing-event" type="portlet:nameType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="supported-publishing-event" type="portlet:nameType" minOccurs="0" 5
maxOccurs="unbounded"/>

• <element name="supported-shared-render-parameter" type="portlet:nameType"
minOccurs="0" maxOccurs="unbounded"/>

• <element name="shared-portlet-session-attribute" type="portlet:shared-session-
attributeType" minOccurs="0" maxOccurs="unbounded"/> 10

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <simpleType name="portlet-classType">

• <annotation> 15

• <documentation>

• The portlet-class element contains the fully

• qualified class name of the portlet.

• in: portlet

• </documentation> 20

• </annotation>

• <restriction base="portlet:fully-qualified-classType"/>

• </simpleType>

• <complexType name="portlet-collectionType">

• <annotation> 25

• <documentation>

• portlet-collectionType is used to identify a subset

• portlets within a portlet application to which a

• constraint applies.

• in: security-constraint 30

• </documentation>

• </annotation>

• <sequence>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 131

• <element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded"/>

• </sequence>

• </complexType>

• <complexType name="event-definitionType"> 5

• <annotation>

• <documentation>

• event-definitionType is used to declare events the portlet can either

• or emit.

• first name element is treated as prefered name and must be the one the 10

• is using in its code for referencing this event.

• in: portlet-app

• </documentation>

• </annotation>

• <sequence> 15

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="name" type="portlet:nameType" maxOccurs="unbounded"/>

• <choice>

• <sequence> 20

• <element name="xml-schema" type="string"/>

• <element name="jaxb-mapping" type="string" minOccurs="0"/>

• </sequence>

• <element name="java-class" type="portlet:fully-qualified-classType"/>

• </choice> 25

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="portlet-infoType">

• <sequence> 30

• <element name="title" type="portlet:titleType"/>

• <element name="short-title" type="portlet:short-titleType" minOccurs="0"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 132

• <element name="keywords" type="portlet:keywordsType" minOccurs="0"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="portlet-modeType"> 5

• <annotation>

• <documentation>

• modes. The specification pre-defines the following values

• valid portlet mode constants:

• "edit", "help", "view". 10

• mode names are not case sensitive.

• in: custom-portlet-mode, supports

• </documentation>

• </annotation>

• <simpleContent> 15

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="portlet-nameType">

• <annotation> 20

• <documentation>

• portlet-name element contains the canonical name of the

• . Each portlet name is unique within the portlet

• .

• in: portlet, portlet-mapping 25

• </documentation>

• </annotation>

• <simpleContent>

• <extension base="string"/>

• </simpleContent> 30

• </complexType>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 133

• <complexType name="portlet-preferencesType">

• <annotation>

• <documentation>

• persistent preference store.

• in: portlet 5

• </documentation>

• </annotation>

• <sequence>

• <element name="preference" type="portlet:preferenceType" minOccurs="0"
maxOccurs="unbounded"/> 10

• <element name="preferences-validator" type="portlet:preferences-validatorType"
minOccurs="0"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType> 15

• <complexType name="preferenceType">

• <annotation>

• <documentation>

• preference values that may be used for customization

• personalization by the portlet. 20

• in: portlet-preferences

• </documentation>

• </annotation>

• <sequence>

• <element name="name" type="portlet:nameType"/> 25

• <element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/> 30

• </complexType>

• <simpleType name="preferences-validatorType">

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 134

• <annotation>

• <documentation>

• class specified under preferences-validator implements

• PreferencesValidator interface to validate the

• settings. 5

• in: portlet-preferences

• </documentation>

• </annotation>

• <restriction base="portlet:fully-qualified-classType"/>

• </simpleType> 10

• <simpleType name="read-onlyType">

• <annotation>

• <documentation>

• only indicates that a setting cannot

• changed in any of the standard portlet modes 15

• ("view","edit" or "help").

• default all preferences are modifiable.

• values are:

• true for read-only

• false for modifiable 20

• in: preferences

• </documentation>

• </annotation>

• <restriction base="portlet:string">

• <enumeration value="true"/> 25

• <enumeration value="false"/>

• </restriction>

• </simpleType>

• <complexType name="resource-bundleType">

• <annotation> 30

• <documentation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 135

• of the resource bundle containing the language specific

• informations in different languages.

• in: portlet-info

• </documentation>

• </annotation> 5

• <simpleContent>

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="role-linkType"> 10

• <annotation>

• <documentation>

• role-link element is a reference to a defined security role.

• role-link element must contain the name of one of the

• roles defined in the security-role elements. 15

• in: security-role-ref

• </documentation>

• </annotation>

• <simpleContent>

• <extension base="string"/> 20

• </simpleContent>

• </complexType>

• <complexType name="security-constraintType">

• <annotation>

• <documentation> 25

• security-constraintType is used to associate

• security constraints with one or more portlets.

• in: portlet-app

• </documentation>

• </annotation> 30

• <sequence>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 136

• <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="portlet-collection" type="portlet:portlet-collectionType"/>

• <element name="user-data-constraint" type="portlet:user-data-constraintType"/>

• </sequence> 5

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="security-role-refType">

• <annotation>

• <documentation> 10

• security-role-ref element contains the declaration of a

• role reference in the code of the web application. The

• consists of an optional description, the security

• name used in the code, and an optional link to a security

• . If the security role is not specified, the Deployer must 15

• an appropriate security role.

• value of the role name element must be the String used

• the parameter to the

• .isCallerInRole(String roleName) method

• the HttpServletRequest.isUserInRole(String role) method. 20

• in: portlet

• </documentation>

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0" 25
maxOccurs="unbounded"/>

• <element name="role-name" type="portlet:role-nameType"/>

• <element name="role-link" type="portlet:role-linkType" minOccurs="0"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/> 30

• </complexType>

• <complexType name="shared-render-parameterType">

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 137

• <annotation>

• <documentation>

• shared-render-parameters defines a render parameter that is allowed to be shared

• other portlets.

• in: portlet-app 5

• </documentation>

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/> 10

• <element name="name" type="portlet:nameType" maxOccurs="unbounded"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="shared-session-attributeType"> 15

• <annotation>

• <documentation>

• shared-session-attribute defines an attribute that is allowed to be shared

• the current web application. The attribute to be shared can be either

• application scoped session attribute or a portlet scoped session attribute. 20

• application scoped session attribute is defined on the portlet-app level

• the shared-application-session-attribute. The portlet scoped session

• is defined on the portlet level via the shared-portlet-session-attribute.

• in: portlet-app, portlet

• </documentation> 25

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

• <element name="name" type="portlet:nameType" maxOccurs="unbounded"/> 30

• <choice>

• <sequence>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 138

• <element name="xml-schema" type="string"/>

• <element name="jaxb-mapping" type="string" minOccurs="0"/>

• </sequence>

• <element name="java-class" type="portlet:fully-qualified-classType"/>

• </choice> 5

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="short-titleType">

• <annotation> 10

• <documentation>

• specific short version of the static title.

• in: portlet-info

• </documentation>

• </annotation> 15

• <simpleContent>

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="supportsType"> 20

• <annotation>

• <documentation>

• indicates the portlet modes a

• supports for a specific content type. All portlets must

• the view mode. 25

• in: portlet

• </documentation>

• </annotation>

• <sequence>

• <element name="mime-type" type="portlet:mime-typeType"/> 30

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 139

• <element name="portlet-mode" type="portlet:portlet-modeType" minOccurs="0"
maxOccurs="unbounded"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType> 5

• <complexType name="supported-localeType">

• <annotation>

• <documentation>

• the locales the portlet supports.

• in: portlet 10

• </documentation>

• </annotation>

• <simpleContent>

• <extension base="string"/>

• </simpleContent> 15

• </complexType>

• <complexType name="titleType">

• <annotation>

• <documentation>

• specific static title for this portlet. 20

• in: portlet-info

• </documentation>

• </annotation>

• <simpleContent>

• <extension base="string"/> 25

• </simpleContent>

• </complexType>

• <simpleType name="transport-guaranteeType">

• <annotation>

• <documentation> 30

• transport-guaranteeType specifies that

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 140

• communication between client and portlet should

• NONE, INTEGRAL, or CONFIDENTIAL.

• means that the portlet does not

• any transport guarantees. A value of

• means that the portlet requires that the 5

• sent between the client and portlet be sent in

• a way that it can't be changed in transit.

• means that the portlet requires

• the data be transmitted in a fashion that

• other entities from observing the contents 10

• the transmission.

• most cases, the presence of the INTEGRAL or

• flag will indicate that the use

• SSL is required.

• in: user-data-constraint 15

• </documentation>

• </annotation>

• <restriction base="portlet:string">

• <enumeration value="NONE"/>

• <enumeration value="INTEGRAL"/> 20

• <enumeration value="CONFIDENTIAL"/>

• </restriction>

• </simpleType>

• <complexType name="user-attributeType">

• <annotation> 25

• <documentation>

• attribute defines a user specific attribute that the

• application needs. The portlet within this application

• access this attribute via the request parameter USER_INFO

• . 30

• in: portlet-app

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 141

• </documentation>

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/> 5

• <element name="name" type="portlet:nameType"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType>

• <complexType name="user-data-constraintType"> 10

• <annotation>

• <documentation>

• user-data-constraintType is used to indicate how

• communicated between the client and portlet should be

• . 15

• in: security-constraint

• </documentation>

• </annotation>

• <sequence>

• <element name="description" type="portlet:descriptionType" minOccurs="0" 20
maxOccurs="unbounded"/>

• <element name="transport-guarantee" type="portlet:transport-guaranteeType"/>

• </sequence>

• <attribute name="id" type="string" use="optional"/>

• </complexType> 25

• <complexType name="valueType">

• <annotation>

• <documentation>

• value element contains the value of a parameter.

• in: init-param 30

• </documentation>

• </annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 142

• <simpleContent>

• <extension base="string"/>

• </simpleContent>

• </complexType>

• <complexType name="window-stateType"> 5

• <annotation>

• <documentation>

• window state. Window state names are not case sensitive.

• in: custom-window-state

• </documentation> 10

• </annotation>

• <simpleContent>

• <extension base="string"/>

• </simpleContent>

• </complexType> 15

• <!--- everything below is copied from j2ee_1_4.xsd -->

• <complexType name="descriptionType">

• <annotation>

• <documentation>

• description element is used to provide text describing the 20

• element. The description element should include any

• that the portlet application war file producer wants

• provide to the consumer of the portlet application war file

• (i.e., to the Deployer). Typically, the tools used by the

• application war file consumer will display the 25

• when processing the parent element that contains the

• . It has an optional attribute xml:lang to indicate

• language is used in the description according to

• 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default

• of this attribute is English(“en”). 30

• in: init-param, portlet, portlet-app, security-role

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 143

• </documentation>

• </annotation>

• <simpleContent>

• <extension base="string">

• <attribute ref="xml:lang"/> 5

• </extension>

• </simpleContent>

• </complexType>

• <complexType name="display-nameType">

• <annotation> 10

• <documentation>

• display-name type contains a short name that is intended

• be displayed by tools. It is used by display-name

• . The display name need not be unique.

• : 15

• ...

• <display-name xml:lang="en">Employee Self Service</display-name>

•

• has an optional attribute xml:lang to indicate

• language is used in the description according to 20

• 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default

• of this attribute is English(“en”).

• </documentation>

• </annotation>

• <simpleContent> 25

• <extension base="portlet:string">

• <attribute ref="xml:lang"/>

• </extension>

• </simpleContent>

• </complexType> 30

• <simpleType name="fully-qualified-classType">

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 144

• <annotation>

• <documentation>

• elements that use this type designate the name of a

• class or interface.

• </documentation> 5

• </annotation>

• <restriction base="portlet:string"/>

• </simpleType>

• <simpleType name="role-nameType">

• <annotation> 10

• <documentation>

• role-nameType designates the name of a security role.

•

• name must conform to the lexical rules for an NMTOKEN.

• </documentation> 15

• </annotation>

• <restriction base="NMTOKEN"/>

• </simpleType>

• <simpleType name="string">

• <annotation> 20

• <documentation>

• is a special string datatype that is defined by J2EE

• a base type for defining collapsed strings. When

• require trailing/leading space elimination as

• as collapsing the existing whitespace, this base 25

• may be used.

• </documentation>

• </annotation>

• <restriction base="string">

• <whiteSpace value="collapse"/> 30

• </restriction>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 145

• </simpleType>

• </schema>

PLT.23.5Deployment Descriptor
<?xml version="1.0" encoding="UTF-8"?> 5
<schema targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0" xml:lang="en"> 10
 <annotation>
 <documentation>
 This is the XML Schema for the Portlet 1.0 deployment descriptor.
 </documentation>
 </annotation> 15
 <annotation>
 <documentation>
 The following conventions apply to all J2EE
 deployment descriptor elements unless indicated otherwise.
 - In elements that specify a pathname to a file within the 20
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are 25
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.
 </documentation>
 </annotation>
 <!-- *** --> 30
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <element name="portlet-app" type="portlet:portlet-appType">
 <annotation>
 <documentation> 35
 The portlet-app element is the root of the deployment descriptor
 for a portlet application. This element has a required attribute version
 to specify to which version of the schema the deployment descriptor
 conforms.
 </documentation> 40
 </annotation>
 <unique name="portlet-name-uniqueness">
 <annotation>
 <documentation>
 The portlet element contains the name of a portlet. 45
 This name must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet"/>
 <field xpath="portlet:portlet-name"/> 50
 </unique>
 <unique name="custom-portlet-mode-uniqueness">
 <annotation>
 <documentation>
 The custom-portlet-mode element contains the portlet-mode. 55
 This portlet mode must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:custom-portlet-mode"/>
 <field xpath="portlet:portlet-mode"/> 60
 </unique>
 <unique name="custom-window-state-uniqueness">
 <annotation>
 <documentation>
 The custom-window-state element contains the window-state. 65
 This window state must be unique within the portlet application.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 146

 </documentation>
 </annotation>
 <selector xpath="portlet:custom-window-state"/>
 <field xpath="portlet:window-state"/>
 </unique> 5
 <unique name="user-attribute-name-uniqueness">
 <annotation>
 <documentation>
 The user-attribute element contains the name the attribute.
 This name must be unique within the portlet application. 10
 </documentation>
 </annotation>
 <selector xpath="portlet:user-attribute"/>
 <field xpath="portlet:name"/>
 </unique> 15
 </element>
 <complexType name="portlet-appType">
 <sequence>
 <element name="portlet" type="portlet:portletType" minOccurs="0"
maxOccurs="unbounded"> 20
 <unique name="init-param-name-uniqueness">
 <annotation>
 <documentation>
 The init-param element contains the name the attribute.
 This name must be unique within the portlet. 25
 </documentation>
 </annotation>
 <selector xpath="portlet:init-param"/>
 <field xpath="portlet:name"/>
 </unique> 30
 <unique name="supports-mime-type-uniqueness">
 <annotation>
 <documentation>
 The supports element contains the supported mime-type.
 This mime type must be unique within the portlet. 35
 </documentation>
 </annotation>
 <selector xpath="portlet:supports"/>
 <field xpath="mime-type"/>
 </unique> 40
 <unique name="preference-name-uniqueness">
 <annotation>
 <documentation>
 The preference element contains the name the preference.
 This name must be unique within the portlet. 45
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet-preferences/portlet:preference"/>
 <field xpath="portlet:name"/>
 </unique> 50
 <unique name="security-role-ref-name-uniqueness">
 <annotation>
 <documentation>
 The security-role-ref element contains the role-name.
 This role name must be unique within the portlet. 55
 </documentation>
 </annotation>
 <selector xpath="portlet:security-role-ref"/>
 <field xpath="portlet:role-name"/>
 </unique> 60
 </element>
 <element name="custom-portlet-mode" type="portlet:custom-portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="custom-window-state" type="portlet:custom-window-stateType"
minOccurs="0" maxOccurs="unbounded"/> 65
 <element name="user-attribute" type="portlet:user-attributeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="security-constraint" type="portlet:security-constraintType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence> 70
 <attribute name="version" type="string" use="required"/>
 <attribute name="id" type="string" use="optional"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 147

 </complexType>
 <complexType name="custom-portlet-modeType">
 <annotation>
 <documentation>
 A custom portlet mode that one or more portlets in 5
 this portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence> 10
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-mode" type="portlet:portlet-modeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/> 15
 </complexType>
 <complexType name="custom-window-stateType">
 <annotation>
 <documentation>
 A custom window state that one or more portlets in this 20
 portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence> 25
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="window-state" type="portlet:window-stateType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/> 30
 </complexType>
 <complexType name="expiration-cacheType">
 <annotation>
 <documentation>
 Expriation-cache defines expiration-based caching for this 35
 portlet. The parameter indicates
 the time in seconds after which the portlet output expires.
 -1 indicates that the output never expires.
 Used in: portlet
 </documentation> 40
 </annotation>
 <simpleContent>
 <extension base="int"/>
 </simpleContent>
 </complexType> 45
 <complexType name="init-paramType">
 <annotation>
 <documentation>
 The init-param element contains a name/value pair as an
 initialization param of the portlet 50
 Used in:portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0" 55
maxOccurs="unbounded"/>
 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/> 60
 </complexType>
 <complexType name="keywordsType">
 <annotation>
 <documentation>
 Locale specific keywords associated with this portlet. 65
 The kewords are separated by commas.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent> 70
 <extension base="string"/>
 </simpleContent>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 148

 </complexType>
 <complexType name="mime-typeType">
 <annotation>
 <documentation>
 MIME type name, e.g. "text/html". 5
 The MIME type may also contain the wildcard
 character '*', like "text/*" or "*/*".
 Used in: supports
 </documentation>
 </annotation> 10
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="nameType"> 15
 <annotation>
 <documentation>
 The name element contains the name of a parameter.
 Used in: init-param, ...
 </documentation> 20
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType> 25
 <complexType name="portletType">
 <annotation>
 <documentation>
 The portlet element contains the declarative data of a portlet.
 Used in: portlet-app 30
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/> 35
 <element name="portlet-name" type="portlet:portlet-nameType"/>
 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-class" type="portlet:portlet-classType"/>
 <element name="init-param" type="portlet:init-paramType" minOccurs="0" 40
maxOccurs="unbounded"/>
 <element name="expiration-cache" type="portlet:expiration-cacheType"
minOccurs="0"/>
 <element name="supports" type="portlet:supportsType"
maxOccurs="unbounded"/> 45
 <element name="supported-locale" type="portlet:supported-localeType"
minOccurs="0" maxOccurs="unbounded"/>
 <choice>
 <sequence>
 <element name="resource-bundle" type="portlet:resource-bundleType"/> 50
 <element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/>
 </sequence>
 <element name="portlet-info" type="portlet:portlet-infoType"/>
 </choice> 55
 <element name="portlet-preferences" type="portlet:portlet-preferencesType"
minOccurs="0"/>
 <element name="security-role-ref" type="portlet:security-role-refType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence> 60
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="portlet-classType">
 <annotation>
 <documentation> 65
 The portlet-class element contains the fully
 qualified class name of the portlet.
 Used in: portlet
 </documentation>
 </annotation> 70
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 149

 <complexType name="portlet-collectionType">
 <annotation>
 <documentation>
 The portlet-collectionType is used to identify a subset
 of portlets within a portlet application to which a 5
 security constraint applies.
 Used in: security-constraint
 </documentation>
 </annotation>
 <sequence> 10
 <element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="portlet-infoType"> 15
 <sequence>
 <element name="title" type="portlet:titleType"/>
 <element name="short-title" type="portlet:short-titleType" minOccurs="0"/>
 <element name="keywords" type="portlet:keywordsType" minOccurs="0"/>
 </sequence> 20
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="portlet-modeType">
 <annotation>
 <documentation> 25
 Portlet modes. The specification pre-defines the following values
 as valid portlet mode constants:
 "edit", "help", "view".
 Portlet mode names are not case sensitive.
 Used in: custom-portlet-mode, supports 30
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent> 35
 </complexType>
 <complexType name="portlet-nameType">
 <annotation>
 <documentation>
 The portlet-name element contains the canonical name of the 40
 portlet. Each portlet name is unique within the portlet
 application.
 Used in: portlet, portlet-mapping
 </documentation>
 </annotation> 45
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portlet-preferencesType"> 50
 <annotation>
 <documentation>
 Portlet persistent preference store.
 Used in: portlet
 </documentation> 55
 </annotation>
 <sequence>
 <element name="preference" type="portlet:preferenceType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="preferences-validator" type="portlet:preferences-60
validatorType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="preferenceType"> 65
 <annotation>
 <documentation>
 Persistent preference values that may be used for customization
 and personalization by the portlet.
 Used in: portlet-preferences 70
 </documentation>
 </annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 150

 <sequence>
 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="read-only" type="portlet:read-onlyType" minOccurs="0"/> 5
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="preferences-validatorType">
 <annotation> 10
 <documentation>
 The class specified under preferences-validator implements
 the PreferencesValidator interface to validate the
 preferences settings.
 Used in: portlet-preferences 15
 </documentation>
 </annotation>
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>
 <simpleType name="read-onlyType"> 20
 <annotation>
 <documentation>
 read-only indicates that a setting cannot
 be changed in any of the standard portlet modes
 ("view","edit" or "help"). 25
 Per default all preferences are modifiable.
 Valid values are:
 - true for read-only
 - false for modifiable
 Used in: preferences 30
 </documentation>
 </annotation>
 <restriction base="portlet:string">
 <enumeration value="true"/>
 <enumeration value="false"/> 35
 </restriction>
 </simpleType>
 <complexType name="resource-bundleType">
 <annotation>
 <documentation> 40
 Filename of the resource bundle containing the language specific
 portlet informations in different languages.
 Used in: portlet-info
 </documentation>
 </annotation> 45
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="role-linkType"> 50
 <annotation>
 <documentation>
 The role-link element is a reference to a defined security role.
 The role-link element must contain the name of one of the
 security roles defined in the security-role elements. 55
 Used in: security-role-ref
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/> 60
 </simpleContent>
 </complexType>
 <complexType name="security-constraintType">
 <annotation>
 <documentation> 65
 The security-constraintType is used to associate
 intended security constraints with one or more portlets.
 Used in: portlet-app
 </documentation>
 </annotation> 70
 <sequence>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 151

 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-collection" type="portlet:portlet-collectionType"/>
 <element name="user-data-constraint" type="portlet:user-data-
constraintType"/> 5
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="security-role-refType">
 <annotation> 10
 <documentation>
 The security-role-ref element contains the declaration of a
 security role reference in the code of the web application. The
 declaration consists of an optional description, the security
 role name used in the code, and an optional link to a security 15
 role. If the security role is not specified, the Deployer must
 choose an appropriate security role.
 The value of the role name element must be the String used
 as the parameter to the
 EJBContext.isCallerInRole(String roleName) method 20
 or the HttpServletRequest.isUserInRole(String role) method.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence> 25
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="role-name" type="portlet:role-nameType"/>
 <element name="role-link" type="portlet:role-linkType" minOccurs="0"/>
 </sequence> 30
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="short-titleType">
 <annotation>
 <documentation> 35
 Locale specific short version of the static title.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent> 40
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="supportsType">
 <annotation> 45
 <documentation>
 Supports indicates the portlet modes a
 portlet supports for a specific content type. All portlets must
 support the view mode.
 Used in: portlet 50
 </documentation>
 </annotation>
 <sequence>
 <element name="mime-type" type="portlet:mime-typeType"/>
 <element name="portlet-mode" type="portlet:portlet-modeType" minOccurs="0" 55
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="supported-localeType"> 60
 <annotation>
 <documentation>
 Indicated the locales the portlet supports.
 Used in: portlet
 </documentation> 65
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType> 70
 <complexType name="titleType">
 <annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 152

 <documentation>
 Locale specific static title for this portlet.
 Used in: portlet-info
 </documentation>
 </annotation> 5
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <simpleType name="transport-guaranteeType"> 10
 <annotation>
 <documentation>
 The transport-guaranteeType specifies that
 the communication between client and portlet should
 be NONE, INTEGRAL, or CONFIDENTIAL. 15
 NONE means that the portlet does not
 require any transport guarantees. A value of
 INTEGRAL means that the portlet requires that the
 data sent between the client and portlet be sent in
 such a way that it can't be changed in transit. 20
 CONFIDENTIAL means that the portlet requires
 that the data be transmitted in a fashion that
 prevents other entities from observing the contents
 of the transmission.
 In most cases, the presence of the INTEGRAL or 25
 CONFIDENTIAL flag will indicate that the use
 of SSL is required.
 Used in: user-data-constraint
 </documentation>
 </annotation> 30
 <restriction base="portlet:string">
 <enumeration value="NONE"/>
 <enumeration value="INTEGRAL"/>
 <enumeration value="CONFIDENTIAL"/>
 </restriction> 35
 </simpleType>
 <complexType name="user-attributeType">
 <annotation>
 <documentation>
 User attribute defines a user specific attribute that the 40
 portlet application needs. The portlet within this application
 can access this attribute via the request parameter USER_INFO
 map.
 Used in: portlet-app
 </documentation> 45
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="name" type="portlet:nameType"/> 50
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="user-data-constraintType">
 <annotation> 55
 <documentation>
 The user-data-constraintType is used to indicate how
 data communicated between the client and portlet should be
 protected.
 Used in: security-constraint 60
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/> 65
 <element name="transport-guarantee" type="portlet:transport-
guaranteeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType> 70
 <complexType name="valueType">
 <annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 153

 <documentation>
 The value element contains the value of a parameter.
 Used in: init-param
 </documentation>
 </annotation> 5
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="window-stateType"> 10
 <annotation>
 <documentation>
 Portlet window state. Window state names are not case sensitive.
 Used in: custom-window-state
 </documentation> 15
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType> 20
 <!--- everything below is copied from j2ee_1_4.xsd -->
 <complexType name="descriptionType">
 <annotation>
 <documentation>
 The description element is used to provide text describing the 25
 parent element. The description element should include any
 information that the portlet application war file producer wants
 to provide to the consumer of the portlet application war file
 (i.e., to the Deployer). Typically, the tools used by the
 portlet application war file consumer will display the 30
 description when processing the parent element that contains the
 description. It has an optional attribute xml:lang to indicate
 which language is used in the description according to
 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”). 35
 Used in: init-param, portlet, portlet-app, security-role
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"> 40
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="display-nameType"> 45
 <annotation>
 <documentation>
 The display-name type contains a short name that is intended
 to be displayed by tools. It is used by display-name
 elements. The display name need not be unique. 50
 Example:
 ...
 <display-name xml:lang="en">Employee Self Service</display-name>

 It has an optional attribute xml:lang to indicate 55
 which language is used in the description according to
 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”).
 </documentation>
 </annotation> 60
 <simpleContent>
 <extension base="portlet:string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent> 65
 </complexType>
 <simpleType name="fully-qualified-classType">
 <annotation>
 <documentation>
 The elements that use this type designate the name of a 70
 Java class or interface.
 </documentation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 154

 </annotation>
 <restriction base="portlet:string"/>
 </simpleType>
 <simpleType name="role-nameType">
 <annotation> 5
 <documentation>
 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for an NMTOKEN.
 </documentation> 10
 </annotation>
 <restriction base="NMTOKEN"/>
 </simpleType>
 <simpleType name="string">
 <annotation> 15
 <documentation>
 This is a special string datatype that is defined by J2EE
 as a base type for defining collapsed strings. When
 schemas require trailing/leading space elimination as
 well as collapsing the existing whitespace, this base 20
 type may be used.
 </documentation>
 </annotation>
 <restriction base="string">
 <whiteSpace value="collapse"/> 25
 </restriction>
 </simpleType>
</schema>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 155

PLT.24.6 Pictures of the structure of a Deployment Descriptor

Figure 1: Part one of the portlet element

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 156

Figure 2: Part 2 of the portlet element

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 157

Figure 3: Part 1 of the portlet-app element

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 158

Figure 4: Part 2 of the portlet-app element

INSERT PICTURE HERE

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 159

PLT.23.6Pictures of the structure of a Deployment Descriptor

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 160

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 161

PLT.1.7PLT.24.7 Uniqueness of Deployment Descriptor Values
The following deployment descriptor values must be unique in the scope of the portlet
application definition:

• portlet <portlet-name>
• custom-portlet-mode <portlet-mode> 5
• custom-window-state <window-state>
• user-attribute <name>
• event-definition <name>
• shared-application-session-attribute <name>
• shared-render-parameter <name> 10

The following deployment descriptor values must be unique in the scope of the portlet
definition:

• init-param <name>
• supports <mime-type>
• preference <name> 15
• security-role-ref <role-name>
• shared-portlet-session-attribute <name>

PLT.1.8PLT.24.8 Localization
The portlet deployment descriptor allows for localization on two levels:

• Localize values needed at deployment time 20
• Advertise supported locales at run-time

Both are described in the following sections.

PLT.1.8.1PLT.24.8.1 Localization of Deployment Descriptor
Values
Localization of deployment descriptor values allows the deployment tool to provide 25
localized deployment messages to the deployer. The following deployment descriptor
elements may exist multiple times with different locale information in the xml:lang
attribute:

• all <description> elements
• portlet <display-name> 30

The default value for the xml:lang attribute is English (“en”). Portlet-container
implementations using localized values of these elements should treat the English (“en”)
values as the default fallback value for all other locales.

As an alternative to embedding all localized values in the deployment descriptor the
portlet can provide a resource bundle via the <resource-bundle> element on the portlet 35
application level (see Resource Bundle section below).

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 162

PLT.1.8.2PLT.24.8.2 Locales Supported by the Portlet
The portlet should always declare the locales it is going to support at run-time using the
<supported-locale> element in the deployment descriptor.

The supported locales declared in the deployment descriptor should follow the
lang_COUNTRY_variant format as defined by RFC 1766 5
(http://www.faqs.org/rfcs/rfc1766.html).

PLT.1.9PLT.24.9 Deployment Descriptor Example
<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
version="1.0" 10
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">
 <portlet>
 <description xml:lang="en">Portlet displaying the time in different time 15
zones</description>
 <description xml:lang="de">Dieses Portlet zeigt die Zeit in verschiedenen
Zeitzonen an. </description>
 <portlet-name>TimeZoneClock</portlet-name>
 <display-name xml:lang="en">Time Zone Clock Portlet</display-name> 20
 <display-name xml:lang="de">ZeitzonenPortlet</display-name>
 <portlet-class>com.myco.samplets.util.zoneclock.ZoneClock</portlet-class>
 <expiration-cache>60</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type> 25
 <portlet-mode>config</portlet-mode>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 </supports>
 <supports> 30
 <mime-type>text/wml</mime-type>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 </supports>
 <supported-locale>en</supported-locale> 35
 <portlet-info>
 <title>Time Zone Clock</title>
 <short-title>TimeZone</short-title>
 <keywords>Time, Zone, World, Clock</keywords>
 </portlet-info> 40
 <portlet-preferences>
 <preference>
 <name>time-server</name>
 <value>http://timeserver.myco.com</value>
 <read-only>true</read-only> 45
 </preference>
 <preference>
 <name>port</name>
 <value>404</value>
 <read-only>true</read-only> 50
 </preference>
 <preference>
 <name>time-format</name>
 <value>HH</value>
 <value>mm</value> 55
 <value>ss</value>
 </preference>
 </portlet-preferences>
 <security-role-ref>
 <role-name>trustedUser</role-name> 60
 <role-link>auth-user</role-link>
 </security-role-ref>
 </portlet>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 163

 <custom-portlet-mode>
 <description xml:lang="en">Pre-defined custom portlet mode
CONFIG</description>
 <portlet-mode>CONFIG</portlet-mode>
 </custom-portlet-mode> 5
 <custom-window-state>
 <description xml:lang="en">Occupies 50% of the portal page</description>
 <window-state>half-page</window-state>
 </custom-window-state>
 <user-attribute> 10
 <description xml:lang="en">Pre-defined attribute for the telephone number of
the user at work.</description>
 <name>workInfo/telephone</name>
 </user-attribute>
 <security-constraint> 15
 <portlet-collection>
 <portlet-name>TimeZoneClock</portlet-name>
 </portlet-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee> 20
 </user-data-constraint>
 </security-constraint>
</portlet-app>

PLT.1.10PLT.24.10 Resource Bundles
As an alternative to embed all localized values in the deployment descriptor the portlet 25
can provide a separate resource bundle containing the localized values. For language
specific portlet application level] information the fully qualified class name of the
resource bundle can be set in the deployment descriptor using the resource-bundle
element on the portlet application level. The fully qualified class name of the resource
bundle can be set in the portlet definition in the deployment descriptor using the 30
resource-bundle tag on the portlet application level. The Java Portlet Specification
defines the following constants for the application level resource bundle:

javax.portlet.app.custom-portlet-
mode.<portlet-mode>.description

Description of custom portlet mode <portlet-mode>.

javax.portlet.app.custom-window-
state.<window-state>.description

Description of the custom window state <window-
state>.

javax.portlet.app.user-
attribute.<name>.description

Description of the user attribute <name>.

javax.portlet.app.event-
definition.<name>.description

Description of the event <name>.

javax.portlet.app.event-
definition.<name>.display-name

Name under which this event is displayed to users or
to tools. The display name need not be unique.

javax.portlet.app.shared-
application-session-
attribute.<name>.description

Description of the shared application scope session
attribute <name>.

javax.portlet.app.shared-
portletapplication-session-

Name under which this shared application session
attribute is displayed to users or to tools. The display

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 164

attribute.<name>.display-name name need not be unique.

javax.portlet.app.shared-render-
parameter.<name>.description

Description of the shared render parameter <name>.

javax.portlet.app.shared-render-
parameter.<name>.display-name

Name under which this shared render parameter is
displayed to users or to tools. The display name need
not be unique.

To provide language specific portlet information, like title and keywords, resource
bundles can be used. The fully qualified class name of the resource bundle can be set in
the portlet definition in the deployment descriptor using the resource-bundle 5
tagelement.

The Java Portlet Specification 1.0 defines the following constants for this the portlet level
resource bundle:

javax.portlet.title The title that should be displayed in the titlebar of
this portlet. Only one title per locale is allowed. Note
that this title may be overrided by the portal or
programmatically by the portlet.

javax.portlet.short-title A short version of the title that may be used for
devices with limited display capabilities. Only one
short title per locale is allowed.

javax.portlet.keywords Keywords describing the functionality of the portlet.
Portals that allow users to search for portlets based
on keywords may use these keywords. Multiple
keywords per locale are allowed, but must be
separated by commas ‘,’.

javax.portlet.description Description of the portlet.

javax.portlet.display-name Name under which this portlet is displayed at
deployment time or to tools. The display name need
not be unique.

javax.portlet.shared-portlet-
session-
attribute.<name>.description

Description of the shared portlet scope session
attribute <name>.

javax.portlet. shared-portlet-
session-attribute.<name>.display-
name

Name under which this shared portlet session
attribute is displayed to users or to tools. The display
name need not be unique.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 165

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 166

PLT.1.11PLT.24.11 Resource Bundle Example
This section shows the resource bundles for the world population clock portlet from
deployment descriptor example. The first resource bundle is for English and the second
for German locales.

English Resource Bundle 5

filename: clock_en.properties
Portlet Info resource bundle example
javax.portlet.title=World Population Clock
javax.portlet.short-title=WorldPopClock 10
javax.portlet.keywords=World,Population,Clock

German Resource Bundle

filename: clock_de.properties 15
Portlet Info resource bundle example
javax.portlet.title=Weltbevölkerungsuhr
javax.portlet.short-title=Weltuhr
javax.portlet.keywords=Welt,Bevölkerung,Uhr

 20

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 167

PLT.24PLT.25

Portlet Tag Library

The portlet tag library enables JSPs that are included from portlets to have direct access
to portlet specific elements such as the RenderRequest or ResourceRequest and
RenderResponse. It also provides JSPs with access to portlet functionality such as 5
creation of portlet URLs.

The portlet-container must provide an implementation of the portlet tag library.ccxxv
Portlet developers may indicate an alternate implementation using the mechanism defined
in the JSP.7.3.9 Well-Know URIs Section of the JSP Specification 1.2.

JSP pages using the tag library must declare this in a taglib like this (using the suggested 10
prefix value):

<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %>

PLT.24.1PLT.25.1 defineObjects Tag
The defineObjects tag must define the following variables in the JSP page:ccxxvi

• RenderRequest renderRequest when included from within the render method or 15
ResourceRequest resourceRequest when included from within the
serveResource method

• RenderResponse renderResponse
• PortletConfig portletConfig

These variables must reference the same Portlet API objects stored in the request object 20
of the JSP as defined in the PLT.1618.3.1 Included Request Attributes Section.

A JSP using the defineObjects tag may use these variables from scriptlets throughout
the page.

The defineObjects tag must not define any attribute and it must not contain any body
content.ccxxvii 25

An example of a JSP using the defineObjects tag could be:
 <portlet:defineObjects/>

 <%=renderResponse.setTitle("my portlet title")%>

After using the defineObjects tag, the JSP invokes the setTitle() method of the 30
renderResponse to set the title of the portlet.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 168

PLT.24.2PLT.25.2 actionURL Tag
The portlet actionURL tag creates a URL that must point to the current portlet and must
trigger an action request with the supplied parameters.ccxxviii

Parameters may be added to the URL by including the param tag between the actionURL
start and end tags. 5

The following non-required attributes are defined for this tag:
• windowState (Type: String, non-required) – indicates the window state that the

portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.ccxxix Reasons for a 10
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current
request.ccxxx The window state attribute is not case sensitive. 15

• portletMode (Type: String, non-required) – indicates the portlet mode that the
portlet must have when this link is executed, if no error condition ocurred.ccxxxi
The following portlet modes are predefined: edit, help, and view. If the
specified portlet mode is illegal for the current request, a JspException must be
thrown. ccxxxiiReasons for a portlet mode being illegal may include that the portal 20
does not support this mode, the portlet has not declared in its deployment
descriptor that it supports this mode for the current markup, or the current user is
not allowed to switch to this mode. If a portlet mode is not set for a URL, it must
stay the same as the mode of the current request. ccxxxiiiThe portlet mode attribute
is not case sensitive. 25

• var (Type: String, non-required) – name of the exported scoped variable for the
action URL. The exported scoped variable must be a String. By default, the
result of the URL processing is written to the current JspWriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.ccxxxiv 30
Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.ccxxxv

• secure (Type: String, non-required) – indicates if the resulting URL should be a 35
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown.ccxxxvi If the security is not set for a URL, it must
stay the same as the security setting of the current request.

A JspException with the PortletException that caused this error as root cause is 40
thrown in the following cases:

• If an illegal window state is specified in the windowState attribute.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 169

• If an illegal portlet mode is specified in the portletMode attribute.
• If an illegal security setting is specified in the secure attribute.

An example of a JSP using the actionURL tag could be:
<portlet:actionURL windowState=”maximized” portletMode=”edit”>
 <portlet:param name=”action” value=”editStocks”/> 5
</portlet:actionURL>

The example creates a URL that brings the portlet into EDIT mode and MAXIMIZED
window state to edit the stocks quote list.

PLT.24.3PLT.25.3 renderURL Tag
The portlet renderURL tag creates a URL that must point to the current portlet and must 10
trigger a render request with the supplied parameters.ccxxxvii

Parameters may be added by including the param tag between the renderURL start and
end tags.

The following non-required attributes are defined for this tag:
• windowState (Type: String, non-required) – indicates the window state that the 15

portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.ccxxxviii Reasons for
a window state being illegal may include that the portal does not support this
state, the portlet has not declared in its deployment descriptor that it supports this 20
state, or the current user is not allowed to switch to this state. If a window state is
not set for a URL, it should stay the same as the window state of the current
request.ccxxxix The window state attribute is not case sensitive.

• portletMode (Type: String, non-required) – indicates the portlet mode that the
portlet must have when this link is executed, if not error condition ocurred.ccxl The 25
following portlet modes are predefined: edit, help, and view. If the specified
portlet mode is illegal for the current request, a JspException must be thrown.ccxli
Reasons for a portlet mode being illegal may include that the portal does not
support this mode, the portlet has not declared in its deployment descriptor that it
supports this mode for the current markup, or the current user is not allowed to 30
switch to this mode. If a portlet mode is not set for a URL, it must stay the same
as the mode of the current request.ccxlii The portlet mode attribute is not case
sensitive.

• var (Type: String, non-required) – name of the exported scoped variable for the
render URL. The exported scoped variable must be a String. By default, the 35
result of the URL processing is written to the current JspWriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.ccxliii
Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given 40
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.ccxliv

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 170

• secure (Type: String, non-required) – indicates if the resulting URL should be a
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.ccxlv 5

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

• If an illegal window state is specified in the windowState attribute.
• If an illegal portlet mode is specified in the portletMode attribute.
• If an illegal security setting is specified in the secure attribute. 10

An example of a JSP using the renderURL tag could be:
<portlet:renderURL portletMode=”view” windowState=”normal”>
 <portlet:param name=”showQuote” value=”myCompany”/>
 <portlet:param name=”showQuote” value=”someOtherCompany”/>
</portlet:renderURL> 15

The example creates a URL to provide a link that shows the stock quote of myCompany
and someOtherCompany and changes the portlet mode to TTVIEWTT and the window state to
TTNORMALTT.

PLT.25.4 resourceURL Tag
The portlet renderURL tag creates a URL that must point to the current portlet and must 20
trigger a serveResource request with the supplied parameters.ccxlvi

The resourceURL must contain the current portlet mode, window state and render
parameters. ccxlvii

Parameters may be added by including the param tag between the resourceURL start and
end tags. If such a parameter has the same name as a render parameter in this URL, the 25
render parameter value must be the last value in the attribute value array. ccxlviii

The following non-required attributes are defined for this tag:

• var (Type: String, non-required) – name of the exported scoped variable for the
render URL. The exported scoped variable must be a String. By default, the
result of the URL processing is written to the current JspWriter. If the result is 30
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current JspWriter.ccxlix
Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an 35
iteration loop, the new value overwrites the old one.ccl

• secure (Type: String, non-required) – indicates if the resulting URL should be a
secure connection (secure=”true”) or an insecure one (secure=”false”). If the
specified security setting is not supported by the run-time environment, a

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 171

JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.ccli

A JspException with the PortletException that caused this error as root cause is
thrown in the following case:

• If an illegal security setting is specified in the secure attribute. 5
An example of a JSP using the renderURL tag could be:

<portlet:resoureURL>
 <portlet:param name=”icon1” value=”mypict.gif”/>
</portlet:renderURL>

The example creates a URL to provide a link that renders the icon named mypict.gif. 10

PLT.24.4PLT.25.5 namespace Tag
This tag produces a unique value for the current portlet and must match the value of
PortletResponse.getNamespace method. cclii

This tag should be used for named elements in the portlet output (such as Javascript
functions and variables). The namespacing ensures that the given name is uniquely 15
associated with this portlet and avoids name conflicts with other elements on the portal
page or with other portlets on the page.

The namespace tag must not allow any body content.

An example of a JSP using the namespace tag could be:
<A HREF=”javascript:<portlet:namespace/>doFoo()”>Foo 20

The example prefixes a JavaScript function with the name ‘doFoo’, ensuring uniqueness
on the portal page.

PLT.24.5PLT.25.6 param Tag
This tag defines a parameter that may be added to an actionURL, or renderURL or
resourceURL.ccliii 25

The param tag must not contain any body content.ccliv

If the same name of a parameter occurs more than once within a an actionURL,
renderURL or resourceURL the values must be delivered as parameter value array with
the values in the order of the declaration within the URL tag. cclv

The following required attributes are defined for this tag: 30
• name (Type: String, required) – the name of the parameter to add to the URL. If

name is null or empty, no action is performed.
• value (Type: String, required) – the value of the parameter to add to the URL. If

value is null, it is processed as an empty value.
An example of a JSP using the param tag could be: 35

<portlet:param name=”myParam” value=”someValue”/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 172

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 173

PLT.25

Leveraging JAXB for Event and Shared

Session payloads

PLT.26 5

The Java Portlet Specification 2.0 leverages the Java Architecture for

XML Binding (JAXB) 2.0 for defining payload data that may be transported across the
network via remote protocols such as Web Services for Remote Portlets (WSRP) 2.0
specification. These are the event payload and the shared session attribute value.

The event payload and the shared session attribute value must be defined by either the 10
following alternativescclvi:

using the JAXB annotations in the Java object and defining the Java object class name in
the deployment descript via the java-class element. Defining the Java object class
name in the deployment descriptor is optional for publishing events and mandatory for
consuming events. cclvii 15

 providing an XML schema in the deployment descriptor via the xml-schema
element and optionally a JAXB mapping via the jaxb-mapping element

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 174

PLT.25PLT.27

Technology Compatibility Kit Requirements

This chapter defines a set of requirements a portlet container implementation must meet
in order to run the portlet Technology Compatibility Kit (TCK).

These requirements are only needed for the purpose of determining whether a portlet 5
container implementation complies with the Portlet Specification or not.

PLT.25.1PLT.27.1 TCK Test Components
Based on the Portlet Specification (this document) and the Portlet API, a set of testable
assertions have been extracted and identified. The portlet TCK treats each testable
assertion as a unique test case. 10

All test cases are run from a Java Test Harness. The Java Test Harness collects the results
of all the tests and makes a report on the overall test.

Each portlet TCK test case has two components:
• Test portlet applications: These are portlet applications containing portlets,

servlets or JSPs coded to verify an assertion. These test portlet applications are 15
deployed in the portlet container being tested for compliance.

• Test client: It is a standalone java program that sends HTTP requests to portlet
container where test portlet applications of the test case have been deployed for
compliance testing.

The portlet TCK assumes that the test portlet applications are deployed in the portlet 20
container before the test run is executed.

The test client looks for expected and unexpected sub strings in the HTTP response to
decide whether a test has failed or passed. The test client reports the result of the test
client to the Java Test Harness.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 175

PLT.25.2PLT.27.2 TCK Requirements
In TCK, every test is written as a set of one or more portlets. A test client is written for
each test, the test client must interact with a portal page containing the portlets that are
part of the test. To accomplish this, TCK needs to obtain the initial URL for the portal
page of each test case. All the portlets in the portal page obtained with the initial URL 5
must be in VIEW portlet mode and in NORMAL window state. Subsequent requests to
the test are done using URLs generated by PortletURI that are part of the returned portal
pages. These subsequent requests must be treated as directed to same portal page
composed of the same portlets.

Portal/portlet-containers must disable all caching mechanisms when running the TCK test 10
cases.

Since aggregation of portlets in a portal page and the URLs used to interact with the
portlets are vendor specific, TCK provides two alternative mechanisms in the framework
to get the URLs to portal pages for the test cases: declarative configuration or
programmatic configuration. A vendor must support at least one of these mechanisms to 15
run the conformance tests.

PLT.25.2.1PLT.27.2.1 Declarative configuration of the portal page for
a TCK test
TCK publishes an XML file containing the portlets for each test case. Vendors must refer
to this file for establishing a portal page for every test. Vendors must provide an XML 20
file with a full URL for the portal page for each test. A call to this URL must generate a
portal page with the content of all the portlets defined for the corresponding test case. If
redirected to another URL, the new URL must use the same host name and port number
as specified in the file. Refer to TCK User guide for details on declarative configuration.

A snippet of the TCK provided XML file for declarative configuration would look like: 25
<test_case>
 <test_name>PortletRequest_GetAttributeTest</test_name>
 <test_portlet>
 <app_name>PortletRequestWebApp</app_name>
 <portlet_name>GetAttributeTestPortlet</portlet_name> 30
 </test_portlet>
 <test_portlet>
 <app_name>PortletRequestWebApp</app_name>
 <portlet_name>GetAttributeTest_1_Portlet</portlet_name>
 <test_portlet> 35
</test_case>

The corresponding snippet for the vendor’s provided XML file might look like:
<test_case_url>
 <test_name>PortletRequest_GetAttributeTest</test_name>
 <test_url>http://foo:8080/portal?pageName=TestCase1</test_url> 40
</test_case_url>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 176

PLT.25.2.1.1PLT.27.2.1.1 Schema for XML file provided with Portlet
TCK
<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestCases.xsd-->
<xs:schema 5
 targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCK_1_0.xsd"
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCK_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="pct_test_cases"> 10
 <xs:annotation>
 <xs:documentation>Test Cases defined in Portlet Compatibility
Kit</xs:documentation>
 </xs:annotation>
 <xs:complexType> 15
 <xs:sequence>
 <xs:element ref="pct:test_case" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element> 20
 <xs:element name="test_case">
 <xs:annotation>
 <xs:documentation>Test Case</xs:documentation>
 </xs:annotation>
 <xs:complexType> 25
 <xs:sequence>
 <xs:element ref="pct:test_name"/>
 <xs:element ref="pct:test_portlet" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType> 30
 </xs:element>
 <xs:element name="test_portlet">
 <xs:annotation>
 <xs:documentation>A test Portlet</xs:documentation>
 </xs:annotation> 35
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="pct:portlet_name"/>
 <xs:element ref="pct:app_name"/>
 </xs:sequence> 40
 </xs:complexType>
 </xs:element>
 <xs:element name="test_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Unique name for a test case</xs:documentation> 45
 </xs:annotation>
 </xs:element>
 <xs:element name="app_name" type="xs:string">
 <xs:annotation>
 <xs:documentation>Name of the portlet application a portlet belongs 50
to.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="portlet_name" type="xs:string">
 <xs:annotation> 55
 <xs:documentation>Name of the portlet</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 177

PLT.25.2.1.2PLT.27.2.1.2 Schema for XML file that provided by
vendors
<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestURLs.xsd - Schema that must be followed by the vendors to write
the file that has mapping from a portlet TCK --> 5
<!-- test case to a url. -->
<xs:schema
 targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCKVendor_1_0.xsd"
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCKVendor_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 10
attributeFormDefault="unqualified">
 <xs:element name="test_case_urls">
 <xs:annotation>
 <xs:documentation>Mapping of Test Cases defined in Portlet Compatibility
Kit to vendor specific URLs</xs:documentation> 15
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="pct:test_case_url" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence> 20
 </xs:complexType>
 </xs:element>
 <xs:element name="test_case_url">
 <xs:annotation>
 <xs:documentation>Test Case to URL map entry </xs:documentation> 25
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="pct:test_name"/>
 <xs:element ref="pct:test_url"/> 30
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="test_name" type="xs:string">
 <xs:annotation> 35
 <xs:documentation>Unique name for a test case from the
portletTCKTestCases.xml published by TCK</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="test_url" type="xs:string"> 40
 <xs:annotation>
 <xs:documentation>Complete URL that would result in a page containing
contents of portlets defined for this test case.</xs:documentation>
 </xs:annotation>
 </xs:element> 45
</xs:schema>

PLT.25.2.2PLT.27.2.2 Programmatic configuration of the portal
page for a test
For programmatic configuration, a vendor must provide a full URL as a configuration
parameter to the TCK. The TCK will call this URL with a set of parameters indicating 50
the set of portlets that must appear in a portal page for the given test. Upon receiving this
request, the vendor provided URL could dynamically create a portal page with the
required portlets. Calls to this vendor provided URL are always HTTP GET requests. The
parameter names on the URL are multiple occurrences of "portletName". Values of this
paramater must be a string consisting of the test case application name and portlet name 55
delimited by a “/”. The response of this call must be a portal page with the required
portlets or a redirection to another URL where the portal page will be served. If
redirected, the new URL must use the same host and port number as original URL.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 178

A vendor provided URL would look like:
VendorPortalURL=http://foo:8080/portal/tckservlet

For a test case involving one portlet, TCK would call this URL with the following
parameters:

http://foo:8080/portal/tckservlet?portletName=PortletRequestWebApp5
/GetAttributeTestPortlet

PLT.25.2.3PLT.27.2.3 Test Portlets Content
The test cases portlets encode information for the test client within their content. As
different vendor implementations may generate different output surrounding the content
produced by the portlets, the portlets delimit the information for the test clients using a 10
special element tag, portlet-tck.

PLT.25.2.4PLT.27.2.4 Test Cases that Require User Identity
Some of the Portlet TCK require an authenticated user. The TCK configuration file
indicates the name and password of the authenticated user and the authentication
mechanism TCK will use. 15

Portlet TCK provides two mechanisms to send the user credentials: HTTP Basic
authentication and a Java interface provided by the TCK. If TCK framework is
configured to use HTTP Basic authentication, an Authorization HTTP header -using
the configured user and password values- is constructed and sent with each test case
request. If TCK framework is configured to use the Java interface mechanism, the value 20
obtained from the specified interface implementation will be sent as a Cookie HTTP
header with request of the test case.

Additionally, a portal vendor may indicate that certain test cases, not required by TCK, to
be executed in the context of an authenticated user. This is useful for vendor
implementations that require an authenticated user for certain functionality to work. A 25
vendor can specify the names of these test cases in a configuration file. TCK will consult
this file to decide if user authentication is needed for each test case. Refer to TCK User
Guide to get details on the specific configuration properties.

.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 179

PLT.A

Custom Portlet Modes

Portals may provide support for custom portlet modes. Similarly, portlets may use custom
portlet modes. This appendix describes a list of custom portlet modes and their intended
functionality. Portals and portlets should use these custom portlet mode names if they 5
provide support for the described functionality.

Portlets should use the getSupportedPortletModes method of the PortalContext
interface to retrieve the portlet modes the portal supports.

PLT.A.1 About Portlet Mode
The about portlet mode should be used by the portlet to display information on the 10
portlets purpose, origin, version etc.

Portlet developers should implement the about portlet mode functionality by overriding
the doDispatch method of the GenericPortlet class and checking for
PortletMode("about").

In the deployment descriptor the support for the about portlet mode must be declared 15
using

<portlet-app>
 ...
 <portlet>
 ... 20
 <supports>
 ...
 <portlet-mode>about</portlet-mode>
 </supports>
 ... 25
 </portlet>
 ...
 <custom-portlet-mode>
 <nameportlet-mode>about</nameportlet-mode>
 </custom-portlet-mode> 30
 ...
 </portlet-app>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 180

PLT.A.2 Config Portlet Mode
The config portlet mode should be used by the portlet to display one or more
configuration views that let administrators configure portlet preferences that are marked
non-modifiable in the deployment descriptor. This requires that the user must have
administrator rights. Therefore, only the portal can create links for changing the portlet 5
mode into config.

Portlet developers should implement the config portlet mode functionality by overriding
the doDispatch method of the GenericPortlet class and checking for
PortletMode("config").

The CONFIG mode of portlets operates typically on shared state that is common to many 10
portlets of the same portlet definition. When a portlet modifies this shared state via the
PortletPreferences, for all affected portlet entities, in the doView method the
PortletPreferences must give access to the modified state.

In the deployment descriptor the support for the config portlet mode must be declared
using 15

<portlet-app>
 ...
 <portlet>
 ...
 <supports> 20
 ...
 <portlet-mode>config</portlet-mode>
 </supports>
 ...
 </portlet> 25
 ...
 <custom-portlet-mode>
 <name>config</name>
 </custom-portlet-mode>
 ... 30
 </portlet-app>

PLT.A.3 Edit_defaults Portlet Mode
The edit_defaults portlet mode signifies that the portlet should render a screen to set
the default values for the modifiable preferences that are typically changed in the EDIT
screen. Calling this mode requires that the user must have administrator rights. Therefore, 35
only the portal can create links for changing the portlet mode into edit_defaults.

Portlet developers should implement the edit_defaults portlet mode functionality by
overriding the doDispatch method of the GenericPortlet class and checking for
PortletMode("edit_defaults ").

In the deployment descriptor the support for the edit_defaults portlet mode must be 40
declared using

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 181

<portlet-app>
 ...
 <portlet>
 ...
 <supports> 5
 ...
 <portlet-mode> edit_defaults </portlet-mode>
 </supports>
 ...
 </portlet> 10
 ...
 <custom-portlet-mode>
 <name> edit_defaults </name>
 </custom-portlet-mode>
 ... 15
 </portlet-app>

PLT.A.4 Preview Portlet Mode
The preview portlet mode should be used by the portlet to render output without the need
of having back-end connections or user specific data available. It may be used at page
design time and in portlet development tools. 20

Portlet developers should implement the preview portlet mode functionality by
overriding the doDispatch method of the GenericPortlet class and checking for
PortletMode("preview ").

In the deployment descriptor the support for the preview portlet mode must be declared
using 25

<portlet-app>
 ...
 <portlet>
 ...
 <supports> 30
 ...
 <portlet-mode> preview </portlet-mode>
 </supports>
 ...
 </portlet> 35
 ...
 <custom-portlet-mode>
 <nameportlet-mode> preview </nameportlet-mode>
 </custom-portlet-mode>
 ... 40
 </portlet-app>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 182

PLT.A.5 Print Portlet Mode
The printportlet mode signifies that the portlet should render a view that can be printed.

Portlet developers should implement the printportlet mode functionality by overriding
the doDispatch method of the GenericPortlet class and checking for
PortletMode("print"). 5

In the deployment descriptor the support for the printportlet mode must be declared
using

<portlet-app>
 ...
 <portlet> 10
 ...
 <supports>
 ...
 <portlet-mode>print</portlet-mode>
 </supports> 15
 ...
 </portlet>
 ...
 <custom-portlet-mode>
 <nameportlet-mode>print</nameportlet-mode> 20
 </custom-portlet-mode>
 ...
 </portlet-app>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 183

PLT.APLT.B

Markup Fragments

Portlets generate markup fragments that are aggregated in a portal page document.
Because of this, there are some rules and limitations in the markup elements generated by
portlets. Portlets should conform to these rules and limitations when generating content. 5

The disallowed tags indicated below are those tags that impact content generated by other
portlets or may even break the entire portal page. Inclusion of such a tag invalidates the
whole markup fragment.

Portlets generating HTML fragments must not use the following tags: base, body,
iframe, frame, frameset, head, html and title. The iframe tag can be used, 10
however it must be used with caution. The usage of the iframe tag should not break the
portal paradigm.Using the iframe tag is not forbidden, but portlets using iframes should
not expect portal/portlet context for the content of iframes

Portlets generating XHTML and XHTML-Basic fragments must not use the following
tags: base, body, iframe, head, html and title. 15

HTML, XHTML and XHTML-Basic specifications disallow the use of certain elements
outside of the <head> element in the document. However, some browser
implementations support some of these tags in other sections of the document. For
example: current versions of Internet Explorer and Netscape Navigator both support the
style tag anywhere within the document. Portlet developers should decide carefully the 20
use of following markup elements that fit this description: link, meta and style.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 185

PLT.C

CSS Style Definitions

To achieve a common look and feel throughout the portal page, all portlets in the portal
page should use a common CSS style sheet when generating content.

This appendix defines styles for a variety of logical units in the markup. It follows the 5
style being considered by the OASIS Web Services for Remote Portlets Technical
Committee.

PLT.C.1 Links (Anchor)
A custom CSS class is not defined for the <a> tag. The entity should use the default
classes when embedding anchor tags. 10

PLT.C.2 Fonts
The font style definitions affect the font attributes only (font face, size, color, style, etc).

Style Description Example

portlet-font Font attributes for the “normal” fragment font. Used
for the display of non-accentuated information.

Normal
Text

portlet-font-dim Font attributes similar to the .portlet.font but the
color is lighter. Dim Text

If an portlet developer wants a certain font type to be larger or smaller, they should
indicate this using a relative size. For example: 15

<div class="portlet-font" style="font-size:larger">Important
information</div>

<div class="portlet-font-dim" style="font-size:80%">Small and
dim</div> 20

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 186

PLT.C.3 Messages
Message style definitions affect the rendering of a paragraph (alignment, borders,
background color, etc) as well as text attributes.

Style Description Example

portlet-msg-status Status of the current
operation. Progress: 80%

portlet-msg-info Help messages, general
additional information, etc. Info about

portlet-msg-error Error messages. Portlet not available

portlet-msg-alert Warning messages. Timeout occurred, try again
later

portlet-msg-success Verification of the successful
completion of a task.

Operation completed
successfully

PLT.C.4 Sections
Section style definitions affect the rendering of markup sections such as table, div and 5
span (alignment, borders, background color, etc) as well as their text attributes.

Style Description

portlet-section-header Table or section header

portlet-section-body Normal text in a table cell

portlet-section-alternate Text in every other row in the cell

portlet-section-selected Text in a selected cell range

portlet-section-subheader Text of a subheading

portlet-section-footer Table or section footnote

portlet-section-text
Text that belongs to the table but does not fall in one of
the other categories (e.g. explanatory or help text that is
associated with the section).

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 187

PLT.C.5 Forms
Form styles define the look-and-feel of the elements in an HTML form.

Style Description

portlet-form-label Text used for the descriptive label of the whole form
(not the labels for fields.

portlet-form-input-field Text of the user-input in an input field.

portlet-form-button Text on a button

portlet-icon-label Text that appears beside a context dependent action
icon.

portlet-dlg-icon-label Text that appears beside a “standard” icon (e.g. Ok, or
Cancel)

portlet-form-field-label Text for a separator of fields (e.g. checkboxes, etc.)

portlet-form-field Text for a field (not input field, e.g. checkboxes, etc)

portlet-form-field-label Text that appears beside a form field (e.g. input fields,
checkboxes, etc.)

portlet-form-field Text for a field which is not input field (e.g. checkboxes,
etc)

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 188

PLT.C.6 Menus
Menu styles define the look-and-feel of the text and background of a menu structure. This
structure may be embedded in the aggregated page or may appear as a context sensitive
popup menu.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 189

Style Description

portlet-menu General menu settings such as background
color, margins, etc

portlet-menu-item Normal, unselected menu item.

portlet-menu-item-selected Selected menu item.

portlet-menu-item-hover Normal, unselected menu item when the
mouse hovers over it.

portlet-menu-item-hover-selected Selected menu item when the mouse hovers
over it.

portlet-menu-cascade-item Normal, unselected menu item that has sub-
menus.

portlet-menu-cascade-item-selected Selected sub-menu item that has sub-menus.

portlet-menu-cascade General sub-menu settings such as
background color, margins, etc

portlet-menu-cascade-item A normal, unselected sub-menu item

portlet-menu-cascade-item-selected Selected sub-menu item

portlet-menu-cascade-item-hover Normal, unselected sub-menu item when the
mouse hovers over it

portlet-menu-cascade-item-hover-
selected

Selected sub-menu item when the mouse
hovers over it

portlet-menu-separator Separator between menu items

portlet-menu-cascade-separator Separator between sub-menu items

portlet-menu-content Content for a normal, unselected menu or
sub-menu item

portlet-menu-content-selected Content for an selected menu or sub-menu
item

portlet-menu-content-hover Content for an unselected menu or sub-menu
item when the mouse hovers over it

portlet-menu-content-hover-selected Content for a selected menu or sub-menu
item when the mouse hovers over it

portlet-menu-indicator Indicator that a menu item has an associated
sub-menu

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 190

portlet-menu-indicator-selected Indicator when the associated menu item is
selected

portlet-menu-indicator-hover Indicator when the associated menu item has
the mouse hover over it

portlet-menu-indicator-hover-selected Indicator when the associated menu item is
selected and has the mouse hover over it

portlet-menu-description Descriptive text for the menu (e.g. in a help
context below the menu)

portlet-menu-caption Menu caption

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 191

PLT.D

User Information Attribute Names

This appendix defines a set of attribute names for user information and their intended
meaning. To allow portals an automated mapping of commonly used user information
attributes portlet programmers should use these attribute names. These attribute names 5
are derived from the Platform for Privacy Preferences 1.0 (P3P 1.0) Specification by the
W3C (http://www.w3c.org/TR/P3P). The same attribute names are also being considered
by the OASIS Web Services for Remote Portlets Technical Committee.

Attribute Name

user.bdate

user.gender

user.employer

user.department

user.jobtitle

user.name.prefix

user.name.given

user.name.family

user.name.middle

user.name.suffix

user.name.nickName

user.home-info.postal.name

user.home-info.postal.street

user.home-info.postal.city

user.home-info.postal.stateprov

user.home-info.postal.postalcode

user.home-info.postal.country

user.home-info.postal.organization

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 192

user.home-info.telecom.telephone.intcode

user.home-info.telecom.telephone.loccode

user.home-info.telecom.telephone.number

user.home-info.telecom.telephone.ext

user.home-info.telecom.telephone.comment

user.home-info.telecom.fax.intcode

user.home-info.telecom.fax.loccode

user.home-info.telecom.fax.number

user.home-info.telecom.fax.ext

user.home-info.telecom.fax.comment

user.home-info.telecom.mobile.intcode

user.home-info.telecom.mobile.loccode

user.home-info.telecom.mobile.number

user.home-info.telecom.mobile.ext

user.home-info.telecom.mobile.comment

user.home-info.telecom.pager.intcode

user.home-info.telecom.pager.loccode

user.home-info.telecom.pager.number

user.home-info.telecom.pager.ext

user.home-info.telecom.pager.comment

user.home-info.online.email

user.home-info.online.uri

user.business-info.postal.name

user.business-info.postal.street

user.business-info.postal.city

user.business-info.postal.stateprov

user.business-info.postal.postalcode

user.business-info.postal.country

user.business-info.postal.organization

user.business-info.telecom.telephone.intcode

user.business-info.telecom.telephone.loccode

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 193

user.business-info.telecom.telephone.number

user.business-info.telecom.telephone.ext

user.business-info.telecom.telephone.comment

user.business-info.telecom.fax.intcode

user.business-info.telecom.fax.loccode

user.business-info.telecom.fax.number

user.business-info.telecom.fax.ext

user.business-info.telecom.fax.comment

user.business-info.telecom.mobile.intcode

user.business-info.telecom.mobile.loccode

user.business-info.telecom.mobile.number

user.business-info.telecom.mobile.ext

user.business-info.telecom.mobile.comment

user.business-info.telecom.pager.intcode

user.business-info.telecom.pager.loccode

user.business-info.telecom.pager.number

user.business-info.telecom.pager.ext

user.business-info.telecom.pager.comment

user.business-info.online.email

user.business-info.online.uri

NOTE: The user.bdate must consist of a string that represents the time in milliseconds
since January 1, 1970, 00:00:00 GMT.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 194

PLT.D.1 Example
Below is an example of how these attributes may be used in the deployment descriptor:

<portlet-app>
 ...
 <user-attribute> 5
 <name> user.name.prefix</name>
 </user-attribute>
 <user-attribute>
 <name> user.name.given</name>
 </user-attribute> 10
 <user-attribute>
 <name> user.name.family</name>
 </user-attribute>
 <user-attribute>
 <name> user.home-info.postal.city</name> 15
 </user-attribute>
 ...
</portlet-app>

 20

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 195

 FutureReleases.doc

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 196

PLT.D.2
 Deployment Descriptor Version 1.0
This appendix defines the deployment descriptor for version 1.0. All portlet containers

are required to support portlet applications using the 1.0 deployment descriptor.

PLT.D.2.1 Deployment Descriptor of Version 1.0
<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0" xml:lang="en">
 <annotation>
 <documentation>
 This is the XML Schema for the Portlet 1.0 deployment descriptor.
 </documentation>
 </annotation>
 <annotation>
 <documentation>
 The following conventions apply to all J2EE
 deployment descriptor elements unless indicated otherwise.
 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.
 </documentation>
 </annotation>
 <!-- *** -->
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <element name="portlet-app" type="portlet:portlet-appType">
 <annotation>
 <documentation>
 The portlet-app element is the root of the deployment descriptor
 for a portlet application. This element has a required attribute version
 to specify to which version of the schema the deployment descriptor
 conforms.
 </documentation>
 </annotation>
 <unique name="portlet-name-uniqueness">
 <annotation>
 <documentation>
 The portlet element contains the name of a portlet.
 This name must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet"/>
 <field xpath="portlet:portlet-name"/>
 </unique>
 <unique name="custom-portlet-mode-uniqueness">
 <annotation>
 <documentation>
 The custom-portlet-mode element contains the portlet-mode.
 This portlet mode must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:custom-portlet-mode"/>
 <field xpath="portlet:portlet-mode"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 197

 </unique>
 <unique name="custom-window-state-uniqueness">
 <annotation>
 <documentation>
 The custom-window-state element contains the window-state.
 This window state must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:custom-window-state"/>
 <field xpath="portlet:window-state"/>
 </unique>
 <unique name="user-attribute-name-uniqueness">
 <annotation>
 <documentation>
 The user-attribute element contains the name the attribute.
 This name must be unique within the portlet application.
 </documentation>
 </annotation>
 <selector xpath="portlet:user-attribute"/>
 <field xpath="portlet:name"/>
 </unique>
 </element>
 <complexType name="portlet-appType">
 <sequence>
 <element name="portlet" type="portlet:portletType" minOccurs="0"
maxOccurs="unbounded">
 <unique name="init-param-name-uniqueness">
 <annotation>
 <documentation>
 The init-param element contains the name the attribute.
 This name must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:init-param"/>
 <field xpath="portlet:name"/>
 </unique>
 <unique name="supports-mime-type-uniqueness">
 <annotation>
 <documentation>
 The supports element contains the supported mime-type.
 This mime type must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:supports"/>
 <field xpath="mime-type"/>
 </unique>
 <unique name="preference-name-uniqueness">
 <annotation>
 <documentation>
 The preference element contains the name the preference.
 This name must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:portlet-preferences/portlet:preference"/>
 <field xpath="portlet:name"/>
 </unique>
 <unique name="security-role-ref-name-uniqueness">
 <annotation>
 <documentation>
 The security-role-ref element contains the role-name.
 This role name must be unique within the portlet.
 </documentation>
 </annotation>
 <selector xpath="portlet:security-role-ref"/>
 <field xpath="portlet:role-name"/>
 </unique>
 </element>
 <element name="custom-portlet-mode" type="portlet:custom-portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="custom-window-state" type="portlet:custom-window-stateType"
minOccurs="0" maxOccurs="unbounded"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 198

 <element name="user-attribute" type="portlet:user-attributeType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="security-constraint" type="portlet:security-constraintType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="version" type="string" use="required"/>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="custom-portlet-modeType">
 <annotation>
 <documentation>
 A custom portlet mode that one or more portlets in
 this portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-mode" type="portlet:portlet-modeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="custom-window-stateType">
 <annotation>
 <documentation>
 A custom window state that one or more portlets in this
 portlet application supports.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="window-state" type="portlet:window-stateType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="expiration-cacheType">
 <annotation>
 <documentation>
 Expriation-cache defines expiration-based caching for this
 portlet. The parameter indicates
 the time in seconds after which the portlet output expires.
 -1 indicates that the output never expires.
 Used in: portlet
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="int"/>
 </simpleContent>
 </complexType>
 <complexType name="init-paramType">
 <annotation>
 <documentation>
 The init-param element contains a name/value pair as an
 initialization param of the portlet
 Used in:portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="keywordsType">
 <annotation>
 <documentation>
 Locale specific keywords associated with this portlet.

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 199

 The kewords are separated by commas.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="mime-typeType">
 <annotation>
 <documentation>
 MIME type name, e.g. "text/html".
 The MIME type may also contain the wildcard
 character '*', like "text/*" or "*/*".
 Used in: supports
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="nameType">
 <annotation>
 <documentation>
 The name element contains the name of a parameter.
 Used in: init-param, ...
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portletType">
 <annotation>
 <documentation>
 The portlet element contains the declarative data of a portlet.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-name" type="portlet:portlet-nameType"/>
 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-class" type="portlet:portlet-classType"/>
 <element name="init-param" type="portlet:init-paramType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="expiration-cache" type="portlet:expiration-cacheType"
minOccurs="0"/>
 <element name="supports" type="portlet:supportsType"
maxOccurs="unbounded"/>
 <element name="supported-locale" type="portlet:supported-localeType"
minOccurs="0" maxOccurs="unbounded"/>
 <choice>
 <sequence>
 <element name="resource-bundle" type="portlet:resource-bundleType"/>
 <element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/>
 </sequence>
 <element name="portlet-info" type="portlet:portlet-infoType"/>
 </choice>
 <element name="portlet-preferences" type="portlet:portlet-preferencesType"
minOccurs="0"/>
 <element name="security-role-ref" type="portlet:security-role-refType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="portlet-classType">
 <annotation>
 <documentation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 200

 The portlet-class element contains the fully
 qualified class name of the portlet.
 Used in: portlet
 </documentation>
 </annotation>
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>
 <complexType name="portlet-collectionType">
 <annotation>
 <documentation>
 The portlet-collectionType is used to identify a subset
 of portlets within a portlet application to which a
 security constraint applies.
 Used in: security-constraint
 </documentation>
 </annotation>
 <sequence>
 <element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="portlet-infoType">
 <sequence>
 <element name="title" type="portlet:titleType"/>
 <element name="short-title" type="portlet:short-titleType" minOccurs="0"/>
 <element name="keywords" type="portlet:keywordsType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="portlet-modeType">
 <annotation>
 <documentation>
 Portlet modes. The specification pre-defines the following values
 as valid portlet mode constants:
 "edit", "help", "view".
 Portlet mode names are not case sensitive.
 Used in: custom-portlet-mode, supports
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portlet-nameType">
 <annotation>
 <documentation>
 The portlet-name element contains the canonical name of the
 portlet. Each portlet name is unique within the portlet
 application.
 Used in: portlet, portlet-mapping
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="portlet-preferencesType">
 <annotation>
 <documentation>
 Portlet persistent preference store.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="preference" type="portlet:preferenceType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="preferences-validator" type="portlet:preferences-
validatorType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="preferenceType">

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 201

 <annotation>
 <documentation>
 Persistent preference values that may be used for customization
 and personalization by the portlet.
 Used in: portlet-preferences
 </documentation>
 </annotation>
 <sequence>
 <element name="name" type="portlet:nameType"/>
 <element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <simpleType name="preferences-validatorType">
 <annotation>
 <documentation>
 The class specified under preferences-validator implements
 the PreferencesValidator interface to validate the
 preferences settings.
 Used in: portlet-preferences
 </documentation>
 </annotation>
 <restriction base="portlet:fully-qualified-classType"/>
 </simpleType>
 <simpleType name="read-onlyType">
 <annotation>
 <documentation>
 read-only indicates that a setting cannot
 be changed in any of the standard portlet modes
 ("view","edit" or "help").
 Per default all preferences are modifiable.
 Valid values are:
 - true for read-only
 - false for modifiable
 Used in: preferences
 </documentation>
 </annotation>
 <restriction base="portlet:string">
 <enumeration value="true"/>
 <enumeration value="false"/>
 </restriction>
 </simpleType>
 <complexType name="resource-bundleType">
 <annotation>
 <documentation>
 Filename of the resource bundle containing the language specific
 portlet informations in different languages.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="role-linkType">
 <annotation>
 <documentation>
 The role-link element is a reference to a defined security role.
 The role-link element must contain the name of one of the
 security roles defined in the security-role elements.
 Used in: security-role-ref
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="security-constraintType">
 <annotation>
 <documentation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 202

 The security-constraintType is used to associate
 intended security constraints with one or more portlets.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="portlet-collection" type="portlet:portlet-collectionType"/>
 <element name="user-data-constraint" type="portlet:user-data-
constraintType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="security-role-refType">
 <annotation>
 <documentation>
 The security-role-ref element contains the declaration of a
 security role reference in the code of the web application. The
 declaration consists of an optional description, the security
 role name used in the code, and an optional link to a security
 role. If the security role is not specified, the Deployer must
 choose an appropriate security role.
 The value of the role name element must be the String used
 as the parameter to the
 EJBContext.isCallerInRole(String roleName) method
 or the HttpServletRequest.isUserInRole(String role) method.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="role-name" type="portlet:role-nameType"/>
 <element name="role-link" type="portlet:role-linkType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="short-titleType">
 <annotation>
 <documentation>
 Locale specific short version of the static title.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="supportsType">
 <annotation>
 <documentation>
 Supports indicates the portlet modes a
 portlet supports for a specific content type. All portlets must
 support the view mode.
 Used in: portlet
 </documentation>
 </annotation>
 <sequence>
 <element name="mime-type" type="portlet:mime-typeType"/>
 <element name="portlet-mode" type="portlet:portlet-modeType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="supported-localeType">
 <annotation>
 <documentation>
 Indicated the locales the portlet supports.
 Used in: portlet
 </documentation>
 </annotation>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 203

 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="titleType">
 <annotation>
 <documentation>
 Locale specific static title for this portlet.
 Used in: portlet-info
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <simpleType name="transport-guaranteeType">
 <annotation>
 <documentation>
 The transport-guaranteeType specifies that
 the communication between client and portlet should
 be NONE, INTEGRAL, or CONFIDENTIAL.
 NONE means that the portlet does not
 require any transport guarantees. A value of
 INTEGRAL means that the portlet requires that the
 data sent between the client and portlet be sent in
 such a way that it can't be changed in transit.
 CONFIDENTIAL means that the portlet requires
 that the data be transmitted in a fashion that
 prevents other entities from observing the contents
 of the transmission.
 In most cases, the presence of the INTEGRAL or
 CONFIDENTIAL flag will indicate that the use
 of SSL is required.
 Used in: user-data-constraint
 </documentation>
 </annotation>
 <restriction base="portlet:string">
 <enumeration value="NONE"/>
 <enumeration value="INTEGRAL"/>
 <enumeration value="CONFIDENTIAL"/>
 </restriction>
 </simpleType>
 <complexType name="user-attributeType">
 <annotation>
 <documentation>
 User attribute defines a user specific attribute that the
 portlet application needs. The portlet within this application
 can access this attribute via the request parameter USER_INFO
 map.
 Used in: portlet-app
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="name" type="portlet:nameType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="user-data-constraintType">
 <annotation>
 <documentation>
 The user-data-constraintType is used to indicate how
 data communicated between the client and portlet should be
 protected.
 Used in: security-constraint
 </documentation>
 </annotation>
 <sequence>
 <element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded"/>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 204

 <element name="transport-guarantee" type="portlet:transport-
guaranteeType"/>
 </sequence>
 <attribute name="id" type="string" use="optional"/>
 </complexType>
 <complexType name="valueType">
 <annotation>
 <documentation>
 The value element contains the value of a parameter.
 Used in: init-param
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <complexType name="window-stateType">
 <annotation>
 <documentation>
 Portlet window state. Window state names are not case sensitive.
 Used in: custom-window-state
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
 </complexType>
 <!--- everything below is copied from j2ee_1_4.xsd -->
 <complexType name="descriptionType">
 <annotation>
 <documentation>
 The description element is used to provide text describing the
 parent element. The description element should include any
 information that the portlet application war file producer wants
 to provide to the consumer of the portlet application war file
 (i.e., to the Deployer). Typically, the tools used by the
 portlet application war file consumer will display the
 description when processing the parent element that contains the
 description. It has an optional attribute xml:lang to indicate
 which language is used in the description according to
 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”).
 Used in: init-param, portlet, portlet-app, security-role
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="display-nameType">
 <annotation>
 <documentation>
 The display-name type contains a short name that is intended
 to be displayed by tools. It is used by display-name
 elements. The display name need not be unique.
 Example:
 ...
 <display-name xml:lang="en">Employee Self Service</display-name>

 It has an optional attribute xml:lang to indicate
 which language is used in the description according to
 RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt). The default
 value of this attribute is English(“en”).
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="portlet:string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 205

 </complexType>
 <simpleType name="fully-qualified-classType">
 <annotation>
 <documentation>
 The elements that use this type designate the name of a
 Java class or interface.
 </documentation>
 </annotation>
 <restriction base="portlet:string"/>
 </simpleType>
 <simpleType name="role-nameType">
 <annotation>
 <documentation>
 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for an NMTOKEN.
 </documentation>
 </annotation>
 <restriction base="NMTOKEN"/>
 </simpleType>
 <simpleType name="string">
 <annotation>
 <documentation>
 This is a special string datatype that is defined by J2EE
 as a base type for defining collapsed strings. When
 schemas require trailing/leading space elimination as
 well as collapsing the existing whitespace, this base
 type may be used.
 </documentation>
 </annotation>
 <restriction base="string">
 <whiteSpace value="collapse"/>
 </restriction>
 </simpleType>
</schema>

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 206

PLT.E

TCK Assertions

The following is the list of assertions that have been identified in the Portlet Specification
for the purposes of the compliance test.

Assertions marked as Testable=false are not verifiable.

i SPEC:68 Testable=true Section=PLT.12.2.2

ii SPEC:68 Testable=true Section=PLT.12.2.2

iii SPEC:68 Testable=true Section=PLT.12.2.2

iv SPEC:68 Testable=true Section=PLT.12.2.2

v SPEC:1 Testable=false Section=PLT.5.1

vi SPEC:2 Testable=false Section=PLT.5.1

vii SPEC:3 Testable=false Section=PLT.5.2.1

viii SPEC:4 Testable=true Section=PLT.5.2.2

ix SPEC:5 Testable=true Section=PLT.5.2.2.1

x SPEC:6 Testable=true Section=PLT.5.2.2.1

xi SPEC:7 Testable=true Section=PLT.5.2.2.1

xii SPEC:8 Testable=true Section=PLT.5.2.2.1

xiii SPEC:20 Testable=false Section=PLT/5.2.5

xiv SPEC:21 Testable= false Section=PLT.5.2.5

xv SPEC:22 Testable=false Section=PLT.5.2.5

xvi SPEC:23 Testable= false Section=PLT.5.2.5

xvii SPEC:9 Testable=true Section=PLT 5.2.4

xviii SPEC:10 Testable=true Section=PLT 5.2.4

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 207

xix SPEC:11 Testable=true Section=PLT 5.2.4.1

xx SPEC:11 Testable=true Section=PLT 5.2.4.1

xxi SPEC:12 Testable= true Section=PLT.5.2.4.1

xxii SPEC:13 Testable= true Section=PLT.5.2.4.2.1

xxiii SPEC:14 Testable= true Section=PLT.5.2.4.2.1

xxiv SPEC:15 Testable= true Section=PLT.5.2.4.2.1

xxv SPEC:16 Testable=true Section=PLT 5.2.4.2.1

xxvi SPEC:17 Testable= true Section=PLT.5.2.4.4

xxvii SPEC:18 Testable=false Section=PLT.5.2.4.4

xxviii SPEC:19 Testable= true Section=PLT.5.2.4.4.

xxix SPEC:20 Testable=false Section=PLT/5.2.5

xxx SPEC:21 Testable= false Section=PLT.5.2.5

xxxi SPEC:22 Testable=false Section=PLT.5.2.5

xxxii SPEC:23 Testable= false Section=PLT.5.2.5

xxxiii SPEC:24 Testable= true Section=PLT.6.2

xxxiv SPEC:25 Testable= true Section=PLT.6.2

xxxv SPEC:26 Testable= true Section=PLT.7.1

xxxvi SPEC:27 Testable= true Section=PLT.7.1

xxxvii SPEC:28 Testable= true Section=PLT.7.1

xxxviii SPEC:29 Testable= true Section=PLT.7.1

xxxix SPEC:30 Testable= true Section=PLT.7.1

xl SPEC:31 Testable= true Section=PLT.7.1

xli SPEC:31 Testable= true Section=PLT.7.1

xlii SPEC:32 Testable= true Section=PLT.7.1.1

xliii SPEC:33 Testable= true Section=PLT.7.1.1

xliv SPEC:33 Testable= true Section=PLT.7.1.1

xlv SPEC:34 Testable= true Section=PLT.7.1.1

xlvi SPEC:33 Testable= true Section=PLT.7.1.1

xlvii SPEC:35 Testable= true Section=PLT.6.2

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 208

xlviii SPEC:36 Testable=true Section=PLT.8.5

xlix SPEC:37 Testable=true Section=PLT.8.6

l SPEC:38 Testable=true Section=PLT.8.6

li SPEC:39 Testable=false Section=PLT.8.6

lii SPEC:40 Testable=true Section=PLT.9.4

liii SPEC:41 Testable=false Section=PLT.10.1

liv SPEC:42 Testable=false Section=PLT.10.1

lv SPEC:43 Testable=true Section=PLT.10.3

lvi SPEC:44 Testable=true Section=PLT.10.3

lvii SPEC:45 Testable=true Section=PLT.10.3

lviii SPEC:46 Testable=true Section=PLT.10.3

lix SPEC:47 Testable=true Section=PLT.10.3(servlet spec)

lx SPEC:48 Testable=true Section=PLT.11.1.1

lxi SPEC:49 Testable= true Section=PLT.11.1.1

lxii SPEC:55 Testable=true Section=PLT.11.1.1

lxiii SPEC:56 Testable=true Section=PLT.11.1.1

lxiv SPEC:56 Testable=true Section=PLT.11.1.1

lxv SPEC:56 Testable=true Section=PLT.11.1.1

lxvi SPEC:50 Testable= true Section=PLT.11.1.1

lxvii SPEC:51 Testable=true Section=PLT.11.1.1

lxviii SPEC:52 Testable=true Section=PLT.11.1.1

lxix SPEC:52 Testable=true Section=PLT.11.1.1

lxx SPEC:53 Testable= true Section=PLT.11.1.1

lxxi SPEC:54 Testable=true Section=PLT.11.1.1

lxxii SPEC:55 Testable=true Section=PLT.11.1.1

lxxiii SPEC:56 Testable=true Section=PLT.11.1.1

lxxiv SPEC:53 Testable= true Section=PLT.11.1.1

lxxv SPEC:53 Testable= true Section=PLT.11.1.1

lxxvi SPEC:53 Testable= true Section=PLT.11.1.1

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 209

lxxvii SPEC:53 Testable= true Section=PLT.11.1.1

lxxviii SPEC:53 Testable= true Section=PLT.11.1.1

lxxix SPEC:53 Testable= true Section=PLT.11.1.1

lxxx SPEC:57 Testable=false Section=PLT.11.1.2

lxxxi SPEC:58 Testable= true Section=PLT.11.1.5

lxxxii SPEC:59 Testable=true Section=PLT.11.1.5

lxxxiii SPEC:60 Testable=true Section=PLT.11.1.6

lxxxiv SPEC:61 Testable=true Section=PLT.11.1.7

lxxxv SPEC:62 Testable=true Section=PLT.11.1.7

lxxxvi SPEC:63 Testable=true Section=PLT.11.2.1

lxxxvii SPEC:64 Testable=true Section=PLT.11.2.1

lxxxviii SPEC:73 Testable=true Section=PLT.12.2.3

lxxxix SPEC:86 Testable= true Section=PLT.12.3.4

xc SPEC:87 Testable= true Section=PLT.12.3.4

xci SPEC:88 Testable=true Section=PLT.12.3.4

xcii SPEC:72 Testable= true Section=PLT.12.2.3

xciii SPEC:67 Testable=true Section=PLT.12.2.2

xciv SPEC:68 Testable=true Section=PLT.12.2.2

xcv SPEC:68 Testable=true Section=PLT.12.2.2

xcvi SPEC:65 Testable=true Section=PLT.12.2.1

xcvii SPEC:66 Testable=true Section=PLT.12.2.1

xcviii SPEC:67 Testable=true Section=PLT.12.2.2

xcix SPEC:68 Testable=true Section=PLT.12.2.2

c SPEC:69 Testable= true Section=PLT.12.2.2

ci SPEC:70 Testable= true Section=PLT.12.2.2

cii SPEC:71 Testable=true Section=PLT.12.2.2

ciii SPEC:72 Testable= true Section=PLT.12.2.3

civ SPEC:73 Testable=true Section=PLT.12.2.3

cv SPEC:74 Testable= true Section=PLT.12.2.3

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 210

cvi SPEC:75 Testable= true Section=PLT.12.2.3

cvii SPEC:76 Testable=true Section=PLT.12.3.1

cviii SPEC:77 Testable= true Section=PLT.12.3.1

cix SPEC:78 Testable= true Section=PLT.12.3.1

cx SPEC:79 Testable= true Section=PLT.12.3.2

cxi SPEC:80 Testable=true Section=PLT.12.3.3

cxii SPEC:81 Testable=true Section=PLT.12.3.3

cxiii SPEC:82 Testable=true Section=PLT.12.3.3

cxiv SPEC:83 Testable=true Section=PLT.12.3.3

cxv SPEC:84 Testable=true Section=PLT.12.3.3

cxvi SPEC:85 Testable=true Section=PLT.12.3.3

cxvii SPEC:86 Testable= true Section=PLT.12.3.4

cxviii SPEC:87 Testable= true Section=PLT.12.3.4

cxix SPEC:88 Testable=true Section=PLT.12.3.4

cxx SPEC:89 Testable=false Section=PLT.12.3.5

cxxi SPEC:68 Testable=true Section=PLT.12.2.2

cxxii SPEC:68 Testable=true Section=PLT.12.2.2

cxxiii SPEC:68 Testable=true Section=PLT.12.2.2

cxxiv SPEC:68 Testable=true Section=PLT.12.2.2

cxxv SPEC:68 Testable=true Section=PLT.12.2.2

cxxvi SPEC:68 Testable=true Section=PLT.12.2.2

cxxvii SPEC:87 Testable= true Section=PLT.12.3.4

cxxviii SPEC:87 Testable= true Section=PLT.12.3.4

cxxix SPEC:87 Testable= true Section=PLT.12.3.4

cxxx SPEC:87 Testable= true Section=PLT.12.3.4

cxxxi SPEC:87 Testable= true Section=PLT.12.3.4

cxxxii SPEC:87 Testable= true Section=PLT.12.3.4

cxxxiii SPEC:87 Testable= true Section=PLT.12.3.4

cxxxiv SPEC:90 Testable= true Section=PLT.14.1

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 211

cxxxv SPEC:91 Testable= true Section=PLT.14.1

cxxxvi SPEC:92 Testable=true Section=PLT.14.1

cxxxvii SPEC:93 Testable=true Section=PLT.14.1

cxxxviii SPEC:94 Testable=true Section=PLT.14.1

cxxxix SPEC:95 Testable=true Section=PLT.14.1

cxl SPEC:96 Testable=true Section=PLT.14.1

cxli SPEC:97 Testable= true Section=PLT.14.1(change)

cxlii SPEC:98 Testable=true Section=PLT.14.1

cxliii SPEC:99 Testable=true Section=PLT.14.3

cxliv SPEC:100 Testable=true Section=PLT.14.3

cxlv SPEC:101 Testable=false Section=PLT.14.4

cxlvi SPEC:102 Testable=false Section=PLT.14.4

cxlvii SPEC:103 Testable=true Section=PLT.14.4

cxlviii SPEC:104 Testable=true Section=PLT.14.4

cxlix SPEC:105 Testable=true Section=PLT.14.4

cl SPEC:106 Testable=true Section=PLT.15.1

cli SPEC:107 Testable=true Section=PLT.15.1

clii SPEC:108 Testable=true Section=PLT.15.2

cliii SPEC:109 Testable=true Section=PLT.15.2

cliv SPEC:110 Testable=true Section=PLT.15.3

clv SPEC:111 Testable=true Section=PLT.15.3

clvi SPEC:112 Testable=true Section=PLT.15.3

clvii SPEC:113 Testable=true Section=PLT.15.4

clviii SPEC:114 Testable=true Section=PLT.15.4

clix SPEC:115 Testable=true Section=PLT.15.4

clx SPEC:116 Testable=true Section=PLT.15.4

clxi SPEC:117 Testable=true Section=PLT.15.4.1

clxii SPEC:118 Testable=true Section=PLT.15.4.1

clxiii SPEC:119 Testable=true Section=PLT.15.4.1

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 212

clxiv SPEC:119 Testable=true Section=PLT.15.4.1

clxv SPEC:120 Testable=true Section=PLT.15.8(servlet spec)

clxvi SPEC:121 Testable=true Section=PLT.16.1

clxvii SPEC:122 Testable=true Section=PLT.16.1

clxviii SPEC:123 Testable= true Section=PLT.16.1.1

clxix SPEC:124 Testable=true Section=PLT.16.2

clxx SPEC:124 Testable=true Section=PLT.16.2

clxxi SPEC:125 Testable=true Section=PLT.16.2

clxxii SPEC:126 Testable=true Section=PLT.16.3

clxxiii SPEC:127 Testable=true Section=PLT.16.3.1

clxxiv SPEC:128 Testable=true Section=PLT.16.3.2

clxxv SPEC:129 Testable=true Section=PLT.16.3.3

clxxvi SPEC:130 Testable=true Section=PLT.16.3.3

clxxvii SPEC:131 Testable=true Section= PLT.16.3.3

clxxviii SPEC:132 Testable=true Section=PLT.16.3.3

clxxix SPEC:133 Testable=true Section=PLT.16.3.3

clxxx SPEC:134 Testable=true Section=PLT.16.3.3

clxxxi SPEC:135 Testable=true Section= PLT.16.3.3

clxxxii SPEC:136 Testable=true Section= PLT.16.3.3

clxxxiii SPEC:137 Testable=true Section= PLT.16.3.3

clxxxiv SPEC:138 Testable=true Section= PLT.16.3.3

clxxxv SPEC:139 Testable=true Section= PLT.16.3.3

clxxxvi SPEC:140 Testable=false(impl) Section= PLT.16.3.3

clxxxvii SPEC:141 Testable=true Section= PLT.16.3.3

clxxxviii SPEC:129 Testable=true Section=PLT.16.3.3

clxxxix SPEC:130 Testable=true Section=PLT.16.3.3

cxc SPEC:131 Testable=true Section= PLT.16.3.3

cxci SPEC:131 Testable=true Section= PLT.16.3.3

cxcii SPEC:132 Testable=true Section=PLT.16.3.3

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 213

cxciii SPEC:135 Testable=true Section= PLT.16.3.3

cxciv SPEC:136 Testable=true Section= PLT.16.3.3

cxcv SPEC:137 Testable=true Section= PLT.16.3.3

cxcvi SPEC:138 Testable=true Section= PLT.16.3.3

cxcvii SPEC:139 Testable=true Section= PLT.16.3.3

cxcviii SPEC:140 Testable=false(impl) Section= PLT.16.3.3

cxcix SPEC:141 Testable=true Section= PLT.16.3.3

cc SPEC:142 Testable=true Section=PLT.16.3.4

cci SPEC:143 Testable=true Section=PLT.16.3.4

ccii SPEC:143 Testable=true Section=PLT.16.3.4

cciii SPEC:48 Testable=true Section=PLT.11.1.1

cciv SPEC:48 Testable=true Section=PLT.11.1.1

ccv SPEC:48 Testable=true Section=PLT.11.1.1

ccvi SPEC:48 Testable=true Section=PLT.11.1.1

ccvii SPEC:48 Testable=true Section=PLT.11.1.1

ccviii SPEC:48 Testable=true Section=PLT.11.1.1

ccix SPEC:48 Testable=true Section=PLT.11.1.1

ccx SPEC:48 Testable=true Section=PLT.11.1.1

ccxi SPEC:48 Testable=true Section=PLT.11.1.1

ccxii SPEC:48 Testable=true Section=PLT.11.1.1

ccxiii SPEC:144 Testable=false(impl) Section=PLT.17.1

ccxiv SPEC:145 Testable=false(impl) Section=PLT.17.2

ccxv SPEC:146 Testable= false(impl) Section=PLT.17.2

ccxviSPEC:147 Testable= false Section= PLT.19.2

ccxvii SPEC:148 Testable= false Section= PLT.19.2

ccxviii SPEC:149 Testable=false Section= PLT.19.5

ccxix SPEC:150 Testable=true Section=PLT.19.5(servlet spec)

ccxx SPEC:151 Testable=true Section= PLT.20.2

ccxxi SPEC:152 Testable=true Section= PLT.20.2

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 214

ccxxii SPEC:153 Testable=true Section= PLT.20.2

ccxxiii SPEC:154 Testable=true Section= PLT.20.4

ccxxiv SPEC:155 Testable=true Section= PLT.20.4

ccxxv SPEC:156 Testable= true Section=PLT.22

ccxxvi SPEC:157 Testable=true Section= PLT.22.1

ccxxvii SPEC:158 Testable=false Section= PLT.22.1

ccxxviii SPEC:159 Testable=true Section= PLT.22.2

ccxxix SPEC:160 Testable=true Section= PLT.22.2

ccxxx SPEC:161 Testable=true Section= PLT.22.2

ccxxxi SPEC:162 Testable=true Section= PLT.22.2

ccxxxii SPEC:163 Testable=true Section= PLT.22.2

ccxxxiii SPEC:164 Testable=true Section= PLT.22.2

ccxxxiv SPEC:165 Testable=true Section= PLT.22.2

ccxxxv SPEC:166 Testable= true Section=PLT.22.2

ccxxxvi SPEC:167 Testable=false Section= PLT.22.2

ccxxxvii SPEC:168 Testable=true Section= PLT.22.2

ccxxxviii SPEC:169 Testable=true Section= PLT.22.2

ccxxxix SPEC:170 Testable=true Section= PLT.22.3

ccxl SPEC:171 Testable=true Section= PLT.22.3

ccxli SPEC:172 Testable=true Section= PLT.22.3

ccxlii SPEC:173 Testable=true Section= PLT.22.3

ccxliii SPEC:174 Testable=true Section= PLT.22.3

ccxliv SPEC:175 Testable= true Section=PLT.22.3

ccxlv SPEC:176 Testable=false Section= PLT.22.3

ccxlvi SPEC:168 Testable=true Section= PLT.22.2

ccxlvii SPEC:174 Testable=true Section= PLT.22.3

ccxlviii SPEC:174 Testable=true Section= PLT.22.3

ccxlix SPEC:174 Testable=true Section= PLT.22.3

ccl SPEC:175 Testable= true Section=PLT.22.3

JavaTM Portlet Specification, version 2.0 Early Draft 1 (2006-07-19) 215

ccli SPEC:176 Testable=false Section= PLT.22.3

cclii SPEC:177 Testable=true Section= PLT.22.4

ccliii SPEC:178 Testable=true Section= PLT.22.5

ccliv SPEC:179 Testable=false Section= PLT.22.5

cclv SPEC:178 Testable=true Section= PLT.22.5

cclvi SPEC:68 Testable=true Section=PLT.12.2.2

cclvii SPEC:68 Testable=true Section=PLT.12.2.2

	(JSR 286) Java TM Portlet Specification Version 2.0 Early Draft
	19 Jul 2006 Stefan Hepper, IBM Corporation
	Contents
	PLT.1 Preface
	PLT.2 Overview
	PLT.3 Relationship with the Servlet Specification
	PLT.4 Portlet Concepts
	PLT.5 The Portlet Interface and Additional Life Cycle Interfaces
	PLT.6 Portlet Config
	PLT.7 Portlet URLs
	PLT.8 Portlet Modes
	PLT.9 Window States
	PLT.10 Portlet Context
	PLT.11 Portlet Requests
	PLT.12 Portlet Responses
	PLT.13 Resource Serving
	PLT.14 Coordination between portlets
	PLT.15 Portal Context
	PLT.16 Portlet Preferences
	PLT.17 Sessions
	PLT.18 Dispatching Requests to Servlets and JSPs
	PLT.19 Portlet Filter
	PLT.20 User Information
	PLT.21 Caching
	PLT.22 Portlet Applications
	PLT.23 Security
	PLT.24 Packaging and Deployment Descriptor
	PLT.25 Portlet Tag Library
	PLT.26 Leveraging JAXB for Event and Shared Session payloads
	PLT.27 Technology Compatibility Kit Requirements
	PLT.A Custom Portlet Modes
	PLT.B Markup Fragments
	PLT.C CSS Style Definitions
	PLT.D User Information Attribute Names
	PLT.E TCK Assertions

	
	Sun Microsystems Title Page

