

 1

Content Repository for
Java™ Technology API 2.0

Specification
JCR 2.0 Specification
Java Specification Request (JSR) 283
10 August 2009

 2

1 PREFACE 6
1.1 Previous Versions 6
1.2 Coverage 6
1.3 Typographical Conventions 7
1.4 System Requirements 7
1.5 License 7
1.6 Acknowledgements 10

2 INTRODUCTION 12
3 REPOSITORY MODEL 13

3.1 Overview 13
3.2 Names 16
3.3 Identifiers 20
3.4 Paths 20
3.5 Namespace Mapping 27
3.6 Properties 29
3.7 Node Types 38
3.8 Referenceable Nodes 59
3.9 Shareable Nodes Model 61
3.10 Corresponding Nodes 64
3.11 System Node 66
3.12 Unfiled Content 67
3.13 Versioning Model 67

4 CONNECTING 83
4.1 Repository Object 83
4.2 Login 84
4.3 Impersonate 85
4.4 Session 85
4.5 Workspace 86

5 READING 88
5.1 Direct Access 88
5.2 Traversal Access 90
5.3 Query Access 92
5.4 Relationship among Access Modes 92
5.5 Effect of Access Denial on Read 92
5.6 Item Information 93
5.7 Node Identifier 94
5.8 Node Index 94
5.9 Iterators 94
5.10 Reading Properties 95
5.11 Namespace Mapping 99

6 QUERY 100
6.1 Optional Joins 100
6.2 Introduction to the Abstract Query Model 101
6.3 Equality and Comparison 102
6.4 Query Validity 102
6.5 Search Scope 103
6.6 Notations 103
6.7 Abstract Query Model and Language Bindings 105
6.8 QueryManager 135
6.9 Query Object 135
6.10 Literal Values 138
6.11 QueryResult 138
6.12 Query Scope 140

 3

7 EXPORT 142
7.1 Exporting a Subgraph 142
7.2 System View 142
7.3 Document View 144
7.4 Escaping of Names 146
7.5 Escaping of Values 147
7.6 Export API 148
7.7 Export Scope 149
7.8 Encoding 149

8 NODE TYPE DISCOVERY 150
8.1 NodeTypeManager Object 150
8.2 NodeType Object 150
8.3 ItemDefinition Object 152
8.4 PropertyDefinition Object 153
8.5 NodeDefinition Object 154
8.6 Node Type Information for Existing Nodes 155

9 PERMISSIONS AND CAPABILITIES 157
9.1 Permissions 157
9.2 Capabilities 158

10 WRITING 159
10.1 Types of Write Methods 159
10.2 Core Write Methods 161
10.3 Session and Workspace Objects 161
10.4 Adding Nodes and Setting Properties 163
10.5 Selecting the Applicable Item Definition 166
10.6 Moving Nodes 166
10.7 Copying Nodes 167
10.8 Cloning and Updating Nodes 168
10.9 Removing Nodes and Properties 169
10.10 Node Type Assignment 170
10.11 Saving 172
10.12 Namespace Registration 175

11 IMPORT 177
11.1 Importing Document View 177
11.2 Import System View 178
11.3 Respecting Property Semantics 179
11.4 Determining Node Types 179
11.5 Determining Property Types 179
11.6 Event-Based Import Methods 180
11.7 Stream-Based Import Methods 181
11.8 Identifier Handling 181
11.9 Importing jcr:root 182

12 OBSERVATION 184
12.1 Event Model 184
12.2 Scope of Event Reporting 184
12.3 The Event Object 185
12.4 Event Bundling 187
12.5 Asynchronous Observation 187
12.6 Journaled Observation 190
12.7 Importing Content 191
12.8 Exceptions 191

13 WORKSPACE MANAGEMENT 192
13.1 Creation and Deletion of Workspaces 192

 4

14 SHAREABLE NODES 193
14.1 Creation of Shared Nodes 193
14.2 Shared Set 193
14.3 Removing Shared Nodes 194
14.4 Transient Layer 194
14.5 Copy 194
14.6 Share Cycles 195
14.7 Export 195
14.8 Import 195
14.9 Observation 195
14.10 Locking 195
14.11 Node Type Constraints 195
14.12 Versioning 196
14.13 Restore 196
14.14 IsSame 196
14.15 RemoveMixin 196
14.16 Query 197

15 VERSIONING 198
15.1 Creating a Versionable Node 198
15.2 Check-In: Creating a Version 202
15.3 Check-Out 205
15.4 Version Labels 206
15.5 Searching Version Histories 208
15.6 Retrieving Version Storage Nodes 208
15.7 Restoring a Version 208
15.8 Removing a Version 212
15.9 Merge 212
15.10 Serialization of Version Storage 217
15.11 Versioning within a Transaction 217
15.12 Activities 217
15.13 Configurations and Baselines 221

16 ACCESS CONTROL MANAGEMENT 225
16.1 Access Control Manager 225
16.2 Privilege Discovery 225
16.3 Access Control Policies 229
16.4 Named Access Control Policies 232
16.5 Access Control Lists 233
16.6 Privileges Permissions and Capabilities 234

17 LOCKING 236
17.1 Lockable 236
17.2 Shallow and Deep Locks 236
17.3 Lock Owner 236
17.4 Placing and Removing a Lock 237
17.5 Lock Token 238
17.6 Session-Scoped and Open-Scoped Locks 238
17.7 Effect of a Lock 238
17.8 Timing Out 239
17.9 Locks and Persistence 239
17.10 Locks and Transactions 239
17.11 LockManager Object 240
17.12 Lock Object 243
17.13 LockException 244

18 LIFECYCLE MANAGEMENT 245
18.1 mix:lifecycle 245
18.2 Node Methods 245

 5

19 NODE TYPE MANAGEMENT 246
19.1 NodeTypeDefinition 246
19.2 NodeTypeManager 246
19.3 Node Type Registration Restrictions 248
19.4 Templates 248

20 RETENTION AND HOLD 250
20.1 Retention Manager 250
20.2 Placing a Hold 250
20.3 Effect of a Hold 251
20.4 Getting the Holds present on a Node 251
20.5 Removing a Hold 251
20.6 Hold Object 251
20.7 Setting a Retention Policy 251
20.8 Getting a Retention Policy 251
20.9 Effect of a Retention Policy 251
20.10 RetentionPolicy object 252
20.11 Removing a Retention Policy 252

21 TRANSACTIONS 253
21.1 Container Managed Transactions: Sample Request Flow 254
21.2 User Managed Transactions: Sample Code 254
21.3 Save vs. Commit 255
21.4 Single Session Across Multiple Transactions 255

22 SAME-NAME SIBLINGS 257
22.1 Scope of Same-Name Siblings 257
22.2 Addressing Same-Name Siblings by Path 257
22.3 Reading and Writing Same-Name Siblings 258
22.4 Properties Cannot Have Same-Name Siblings 259
22.5 Effect of Access Denial on Read of Same-Name Siblings 259

23 ORDERABLE CHILD NODES 260
23.1 Scope of Orderable Child Nodes 260
23.2 Ordering Child Nodes 260
23.3 Adding a New Child Node 261
23.4 Orderable Same-Name Siblings 261
23.5 Non-orderable Child Nodes 261
23.6 Properties are Never Orderable 261

24 REPOSITORY COMPLIANCE 262
24.1 Definition of Support 262
24.2 Repository Descriptors 262
24.3 Node Type-Related Features 268
24.4 Implementation Issues 269

25 APPENDIX 270
25.1 Treatment of Identifiers 270
25.2 Compact Node Type Definition Notation 271

 6

1 Preface
The Content Repository API for Java™ Technology Specification, Version 2.0 (JCR
2.0 Specification) consists of a normative part and a non-normative part.

The normative part consists of:

• This document, excluding the appendix.

• The source code of javax.jcr and its subpackages.

• The Javadoc reference.

In case of a conflict this document takes precedence over the source code and
the source code takes precedence over the Javadoc.

The non-normative part consists of:

• The appendix of this document.

• The jar file of javax.jcr and its subpackages.

The JCR 2.0 Specification was created and released through the Java Community
Process (JCP) under Java Specification Request 283 (JSR 283).

1.1 Previous Versions
The Content Repository for Java™ Technology API Specification, Version 1.0 (JCR
1.0 Specification) was created and released through the Java Community Process
(JCP) under Java Specification Request 170 (JSR 170).

1.2 Coverage
This document describes the abstract repository model and Java API of JCR. The
API is described from a high-level, functional perspective. Consult the
accompanying Javadoc for full information on signature variants and exceptions.

1.2.1 Classes and Interfaces

Unless otherwise indicated, all Java classes and interfaces mentioned are in the
package javax.jcr and its subpackages. Non-JCR classes mentioned are always
fully qualified. The only exception is java.lang.String, which is used throughout
and written simply as String.

1.2.2 Null Parameters

When describing JCR API methods, this specification and the Javadoc assume that
all parameters passed are non-null, unless otherwise stated. If null is passed as
parameter and its behavior is not explicitly described in this specification or in the
Javadoc, then the behavior of the method in that case is implementation-specific.

 7

1.3 Typographical Conventions
A monospaced font is used for JCR names and paths, and all instances of
machine-readable text (Java code, XML, grammars, JCR-SQL2 examples, URIs,
etc.).

1.3.1 String Literals in Syntactic Grammars

Formal grammars are used at various places in the specification to define the
syntax of string-based entities such as names, paths, search languages and other
notations.

When a string literal appears as a terminal symbol within a grammar, each
character literal in that string corresponds to exactly one Unicode code point.

The intended code point of such a character literal must be determined only by
reference to the Unicode Basic Latin code chart1 and no other part of the Unicode
character set.

Any code point outside the Basic Latin set cannot be the intended code point of
such a character literal, even if the grapheme of the code point superficially
resembles that of the character literal.

For example, in the following production (excerpted from §3.2.2 Local Names).

InvalidChar ::= '/' | ':' | '[' | ']' | '|' | '*'

The code points indicated by the character literals are, respectively, U+002F (“/”),
U+003A (“:”), U+005B (“[“), U+005D (“]”), U+007C (“|”) and U+002A (“*”).

1.4 System Requirements
The JCR 2.0 requires Java Runtime Environment (JRE) 1.4 or greater.

1.5 License
Day Management AG (“Licensor”) is willing to license this specification to you
ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED
IN THIS LICENSE AGREEMENT (“Agreement”). Please read the terms and
conditions of this Agreement carefully.

Content Repository for Java Technology API 2.0 Specification (“Specification”)
Status: FCS
Release: 10 August 2009

Copyright 2009 Day Management AG
Barfuesserplatz 6, 4001 Basel, Switzerland.
All rights reserved.

1 See http://unicode.org/charts/PDF/U0000.pdf.

 8

NOTICE; LIMITED LICENSE GRANTS

1. License for Purposes of Evaluation and Developing Applications. Licensor
hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under Licensor's applicable
intellectual property rights to view, download, use and reproduce the
Specification only for the purpose of internal evaluation. This includes developing
applications intended to run on an implementation of the Specification provided
that such applications do not themselves implement any portion(s) of the
Specification.

2. License for the Distribution of Compliant Implementations. Licensor also grants
you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any applicable
copyrights or, subject to the provisions of subsection 4 below, patent rights it
may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification
including all its required interfaces and functionality; (b) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public or
protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (c) passes the Technology Compatibility
Kit (including satisfying the requirements of the applicable TCK Users Guide) for
such Specification (“Compliant Implementation”). In addition, the foregoing
license is expressly conditioned on your not acting outside its scope. No license is
granted hereunder for any other purpose (including, for example, modifying the
Specification, other than to the extent of your fair use rights, or distributing the
Specification to third parties).

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular “pass through” requirements in any
license You grant concerning the use of your Independent Implementation or
products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass
through to your licensees any licenses under Licensor's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning
their implementation's compliance with the Specification.

4. Reciprocity Concerning Patent Licenses. With respect to any patent claims
covered by the license granted under subparagraph 2 above that would be
infringed by all technically feasible implementations of the Specification, such
license is conditioned upon your offering on fair, reasonable and non-
discriminatory terms, to any party seeking it from You, a perpetual, non-
exclusive, non-transferable, worldwide license under Your patent rights that are
or would be infringed by all technically feasible implementations of the
Specification to develop, distribute and use a Compliant Implementation.

5. Definitions. For the purposes of this Agreement: “Independent
Implementation” shall mean an implementation of the Specification that neither
derives from any of Licensor's source code or binary code materials nor, except

 9

with an appropriate and separate license from Licensor, includes any of Licensor's
source code or binary code materials; “Licensor Name Space” shall mean the
public class or interface declarations whose names begin with “java”, “javax”,
“javax.jcr” or their equivalents in any subsequent naming convention adopted by
Licensor through the Java Community Process, or any recognized successors or
replacements thereof; and “Technology Compatibility Kit” or “TCK” shall mean the
test suite and accompanying TCK User's Guide provided by Licensor which
corresponds to the particular version of the Specification being tested.

6. Termination. This Agreement will terminate immediately without notice from
Licensor if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

7. Trademarks. No right, title, or interest in or to any trademarks, service marks,
or trade names of Licensor is granted hereunder. Java is a registered trademark
of Sun Microsystems, Inc. in the United States and other countries.

8. Disclaimer of Warranties. The Specification is provided “AS IS”. LICENSOR
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any
product.

The Specification could include technical inaccuracies or typographical errors.
Changes are periodically added to the information therein; these changes will be
incorporated into new versions of the Specification, if any. Licensor may make
improvements and/or changes to the product(s) and/or the program(s) described
in the Specification at any time. Any use of such changes in the Specification will
be governed by the then-current license for the applicable version of the
Specification.

9. Limitation of Liability. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL LICENSOR BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO
ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

10. Report. If you provide Licensor with any comments or suggestions in
connection with your use of the Specification (“Feedback”), you hereby: (i) agree
that such Feedback is provided on a non-proprietary and non-confidential basis,
and (ii) grant Licensor a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for

 10

any purpose related to the Specification and future versions, implementations,
and test suites thereof.

1.6 Acknowledgements
The following people and organizations have contributed to this specification:

David Nuescheler (Specification Lead)

Peeter Piegaze (Principal Author)

Razmik Abnous

Tim Anderson

Gordon Bell

Tobias Bocanegra

Al Brown

Dave Caruana

Geoffrey Clemm

David Choy

Jeff Collins

Cornelia Davis

Chenggang Duan

Roy Fielding

Xaver Fischer

Gary Gershon

Stefan Guggisberg

Florent Guillaume

Berry van Halderen

Rich Howarth

Jens Huebel

Volker John

Alison Macmillan

Ryan McVeigh

Stefano Mazzocchi

James Myers

John Newton

James Owen

Franz Pfeifroth

David Pitfield

Nicolas Pombourcq

Corprew Reed

Julian Reschke

Marcel Reutegger

Celso Rodriguez

Steve Roth

Angela Schreiber

Victor Spivak

Paul Taylor

David B. Victor

Dan Whelan

Kevin Wiggen

Jukka Zitting

Alfresco

Apache Software Foundation

BEA

Day Software

Documentum

EMC

FileNet

Fujitsu

Greenbytes

Hippo

Hummingbird

IBM

Imerge

Intalio

 11

Mobius

Nuxeo

Opentext

Oracle

Pacific Northwest National Laboratory

Saperion

Vignette

Xythos

 12

2 Introduction
The JCR specification defines an abstract model and a Java API for data storage
and related services commonly used by content-oriented applications. The target
domain encompasses not only traditional content management systems but,
more broadly, any application that must handle both unstructured digital assets
and structured or semi-structured information.

The repository model enables efficient access to both large binary objects and
finely-structured hierarchical data through a simple, generic API and a robust and
extensible object typing system. Additionally, many features that are traditionally
custom-built on top of RDBMSs and file systems have been incorporated into the
repository itself. These include support for query, access control, versioning,
locking and observation. Standardized support for these services further enables
applications that might not normally have access to such advanced features to
take advantage of them, since they are built-in at the infrastructure level.

 13

3 Repository Model
This section describes the objects, types and structures that compose a JCR
repository. The description is language-neutral and focuses on the static aspects
of the data model. Discussion of the behavioral aspects of the repository, and in
particular the Java API for performing operations on the model, is found in
subsequent sections. The full repository model is described here, though an
implementation may support only a subset of this model, in accordance with
§24 Repository Compliance.

3.1 Overview

3.1.1 Persistent Workspaces

A JCR repository is composed of one or more persistent workspaces, each
consisting of a directed acyclic graph of items where the edges represent the
parent-child relation.

Each persistent workspace is identified by a unique name within the repository,
which is a string.

3.1.2 Items

An item is either a node or a property. A node can have zero or more child items.
A property cannot have child items but can hold zero or more values.

The nodes of a workspace form the structure of the stored data while the actual
content is stored in the values of the properties.

Each workspace contains at least one item, the root node. The root node is the
only item in the workspace without a parent node; all other items have at least
one parent.

3.1.2.1 Shared Nodes

In the simplest case, a workspace is a tree of items. However, strictly speaking,
the more general term graph should be used to cover those cases where a
repository supports the optional shareable nodes feature, which allows an item to
have more than one parent (see §3.9 Shareable Nodes Model).

3.1.3 Names

The name of the root node of a workspace is always ““ (the empty string). Every
other item in a workspace has a name, which must be a JCR name (see §3.2
Names).

3.1.3.1 Same-Name Siblings

In the simplest case, every child item of a given parent has a unique name.
However, child nodes with identical names can only occur if a repository supports
same-name siblings (see §22 Same-Name Siblings). Additionally, some
repositories may support a node and sibling property having the same name (see

 14

§5.1.8 Node and Property with Same Name). However, two sibling properties can
never have the same name.

To distinguish sibling nodes with the same name an integer index, starting at 1,
is used. A node with no same-name siblings has an implicit index of 1 and a node
name without an index is understood to have an index of 1.

3.1.4 Paths

The location of an item in the workspace graph can be described by the path from
the root node to that item. The path consists of the name (and index in cases of
same-name siblings) of each interceding node in order from root to target item,
much like a file system path. Relative paths can also be used to describe the
location of one item with respect to another (see §3.4 Paths).

3.1.5 Identifiers

In addition to a path, every node also has an identifier. In some implementations,
the identifier may be independent of the path and provide an identity to the node
that is stable across moves within the workspace. In simpler repositories the
identifier may be implemented as a reflection of the path and therefore not
provide any additional semantics (see §3.3 Identifiers).

3.1.6 Property Types

Properties can be either single or multi-valued. Each value has one of the 12
possible types (see §3.6 Properties). These types include familiar data storage
types such as strings, numbers, booleans, binaries and dates, as well as types
that hold pointers to other nodes in the workspace.

 15

3.1.6.1 Repository Diagram

The above diagram depicts a repository R with workspaces W0, W1 and W2. The
item graph of W1 contains a root node with child nodes A, B and C. A has a
property D of type STRING and a child node E, which in turn has a property I of
type BINARY. B has the properties F (a LONG) and G (a BOOLEAN). C has a property
H of type DOUBLE.

3.1.7 Node Types

Every node has a type. A node’s type The names, types and other attributes of its
child items. Node types can be used to define complex storage objects consisting
of multiple subnodes and properties, possibly many layers deep.

3.1.8 Sessions

A user connects to a repository by passing a set of credentials and the name of
the workspace that the user wishes to access. The repository returns a session
which binds the user to the requested persistent workspace with a level of
authorization determined by that user's credentials. A session is always bound to
exactly one persistent workspace, though a single persistent workspace may be
bound to multiple sessions.

3.1.8.1 User

A user is any agent bound to a session. This may be a human user, an external
software process, or anything else that holds and controls the session.

 16

3.1.8.2 Current Session and Workspace

Through a session, the user can access, read and write the nodes and properties
of the bound workspace, to the extent allowed by that user's authorization and
the capabilities of the repository. Any object acquired, directly, or indirectly
through a chain of interceding objects, from a particular session, is said to be
within the scope of that session and any method called on such object is also
within the scope of the same session.

In the context of discussing a particular object or method call, the session within
whose scope that object or method call lies is referred to as the current session,
and the workspace to which that session is bound is referred to as the current
workspace.

3.2 Names
A JCR name is an ordered pair of strings:

(N, L)

where N is a JCR namespace and L is a JCR local name.

3.2.1 Namespaces

A JCR namespace is either the empty string or a Universal Resource Identifier2.

Namespace ::= EmptyString | Uri

EmptyString ::= /* The empty string */

Uri ::= /* A URI, as defined in Section 3 in
 http://tools.ietf.org/html/rfc3986#section-3 */

3.2.2 Local Names

A JCR local name is a string that conforms to the grammar below.

LocalName ::= ValidString – SelfOrParent
 /* Any ValidString except SelfOrParent */

SelfOrParent ::= '.' | '..'

ValidString ::= ValidChar {ValidChar}

ValidChar ::= XmlChar – InvalidChar
 /* Any XmlChar except InvalidChar */

InvalidChar ::= '/' | ':' | '[' | ']' | '|' | '*'

XmlChar ::= /* Any character that matches the Char production
 at http://www.w3.org/TR/xml/#NT-Char */

2 See http://tools.ietf.org/html/rfc3986#section-3.

 17

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpretation of string literals in this grammar */

3.2.3 Use of JCR Names

JCR names are used to name items, node types and other entities throughout the
repository.

3.2.3.1 Item Names

Every item has one JCR name. If the item has more than one parent it has the
same name relative to each, though in most cases an item will have only one
parent (see §3.9 Shareable Nodes Model).

3.2.3.2 Paths

JCR names are combined into JCR paths which indicate the location of an item
within a workspace either in relation to the root node or relative to another item
in the workspace (see §4.5 Workspace).

3.2.3.3 NAME and PATH Values

JCR names appear as the values of NAME properties (see §3.6.1.9 NAME) and
within the values of PATH properties (see §3.6.1.10 PATH).

3.2.3.4 Node Types

JCR names are used to name node types (see §3.7 Node Types).

3.2.3.5 Constants

JCR names are used to identify other types of entities such as privileges, access
control policies (see §16 Access Control Management), retention policies, holds
(see §20 Retention and Hold), activities (see §15.12 Activities) and configurations
(see §15.13 Configurations and Baselines).

3.2.4 Naming Restrictions

This definition of JCR name represents the least restrictive set of constraints
permitted for the naming of items and other entities. A repository may further
restrict the names of entities to a subset of JCR names and in most cases is
encouraged to do so.

In a read-only repository, any such restrictions will stem trivially from the fact
that the repository controls the set of entity names exposed. A writable repository
may enforce any implementation-specific constraint by causing an exception to be
thrown on an invalid JCR write method call.

The characters declared invalid within a local name (“/”, “:”, “[“, “]”, “|”, “*”)
represent only those characters which are used as metacharacters in JCR names,
paths and name-matching patterns (see §5.2.2 Iterating Over Child Items).
These restrictions are not necessarily sufficient to enforce best practices in the
creation of JCR names. In particular, the minimal grammar defined here permits

 18

JCR names with leading and trailing whitespace as well as characters which may
appear superficially identical while representing different code points, creating a
potential security issue.

Though this specification does not attempt to define good naming practice,
implementers are discouraged from permitting names with these and other
problematic characteristics when possible. However, there may be cases where
the latitude provided by the minimal grammar is useful, for example, when a JCR
implementation is built on top of an existing data store with an unconventional
naming scheme.

3.2.5 Lexical Form of JCR Names

While a JCR name is an ordered pair of strings, (N, L), it is not itself a string.
There are, however, two lexical forms (string serializations) that a JCR name can
take when used in the JCR API: the expanded form and the qualified form. A JCR
name that is converted to either lexical form is said to have been lexicalized.

3.2.5.1 Expanded Form

The expanded form of a JCR name is defined as:

ExpandedName ::= '{' Namespace '}' LocalName

Namespace ::= /* see §3.2.1 Namespaces */

LocalName ::= /* see §3.2.2 Local Names */

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpretation of string literals in this grammar */

3.2.5.2 Qualified Form

The qualified form of a JCR name is defined as:

QualifiedName ::= [Prefix ':'] LocalName

Prefix ::= /* Any string that matches the NCName production in
 http://www.w3.org/TR/REC-xml-names */

LocalName ::= /* see §3.2.2 Local Names */

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpretation of string literals in this grammar */

A qualified name is only interpretable in the context of a namespace mapping,
which provides a one-to-one mapping between prefixes and namespaces.

When a qualified name Q is passed to a JCR method within the scope of the
Session S then the JCR name J represented by Q is (N, L) where N is the
namespace corresponding to P in the local namespace mapping of S. See §3.4
Namespace Mapping.

When a qualified name occurs in a string serialization of repository content or a
node type definition, the namespace mapping is either provided within the

 19

serialized form (see, for example, §7 Export and §25.2 Compact Node Type
Definition Notation) or implied by the context of use.

3.2.5.3 Qualified Form with the Empty Namespace

The qualified form of a name (““, L) (i.e., with the empty string as namespace) is
not written as

:L

but simply as

L

The former is not a valid qualified JCR name.

3.2.5.4 Exposing Non-JCR Names

An implementation that exposes a non-JCR data store through the JCR API may
wish to expose names containing JCR-illegal characters by using a substitution or
escaping scheme. If so, it must do so by substituting private-use Unicode
characters for the JCR-illegal characters according to the following mapping.

JCR-Illegal character Substitution character

* (U+002A) U+F02A

/ (U+002F) U+F02F

: (U+003A) U+F03A

[(U+005B) U+F05B

] (U+005D) U+F05D

| (U+007C) U+F07C

The mapping must be used bi-directionally. When the repository wishes to return
the name of an entity whose native name contains a JCR-illegal character, that
character must be replaced with its corresponding substitution character in the
returned string.

Conversely, when a name containing one of the substitution characters is passed
to the repository through the JCR API, that character must be replaced with its
corresponding non-JCR character before further processing is done within the
native layer, whether writing the name to storage or using the name to access an
entity.

In the unlikely event that one of the substitution characters appears literally in a
native name, that character will be returned unchanged through the JCR API.

In repositories that do not expose non-JCR names and therefore do not need to
use the substitution scheme, any private-use substitution character passed to the

 20

API is stored and returned unchanged. However, such use of a private-use
substitution character within a JCR name is strongly discouraged.

3.2.6 Use of Qualified and Expanded Names

When a JCR name is passed as an argument to a JCR method it may be in either
expanded or qualified form. When a repository returns a JCR name it must be in
qualified form. The qualified form of a name depends upon the prevailing local
namespace mapping of the current session (see §3.5 Namespace Mapping).

3.2.7 Equality of Names

Two JCR names (N1, L1) and (N2, L2) are equal if and only if N1 is equal to N2 and
L1 is equal to L2, according to the definition of string equality used in the
String.compareTo method. This definition applies both in the general context of
using an API method that takes or returns a JCR name and in the specific case of
comparing values of type NAME (see §3.6.5.8 NAME).

3.3 Identifiers
Every node has an identifier. An identifier is a string whose format is not defined
by this specification but which adheres to the following constraints:

• The identifier of a non-shared node is unique within a workspace. The
identifier of a shared node is common to each member of that node's
share-set (see §3.9 Shareable Nodes Model).

• An identifier must be the most stable one available to the implementation.
For example, in some implementations this might be nothing more than
the node path itself. Other implementations might support node identifiers
that are partly or entirely independent of the path.

3.3.1 Identifier Assignment

The identifier must be assigned at the latest when the node is first persisted,
though it may be assigned earlier, when the node is first created in transient
storage in the session (see §10.4.1 Adding a Node).

3.3.2 Referenceable Identifiers

In implementations that support referenceable nodes, these nodes have more
stringent requirements on their identifiers (see §3.8 Referenceable Nodes).

3.3.3 Correspondence by Identifier

Identifiers are also used for node correspondence across multiple workspaces
(see §3.10 Corresponding Nodes).

3.4 Paths
A JCR path P,

P = (S0, S1, ..., Sn),

 21

is an ordered list with at least one element, where each element Si, for 0 ≤ i ≤ n,
is a path segment.

3.4.1 Path Segment

A path segment is one of:

• a name segment, (J, I), where J is a JCR name and
I is an integer index (I ≥ 1).

• an identifier segment, U, where U is a JCR identifier.

• the root segment.

• the self segment.

• the parent segment.

The root, self and parent segments are logical constants distinct from each other
and from all name segments.

3.4.1.1 Position of Segments in a Path

Name, self and parent segments can occur at any position in a path.

A root segment can occur only as the first segment of a path.

An identifier segment can occur only as the first and sole segment in a path. No
other segments may follow an identifier segment.

3.4.2 Path Resolution

The successive path segments of JCR path P = (S0, S1, ..., Sn) define a route
through workspace W to a target item as follows:

• If S0 is the root segment then the path is absolute and the current item is
the root node of W.

• If S0 is an identifier segment U, then the path is absolute and the current
item is the node in W with the identifier U.

• Otherwise, the path is relative and the current item is determined by the
context of use.

• For each segment S in path P:

o If S is a self segment then the current item does not change.

o If S is a parent segment then the new current item is a parent of
the old current item (see §3.4.2.1 Parent Resolution).

o If S is a name segment then the new current item is the child of
the old current item identified by S (see §3.4.2.2 Child Resolution).

• Once all segments have been traversed, the current item is the target
item.

 22

3.4.2.1 Parent Resolution

In most cases an item will have only one parent, in such a case, parent resolution
is trivial. In repositories that support shareable nodes, a node may share its child
nodes and properties with other nodes. A child item of a shared node therefore
has more than one parent. In such a case the parent resolved depends upon the
deemed path of the item, which is an implementation-specific issue (see §3.9.5
Deemed Path). An attempt to resolve the parent of a workspace root node always
fails.

3.4.2.2 Child Resolution

Given a name segment S = (J, I), J is the name of the child item indicated by
that segment while I indicates the index of the item. The index is an integer
greater than or equal to 1 and is used to distinguish between sibling child nodes
with the same name. If there is only one child node with the name J then its
index is always 1. If there is more than one node with the name J then each has
a unique index (see §22 Same-Name Siblings).

The child item indicated by S is determined as follows:

• If the S is not the last segment of the path then, if a child node with name
J and index I exists, S resolves to that node. Otherwise, resolution fails.

• If S is the last segment of the path then,

o if S is constrained to resolve to a gettable node (as in the case of
Node.getNode) and a child node with name J and index I is
retrievable, S resolves to that node. Otherwise,

o if S is constrained to resolve to an addable node (as in the case of
Node.addNode) and a child node named J can be legally added and
I is equal to 1, then J is used as the name of the new node which, if
necessary, is given an appropriate index. Otherwise,

o if S is constrained to resolve to a gettable property (as in the case
of Node.getProperty) then, if a property with name J is
retrievable, and I is equal to 1, S resolves to that property.
Otherwise,

o if S is constrained to resolve to a settable property (as in the case
of Node.setProperty) then, if a property with name J or if a
property named J can be legally added, and I is equal to 1, S
resolves to that property. Otherwise,

o if S is constrained to resolve to a gettable item (as in the case of
Session.getItem) then if a node with name J and index I is
retrievable, S resolves to that node. Otherwise, if there exists a
property with name J and I is equal to 1, then S resolves to that
property.

o Otherwise, resolution fails.

 23

3.4.3 Lexical Forms

Given a JCR path P = (S0, S1, ..., Sn), its lexical form L can be constructed
according to the following algorithm, where = is the assignment operator, += is
the string append operator, or indicates an arbitrary choice between alternative
operations and nothing is the null operation.

L = ""
for each S in P
 if S is the root segment
 L += "/"
 else
 if S is an identifier segment U
 L += "[" + U + "]"
 else if S is a self segment
 L += "."
 else if S is a parent segment
 L += ".."
 else if S is a name segment (J, I)
 L += the qualified form of J
 or L += the expanded form of J //optional syntax
 if I > 1
 L += "[" + I + "]"
 else
 nothing
 or L += "[1]" //optional syntax
 end if
 end if
 if S is not the last segment of P
 L += "/"
 else
 nothing
 or L += "/" //optional syntax
 end if
 end if
end for

The resulting L is a lexical form of P. As indicated by the steps marked optional
syntax, a JCR path may have multiple equivalent lexical forms depending on the
use of qualified vs. expanded names, the optional [1] index indicator and the
optional trailing forward slash (“/”).

3.4.3.1 Standard Form

A string constructed without any of the optional syntax shown in the algorithm is
called the standard form of a JCR path. Such a lexical path has the following
characteristics:

• It consists of either one identifier segment or one or more name
segments.

• All name segments are in qualified form, none are in expanded form.

• No name segment has a [1] index.

• There is no trailing forward slash (“/”).

The following are examples of standard form lexical paths:

 24

• /

• /ex:document

• /ex:document/ex:paragraph[2]

• [f81d4fae-7dec-11d0-a765-00a0c91e6bf6]

3.4.3.2 Non-Standard Form

A string constructed with one or more optional steps is a non-standard form JCR
path. A non-standard form lexical path has at least one of the following features:

• One or more name segments are in expanded form.

• One or more name segments has a [1] index.

• The path has a trailing forward slash (“/”).

The following are examples of non-standard form lexical paths:

• /ex:document[1]

• /ex:document/

• /{http://example.com/ex}document/ex:paragraph[2]

3.4.3.3 Lexical Path Grammar

A JCR path in lexical form conforms to the following grammar

Path ::= AbsolutePath | RelativePath

AbsolutePath ::= '/' [RelativePath] | '[' Identifier ']'

RelativePath ::= [RelativePath '/'] PathSegment ['/']

PathSegment ::= ExpandedName [Index] |
 QualifiedName [Index] |
 SelfOrParent

Index ::= '[' Number ']'

Identifier ::= /* See §3.3 Identifiers */

Number ::= /* An integer > 0 */

ExpandedName ::= /* See §3.2.5.1 Expanded Form */

QualifiedName ::= /* See §3.2.5.2 Qualified Form */

SelfOrParent ::= /* see §3.2.2 Local Names */

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpretation of string literals in this grammar */

 25

3.4.3.4 Parsing Lexical Paths

When parsing a lexical path, the parser must distinguish between name segments
that are in expanded form and those that are in qualified form (see §3.2.5 Lexical
Form of JCR Names). When making this determination, the repository cannot
assume that every namespace URI encountered in an expanded name will be
registered within the repository.

An otherwise valid path containing an expanded name with an unregistered
namespace URI will always resolve into a valid internal representation of a path
(i.e., an ordered list of path segments, see §3.4 Paths). Any errors that arise
from passing such a path must therefore be as a result of further processing (not
merely parsing) that depends on the semantics of the path and the context of
use.

However, a path containing a qualified name with an unregistered prefix will not
resolve into a valid internal path representation. An attempt to pass such a path
will therefore fail at the parsing stage.

3.4.4 Absolute and Relative Paths

An abstract JCR path is either absolute or relative.

3.4.4.1 Absolute Path

An absolute JCR path is either root-based or identifier-based.

3.4.4.1.1 Root-Based Absolute Paths

A root-based absolute path begins with the root segment. Its lexical form
therefore begins with a forward slash, for example,

/A/B/C

3.4.4.1.2 Identifier-Based Absolute Paths

An identifier-based absolute path consists of a single identifier segment. Its
lexical form therefore consists of square brackets delimiting an identifier, for
example,

[f81d4fae-7dec-11d0-a765-00a0c91e6bf6]

3.4.4.2 Relative Path

A relative JCR path is one which begins with a segment that is neither a root
segment nor an identifier segment. Its lexical form therefore begins with either a
JCR name, .. or ., for example,

D/E/F

or

../E/F/G

 26

3.4.5 Normalized Paths

A JCR path is normalized by the following steps:

• All self segments are removed.

• All redundant parent segments are collapsed. A redundant parent segment
is one which can be removed by also removing a preceding name segment
while preserving the location indicated by the path. For example, the path
/A/B/C/../.. can be collapsed to /A. Note therefore, that if a normalized
path contains any parent segments, they must all precede the first name
segment.

• If the path is an identifier-based absolute path, it is replaced by a root-
based absolute path that picks out the same node in the workspace as the
identifier it replaces.

3.4.6 Passing Paths

When a JCR path is passed as an argument to a JCR method it may be
normalized or non-normalized and in standard or non-standard form.

3.4.7 Returning Paths

When a repository returns a JCR path it must be normalized (see §3.4.5
Normalized Paths), unless the repository is returning the value of a PATH
property, in which case the original, possibly non-normalized form of the path is
preserved and returned. In all cases the returned path must be in standard form
(see §3.4.3.1 Standard Form).

3.4.8 Equality of Paths

Two types of path equality are defined: segment equality and semantic equality.

3.4.8.1 Segment Equality

Two paths P1 and P2 are segment-equal if and only if:

• They contain the same number of segments.

• Each segment in P1 is equal to the segment at the same position in P2.

Two name segments are equal if and only if their JCR names are equal (see
§3.2.7 Equality of Names) and their integer indexes are equal.

Equality for identifier segments is as defined for identifiers in general, that is, by
standard Java String equality.

Equality for root, self and parent segments is simple type identity; every instance
of a root, parent or self segment is equal to every other instance of the same
type.

3.4.8.2 Semantic Equality

For two paths P1 and P2 semantic equality is defined as follows:

 27

• If P1 and P2 are normalized then they are semantically equal if and only if
they are segment-equal.

• If P1 and P2 are non-normalized then they are semantically equal if and
only if their normalized forms are semantically equal.

3.4.8.3 Application of Path Equality

When a JCR path is passed to a JCR API method that must resolve that path the
applicable definition of path equality is that of semantic equality. Semantic
equality of two paths means that, given identical contexts, the two paths will
resolve to the same item.

However, values of type PATH are not normalized upon storage or retrieval, so the
when comparing two such values, the applicable definition of equality is that of
segment equality. (see §3.6.5.9 PATH).

3.5 Namespace Mapping
For compactness and legibility in documentation, XML and Java code, JCR names
are usually expressed in qualified form.

The use of qualified form, however, depends upon a context that supplies a
mapping from prefix to namespace. In documentation this context is provided
either by convention or explicit statement. In XML serialization it is supplied by
xmlns attributes (see §7 Export) and in a running JCR repository is provided by
the local namespace mapping of each individual Session.

3.5.1 Namespace Registry

The local namespace mapping of a session is determined by the initial set of
mappings copied from the namespace registry and any session-local changes
made to that set.

The namespace registry is a single, persistent, repository-wide table that contains
the default namespace mappings. It may contain namespaces that are not used
in repository content, and there may be repository content with namespaces that
are not included in the registry. The namespace registry always contains at least
the following built-in mappings between prefix (on the left) and namespace (on
the right):

1. jcr = http://www.jcp.org/jcr/1.0
Reserved for items defined within built-in node types (see §3.7 Node Types).

2. nt = http://www.jcp.org/jcr/nt/1.0
Reserved for the names of built-in primary node types.

3. mix = http://www.jcp.org/jcr/mix/1.0
Reserved for the names of built-in mixin node types.

4. xml = http://www.w3.org/XML/1998/namespace
Reserved for reasons of compatibility with XML.

 28

5. (the empty string) = (the empty string)
The default namespace is the empty namespace.

3.5.1.1 Empty Prefix and Empty Namespace

The permanent default namespace in JCR is the empty string, also referred to as
the empty namespace. This permanence is reflected in the immutable default
namespace mapping in the namespace registry. By definition, the prefix in this
mapping is the empty string, also referred to as the empty prefix.

3.5.1.2 Additional Built-in Namespaces

A repository may provide additional built-in mappings other than those defined in
this section. All mappings must be one-to-one, meaning that for a given
namespace in the registry exactly one prefix is mapped to it, and for a given
prefix in the registry exactly one namespace is mapped to it.

3.5.2 Session-Local Mappings

A local set of namespace mappings is associated with each session. When a new
session is acquired, the mappings present in the persistent namespace registry
are copied to the local namespace mappings of that session. A user can then add
new mappings or change existing ones. The resulting mapping table applies only
within the scope of that session (see §5.11 Namespace Mapping).

If a JCR method returns a name from the repository with a namespace URI for
which no local mapping exists, a prefix is created automatically and a mapping
between that prefix and the namespace URI in question is added to the set of
local mappings. The new prefix must differ from those already present among the
set of local mappings. If a JCR method is passed a name or path containing a
prefix which does not exist in the local mapping an exception is thrown.

3.5.2.1 Effect of Session Namespace Mappings

All methods that take or return names or paths must use the current session (see
§3.1.8.2 Current Session and Workspace) namespace mappings to dynamically
interpret or produce those names or paths according to the current local
namespace mapping of the current session.

Though the precise mechanism of this behavior is an implementation detail, its
behavior must be equivalent to that of a system where names and paths are
stored internally in expanded form and converted dynamically to and from
qualified JCR names or paths as necessary.

3.5.3 Namespace Conventions

Names and paths determined by an application provider should be assigned
namespace URIs under the control of the provider organization. Because the
space of URIs is universally managed, this ensures that naming collisions will not
occur between applications from providers that observe this convention.

 29

3.6 Properties
All data stored within a JCR repository is ultimately stored as the values of
properties.

3.6.1 Property Types

Every property is of one of the following types: STRING, URI, BOOLEAN, LONG,
DOUBLE, DECIMAL, BINARY, DATE, NAME, PATH, WEAKREFERENCE or REFERENCE.

3.6.1.1 STRING

STRING properties store instances of java.lang.String.

3.6.1.2 URI

URI properties store instances of java.lang.String that conform to the syntax
of a URI-reference as defined in RFC 39863.

3.6.1.3 BOOLEAN

BOOLEAN properties store instances of the Java primitive type boolean.

3.6.1.4 LONG

LONG properties store instances of the Java primitive type long.

3.6.1.5 DOUBLE

DOUBLE properties store instances of the Java primitive type double.

3.6.1.6 DECIMAL

DECIMAL properties store instances of java.math.BigDecimal.

3.6.1.7 BINARY

BINARY properties store instances of javax.jcr.Binary (see §5.10.5 Binary
Object).

3.6.1.8 DATE

DATE properties store instances of java.util.Calendar. Note that an
implementation may not support DATE values that cannot be represented in the
ISO 8601-based notation defined in §3.6.4.3 From DATE To. In such cases an
attempt to set a property to such a value will throw a ValueFormatException.

3 See http://www.ietf.org/rfc/rfc3986.txt.

 30

3.6.1.9 NAME

NAME properties store instances of JCR names.

3.6.1.10 PATH

PATH properties store instances of JCR paths and serve as pointers to locations
within the workspace. PATH properties do not enforce referential integrity.

3.6.1.11 WEAKREFERENCE

WEAKREFERENCE properties serve as pointers to referenceable nodes by storing
their identifiers. WEAKREFERENCE properties do not enforce referential integrity
(see §3.8.2 Referential Integrity).

3.6.1.12 REFERENCE

REFERENCE properties serve as pointers to referenceable nodes by storing their
identifiers. REFERENCE properties do enforce referential integrity (see §3.8.2
Referential Integrity).

3.6.2 Undefined Type

The UNDEFINED keyword, while not specifying an actual type, may be supported
by some repositories as a valid property type attribute value in property
definitions within node types. In that context it indicates that the specified
property may be of any type. No actual existing property in the repository ever
has the type UNDEFINED.

3.6.3 Single and Multi-Value Properties

A property may be a single-value or a multi-value property.

A single-value property, if it exists, must have a value. There is no such thing as
a null value. A multi-value property can have zero or more values. Again there is
no such thing as a null value, however a multi-value property can be empty, just
as an array can be empty.

The values stored within a multi-valued property are all of the same type and are
ordered.

Whether a particular property is a multi-valued property is governed by the
property definition applicable to it, which is determined by the node type of the
property's parent node (see §3.7 Node Types).

Accessing the value of a property is done with Property.getValue which returns
a single Value object. Accessing the set of values of a multi-value property is
done through Property.getValues which returns a (possibly empty) array of
Value objects (see §5.10 Reading Properties).

3.6.4 Property Type Conversion

When the value of a property is read or written using a type different from that
declared for the property, the repository attempts a type conversion according to

 31

the following rules. Note that even in cases where the JCR type conversion is
defined in terms of standard JDK type conversion method, failure of conversion
must only ever cause a JCR ValueFormatException to be thrown and never any
exception defined in the JDK API.

3.6.4.1 From STRING To

BINARY: The string is encoded using UTF-8.

DATE: If the string is in the format described in §3.6.4.3 From DATE To, it is
converted directly, otherwise a ValueFormatException is thrown.

DOUBLE: The string is converted using java.lang.Double.valueOf(String).

DECIMAL: The string is converted using the constructor
java.math.BigDecimal(String).

LONG: The string is converted using java.lang.Long.valueOf(String).

BOOLEAN: The string is converted using java.lang.Boolean.valueOf(String).

NAME: If the string is a syntactically valid qualified JCR name with a registered
prefix, it is converted directly. If it is a syntactically valid expanded JCR name
with a registered namespace URI, it is returned in qualified form. If it is a
syntactically valid expanded JCR name with an unregistered namespace URI, a
prefix is created automatically, the mapping added to the local namespace
mappings (see §3.5.2 Session-Local Mappings), and the name is returned in
qualified form. Otherwise a ValueFormatException is thrown.

PATH: If the string is a valid JCR path then each name segment is converted as
per NAME conversion above, and all other segments are converted directly. If one
or more name conversions fails or if the string is not a valid path then a
ValueFormatException is thrown. The presence of an item in the current
workspace at that path is not required.

URI: If the string is a syntactically valid URI-reference, it is converted directly,
otherwise a ValueFormatException is thrown. The string is parsed as described
in RFC 3986. In particular, the first colon (“:”) encountered is interpreted as the
scheme delimiter and the string as a whole is assumed to already be in percent-
encoded form. This means that if a non-URI-legal character is encountered it is
not percent-encoded, but is instead regarded as an error and a
ValueFormatException is thrown.

REFERENCE or WEAKREFERENCE: If the string is a syntactically valid
identifier, according to the implementation, it is converted directly, otherwise a
ValueFormatException is thrown. The identifier is not required to be that of an
existing node in the current workspace.

3.6.4.2 From BINARY To

STRING: An attempt is made to interpret the stream as a UTF-8 encoded string.
If the string is not a legal UTF-8 byte sequence then the behavior is
implementation-specific.

 32

All Others: The binary stream is first converted to a string, as described above.
If this is successful, the resulting string is converted according to the appropriate
conversion as described in §3.6.4.1 From STRING To.

3.6.4.3 From DATE To

STRING: The date is converted to the following format:

sYYYY-MM-DDThh:mm:ss.sssTZD

where:

sYYYY
Four-digit year with optional leading positive (‘+’) or negative (‘-’) sign.
0000 , -0000 and +0000 all indicate the year 1 BCE. –YYYY where YYYY is
the number y indicates the year (y+1) BCE. The absence of a sign or the
presence of a positive sign indicates a year CE. For example, -0054 would
indicate the year 55 BCE, while +1969 and 1969 indicate the year 1969 CE.

MM
Two-digit month (01 = January, etc.)

DD
Two-digit day of month (01 through 31)

hh
Two digits of hour (00 through 23, or 24 if mm is 00 and ss.sss is 00.000)

mm
Two digits of minute (00 through 59)

ss.sss
Seconds, to three decimal places (00.000 through 59.999 or 60.999 in the
case of leap seconds)

TZD
Time zone designator (either Z for Zulu, i.e. UTC, or +hh:mm or -hh:mm,
i.e. an offset from UTC)

Note that the “T” separating the date from the time and the separators “-”and “:”
appear literally in the string.

This format is a subset of the format defined by ISO 8601:2004.

If the DATE value cannot be represented in this format a ValueFormatException
is thrown.

BINARY: The date is converted to a string, as described in §3.6.4.2 From
BINARY To, and this string is encoded in UTF-8.

DOUBLE: The date is converted to the number of milliseconds since 00:00 (UTC)
1 January 1970 (1970-01-01T00:00:00.000Z). If this number is out-of-range for
a double, a ValueFormatException is thrown.

 33

DECIMAL: The date is converted to the number of milliseconds since 00:00
(UTC) 1 January 1970 (1970-01-01T00:00:00.000Z).

LONG: The date is converted to the number of milliseconds since 00:00 (UTC) 1
January 1970 (1970-01-01T00:00:00.000Z). If this number is out-of-range for a
long, a ValueFormatException is thrown.

All Others: A ValueFormatException is thrown.

Since the string and number formats into which a DATE may be converted can
hold only a subset of the information potentially contained within a
java.util.Calendar, conversion from DATE to STRING, BINARY, DOUBLE,
DECIMAL or LONG may result in loss of information.

3.6.4.4 From DOUBLE To

STRING: The double is converted using java.lang.Double.toString().

BINARY: The double is converted to a string, as described in §3.6.4.2 From
BINARY To, and this string is encoded in UTF-8.

DECIMAL: The double is converted using the constructor
java.math.BigDecimal(double).

DATE: The double is coerced to a long using standard Java type coercion and
interpreted as the number of milliseconds since 00:00 (UTC) 1 January 1970
(1970-01-01T00:00:00.000Z). If the resulting value is out of range for a date, a
ValueFormatException is thrown.

LONG: Standard Java type coercion is used.

All Others: A ValueFormatException is thrown.

3.6.4.5 From DECIMAL To

STRING: The decimal is converted using java.math.BigDecimal.toString().

BINARY: The decimal is converted to a string, as described in §3.6.4.2 From
BINARY To, and this string is encoded in UTF-8.

DOUBLE: The decimal is converted using
java.math.BigDecimal.doubleValue().

DATE: The decimal is converted to a long and interpreted as the number of
milliseconds since 00:00 (UTC) 1 January 1970 (1970-01-01T00:00:00.000Z). If
the resulting value is out of range for a date, a ValueFormatException is thrown.

LONG: The decimal is converted using java.math.BigDecimal.longValue().

All Others: A ValueFormatException is thrown.

3.6.4.6 From LONG To

STRING: The long is converted using java.lang.Long.toString().

 34

BINARY: The long is converted to a string, as described in §3.6.4.2 From
BINARY To, and this string is encoded in UTF-8.

DECIMAL: The double is converted using the method
java.math.BigDecimal.valueOf(long).

DATE: The long is interpreted as the number of milliseconds since 00:00 (UTC) 1
January 1970 (1970-01-01T00:00:00.000Z). If the resulting value is out of range
for a date, a ValueFormatException is thrown.

DOUBLE: Standard Java type coercion is used.

All Others: A ValueFormatException is thrown.

3.6.4.7 From BOOLEAN To

STRING: The boolean is converted using java.lang.Boolean.toString().

BINARY: The boolean is converted to a string, as described in §3.6.4.2 From
BINARY To, and this string is encoded in UTF-8.

All Others: A ValueFormatException is thrown.

3.6.4.8 From NAME To

STRING: The name is converted to qualified form according to the current local
namespace mapping (see §3.2.5.2 Qualified Form).

BINARY: The name is converted to a string, as described in §3.6.4.2 From
BINARY To, and then encoded using UTF-8.

PATH: The name becomes a relative path of length one.

URI: The name becomes a URI-reference consisting of “./” followed by the name
in qualified form. For example, the name foo:bar becomes the URI-reference
./foo:bar. The addition of the leading “./” is done to ensure that a colon-
delimited prefix is not interpreted as a URI scheme name. If the name includes
characters that are illegal within a URI-reference (such as any non-ASCII
character), the UTF-8 byte representations of these characters are percent-
encoded, as described in RFC 39864.

All Others: A ValueFormatException is thrown.

3.6.4.9 From PATH To

STRING: Each path is converted to standard form according to the current local
namespace mapping (see §3.4.3.1 Standard Form).

4 See http://www.ietf.org/rfc/rfc3986.txt.

 35

BINARY: The path is converted to a string, as described in §3.6.4.2 From
BINARY To, and then encoded using UTF-8.

NAME: If the path is a relative path of length one it is converted directly,
otherwise a ValueFormatException is thrown.

URI: If the path is root-based absolute (that is, it has a leading “/”, see
§3.4.4.1.1 Root-Based Absolute Paths), it is directly converted into a URI-
reference. If the path is identifier-based absolute (§3.4.4.1.2 Identifier-Based
Absolute Paths) or relative, it becomes a URI-reference consisting of “./”
followed by the path in standard form. For example, the path foo:bar/foo:baz
becomes the URI-reference ./foo:bar/foo:baz. The addition of the leading “./”
is done to ensure that a colon-delimited prefix is not interpreted as a URI scheme
name. If the path includes characters that are illegal within a URI-reference (such
as any non-ASCII character), the UTF-8 byte representations of these characters
are percent-encoded, as described in RFC 39866.

All Others: A ValueFormatException is thrown.

3.6.4.10 From URI To

STRING: The URI is converted directly into a STRING.

BINARY: Since a URI is guaranteed to already contain only ASCII characters it is
converted directly to a BINARY resulting in series of octets that is a UTF-8
encoding of the character sequence comprising the URI.

NAME: If the URI consists of a single path segment without a colon (for example,
simply bar) it is converted to a NAME by decoding any percent-escaped sequences
into octet sequences and then decoding those into character sequences using
UTF-8. If it has a redundant leading “./” followed by a single segment (with or
without a colon, like ./bar or ./foo:bar) the redundant “./” is removed and the
remainder is converted to a NAME in the same way. Otherwise a
ValueFormatException is thrown.

PATH: If the URI begins with a “/” it is converted a PATH by decoding any
percent-escaped sequences into octet sequences and then decoding those into
character sequences using UTF-8. If it consists of a path whose first segment is
without a colon (for example, bar, bar/baz or bar/foo:baz) it is converted in the
same way. If it consists of a path with a redundant leading “./” (for example
./bar/baz, or ./foo:bar/foo:baz) the redundant “./” is removed and the
remainder is converted to a PATH as described in §3.6.4.1 From STRING To.
Otherwise a ValueFormatException is thrown.

All Others: A ValueFormatException is thrown.

3.6.4.11 From REFERENCE To

STRING: The identifier is converted directly to a string.

BINARY: The identifier is converted directly to a string and then converted to
BINARY as described in §3.6.4.1 From STRING To.

WEAKREFERENCE: The REFERENCE is simply turned into a WEAKREFERENCE.

 36

All Others: A ValueFormatException is thrown.

3.6.4.12 From WEAKREFERENCE To

STRING: The identifier is converted directly to a string.

BINARY: The identifier is converted directly to a string and then converted to
BINARY as described in §3.6.4.1 From STRING To.

REFERENCE: The WEAKREFERENCE is simply turned into a REFERENCE.

All Others: A ValueFormatException is thrown.

3.6.5 Comparison of Values

For any values V1 and V2 both of the same property type, the relations is equal
to, is ordered before and is ordered after are defined in §3.6.5.1 CompareTo
Semantics.

Note that the definition of these relations here does not necessarily imply that
JCR API methods for testing these relations are supported for every property
type. In particular, Value.equals is not required to work on BINARY values and
JCR query is not required to support testing the equality or ordering of BINARY
values.

3.6.5.1 CompareTo Semantics

For the property types other than BOOLEAN, NAME, PATH and BINARY, comparison
relations are defined in terms of the result of the compareTo method on instances
V1 and V2 of the Java class corresponding to the JCR property type (see each
section below for the relevant class). For those types:

• V1 is equal to V2 if and only if V1.compareTo(V2) == 0.

• V1 is ordered before V2 if and only if V1.compareTo(V2) < 0.

• V1 is ordered after V2 if and only if V1.compareTo(V2) > 0.

3.6.5.2 STRING, URI, REFERENCE and WEAKREFERENCE

If V1 and V2 are values of type STRING, URI, REFERENCE or WEAKREFERENCE then
the repository should use the semantics of java.lang.String.compareTo, as
described in §3.6.5.1 CompareTo Semantics.

3.6.5.3 DATE

If V1 and V2 are values of type DATE then the repository must use the semantics
of java.lang.Calendar.compareTo, as described in §3.6.5.1 CompareTo
Semantics.

3.6.5.4 DOUBLE

If V1 and V2 are values of type DOUBLE then the repository must use the
semantics of java.lang.Double.compareTo, as described in §3.6.5.1 CompareTo
Semantics.

 37

3.6.5.5 LONG

If V1 and V2 are values of type LONG then the repository must use the semantics
of java.lang.Long.compareTo, as described in §3.6.5.1 CompareTo Semantics.

3.6.5.6 DECIMAL

If V1 and V2 are values of type DECIMAL then the repository must use the
semantics of java.lang.BigDecimal.compareTo, as described in §3.6.5.1
CompareTo Semantics.

3.6.5.7 BOOLEAN

If V1 and V2 are values of type BOOLEAN then

• V1 is equal to V2 if and only if V1 == V2.

• V1 is ordered before V2 if and only if V1 == false and V2 == true.

• V1 is ordered after V2 if and only if V1 == true and V2 == false.

3.6.5.8 NAME

If V1 and V2 are values of type NAME and V1 = (N1, L1) and V2 = (N2, L2) where N1
and N2 are JCR namespaces and L1 and L2 are JCR local names then

• V1 is equal to V2 if and only if N1 is equal to N2 and L1 is equal to L2,
according to the semantics of String.compareTo (see §3.2.7 Equality of
Names).

• Ordering is implementation-specific. The only requirement is that a total
order on values of type NAME must be defined, meaning that if V1 and V2
are not equal then either V1 is ordered before V2 or V1 is ordered after V2.

3.6.5.9 PATH

If V1 and V2 are values of type PATH then

• V1 is equal to V2 if and only if V1 and V2 are segment-equal (see §3.3.8
Equality of Paths).

• Ordering is implementation-specific. The only requirement is that a total
order on values of type PATH must be defined, meaning that if V1 and V2
are not equal then either V1 is ordered before V2 or V1 is ordered after V2.

3.6.5.10 BINARY

If V1 and V2 are values of type BINARY and given,

• V1 is equal to V2 if and only if V1 and V2 are bitwise equivalent.

• Ordering is implementation-specific.

 38

3.6.6 Value.equals Method

An implementation of the Value interface must override the inherited method
Object.equals(Object) so that, given Value instances V1 and V2,
V1.equals(V2) will return true if:

• V1 and V2 were acquired from the same Session, and

• the contents of V1 and V2 have not yet been accessed, and

• V1 and V2 are of the same type, and

• V1 is equal to V2 as defined in §3.6.5 Comparison of Values.

V1.equals(V2) will return false otherwise.

In addition:

• The equality comparison must not change the state of either V1 or V2 and

• support for Value.equals in the case of BINARY values is optional.

3.6.7 Length of a Value

The length of a value is defined as follows:

• For a BINARY value, its length is equal to its length in bytes. This number
is returned both by Binary.getSize (see §5.10.5 Binary Object) and by
Property.getLength and Property.getLengths (see §5.10.3 Value
Length).

• For other types, the length is the same value that would be returned by
calling java.lang.String.length() on the String resulting from
standard JCR property type conversion (see §3.6.4 Property Type
Conversion). This number is returned by Property.getLength and
Property.getLengths.

For single value properties, the length of a property's value is often referred to as
the property length.

3.7 Node Types
Node types are used to enforce structural restrictions on the nodes and properties
in a workspace by defining for each node, its required and permitted child nodes
and properties.

Every node has one declared primary node type and zero or more mixin node
types. Primary node types are typically used to defined the core characteristics of
a node, while mixin node types are used to add additional characteristics often
related to specific repository functions or to metadata.

In a writable repository a node's primary type is first assigned upon node
creation, while mixin types may be assigned on creation or during a node's
lifetime. Repository implementations may vary as to how flexible they are in
allowing changes to the primary or mixin node types assigned to a node.

 39

Each repository has a single, system-wide registry of node types. Typically, a
repository will come with some implementation-determined set of built-in node
types. Some of these types may be vendor-specific while others may be standard
node types defined by JCR to support common use-cases (see §3.7.11 Standard
Application Node Types) or repository features. Some repositories may further
allow users to register new node types programmatically (see §19 Node Type
Management).

3.7.1 Node Type Definition Attributes

A node type definition consists of the following attributes:

3.7.1.1 Node Type Name

Every registered node type has a JCR name, unique within the repository.

3.7.1.2 Supertypes

A node type has zero or more supertypes. Supertypes are specified by name.

3.7.1.3 Abstract

A node type may be declared abstract, meaning that it cannot be directly
assigned to a node, though it may act as a supertype to other node types. The
abstract flag is a boolean.

3.7.1.4 Mixin

A node type may be declared a mixin node type. A mixin node type can be
assigned to a node during that node's lifetime, not just upon node creation, as is
the case with primary node types. The mixin flag is a boolean.

3.7.1.5 Queryable Node Type

A node type may be declared queryable, meaning that the node type can be used
in a query selector and that the query-related attributes of properties defined in
that node type take effect. The queryable node type attribute is a boolean.

3.7.1.5.1 Interaction with Property Definitions

If a node type is declared queryable, then the available query operators, full-text
searchable and query-orderable attributes of its property definitions take effect
(see §3.7.3.3 Available Query Operators, §3.7.3.4 Full-Text Searchable, §3.7.3.5
Query-Orderable). If a node type is declared non-queryable then these attributes
of its property definitions have no effect.

3.7.1.6 Orderable Child Nodes

A node type may declare its child nodes orderable, meaning that for all nodes of
that type, the order that the child nodes are iterated over can be
programmatically controlled by the user (see §23 Orderable Child Nodes). The
orderable child nodes flag is a boolean.

 40

3.7.1.7 Primary Item

A node type can declare one of its child items as primary, meaning that for all
nodes of that type, that child item is accessible through a dedicated API method
which does not require the name of the item. (see §5.1.7 Primary Item Access).
This feature can help generic API clients intelligently traverse an unknown node
structure. The primary item may be an item name, which must be a JCR name, or
null, meaning that there is no primary item.

3.7.1.7.1 Primary Item and Same-Name Siblings

In cases where the primary child item specifies the name of a set of same-name
sibling child nodes, the node with index [1] will be regarded as the primary item.

3.7.1.7.2 Property and Child Node With Same Name

In cases where this node has both a child node and a property with the same
name and where that name is specified as the primary item name, the child node
will be regarded as the primary item (see §22.4 Property and Node with Same
Name).

3.7.1.8 Property Definitions

A node type may contain a list of property definitions, which specify the
properties that nodes of that type are permitted or required to have and the
characteristics of those properties. The list of property definitions may be empty.

3.7.1.9 Child Node Definitions

A node type may contain a list of child node definitions, which specify the
permitted or required child nodes and their characteristics. The list of child node
definitions may be empty.

3.7.2 Item Definition Attributes

Property and child node definitions have some attributes in common, while others
are specific to either property definitions or child nodes in particular (this is
reflected in the API interfaces, see §8.3 ItemDefinition Object). The common
attributes are:

3.7.2.1 Item Definition Name

The name attribute specifies the set of child nodes or properties to which the
definition applies. This set is called the scope of the definition. An item within the
scope of a given definition is called a scoped item (scoped property, scoped child
node) of that definition. The definition within whose scope a given item falls is
called the scoping definition of that item.

In the standard case the scope consists of the single item named by the attribute
and must be a JCR name.

 41

3.7.2.1.1 Item Definition Name and Same-Name-Siblings

In a repository that supports same-name siblings (see §22 Same-Name Siblings),
the name attribute of a child node definition will have scope over all the child
nodes of that name. In this case the attribute must also be a JCR name.

3.7.2.1.2 Item Definition Name and Residual Definitions

In a repository that supports residual definitions the name attribute may be “*”
(asterisk), specifying that the definition is residual, meaning that its scope
consists of all other properties (child nodes), which are not otherwise scoped by
any of the other property (child node) definitions in the effective node type of the
node (see §3.7.6.5 Effective Node Type).

3.7.2.1.3 Multiple Item Definitions with the Same Name

A node type may have two or more item definitions with identical name
attributes. On Node.setProperty or Node.addNode, the repository must choose
among the available definitions for one which matches the name and possible
type information specified in the method call. If this information is insufficient to
select a single definition unambiguously, the repository may choose a definition
based on some implementation-specific criteria or fail the operation (see §10.4
Adding Nodes and Setting Properties).

3.7.2.2 Protected

If an item I is declared protected it is repository-controlled.

If I is a node then, through the core write methods of JCR (see §10.2 Core Write
Methods),

• I cannot be removed,

• child nodes of I cannot be added, removed, or reordered,

• properties of I cannot be added or removed,

• the values of existing properties of I cannot be changed,

• the primary node type of I cannot be changed and

• mixin node types cannot be added to or removed from I.

If I is a property then, through the core write methods of JCR (see §10.2 Core
Write Methods),

• I cannot be removed and

• the value of I cannot be changed.

Additionally, if I is a property, its being repository-controlled also implies that its
value is under the control of the repository and can change at any time, before or
after save. See §3.7.2.3.2 Auto-Created and Protected.

 42

3.7.2.3 Auto-Created

An item may be declared auto-created, meaning that it is automatically created
upon creation of its parent node. The auto-created attribute is a boolean.

3.7.2.3.1 Auto-Created and Non-Protected

If an item is auto-created but not protected then it must be immediately created
in transient space when its parent node is created. Creation of auto-created non-
protected items must never be delayed until save (see §10.11 Saving).

3.7.2.3.2 Auto-Created and Protected

If an item is both auto-created and protected, then it should be immediately
created in transient space when its parent node is created. Creation of auto-
created protected items should not be delayed until save, though doing so does
not violate JCR compliance. In some implementations the value of an auto-
created property may be assigned upon save, in such cases the creation of the
property may also be delayed until save (see, for example, §3.7.1 Identifier
Assignment).

3.7.2.3.3 Auto-created and Same-Name Siblings

In a repository that supports same-name siblings (see §22 Same-Name Siblings),
a child node definition may specify that a node be both auto-created and allow
same-name siblings. In that case the repository must create at least one such
child node with the specified name upon parent node creation, though it may
create more than one.

3.7.2.3.4 Auto-created and Residual Definitions

In repositories that support residual definitions, an item cannot be both auto-
created and residual (see §3.7.2.1.2 Item Definition Name and Residual
Definitions).

3.7.2.3.5 Chained Auto-creation

An auto-created node may itself have auto-created child items, resulting in the
automatic creation of a tree of items. However, chaining that produces an infinite
loop of item creation is not permitted. A repository must ensure that at no time
does it have a set of registered node types that could result in such behavior (see
§19 Node Type Management).

3.7.2.4 Mandatory

An item may be declared mandatory, meaning that the item must exist before its
parent node is saved.

3.7.2.4.1 Mandatory and Multi-Value Properties

Since single-value properties either have a value or do not exist (there being no
concept of the null value, see §10.4.2.4 No Null Values), a mandatory single-

 43

value property must have a value. A mandatory multi-value property, on the
other hand, may have zero or more values.

3.7.2.4.2 Mandatory and Same-Name Siblings

In a repository that supports same-name siblings, a child node definition may
specify that a node be both mandatory and allow same-name siblings. In that
case at least one child node must exist upon save of the parent node (see §22
Same-Name Siblings).

3.7.2.4.3 Mandatory and Residual Definitions

In repositories that support residual definitions, an item cannot be both
mandatory and residual (see §3.7.2.1.2 Item Definition Name and Residual
Definitions).

3.7.2.5 On-Parent-Version

In a repository that supports simple or full versioning the on-parent-version
attribute governs the behavior of the child item when its parent node is checked-
in (see §15.2 Check-In: Creating a Version). In repositories that do not support
simple or full versioning this attribute has no effect.

3.7.3 Property Definition Attributes

A property definition has all the attributes of a generic item definition as well as
the following property-specific attributes:

3.7.3.1 Property Type

A property definition must specify a property type. This must be one of the JCR
property types (see §3.6.1 Property Types) or, in repositories that support it, the
UNDEFINED keyword, indicating that the property scoped by this definition can be
of any type (see §3.6.2 Undefined Type). An attempt to save a property with a
type different from that required by its definition will fail if conversion to that type
is not possible (see §10.4.2 Setting a Property and §3.6.4 Property Type
Conversion).

3.7.3.2 Default Values

The default values attribute of a property definition defines the values assigned to
property if it is auto-created. If the property is single-valued this attribute will
hold a single value. If it is multi-valued this attribute will hold an array of values.
A default values setting of null indicates that the property does not have a single
static default value. It may have no default value at all or it may have a
parameterized default value defined externally to this specification. If the scoped
property is not auto-created then this attribute has no effect.

3.7.3.3 Available Query Operators

A property definition declares the set of query comparison operators that can be
validly applied to a property. The set of operators that can appear in this attribute
may be limited by implementation-specific constraints that differ across property

 44

types. For example, some implementations may permit property definitions to
provide EqualTo and NotEqualTo (see §6.7.16 Comparison) as available
operators for BINARY properties while others may not. However, in all cases
where a JCR-defined operator is potentially available for a given property type, its
behavior must conform to the comparison semantics defined in §3.6.5
Comparison of Values.

3.7.3.3.1 Interaction with Node Type Definition

This attribute only takes effect if the node type holding the property definition has
a queryable setting of true (see §3.7.1.5 Queryable Node Type).

3.7.3.4 Full-Text Searchable

A property may be declared full-text searchable, meaning that its value is
accessible through the full-text search function within a query (see §6.7.19
FullTextSearch). The full-text searchable flag is a boolean.

3.7.3.4.1 Interaction with Node Type Definition

This attribute only takes effect if the node type holding the property definition has
a queryable setting of true (see §3.7.1.5 Queryable Node Type), otherwise this
attribute is automatically set to false.

3.7.3.5 Query-Orderable

A property may be declared query-orderable, meaning that query results may be
ordered by this property using the order clause of a query (see §6.7.37
Ordering). The query-orderable flag is a boolean.

3.7.3.5.1 Interaction with Node Type Definition

This attribute only takes effect if the node type holding the property definition has
a queryable setting of true (see §3.7.1.5 Queryable Node Type), otherwise this
attribute is automatically set to false.

3.7.3.6 Value Constraints

A property definition may impose constraints on the value that the property may
hold. These value constraints are defined by an array of strings, whose format
differs depending on the type of the property.

Each string in the returned array specifies a constraint on the values of the
property. In order to be valid, each value of the property (since a property may
be multi-valued) must independently meet at least one of the constraints.

If a property does not exist or, in the case of multi-value properties, contains an
empty array, the constraint set is considered to have been met.

An attempt to save a property whose value or values fail to meet the constraint
criteria will fail (see §10.11 Saving).

Reporting constraint information is optional on a per property instance level. The
return of an empty array indicates that there are no expressible constraints,

 45

meaning that either there are constraints but they are not expressible in the
constraint-string syntax, or constraint discovery is not supported for that
property.

Constraint strings have different formats depending on the type of the property in
question. The following sections describe the value constraint syntax for each
property type.

3.7.3.6.1 STRING and URI Constraints

For STRING and URI properties, the constraint string is a regular expression
pattern according to the syntax of java.util.regex.Pattern.

3.7.3.6.2 PATH Constraints

For PATH properties, the constraint is an absolute or relative path, possibly
terminating with a “*” as the last segment.

On assignment the constraint may be passed in any valid lexical form, with the
possible addition of a trailing “*”. The constraint, however is stored as a JCR path
in normalized form plus an optional match-descendants indicator corresponding
to the “*”. The constraint is returned in normalized standard form (see §3.4.5.1
Standard Form and §3.4.5 Normalized Paths).

For a constraint without match-descendants, the constraint is met when the
property value is equal to the constraint. For a constraint with match-
descendants, the constraint is met when the property value is either equal to the
constraint or equal to a descendant path of the constraint (see §3.4.8 Equality of
Paths).

3.7.3.6.3 NAME Constraints

For NAME properties, the constraint is a JCR name. On assignment the constraint
may be passed in any valid lexical form but is returned in qualified form (see
§3.2.5.2 Qualified Form).The constraint is met if the property value is equal to
the constraint (see §3.2.7 Equality of Names).

3.7.3.6.4 REFERENCE and WEAKREFERENCE Constraints

For REFERENCE and WEAKREFERENCE properties, the constraint is a JCR name. The
constraint is met if the target node of the property is of the node type indicated
by the constraint (see §3.7.6.3 Is-of-Type Relation). On assignment the
constraint passed may be in any valid lexical form but is returned in qualified
form (see §3.2.5.2 Qualified Form).

3.7.3.6.5 BINARY, DATE, LONG, DOUBLE and DECIMAL Constraints

The remaining types all have value constraints in the form of inclusive or
exclusive ranges specified according to the following pattern:

Constraint ::= Open Min ',' Max Close

Open ::= '[' | '('

 46

Close ::= ']' | ')'

Min ::= /* Type dependent, see below */

Max ::= /* Type dependent, see below */

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpretation of string literals in this grammar */

The brackets “[“ and “]” indicate inclusivity, while “(“ and “)” indicate exclusivity.
A missing min or max value indicates no bound in that direction. The meaning of
the min and max values themselves differ between types as follows:

BINARY: min and max specify the allowed size range of the binary value in bytes.

DATE: min and max are dates specifying the allowed date range. The date strings
must be in the standard string serialization (see §3.6.4.3 From DATE To).

LONG, DOUBLE, DECIMAL : min, max are valid Java language numeric literals.

The range is evaluated according to the standard value comparison rules (see
§3.6.5 Comparison of Values).

To specify a constant value, the constant itself, “c” may be used instead of the
bracket notation, though the constraint is always returned in bracket notation.

3.7.3.6.6 BOOLEAN

For BOOLEAN properties the constraint string can be either “true” or “false”. In
most cases getValueConstraints will return an empty array since placing a
constraint on a BOOLEAN value is uncommon.

3.7.3.6.7 Choice Lists

Because constraints are returned as an array of disjunctive constraints, in many
cases the elements of the array can serve directly as a choice list. This may, for
example, be used by an application to display options to the end user indicating
the set of permitted values.

3.7.3.7 Multi-Value

A property can be declared multi-valued. An attempt to set a single-value
property by passing an array will fail. Similarly, an attempt to set a multi-value
property by passing a non-array will also fail (see §10.4.2 Setting a Property).

3.7.4 Child Node Definition Attributes

A child node definition has all the attributes of a generic item definition as well as
the following node-specific attributes:

3.7.4.1 Required Primary Node Types

A child node definition must declare one or more required primary node types.

 47

In order to successfully save a scoped child node N, it must be true for each
required primary type R that the assigned primary type A of N is of type R (see
§3.7.6.3 Is-of-Type Relation).

In cases where this attribute specifies more than one required node type, any
particular node instance will still have only one assigned primary type, but that
type must be a subtype of all of the types specified by this attribute. Such a
situation may arise, for example, in repositories that support multiple inheritance
of node types.

3.7.4.2 Default Primary Node Type

The default primary type of a child node definition is a JCR name defining the
node type that the child node will be given if it is auto-created or created without
an explicitly specified node type. This node type must be the same as or a
subclass of each of the required primary node types.

If null is returned this indicates that no default primary type is specified and that
therefore an attempt to create this node without specifying a node type will fail.

3.7.4.3 Same-Name Siblings

The same-name sibling attribute of a child node definition indicates whether the
child node can have sibling nodes with the same name (see §22 Same-Name
Siblings). In repositories that do not support same-name siblings this attribute
has no effect.

3.7.5 Mixin Node Types

Mixin node types are used to add additional properties or child nodes to a given
node instance, typically in order to expose some aspect of a specialized repository
feature. For example, referenceability is supported by the mixin
mix:referenceable which defines the property jcr:uuid to expose a node's
identifier (see §3.3 Identifiers).

3.7.5.1 Mixins Apply Per Node Instance

Mixin node types apply to specific node instances within a workspace, allowing
the repository to decouple support for some repository features from the primary
node type assigned to that node. In effect, mixin node types permit per instance
node type inheritance. In a writable repository mixin node types can be assigned
to a node during its lifetime, not just upon creation.

3.7.5.2 Mixins and Inheritance

A mixin node type may have one or more supertypes, which must also be mixin
types. Additionally, a mixin node type can serve as a supertype of a primary type.
This is typically done to build a mixin-linked feature into a primary node type. For
example, if a repository requires all nodes of type xyz:Document to be
referenceable it can specify that mix:referenceable as a supertype of
xyz:Document.

 48

3.7.5.3 Mixins Are Not Stand-Alone

A mixin node type cannot be used by itself as the node type of a node. A primary
node type is always required.

3.7.6 Node Type Inheritance

A mixin node type may be part of an inheritance hierarchy. A primary node (other
than nt:base) must at least be a subtype of the common base primary type,
nt:base (see §3.7.10 Base Primary Node Type). The semantics of inheritance
are defined by the following rules.

3.7.6.1 Supertype Relation

The supertype relation is transitive: If T1 is a supertype of T2 and T2 is a
supertype of T3 then T1 is a supertype of T3.

The supertype relation always and only stems from explicit supertypes attribute
declarations within the set of node types: For T1 to be a supertype of T2 it is not
sufficient that the item definitions of T2 be a superset of the item definitions of T1.
For that to be the case, T2 must declare T1 as a supertype.

3.7.6.2 Subtype Relation

The subtype relation is the converse of supertype: T1 is a subtype of T2 if and
only if T2 is a supertype of T1. Hence, subtype is also a transitive relation.

3.7.6.3 Is-of-Type Relation

The is-of-type relation which holds between node instances and node types (as
in, node N is of type T) is transitive across the subtype relation: If N is of type T2
and T2 is a subtype of T1 then N is (also) of type T1. This predicate appears in the
API as the method Node.isNodeType() (see §8.6 Node Type Information for
Existing Nodes). This relation is also the one that is relevant in the child node
definition attribute required primary node types (see §3.7.4.1 Required Primary
Node Types).

The is of type relation always and only stems from an explicit assignment of a
node type to a node: For node N to be of type T it is not sufficient for N to have
the child items declared by T. For that to be the case, N must be explicitly
assigned the type T, or a subtype of T.

3.7.6.4 Abstract Node Types

As mentioned (see §3.7.1.3 Abstract), a node type may be declared abstract,
meaning that it cannot be assigned as the primary or mixin node type of a node
but can be used in the definition of other node types as a supertype.

3.7.6.5 Effective Node Type

The complete set of node type constraints on a particular node is referred to as
that node's effective node type. This consists of the sum of all attributes

• declared in that node's primary type,

 49

• inherited by that node's primary type,

• declared in that node's mixin node types, and

• inherited by that node's mixin node types.

The summing of these attributes must conform to the semantics of subtyping
defined in this section.

3.7.6.6 Semantics of Subtyping

The general principle guiding inheritance is to preserve the is-a relation across
subtyping. This implies that if T' is a subtype of T and N is a valid instance of T'
then:

• N must be a valid instance of T.

• A method call that depends on the truth of the test N is of type T must not
fail solely due to N being of type T'.

3.7.6.7 Node Type Attribute Subtyping Rules

If T' is a subtype of T then the following must hold:

The name of T' must differ from the name of T.

• The supertypes list of T' must include either T or a subtype of T.

• If T is a primary type, T' must be a primary type. However, if T is a mixin
then T' may be either a mixin or a primary type.

If T has orderable child nodes then T' must have orderable child nodes.

If T specifies a primary item I then T' inherits that setting and must not specify a
primary item other than I.

T' may declare any number of property definitions as long as they are not invalid
(see §3.7.6.8 Item Definitions in Subtypes).

T' may declare any number of child node definitions as long as they are not
invalid (see §3.7.6.8 Item Definitions in Subtypes).

3.7.6.8 Item Definitions in Subtypes

If T is a registered node type and T' is the definition of a subtype of T that meets
the criteria in the preceding sections, then an item definition D' in T' is either
additive, overriding or invalid, as determined by the following algorithm:

• If D' is not statically valid then D' is invalid.

• If D' is a residual definition then D' is additive.

• If there does not exists a definition D in T with a name and class (i.e.,
either node or property) identical to that of D' then D' is additive.

• If there does exist a definition D in T with name and class identical to that
of D' then D' is overriding if:

 50

o The implementation supports item definition overrides in this
instance (implementations are free allow or disallow overrides
globally or on an instance-by-instance basis)

o If D is a property definition then D and D' have identical multiple
settings and any property values valid against D' would also be
valid against D.

o If D is a child node definition then D and D' have identical same-
name sibling settings.

o If D is autocreated, mandatory or protected then D' must be,
respectively, that as well.

• Otherwise, D' is invalid.

If D' is additive then when T' is registered D' becomes part of T' alongside all item
definitions inherited from T.

If D' overrides D then when T' is registered D' replaces the definition D that would
otherwise have been inherited from T.

If D' is invalid then T' cannot be registered.

3.7.6.9 Effect of Inheritance Rules

The rules of inheritance will have most impact on repositories that allow

• a wide latitude in assigning mixins to nodes,

• registration of custom node types (see §19 Node Type Management) or,
in particular,

• registration of custom node types with multiple super types (multiple
inheritance).

In fixed node type repositories (those without support for mixin assignment or
node type registration), adherence to the inheritance rules is simply a matter of
ensuring that the correct relations hold among the statically defined node type
that the system exposes.

3.7.7 Applicable Item Definition

Though there may be more than one definition in the parent node's type that
could apply to the child item, the definition that does apply is determined by the
implementation and remains constant through the lifetime of the item.

In writable repositories the applicable item definition is determined at item
creation time.

3.7.8 Root Node Type

The node type of the root node of each workspace is implementation-determined.
There are no restrictions other than those implied by the feature set of the
repository. For example, a repository that exposes system data under

 51

/jcr:system will necessarily have a root node of a type that allows a jcr:system
child node.

3.7.9 Node Type Notation

The node type definitions shown in this specification use the compact node type
definition (CND) notation (see §25.2 Compact Node Type Definition Notation).

3.7.9.1 Implementation Variants in Node Types

Some of the attributes of the node types defined in this specification may vary
across implementations. For example, it is implementation-dependent which node
types and which properties are queryable (see §3.7.1.5 Queryable Node and
§3.7.3.3 Available Query Operators). Similarly, some of the standard application
node types (see §3.7.11 Standard Application Node Types) may vary as to the
on-parent-version and protected status of some properties. In the CND notation,
variant attributes are indicated with either a question mark (for example,
protected? and opv?) or, in the case of the queryable node type attribute, by
the absence of an explicit indicator. For the queryable attribute of a node type to
be non-variant it must be explicitly defined using the keywords query or noquery,
(see §25.2 Compact Node Type Definition Notation).

3.7.10 Base Primary Node Type

All repositories must supply the base primary node type, nt:base, as a built-in
type.

3.7.10.1 nt:base

[nt:base] abstract
 - jcr:primaryType (NAME) mandatory autocreated
 protected COMPUTE
 - jcr:mixinTypes (NAME) protected multiple COMPUTE

nt:base is an abstract primary node type that is the base type for all other
primary node types. It is the only primary node type without supertypes.

nt:base exposes type information about a node through the properties
jcr:primaryType, and jcr:mixinTypes.

Since every other primary type must be a subtype of nt:base (see §3.7.6.2
Subtype Relation), every primary node type will inherit these two type-reflective
property definitions.

jcr:primaryType is a protected mandatory NAME property which holds the name
of the declared primary node type of its node. The repository must maintain its
value accurately throughout the lifetime of the node (see §10.10 Node Type
Assignment). Since it is mandatory, every node will have this property.

jcr:mixinTypes is a non-mandatory protected multi-value NAME property which
holds a list of the declared mixin node types of its node. It is non-mandatory but
is required to be present on any node that has one or more declared mixin types.
If it is present, the repository must maintain its value accurately throughout the
lifetime of the node (see §10.10.3 Assigning Mixin Node Types).

 52

3.7.11 Standard Application Node Types

JCR defines a number of standard application node types designed to support
common application-level entities. A repository may supply zero or more of these
as built-in types (see §24 Repository Compliance).

3.7.11.1 nt:hierarchyNode

[nt:hierarchyNode] > mix:created abstract

This abstract node type serves as the supertype of nt:file and nt:folder and
inherits the item definitions of mix:created and so requires the presence of that
node type (see §3.7.11.7 mix:created).

3.7.11.2 nt:file

[nt:file] > nt:hierarchyNode primaryitem jcr:content
 + jcr:content (nt:base) mandatory

Nodes of this node type may be used to represent files. This node type inherits
the item definitions of nt:hierarchyNode and requires a single child node called
jcr:content. The jcr:content node is used to hold the actual content of the
file. This child node is mandatory, but not auto-created. Its node type will be
application-dependent and therefore it must be added by the user. A common
approach is to make the jcr:content a node of type nt:resource. The
jcr:content child node is also designated as the primary child item of its parent.

3.7.11.3 nt:linkedFile

[nt:linkedFile] > nt:hierarchyNode primaryitem jcr:content
 - jcr:content (REFERENCE) mandatory

The nt:linkedFile node type is similar to nt:file, except that the content node
is not stored directly as a child node, but rather is specified by a REFERENCE
property. This allows the content node to reside anywhere in the workspace and
to be referenced by multiple nt:linkedFile nodes. The content node must be
referenceable. Support for this node type requires support for referenceable
nodes with referential integrity (see §3.8.2 Referential Integrity).

3.7.11.4 nt:folder

[nt:folder] > nt:hierarchyNode
 + * (nt:hierarchyNode) VERSION

Nodes of this type may be used to represent folders or directories. This node type
inherits the item definitions of nt:hierarchyNode and adds the ability to have
any number of other nt:hierarchyNode child nodes with any names. This means,
in particular, that it can have child nodes of types nt:folder, nt:file or
nt:linkedFile.

3.7.11.5 nt:resource

[nt:resource] > mix:mimeType, mix:lastModified
 primaryitem jcr:data
 - jcr:data (BINARY) mandatory

 53

This node type may be used to represent the content of a file. In particular, the
jcr:content subnode of an nt:file node will often be an nt:resource. Note
that the definition of this node type indicates multiple inheritance (see §3.7.6
Node Type Inheritance).

3.7.11.6 mix:title

[mix:title] mixin
 - jcr:title (STRING) protected? OPV?
 - jcr:description (STRING) protected? OPV?

This mixin node type can be used to add standardized title and description
properties to a node.

3.7.11.7 mix:created

[mix:created] mixin
 - jcr:created (DATE) autocreated protected? OPV?
 - jcr:createdBy (STRING) autocreated protected? OPV?

This mixin node type can be used to add standardized creation information
properties to a node. In implementations that make these properties protected,
their values are controlled by the repository, which should set them appropriately
upon the initial persist of a node with this mixin type. In cases where this mixin is
added to an already existing node the semantics of these properties are
implementation specific (see §10.10.3 Assigning Mixin Node Types).

3.7.11.8 mix:lastModified

[mix:lastModified] mixin
 - jcr:lastModified (DATE) autocreated protected? OPV?
 - jcr:lastModifiedBy (STRING) autocreated protected? OPV?

This mixin node type can be used to provide standardized modification
information properties to a node. In implementations that make these properties
protected, their values are controlled by the repository, which should set them
appropriately upon a significant modification of the subgraph of a node with this
mixin. What constitutes a significant modification will depend on the semantics of
the various parts of a node's subgraph and is implementation-dependent.

3.7.11.9 mix:language

[mix:language] mixin
 - jcr:language (STRING) protected? OPV?

This mixin node type can be used to provide a standardized property that
specifies the natural language in which the content of a node is expressed. The
value of the jcr:language property should be a language code as defined in RFC

 54

46465. Examples include “en” (English), “en-US” (United States English), “de”
(German) and “de-CH” (Swiss German).

3.7.11.10 mix:mimeType

[mix:mimeType] mixin
 - jcr:mimeType (STRING) protected? OPV?
 - jcr:encoding (STRING) protected? OPV?

This mixin node type can be used to provide standardized mimetype and
encoding properties to a node.

If a node of this type has a primary item that is a single-value BINARY property
then jcr:mimeType property indicates the media type6 applicable to the contents
of that property and, if that media type is one to which a text encoding applies,
the jcr:encoding property indicates the character set7 used.

If a node of this type does not meet the above precondition then the
interpretation of the jcr:mimeType and jcr:encoding properties is
implementation-dependent.

3.7.11.11 nt:address

[nt:address]
 - jcr:protocol (STRING)
 - jcr:host (STRING)
 - jcr:port (STRING)
 - jcr:repository (STRING)
 - jcr:workspace (STRING)
 - jcr:path (PATH)
 - jcr:id (WEAKREFERENCE)

This node type may be used to represent the location of a JCR item not just
within a particular workspace but within the space of all workspaces in all JCR
repositories.

The jcr:protocol property stores a string holding the protocol through which
the target repository is to be accessed.

The jcr:host property stores a string holding the host name of the system
through which the repository is to be accessed.

The jcr:port property stores a string holding the port number through which the
target repository is to be accessed.

5 see http://www.ietf.org/rfc/rfc4646.txt.

6 See http://www.iana.org/assignments/media-types.

7 See http://www.iana.org/assignments/character-sets.

 55

The semantics of these properties are left undefined but are assumed to be
known by the application. The names and descriptions of the properties are not
normative and the repository does not enforce any particular semantic
interpretation on them.

The jcr:repository property stores a string holding the name of the target
repository.

The jcr:workspace property stores the name of a workspace.

The jcr:path property stores a path to an item.

The jcr:id property stores a weak reference to a node.

In most cases either the jcr:path or the jcr:id property would be used, but not
both, since they may point to different nodes. If any of the properties other than
jcr:path and jcr:id are missing, the address can be interpreted as relative to
the current container at the same level as the missing specifier. For example, if
no repository is specified, then the address can be interpreted as referring to a
workspace and path or id within the current repository.

3.7.12 Entity Tags

It is often useful for an application to be able to quickly find whether the value of
a BINARY property has changed since the last time it was checked. This is
particularly useful when determining whether to invalidate a cache containing a
copy of the BINARY value.

The mix:etag mixin type defines a standardized identity validator for BINARY
properties similar to the entity tags used in HTTP/1.18.

3.7.12.1 mix:etag

[mix:etag] mixin
 - jcr:etag (STRING) protected autocreated

A jcr:etag property is an opaque string whose syntax is identical to that defined
for entity tags in HTTP/1.1. Semantically, the jcr:etag is comparable to the
HTTP/1.1 strong entity tag.

On creation of a mix:etag node N, or assignment of mix:etag to N, the
repository must create a jcr:etag property with an implementation determined
value.

The value of the jcr:etag property must change immediately on persist of any of
the following changes to N:

• A BINARY property is added to N.

8 See http://www.ietf.org/rfc/rfc2616.txt §3.11.

 56

• A BINARY property is removed from N.

• The value of an existing BINARY property of N changes.

3.7.13 Unstructured Content

Support for unstructured content may be provided by supporting a free-form
node type: nt:unstructured. Support for this node type requires support for the
UNDEFINED property type value.

3.7.13.1 nt:unstructured

[nt:unstructured]
 orderable
 - * (UNDEFINED) multiple
 - * (UNDEFINED)
 + * (nt:base) = nt:unstructured sns VERSION

This node type is used to store unstructured content. It allows any number of
child nodes or properties with any names. It also allows multiple nodes having
the same name as well as both multi-value and single-value properties with any
names. This node type also supports client-orderable child nodes.

3.7.14 Node Type Definition Storage

A repository may expose the definitions of its available node types in content
using the node types nt:nodeType, nt:propertyDefinition and
nt:childNodeDefinition. If a repository exposes node type definitions in
content, then that repository must also support the system node (see §3.11
System Node) and the node type definitions should be located below
/jcr:system/jcr:nodeTypes. Support for these node types also requires support
for same-name siblings (see §22 Same-Name Siblings).

3.7.14.1 nt:nodeType

[nt:nodeType]
 - jcr:nodeTypeName (NAME) protected mandatory
 - jcr:supertypes (NAME) protected multiple
 - jcr:isAbstract (BOOLEAN) protected mandatory
 - jcr:isQueryable (BOOLEAN) protected mandatory
 - jcr:isMixin (BOOLEAN) protected mandatory
 - jcr:hasOrderableChildNodes (BOOLEAN) protected mandatory
 - jcr:primaryItemName (NAME) protected
 + jcr:propertyDefinition (nt:propertyDefinition)
 = nt:propertyDefinition protected sns
 + jcr:childNodeDefinition (nt:childNodeDefinition)
 = nt:childNodeDefinition protected sns

This node type is used to store a node type definition. Property and child node
definitions within the node type definition are stored as same-name sibling nodes
of type nt:propertyDefinition and nt:childNodeDefinition.

3.7.14.2 nt:propertyDefinition

[nt:propertyDefinition]
 - jcr:name (NAME) protected
 - jcr:autoCreated (BOOLEAN) protected mandatory

 57

 - jcr:mandatory (BOOLEAN) protected mandatory
 - jcr:onParentVersion (STRING) protected mandatory
 < 'COPY', 'VERSION', 'INITIALIZE', 'COMPUTE',
 'IGNORE', 'ABORT'
 - jcr:protected (BOOLEAN) protected mandatory
 - jcr:requiredType (STRING) protected mandatory
 < 'STRING', 'URI', 'BINARY', 'LONG', 'DOUBLE',
 'DECIMAL', 'BOOLEAN', 'DATE', 'NAME', 'PATH',
 'REFERENCE', 'WEAKREFERENCE', 'UNDEFINED'
 - jcr:valueConstraints (STRING) protected multiple
 - jcr:defaultValues (UNDEFINED) protected multiple
 - jcr:multiple (BOOLEAN) protected mandatory
 - jcr:availableQueryOperators (NAME) protected mandatory
 multiple
 - jcr:isFullTextSearchable (BOOLEAN) protected mandatory
 - jcr:isQueryOrderable (BOOLEAN) protected mandatory

This node type used to store a property definition within a node type definition,
which itself is stored as an nt:nodeType node.

3.7.14.3 nt:childNodeDefinition

[nt:childNodeDefinition]
 - jcr:name (NAME) protected
 - jcr:autoCreated (BOOLEAN) protected mandatory
 - jcr:mandatory (BOOLEAN) protected mandatory
 - jcr:onParentVersion (STRING) protected mandatory
 < 'COPY', 'VERSION', 'INITIALIZE', 'COMPUTE',
 'IGNORE', 'ABORT'
 - jcr:protected (BOOLEAN) protected mandatory
 - jcr:requiredPrimaryTypes (NAME) = 'nt:base' protected
 mandatory multiple
 - jcr:defaultPrimaryType (NAME) protected
 - jcr:sameNameSiblings (BOOLEAN) protected mandatory

This node type used to store a child node definition within a node type definition,
which itself is stored as an nt:nodeType node.

3.7.14.4 Representing Null Attributes

The attributes that make up a node type definition may in some cases have no
set value (for example, some child node definitions may not define a default
primary type). To store this information (i.e., the lack of a value) in an
nt:nodeType, nt:childNodeDefinition or nt:propertyDefinition node the
property representing that attribute must simply be not present, since null values
for single-value properties are not permitted (see §10.4.2.4 No Null Values).

3.7.14.5 Representing Residual Items

To indicate that a property or child node definition is residual, the value returned
by ItemDefinition.getName() is “*”. However, “*” is not a valid value for the
property jcr:name in an nt:propertyDefinition or nt:childNodeDefinition
node (because jcr:name it is a NAME property, not a STRING). As a result, an in-
content definition of a residual item will simply not have a jcr:name property.

 58

3.7.15 Repository Feature Node Types

JCR defines a number of node types in order to support specific repository
features. Descriptions of these node types are found in their corresponding
feature sections. The following list summarizes the node types and their
associated features:

Referenceable Nodes: mix:referenceable (see §3.8 Referenceable Nodes).

Locking: mix:lockable (see §17 Locking).

Shareable Nodes: mix:shareable (see §3.9 Shareable Nodes Model).

Lifecycles: mix:lifecycle (see §18 Lifecycle Management).

Versioning: mix:simpleVersionable, mix:versionable, nt:version,
nt:versionHistory, nt:frozenNode, nt:versionLabels, nt:versionedChild
(see §3.13 Versioning Model).

3.7.16 JCR Node Type Variants

An implementation may provide a variant of a JCR node type as a built-in under
certain conditions.

3.7.16.1.1 Replacing the Canonical Type

Such a variant must have the same name as the canonically defined type and
thus replace it in that implementation's set of available node types.

3.7.16.1.2 Additions to the Hierarchy

An implementation may alter the definition of a JCR node type by adding
supertypes. These additional supertypes may be either JCR mixin node types or
implementation-specific mixin or primary node types. For example, a repository
may require that all nodes of type nt:file be, additionally, mix:versionable. In
such a repository the definition of nt:file, when introspected, would report an
additional supertype of mix:versionable.

This extension mechanism is distinct from the automatic addition of mixin types
that may be done on node creation (see §10.10.3.3 Automatic Addition and
Removal of Mixins). Though the two features may both be employed in the same
repository, they differ in that one affects the actual hierarchy of the supported
node types, while the other works on a node-by-node basis.

3.7.16.1.3 Abstract Node Types

An implementation may make abstract a JCR node type that is not canonically
abstract. For example, some implementations might use nt:file as is, whereas
others might subtype it in order to introduce implementation specific item
definitions. Such implementations would therefore designate nt:file as abstract.

3.7.16.1.4 Variant Attributes

An implementation may vary the value of a node type or child definition attribute
that is explicitly indicated as a variant in the node type definitions given in this

 59

specification. For example, any node type defined in this specification may be
either queryable or non-queryable, depending on the implementation. Also, the
protected and OPV settings of the properties of the metadata mixins (mix:title,
mix:created, mix:lastModified, mix:language and mix:mimeType) are also
variant.

3.7.17 External Node Types

An external node type is one defined outside this specification. It may be either
an implementation-specific type built into a repository or a node type defined and
registered by a user (see §19 Node Type Management).

3.7.17.1 Restrictions

The following restrictions apply to all external node types:

• An implementation must not allow external node types with node type names
in the nt, mix, jcr or xml namespaces.

• An implementation may allow external node types which have item definitions
in the jcr namespace. Such an item definition must only reuse an item
definition from a JCR-defined node type.

• Any jcr namespaced item definition D' in an external node type T' must not be
invalid with respect to the JCR-defined definition D in the JCR-defined node T
(with D, D', T and T' as above, see §3.7.6.8 Item Definitions in Subtypes).

• Any jcr namespaced item definition in an external node type must be used for
a purpose equivalent to its JCR use.

• All custom node types must adhere to semantics of subtyping (see §3.7.6.6
Semantics of Subtyping)

3.8 Referenceable Nodes
A repository may support referenceable nodes. A node must be referenceable to
serve as the target of a reference property, which is either a WEAKREFERENCE or
REFERENCE. To be referenceable a node must be of type mix:referenceable.

3.8.1.1 mix:referenceable

[mix:referenceable]
 mixin
 - jcr:uuid (STRING) mandatory autocreated protected
 INITIALIZE

This node type adds an auto-created, mandatory, protected STRING property to
the node, called jcr:uuid, which exposes the identifier of the node. Note that the
term “UUID” is used for backward compatibility with JCR 1.0 and does not
necessarily imply the use of the UUID syntax, or global uniqueness.

The identifier of a referenceable node must be a referenceable identifier.
Referenceable identifiers must fulfill a number of constraints beyond the
minimum required of standard identifiers (see §3.8.3 Referenceable Identifiers).

 60

A reference property is a property that holds the referenceable identifier of a
referenceable node and therefore serves as a pointer to that node. The two types
of reference properties, REFERENCE and WEAKREFERENCE differ in that the former
enforces referential integrity while the latter does not (see §3.8.2 Referential
Integrity). A repository may support only WEAKREFERENCE or both WEAKREFERENCE
and REFERENCE property types.

3.8.2 Referential Integrity

Given a property P with value V in workspace W:

If P is of type REFERENCE then there must exist a node in W with identifier V.

If P is of type WEAKREFERENCE, no such restriction exists.

In a read-only context the only difference between the types is that a workspace
cannot contain a dangling REFERENCE while it may contain a dangling
WEAKREFERENCE.

3.8.2.1 Exceptions to Referential Integrity

In a repository that exposes version storage in content, such as one that supports
full versioning, an exception is made to the referential integrity rule when the
REFERENCE property in question is part of the frozen state of a version stored in
version storage. In that case the frozen REFERENCE property may hold the
identifier of a node that is no longer in the workspace (see §3.13.3.7 References
in a Frozen Node).

3.8.3 Referenceable Identifiers

Every node has an identifier, where an identifier is a string which is the most
stable available. A referenceable node, however, must have a referenceable
identifier, which is subject to a number of further constraints:

3.8.3.1 Identifier Assignment

As with any identifier, a referenceable node's identifier must be assigned at the
latest when the node is first persisted. However, the jcr:uuid property of the
node must be created immediately upon the node becoming referenceable, which
may be upon node creation or upon a later mixin addition. Consequently, the
value of the jcr:uuid property before the first persist is not guaranteed to be the
identifier of the node.

3.8.3.2 Identifier Immutable across Move and Clone

The identifier is immutable during the lifetime of the node, that is, until the node
is deleted though a remove operation. In particular, the identifier is immutable
across move and clone operations. Note that non-referenceable identifiers are not
required to be immutable across these operations. As in the non-referenceable
case, the referenceable identifier is not immutable across copy operations. This
operation results in the creation of a new node with a new identifier.

 61

3.8.3.3 Implementation Variations

These are the minimum requirements for a referenceable identifier, but
implementations are free to exceed these requirements.

3.9 Shareable Nodes Model
The ability to address the same piece of data via more than one path is a
common feature of many content storage systems. In JCR this feature is
supported through shareable nodes.

Two or more shareable nodes in the same workspace may belong to a shared set.
Each node within that set has its own unique path within the workspace but all
share exactly the same set of child nodes and properties. This means that while
the shared nodes are distinct from a path perspective, they are effectively the
same node for purposes of operations that access their common subgraph.

3.9.1 mix:shareable

In order to be shareable, a node must of type mix:shareable:

[mix:shareable] > mix:referenceable mixin

All shareable nodes are referenceable.

3.9.2 Shared Set

Given two distinct shareable nodes A and B where A shares with B, the following
facts hold:

• A and B are in the same shared set.

• B shares with A (sharing is a symmetric relation).

• If B shares with C then A shares with C (sharing is a transitive relation).

• If item I is a child of A then I is also a child of B and has the same name
relative to both A and B.

• A and B have the same identifier.

• A and B are in the same workspace

• A and B have distinct paths.

3.9.3 Child Nodes of Shared Nodes

Each node in a shared set shares the same child nodes. In particular, the addition
or removal of a child from a shared node N automatically adds or removes that
child from all the nodes in the shared set of N.

For example, suppose the following nodes exist:

 /x
 /x/y
 /x/y/z
 /x/y/z/n1
 /x/y/z/n2

 62

Suppose a shared node at /x/a is created and shares with the shareable node at
/x/y. Since the children of /x/y are automatically added to /x/a, a child named
“z” is automatically added to /x/a. Therefore, as a result of creating /x/a, the
following paths are associated with nodes:

 /x/a
 /x/a/z
 /x/a/z/n1
 /x/a/z/n2

where /x/a is a new node that shares with /x/y, /x/a/z identifies the same node
as /x/y/z, /x/a/z/n1 identifies the same node as /x/y/z/n1, and /x/a/z/n2
identifies the same node as /x/y/z/n2.

Subsequently, when a new child named “w” is added to either /x/y or /x/a, that
child is automatically added to both /x/y and /x/a. Conversely, when a child
named “w” is removed from either /x/y or /x/a, the child named “w” is removed
from both /x/y and /x/a.

3.9.4 Properties of Shared Nodes

Each node in shared set shares the same properties and their respective property
values. When a change, addition or removal of a property of one node in a shared
set is made, that change, addition or removal is immediately reflected in the
properties of each node in the shared set.

3.9.5 Shared Nodes Diagram

The above diagram shows a share set of three nodes, A, B and C, which share the
child nodes D and F and the property G.

 63

3.9.6 Deemed Path

A descendant item of a shared set will have more than one valid path (assuming
the shared set has at least two members). When the parent node or path of such
a descendant item is requested, an implementation must choose a deemed path
to return.

How the deemed path is chosen and its stability both over time and across the
set of descendent items is an implementation issue.

In particular, it is permissible for an implementation to choose deemed paths for
two sibling items where those paths differ by more than just the last element. It
is also permissible for the deemed path of an item to change from one request to
the next on the same item within the same session.

Though most implementations are expected to support deemed paths which are
more stable than this, flexibility of the deemed path is provided to facilitate
implementations which would otherwise not be able to support shareable nodes.

 64

3.9.7 Ancestors of Shared Nodes

Given the following situation:

• Node A is an ancestor of node N.

• N is in the shared set S.

• N' is also in the shared set S.

• A is an ancestor of N.

• D is a descendent of N.

The following terminology applies:

• A is an ancestor of N (as usual).

• A is a share-ancestor of the set S and of the individual nodes, N' and
(trivially), N.

• Since D is a descendent of N it is also a descendent of every node in S (N',
for example). We also say that it is a descendent of the set S.

• Since A is a share-ancestor of S and D is a descendent of S, A is an
ancestor (proper) of D.

Note that the term share-ancestor does not mean shared ancestor. The ancestor
(proper) of a member of a shared set is not necessarily an ancestor (proper) of
any other member of that set.

3.9.8 Identifiers

When a node is requested by identifier and that identifier references a shared set
of nodes with more than one member the repository must return one member of
that set. How this node is chosen is an implementation issue. In general, a user
that interacts with repositories that support shareable nodes must be prepared to
deal with different nodes having the same identifier.

3.9.9 Share Cycle

A share cycle occurs when a node is in the same shared set as one of its
ancestors. A repository implementation may prevent the occurrence of share
cycles. In such implementations any method call that would cause a cycle will fail.

3.10 Corresponding Nodes
In a repository with more than one workspace, a node in one workspace may
have corresponding nodes in one or more other workspaces.

Given a repository R with workspaces W0, W1,...Wk and a node N0 in W0 with
identifier I0 then for each workspace Wx in R, if Wx has a node Nx with identifier
I0, Nx is a corresponding node of N0. Some corollaries include:

 65

• Every node corresponds to itself.

• A non-shared node has at most one corresponding node per workspace. In
repositories that support shareable nodes the nodes within a shared-set
have the same identifier and therefore a node in another workspace with
that identifier will have more than one corresponding node in that
workspace (see §3.9 Shareable Nodes Model).

Apart from having the same identifier, corresponding nodes need have nothing
else in common. They can have different sets of properties and child nodes, for
example.

3.10.1.1 Root Node Correspondence

The root nodes of all workspaces in a repository all have the same identifier, and
therefore correspond to one another.

3.10.1.2 Correspondence Semantics

The mechanism of correspondence allows two nodes in separate workspaces to be
related by a common identifier while maintaining distinct states. This relation is
used to model cases where copies of a common content structure must be
maintained separately.

3.10.1.3 Cross-Workspace Operations

JCR provides methods for transferring state between workspaces through clone
and update (see §10.7.2 Copying Across Workspaces and §10.8 Cloning and
Updating Nodes).

3.10.1.4 Versioning and Corresponding Nodes

In systems that support versioning, corresponding nodes in separate workspaces
share the same version history (see §3.13.7 Versioning and Multiple
Workspaces).

 66

3.10.1.5 Corresponding Nodes Diagram

The above diagram depicts two workspaces W and W'. Node C in W and node C' in
W' are corresponding nodes. Note that the subgraphs of corresponding nodes
may differ, as they do in this case.

3.11 System Node
The location /jcr:system is reserved for use as a “system folder”. Some
implementations may use this location to expose repository-internal data as
content.

If a repository exposes node type definitions in content, then those node type
definitions should be located at /jcr:system/jcr:nodeTypes (see §3.7.14 Node
Type Definition Storage).

 67

If a repository supports full versioning, then it must expose the version storage at
/jcr:system/jcr:versionStorage. If it supports only simple versioning then it
may expose the version storage (see §3.13.8 Version Storage).

Similarly, if an implementation supports activities (see §15.12 Activities) or
configurations and baselines (see §15.13 Configurations and Baselines), the in-
content representations of these entities are stored under
/jcr:system/jcr:activities and /jcr:system/jcr:configurations,
respectively.

If /jcr:system is supported, its node type is left up to the implementation.

3.12 Unfiled Content
Implementers that build a JCR repository on top of an existing repository that
supports content objects which exist outside of a hierarchical structure may
expose these objects as nodes below /jcr:system/jcr:unfiled (see §3.11
System Node).

The hierarchical structure below /jcr:system/jcr:unfiled is implementation-
dependent.

JCR implementers may disallow discovery (listing) of the nodes beneath this
folder. In such a case a call to Node.getNodes() on the jcr:unfiled node would
throw a RepositoryException.

JCR implementers may expose the nodes below jcr:unfiled to search through
the query mechanism (see §6 Query).

3.13 Versioning Model
Versioning enables a user to record the state of a node and its subgraph and
restore that state at a later time. A repository that supports versioning may
support either the complete set of versioning features, referred to as full
versioning, or a specific subset defined here, which is referred to as simple
versioning. This section describes the concepts, data structures and node types of
the full versioning model as well as which parts of that model apply under simple
versioning. Discussion of the versioning API and its behavior under both levels of
support is found in §15 Versioning.

3.13.1 Overview

3.13.1.1 Versionable Nodes

For its state to be recorded in a version, a node must be versionable.

3.13.1.2 Check-In

When a versionable node is checked-in, a new version of that node is created
which contains a (typically partial) copy of its subgraph. The part of a node’s
subgraph that is to be copied to a version is referred to as its versionable state. A
node’s versionable state is determined by the on-parent-version attribute of each
of its subitems, as defined in its node type (see §3.7.2.5 On-Parent-Version).

 68

3.13.1.3 Version History

Once created, a version is stored in a version history. Within a given workspace,
each non-shared versionable node has its own version history which contains a
version graph that records the position of each version in relation to its direct
predecessor and direct successor versions.

3.13.1.4 Successor and Predecessor

V' is a direct successor of V if and only if V is a direct predecessor of V'.

A version V’ is an eventual successor of a version V if and only if V’ is a direct
successor of V or there exists a version V* such that V' is a direct successor of V*
and V* is an eventual successor of V.

Similarly, a version V’ is an eventual predecessor of a version V if and only if V’
is a direct predecessor of V or there exists a version V* such that V' is a direct
predecessor of V* and V* is an eventual predecessor of V.

When the terms successor and predecessor are used without qualification they
mean direct successor and direct predecessor, respectively.

3.13.1.5 Simple and Full Versioning

Under simple versioning, each new version is always added as the unique direct
successor of the previous version, thus maintaining a linear series of versions.

Under full versioning, a new version may be added as the direct successor of a
version that already has another direct successor, thus producing a branch. A
new version may also be added as the direct successor of more than one existing
version, thus producing a merge.

3.13.1.6 Version Storage

Version histories are stored in a repository-wide version storage. Under full
versioning this store is exposed both through the Java objects of the versioning
API as well as in a read-only subgraph reflected in each workspace. Within that
subgraph version histories are represented as nodes of type nt:versionHistory
and versions as nodes of type nt:version. Under simple versioning, the version
store is exposed through the versioning API but is not required to be exposed as
a node subgraph.

3.13.1.7 Check-Out

Once checked-in, a versionable node and its versionable subgraph become read-
only. To alter a checked-in node or its versionable subgraph, the node must first
be checked-out. It can then be changed and checked-in again, creating a new
version.

3.13.1.8 Restore

A versionable node and its versionable subgraph can also be restored to the state
recorded in one of its versions.

 69

3.13.2 Versionable Nodes

Under simple versioning, a versionable node must be mix:simpleVersionable.
Under full versioning, it must be mix:versionable.

3.13.2.1 mix:simpleVersionable

[mix:simpleVersionable] mixin
 - jcr:isCheckedOut (BOOLEAN) = 'true'
 mandatory autocreated protected IGNORE

The mix:simpleVersionable type exposes the node’s checked-out status as a
BOOLEAN property.

3.13.2.2 Checked-In or Checked-Out

A new version of a versionable node is created by checking-in a versionable node
(see §15.2 Check-In: Creating a Version). In this state the node and its
versionable subgraph are read-only (see §15.2.2 Read-Only on Check-In). The
node can then be checked-out (see 15.3 Check-Out), at which point it becomes
writable again.

Under both simple and full versioning, this status is accessible through
VersionManager.isCheckedOut (see §15.3.1.1 Testing for Checked-Out Status)
and the BOOLEAN property jcr:isCheckedOut.

3.13.2.3 mix:versionable

 [mix:versionable] > mix:simpleVersionable, mix:referenceable
 mixin
 - jcr:versionHistory (REFERENCE) mandatory protected IGNORE
 < 'nt:versionHistory'
 - jcr:baseVersion (REFERENCE) mandatory protected IGNORE
 < 'nt:version'
 - jcr:predecessors (REFERENCE) mandatory protected multiple
 IGNORE < 'nt:version'
 - jcr:mergeFailed (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:activity (REFERENCE) protected IGNORE < 'nt:activity'
 - jcr:configuration (REFERENCE) protected IGNORE
 < 'nt:configuration'

The mixin mix:versionable is a subtype of mix:simpleVersionable and
mix:referenceable, and adds properties exposing a number of additional
versioning-related attributes.

3.13.2.4 Version History Reference

Apart from nodes within the same shared set, which share the same version
history, each versionable node within a persistent workspace has its own version
history.

Under both simple and full versioning the version history of a node is accessed
through VersionManager.getVersionHistory, which returns a VersionHistory
object (see §15.1.1 VersionHistory Object). Under full versioning it is also

 70

represented by the REFERENCE property jcr:versionHistory, which points to an
nt:versionHistory node (see §3.13.5.1 nt:versionHistory).

3.13.2.5 Base Version Reference

Each versionable node has a base version within its version history. When a new
version of a node is created, it is placed in that node’s version history as a direct
successor of the base version. That version itself then becomes the new base
version (see §3.13.6.2 Base Version).

Under simple versioning, the base version of a versionable node is always the
most recent version in its version history.

Under full versioning, corresponding versionable nodes in different workspaces,
while having the same version history, may have different base versions within
that history. Therefore, the base version of a full versionable node may not be the
most recent version in that node's version history (see §3.13.6.2 Base Version).

The base version is accessed through VersionManager.getBaseVersion (see
§15.1.2 Getting the Base Version) which returns a Version object (see 15.2.1
Version Object). Under full versioning the connection to the base version is also
represented by the REFERENCE property jcr:baseVersion, which points to an
nt:version node (see §3.13.2.3 mix:versionable).

3.13.2.6 Predecessors

Under full versioning, a versionable node N has one or more versions in its
version history that will become direct predecessors of the new version V created
on the next check-in of N. For convenience these versions can also be referred to
as the direct predecessors of N (i.e., not just the direct predecessor of the
hypothetical V).

The base version of N is always one of these direct predecessors, but N may have
additional direct predecessors as well. If so, on check-in of N, all of these become
direct predecessors of the newly created version V, thus forming a merge within
the version graph (see §15.9 Merge).

A node’s direct predecessors are exposed by the multi-value REFERENCE property
jcr:predecessors (see §3.13.2.3 mix:versionable) which points to one or more
nt:version nodes (see §3.13.3.1 nt:version).

There is no dedicated API for accessing the direct predecessors of a versionable
node; access is provided through the property only (this should not be confused
with access to the direct predecessors of a version, which is exposed through the
API, see §3.13.2.6 Predecessors).

Under simple versioning, the jcr:predecessors attribute is not needed (and
hence not present on mix:simpleVersionable) since a versionable node will only
ever have one direct predecessor, which is its base version.

 71

3.13.2.7 Merge Failed

Under full versioning, jcr:mergeFailed is a multi-value REFERENCE property that
is used to mark merge failures (see §15.9 Merge). Under simple versioning,
merges are not supported. There is no dedicated API for accessing merge
failures; access is provided only through this property.

3.13.2.8 Activity

Under full versioning, jcr:activity is a REFERENCE property used to support the
activities feature (see §15.12 Activities). Under simple versioning, activities are
not supported. There is no dedicated API for retrieving the activity associated
with a given versionable node; access is provided only through this property.

3.13.2.9 Configuration

Under full versioning, jcr:configuration is a REFERENCE property used to
support the configurations and baselines feature (see §15.13 Configurations and
Baselines). Under simple versioning, configurations are not supported. There is no
dedicated API for retrieving the configuration associated with a given versionable
node; access is provided only through this property.

3.13.3 Versions

Under simple versioning, a version is represented by a Version object (see
§15.2.1 Version Object) and the attributes of the version are accessible only
through methods of that class.

Under full versioning a version is represented by both a Version object and a
node of type nt:version within the version storage (see §3.13.7 Version
Storage). The attributes of a version are accessible both through methods of the
Version class and through the properties of nt:version.

Each version has a name unique within its version history that is assigned
automatically on creation of the version. The format of the name is
implementation-dependant. Under full versioning this is the name of the
nt:version node representing the version. Under simple versioning this is simply
the name returned when Item.getName() is called on the Version object.

Version is a subclass of Node. However, since under simple versioning a version
is not represented by a node, most of the Node methods inherited by Version are
not required to function. The single exception is Item.getName() as mentioned
above. Under full versioning the Node methods inherited by Version function as
expected on the nt:version node.

Under full versioning the nt:version nodes representing the versions within a
given history are always created as direct child nodes of the nt:versionHistory
node representing that history.

3.13.3.1 nt:version

[nt:version] > mix:referenceable
 - jcr:created (DATE) mandatory autocreated protected
 ABORT

 72

 - jcr:predecessors (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:successors (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:activity (REFERENCE) protected ABORT
 < 'nt:activity'
 + jcr:frozenNode (nt:frozenNode) protected ABORT

nt:version inherits the STRING jcr:uuid from mix:referenceable, making
every nt:version node referenceable. Additionally, it defines properties that
expose the following attributes.

3.13.3.2 Creation Date

Each version records its creation date, which is accessible through
Version.getCreated and, under full versioning, through the jcr:created DATE
property of nt:version.

3.13.3.3 Predecessors

Each version has zero or more direct predecessor versions within its version
history, accessible though Version.getPredecessors. Under simple versioning, a
version will have either zero direct predecessors (if it is the root version of a
history) or one direct predecessor. Under full versioning, a version may have
zero, one, or more direct predecessors, which are exposed through the
jcr:predecessors multi-value REFERENCE property of nt:version.

3.13.3.4 Successors

Each version has zero or more direct successor versions within its version history,
accessible though Version.getSuccessors. Under simple versioning, a version
will have either zero or one direct successors. Under full versioning, a version
may have zero, one, or more direct successors, which are exposed through the
jcr:successors multi-value REFERENCE property of nt:version.

3.13.3.5 Frozen Node

Each version records the versionable state of its versionable node at the time of
check-in in a frozen node, attached to the version and accessed though
Version.getFrozenNode. Under simple versioning, the frozen node is isolated,
having no parent in any workspace. Under full versioning, it is a subnode of the
nt:version node in the version storage subgraph. In both cases the node is of
type nt:frozenNode (see §3.13.4.1 nt:frozenNode).

3.13.3.6 Activity

Under full versioning a version may be bound to an activity. This relationship is
recorded by the jcr:activity REFERENCE property of nt:version pointing to
nt:activity node that represents the activity under which this version was
created (see §15.12 Activities). Under simple versioning activities are not
supported.

 73

3.13.4 Frozen Nodes

When a version is created, the versionable subgraph of its versionable node is
copied to a frozen node within the new version. On check-in the child nodes and
properties that constitute the versionable subgraph are copied and placed as child
items of the frozen node under the same names as they had under the
versionable node.

Which child nodes and properties are copied, and in the case of child nodes, the
depth of the subgraph to be copied, constitutes the versionable state of the node
and is determined by the on-parent-version settings defined in the node type of
the versionable node (see §3.7.2.5 On-Parent-Version).

Regardless of the node type of the original versionable, all frozen nodes are of the
type nt:frozenNode. Under both simple and full versioning, the frozen node of a
version is accessible directly from the Version object (see §15.2.1 Version
Object). Under full versioning, the frozen node is also accessible as the child node
jcr:frozenNode of the nt:version node. Under simple versioning the frozen
node is a Node object but does not have a parent, and consequently methods
called on the frozen node that depend upon having a parent will throw an
exception. Under full versioning the frozen node's parent is the nt:version node
to which it belongs.

A frozen node always has the name jcr:frozenNode. Under full versioning this is
the name under which it exists as a child of its nt:version node. Under simple
versioning this is simply the name returned when Item.getName() is called on
the frozen node.

3.13.4.1 nt:frozenNode

[nt:frozenNode] orderable
 - jcr:frozenPrimaryType (NAME) mandatory autocreated
 protected ABORT
 - jcr:frozenMixinTypes (NAME) protected multiple ABORT
 - jcr:frozenUuid (STRING) protected ABORT
 - * (UNDEFINED) protected ABORT
 - * (UNDEFINED) protected multiple ABORT
 + * (nt:base) protected sns ABORT

nt:frozenNode defines the following properties and child nodes.

3.13.4.2 Frozen Primary Type

jcr:frozenPrimaryType is a NAME property that stores the primary node type of
the versionable node.

3.13.4.3 Frozen Mixin Types

jcr:frozenMixinTypes is a multi-value NAME property that stores the mixin types
of the versionable node, if any.

 74

3.13.4.4 Frozen Identifier

jcr:frozenUuid is a STRING property that stores the referenceable identifier of
the versionable node. Note that the term “UUID” is used for backwards
compatibility with JCR 1.0 and does not necessarily the use of the UUID syntax,
or global uniqueness.

3.13.4.5 Residual Properties and Child Nodes

A set of residual definitions are defined for the copies of the properties and child
nodes that make up the versionable state of the versionable node. In repositories
that do not support residual item definitions (see §3.7.2.1.2 Item Definition Name
and Residual Definitions) these must be implemented as a special case for the
frozen node.

3.13.4.6 References in a Frozen Node

A REFERENCE property stored in the frozen node of a version does not enforce
referential integrity. Under simple versioning this follows from the fact that a
REFERENCE within a frozen node does not appear within the workspace in any
case, it only appears when the frozen node is explicitly retrieved through the
Version object (see §15.2.1 Version Object). Under full versioning a REFERENCE
within a frozen node will appear in the workspace within the read-only version
storage (see §3.13.8 Version Storage) so the referential integrity requirement
must be lifted as a special case.

3.13.5 Version History

Under simple versioning a version history is represented by a VersionHistory
object (see §15.1.1 VersionHistory Object). Under full versioning a version history
is represented by both a VersionHistory object and a node of type
nt:versionHistory.

A version history is created upon creation of a new versionable node. Under full
versioning this results that an nt:versionHistory node being created
automatically within the version storage subgraph in an implementation
determined location and with an implementation-determined name.

VersionHistory is a subclass of Node. However, since under simple versioning a
version history is not represented by a node, the Node methods inherited by
VersionHistory are not required to function. Under full versioning those
methods will function as expected on the nt:versionHistory node representing
the history.

3.13.5.1 nt:versionHistory

[nt:versionHistory] > mix:referenceable
 - jcr:versionableUuid (STRING) mandatory autocreated
 protected ABORT
 - jcr:copiedFrom (WEAKREFERENCE) protected ABORT
 < 'nt:version'
 + jcr:rootVersion (nt:version) = nt:version mandatory
 autocreated protected ABORT
 + jcr:versionLabels (nt:versionLabels)

 75

 = nt:versionLabels protected ABORT
 + * (nt:version) = nt:version protected ABORT

This type inherits the STRING jcr:uuid from mix:referenceable, making every
nt:versionHistory node referenceable. It also defines properties and child
nodes representing the following attributes.

3.13.5.2 Root Version

Each version history has a root version, which is a null version that stores no
state; it simply serves as the eventual predecessor of all subsequent versions.

The root version is accessed through VersionHistory.getRootVersion (see
15.1.1.1 Root Version). Under full versioning it is also represented as an
nt:version child node of the nt:versionHistory node, called jcr:rootVersion.

3.13.5.3 Versions

In addition to the root version, a version history also holds all the versions that
have been created through check-ins of its versionable node (or nodes, in the
case of corresponding or shared nodes). These versions are accessible through
VersionHistory.getAllVersions, VersionHistory.getAllLinearVersions and
VersionHistory.getVersion.

Under full versioning these versions are also accessible as nt:version child
nodes of the nt:versionHistory node, under their respective implementation-
determined names.

3.13.5.4 Versionable Identifier

Each version history also stores the identifier of its versionable node (or nodes in
the case of corresponding or shared nodes).

This attribute is accessible through VersionHistory.getVersionableIdentifier
and, under full versioning, through the STRING property jcr:versionableUuid of
nt:versionHistory. Note that the term “UUID” is used for backward
compatibility with JCR 1.0 and does not necessarily imply the use of the UUID
syntax, or global uniqueness.

3.13.5.5 Version Labels

A version label is a JCR name, unique among the labels within a version history,
that identifies a single version within that history. A version can have zero or
more labels.

Labels are can be assigned, removed and retrieved through the API. Versions can
also be retrieved by label (see §15.4 Version Labels).

Under full versioning labels are also exposed through an nt:versionLabels child
node of nt:versionHistory called jcr:versionLabels. This node holds a set of
reference properties that record all labels that have been assigned to the versions
within this version history. Each label is represented by a single reference
property which uses the label itself as its name and points to that nt:version

 76

child node to which the label applies (see §15.4.1.2 Adding a Version Label). The
nt:versionLabels node type has the following definition:

[nt:versionLabels]
 - * (REFERENCE) protected ABORT < 'nt:version'

3.13.5.6 Copied From

When a full versionable node is copied to a new location and the repository
preserves the mix:versionable mixin (see §10.7 Copying Nodes), the copy gets
a new version history and that history records the base version of the node from
which the copy was created. This information, known as the node's lineage, is
recorded in the jcr:copiedFrom WEAKREFERENCE property of nt:versionHistory
(see §15.1.4 Copying Versionable Nodes and Version Lineage).

3.13.6 Version Graph

The versions within a version history form a version graph where the versions are
the vertices and each direct successor/direct predecessor pair are joined by a
directed edge.

Under simple versioning, branching and merging are not supported, so the
version graph is always a linear series of successive versions.

Under full versioning branching and merging are supported, so a version may
have multiple direct predecessors, multiple direct successors, or both. Also, under
full versioning, the version graph is exposed in content with nt:version nodes as
the vertices and the edges defined by the REFERENCE properties jcr:successors
and jcr:predecessors.

3.13.6.1 Root Version

The version graph always contains at least the root version. This is a null version
that stores no state and simply serves as the eventual predecessor of all
subsequent versions. Its frozen node does not contain any state information
about the versionable other than the node type and identifier information found in
the properties jcr:frozenPrimaryType, jcr:frozenMixinTypes, and
jcr:frozenUuid.

3.13.6.2 Base Version

For a given versionable node, one version within its version history is its base
version. Conceptually, the base version of a versionable node is that version
relative to which the current state of the checked-out versionable node
constitutes a versionable change.

On check-in, the newly created version becomes a direct successor of the current
base version and then itself becomes the new base version.

Under full versioning, corresponding versionable nodes in different workspaces,
while sharing the same version history, may have distinct base versions within
that history. This means that when one versionable node is checked-in, its
version will become direct successor of a particular existing version but when one

 77

of its correspondees is checked in, that new version may become direct successor
to a different existing version within the same version history.

Under simple versioning the linearity of the version graph guarantees that the
current base version is always the most recent version. On check-in it becomes
the unique direct predecessor of the newly created version, which then becomes
the new base version.

Under full versioning, the presence of branches and merges means that the
current base version for a given versionable node is not guaranteed to be the
most recent version.

3.13.7 Versioning and Multiple Workspaces

As mentioned (see 3.13.2.5 Base Version Reference and 3.13.6.2 Base Version),
under full versioning, corresponding versionable nodes in different workspaces all
have a single common version history, though within that history each may have
a distinct base version at any given time.

The intended semantics of the correspondence relationship is that corresponding
nodes represent copies of a common content structure which while identical at
one level (i.e., as determined by identifier), can be maintained in distinct states
(see §3.10.1.2 Correspondence Semantics).

The relation of corresponding versionable nodes to the same version history
reflects these semantics in that when different copies of the same content entity
are changed and checked-in from different workspaces the resulting versions are
all recorded within the same version graph and, depending on their individual
base versions, extending that graph at different points.

3.13.8 Version Storage

Version histories are stored in a single, repository-wide version storage mutable
and readable through the versioning API.

Under full versioning the version storage data must, additionally, be reflected in
each workspace as a protected (see §3.7.2.2 Protected) subgraph of nodes of
type nt:versionHistory located below /jcr:system/jcr:versionStorage (see
§3.11 System Node). Because it is protected, the subgraph cannot be altered
through the core write methods of JCR (see §10.2 Core Write Methods) but only
through though the methods of the versioning API.

Though the general repository-wide version history is reflected in each
workspace, the access that a particular Session gets to that subgraph is
governed by that Session's authorization, just as for any other part of the
workspace.

The nt:versionHistory nodes below /jcr:system/jcr:versionStorage, may
all be direct children of the jcr:versionStorage node or may be organized in a
deeper substructure of intervening subnodes that sort the version histories by
some implementation-specific criteria.

 78

The node type of the node jcr:versionStorage and any structural nodes used
within the subgraph are left up to the implementation.

3.13.9 Versionable State

The versionable state of a versionable node N is typically a subset of its subgraph.
The extent of this subset is defined in the node type of N through the on-parent-
version attribute (OPV) of each of its child items (see §3.7.2.5 On-Parent-
Version).

A frozen node F storing the versionable state of the node N is constructed as
follows:

1. The primary type of N is copied from the jcr:primaryType property of N
to the jcr:frozenPrimaryType property of F.

2. The mixin types of N (if any) are copied from the jcr:mixinTypes
property of N to the jcr:frozenMixinTypes property of F.

3. The referenceable identifier of N is copied from the jcr:uuid property of N
to the jcr:frozenUuid property of F.

4. For each property P of N other than jcr:primaryType, jcr:mixinTypes
and jcr:uuid where

• P has an OPV of COPY or

• P has an OPV of VERSION,

a copy of P is added to the frozen node, preserving its name and value (or
values).

5. For each child node C of N where

• C has an OPV of COPY,

a copy of the entire subgraph rooted at C (regardless of the OPV values of
the sub-items) is added to the frozen node, preserving the name of C and
the names and values of all its sub-items.

In a repository that supports orderable child nodes, the relative ordering
of the set of child nodes C that are copied to the frozen node is preserved.
As is the ordering within the subgraph of each of these child nodes C.

6. For each child node C of N where:

• C has an OPV of VERSION

Under simple versioning, the same behavior as COPY.

Under full versioning, if C is not mix:versionable, the same behavior as
COPY.

Under full versioning, if C is mix:versionable, then a special
nt:versionedChild node with a reference to the version history of C is
substituted in place of C as a child of the frozen node. The

 79

nt:versionedChild node has the same name as C and, in a repository
that supports orderable child nodes, the relative ordering of any such child
node C is preserved. The definition of nt:versionedChild is:

[nt:versionedChild]
 - jcr:childVersionHistory (REFERENCE) mandatory
 autocreated protected ABORT
 < 'nt:versionHistory'

The property jcr:childVersionedHistory points to the
nt:versionHistory of C.

3.13.10 Full Versioning Diagram

 80

The above diagram depicts the main elements of the full versioning model. A
workspace contains a versionable node N with child nodes A and C and property B.
The on-parent-version settings of each child are shown. A has an OPV of COPY
while B has an OPV of IGNORE. C is itself versionable and has an OPV of VERSION.

VHN is the nt:versionHistory node holding the version history of N which, in the
situation depicted, consists of the versions V0, V1, V1.1, V2 and V3, where V0 is the
root version, V1 is the successor of V0, V1.1 and V2 are both successors of V1
(constituting a branch) and V3 is the successor of V2.

V2 is the current base version of N and is shown in detail. As defined by the OPV
values of the children of N, V2 contains a partial copy of N's subtree in its frozen
node. This partial copy consists of the subtree rooted at A (since A in N has an
OPV of COPY) but does not include the property B (since B in N has an OPV of
IGNORE). Since C is itself versionable it has its own, separate, version history at
VHC and since it has an OPV of VERSION, C is represented in the frozen subtree of
V2 by an nt:versionedChild node that points to VHC.

3.13.11 Simple Versioning Diagram

The above diagram depicts the main elements of the simple versioning model.
Unlike under full versioning, the connections from the versionable node to the
version history and the base version are not mediated by reference properties but

 81

through API methods only. As well, the version history and its contained versions
are represented only by Java object instances (of classes VersionHistory and
Version, respectively) not by nodes. Finally, as the diagram indicates, under
simple versioning the version history is always linear and the VERSION on-parent-
version setting and associated structures are not supported.

 82

3.13.12 Versioning and Corresponding Nodes Diagram

The above diagram depicts two workspaces, W and W' containing corresponding
nodes N and N', both versionable. Because the two versionable nodes correspond,
they share the same version history, as shown by their respective
jcr:versionHistory references both pointing to the same nt:versionHistory
node. Despite sharing the same history, at any given time, corresponding nodes
may have distinct base versions within that history. In this diagram the base
version of N is V1.1 while the base version of N' is V2.

 83

4 Connecting

4.1 Repository Object
To begin using a repository, an application must acquire a Repository object.

Access to a Repository object may be provided through a number of standard
Java naming and discovery mechanisms, but must at the minimum be provided
through an implementation of the RepositoryFactory interface.

Any implementation of RepositoryFactory must have a zero-argument public
constructor. Repository factories may be installed in an instance of the Java
platform as extensions, that is, jar files placed into any of the usual extension
directories. Factories may also be made available by adding them to the applet or
application class path or by some other platform-specific means.

A repository factory implementation should support the Java Standard Edition
Service Provider mechanism9, that is, an implementation should include the file
META-INF/services/javax.jcr.RepositoryFactory. This file contains the fully
qualified name of the class that implements RepositoryFactory.

Once the RepositoryFactory is acquired, the Repository object itself is
acquired through

Repository RepositoryFactory.getRepository(Map parameters)

which attempts to retrieve a Repository object using the given parameters.

Parameters are passed in a Map of String key/value pairs. The keys are not
specified by JCR and are implementation specific. However, vendors should use
keys that are namespace qualified in the Java package style to distinguish their
key names. Alternatively, a client may request a default repository instance by
passing a null.

The implementation must return null if a default repository instance is requested
and the factory is not able to identify such a repository or if parameters are
passed and the factory does not understand them. See the associated Javadoc for
example connection code.

4.1.1 Example Repository Acquisition

An application may explicitly specify the repository factory implementation. For
example:

Map parameters = new HashMap();

9 See http://java.sun.com/j2se/1.4.2/docs/guide/jar/
jar.html#Service%20Provider.

 84

parameters.put("com.vendor.address",
 "vendor://localhost:9999/repo");

RepositoryFactory factory = (RepositoryFactory)
 Class.forName("com.vendor.RepositoryFactoryImpl");

Repository repo = factory.getRepository(parameters);

Some implementations may allow acquisition of a RepositoryFactory through
the ServiceLoader in Java SE 6. For example:

Map parameters = new HashMap();

parameters.put("com.vendor.address",
 "vendor://localhost:9999/repo");

Repository repo = null;

for (RepositoryFactory factory :
 ServiceLoader.load(RepositoryFactory.class)) {
 repo = factory.getRepository(parameters);
 if (repo != null) {
 // factory accepted parameters
 break;
 }
}

Note that in Java SE prior to version 6, one may use the class
javax.imageio.spi.ServiceRegistry to look up the available
RepositoryFactory implementations.

4.1.2 Thread Safety

A repository implementation must provide thread-safe implementations of all the
methods of the RepositoryFactory and Repository interfaces. A repository
implementation is not required to provide thread-safe implementations of any
other interface. As a consequence, an application which concurrently or
sequentially operates against objects having affinity to a particular Session
through more than one thread must provide synchronization sufficient to ensure
no more than one thread concurrently operates against that Session and
changes made by one thread are visible to other threads.

4.2 Login
Interaction with the repository begins with the user acquiring a Session through
a call to Repository.login. In the most general case, the client supplies a
Credentials object and a workspace name:

Session Repository.login(Credentials credentials,
 String workspaceName).

Other signatures of login are also provided (see §4.2.4 External Authentication).

 85

4.2.1 Credentials

The Credentials interface is an empty marker for the object that carries the
information necessary to authenticate and authorize the user. A repository may
use the supplied SimpleCredentials implementation or its own implementation.

4.2.2 Guest Credentials

GuestCredentials is used to acquire an anonymous session.

4.2.3 Workspace Name

The workspaceName passed on login identifies one of the persistent workspaces
of the repository. More than one Session can be simultaneously bound to the
same persistent workspace.

4.2.4 External Authentication

By providing a signature of Repository.login that does not require
Credentials, the content repository allows for authorization and authentication
to be handled by JAAS (or another external mechanism) if the implementer so
chooses.

To use such an external mechanism to create sessions with end-user identity,
invocations of the Repository.login method that do not specify Credentials
(i.e., either a null Credentials is passed or a signature without the
Credentials parameter is used) should obtain the identity of the already-
authenticated user through that external mechanism.

4.3 Impersonate
A client may also open a new Session from within an existing one using

Session Session.impersonate(Credentials credentials).

The returned Session is bound to the same workspace as the current Session,
though it may (and typically will) have a different authorization. The
implementation is free to take both the supplied Credentials and the
authorization of the current Session into account in determining the authorization
of the returned Session.

4.4 Session
The Session object is granted a set of permissions toward the specified
persistent workspace. These are determined by the Session's credentials
combined with any access control restrictions, either JCR-defined or
implementation-specific, which may apply (see §9.1 Permissions).

4.4.1 User

Each Session has a user ID, accessed through

String Session.getUserID().

 86

How the user ID is set is up to the implementation. It may be passed in as part of
the Credentials or it may be acquired in some other way. This method is free to
return an “anonymous user ID” or null.

4.4.2 Attributes

A Session may have arbitrary, implementation-specific named attributes bound
to its Credentials. The method

String[] Session.getAttributeNames()

returns the set of attribute names, and the method

Object Session.getAttribute(String name)

returns the value of a named attribute.

4.4.3 Session to Repository

The Repository object through which a Session was acquired is retrieved with

Session.getRepository().

4.4.4 Live Status

The method

boolean Session.isLive()

is used to check whether a Session object represents a live, logged-in session.

4.4.5 Logout

A Session is closed using

void Session.logout().

4.5 Workspace
Though more than one Session can be bound to the same persistent workspace,
each Session object has a single distinct corresponding Workspace object that
represents the actual persistent workspace to which the Session is bound. A
Workspace object can be thought of as a view on to the persistent workspace as
seen through the permissions granted to its corresponding Session (see §10
Writing).

4.5.1 Session to Workspace

Workspace Session.getWorkspace().

returns the Workspace object representing the actual persistent workspace to
which a Session is bound.

Despite their one-to-one relationship, Session and Workspace are defined as
distinct interfaces in order to separate two types of write behavior: transient vs.
immediately persistent, though this distinction is only strictly relevant in writable
repositories.

 87

4.5.2 Workspace to Session

Session Workspace.getSession()

returns the Session object to which a Workspace object is bound.

4.5.3 Workspace Name

String Workspace.getName()

returns the name of the persistent workspace represented by a Workspace object.

4.5.4 Accessible Workspaces

String[] Workspace.getAccessibleWorkspaceNames()

returns an array holding the names of all persistent workspaces accessible from a
Workspace object. Accessibility is determined by the permissions granted to the
Session to which the Workspace object is bound. In order to access one of the
listed workspaces, the user performs another Repository.login, specifying the
name of the desired workspace, and receives a new Session object.

 88

5 Reading
There are three types of read access which a session may have with respect to a
particular item, depending on that session's permissions: direct access, traversal
access and query access.

5.1 Direct Access
Direct access to an item means being able to retrieve it by absolute and relative
path and, in the case of nodes, by identifier.

Let p(x) return the normalized absolute path of item x, p(x, y) return the
normalized relative path from item x to item y and, id(x) return the identifier of
node x.

For any session S and node N, the statements below must be either all true or all
false. If they are all true then S has direct access to N, if they are all false then S
does not have direct access to N:

• S.getItem(p(N)) returns N.

• S.itemExists(p(N)) returns true.

• S.getNode(p(N)) returns N.

• S.nodeExists(p(N)) returns true.

• S.getNodeByIdentifier(id(N)) returns N.

• If N is the primary item of a node M then M.getPrimaryItem() returns N.

• If N is the root node of the workspace then S.getRootNode() returns N.

• For all nodes M to which S has direct access, M.getNode(p(M,N)) returns
N.

• For all nodes M to which S has direct access, M.hasNode(p(M,N)) returns
true.

For any session S and property P, the statements below must be either all true or
all false. If they are all true then S has direct access to P, if they are all false then
S does not have direct access to P:

• If there is no node at the path p(P) to which S has read access then

o S.getItem(p(P)) returns P and

o S.itemExists(p(P)) returns true.

• S.getProperty(p(P)) returns P.

• S.propertyExists(p(P)) returns true.

• S has read access to the value of P (see §9.1 Permissions).

• If P is the primary item of a node N then N.getPrimaryItem() returns P.

 89

• For all nodes M to which S has direct access, M.getProperty(p(M,P))
returns P.

• For all nodes M to which S has direct access, M.hasProperty(p(M,P))
returns true.

5.1.1 Getting the Root Node

The root node of the workspace can be acquired with

Node Session.getRootNode().

5.1.2 Testing for Existence by Absolute Path

The existence of a node or property at a particular absolute path can be tested
for with

boolean Session.itemExists(String absPath),

boolean Session.nodeExists(String absPath) and

boolean Session.propertyExists(String absPath).

5.1.3 Access by Absolute Path

Nodes and properties can be acquired by absolute path with

Item Session.getItem(String absPath),

Node Session.getNode(String absPath) and

Property Session.getProperty(String absPath).

5.1.4 Getting a Node by Identifier

A node can be retrieved by its identifier with

Node Session.getNodeByIdentifier(String identifier).

Using an identifier-based absolute path a node can also be retrieved by identifier
with a path-base get method. For example,

S.getNode(“[“ + id + “]”)

where S is the session and id is the identifier.

5.1.5 Testing for Existence by Relative Path

Existence of nodes and properties can be tested by path relative to a given node
with

boolean Node.hasNode(String relPath) and

boolean Node.hasProperty(String relPath).

5.1.6 Access by Relative Path

Nodes and properties can be acquired via relative path with

 90

Node Node.getNode(String relPath) and

Property Node.getProperty(String relPath)

5.1.7 Primary Item Access

If a primary child item is specified by the node type of a node, this item can be
retrieved directly from the node with

Item Node.getPrimaryItem().

See §3.7.1.7 Primary Item.

5.1.8 Node and Property with Same Name

In some repositories a node and property with the same parent may have the
same name. The methods Node.getNode, Session.getNode,
Node.getProperty and Session.getProperty specify whether the desired item
is a node or a property. The method Session.getItem will return the item at the
specified path if there is only one such item, if there is both a node and a
property at the specified path, getItem will return the node.

Whether an implementation supports this feature can be determined by querying
the repository descriptor table with

Repository.OPTION_NODE_AND_PROPERTY_WITH_SAME_NAME_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

5.2 Traversal Access
Traversal access to an item I means that it is returned when iterating over the
children of a node.

For any given session S and item I, the statements below must be either both
true or both false. If they are both true then S has traversal access to I, if they
are both false then S does not have traversal access to I:

• S has access to N where N is the parent of I and I appears among the
items in the iterator returned by either N.getNodes or N.getProperties.

• S has access to N, I is a descendant of N and I appears in the serialized
output of an export of the subgraph rooted at N.

5.2.1 Testing Existence

A client can test whether a retrieved iterator will be empty using the following:

boolean Node.hasNodes()

boolean Node.hasProperties()

5.2.2 Iterating Over Child Items

Iterators over child nodes and properties can be acquired using the following
methods:

 91

NodeIterator Node.getNodes()

PropertyIterator Node.getProperties()

These methods return all the child nodes or properties (as the case may be) of
the node that are visible to the current session.

NodeIterator Node.getNodes(String namePattern)

NodeIterator Node.getNodes(String[] nameGlobs)

PropertyIterator Node.getProperties(String namePattern)

PropertyIterator Node.getProperties(String[] nameGlobs)

These methods return all the child nodes or properties (as the case may be) of
the node that are both visible to the current session and that match the passed
namePattern or nameGlobs array.

5.2.2.1 Name Patterns

The namePattern passed in Node.getNodes and Node.getProperties is a string
matched against the qualified names (not the paths) of the immediate child items
of this node. We call the namePattern parameter the pattern and the qualified
names against which it is tested the target strings.

• A pattern consists of one or more globs. In cases of two or more globs,
they are delimited by the pipe character (|, U+0076).

• A pattern matches a target string if and only if at least one of its globs
matches that target string.

• A glob matches a target string if and only if it matches character for
character, except for any asterisk characters (*, U+002A) in the glob,
which match any substring (including the empty string) in the target
string.

The characters “|” and “*” are excluded from qualified JCR names (see §3.2.5.2
Qualified Form), so their use as metacharacters in the pattern will not lead to a
conflict.

For backwards compatibility with JCR 1.0, leading and trailing whitespace around
a glob is ignored but whitespace within a glob forms part of the pattern to be
matched.

5.2.2.2 Name Globs

The alternate signatures

NodeIterator Node.getNodes(String[] nameGlobs)

PropertyIterator Node.getProperties(String[] nameGlobs)

Behave identically to those that take namePattern except that the parameter
passed is an array of globs, as defined above, which are “ORed” together,
removing the need for the “|” metacharacter to indicate disjunction. The items

 92

returned, therefore, are those that match at least one of the globs in the array.
Unlike the namePattern case, leading and trailing whitespace in globs is not
ignored by these methods.

5.2.2.3 Child Node Order Preservation

Depending on the implementation, the order of child nodes within the returned
iterator may be more or less stable across different retrievals. A repository that
supports preservation of child node ordering will maintain a constant total order
across separate retrievals. A repository that supports orderable child nodes
necessarily also supports order preservation (§23 Orderable Child Nodes).

5.2.3 Export

Exporting a subgraph within a workspace can be done with

Session.exportSystemView or

Session.exportDocumentView.

See §7 Export.

5.3 Query Access
A session S has query access to I if and only if for at least one Query object Q,
where Q is created through the QueryManager of the Workspace object bound to
S, I is returned in the QueryResult for Q (see §6 Query).

5.4 Relationship among Access Modes
For any given session S and item I:

• If S has traversal access to I then S must have direct access to I.

If S has query access I then S has direct access to I.

However, note that,

• If S has direct access to I then S may or may not have traversal access to
I.

• If S has direct access to I then S may or may not have query access to I.

• If S has direct access to I then S may or may not have direct access to
any parent of I.

5.5 Effect of Access Denial on Read
If a repository restricts the read access of a session, then the nodes and
properties to which that session does not have read access must appear not to
exist. For example, the iterator returned on N.getNodes will not include subnodes
of N to which the session in question does not have read access. In other words,
lack of read access to an item blocks access to both information about the
content of that item and information about the existence of that item.

In repositories that support same-name siblings, denial of access to a subset of
nodes within a same-name sibling series may result in gaps in the index

 93

numbering of that series, thus revealing information about the existence of the
inaccessible nodes.

5.6 Item Information
The Item interface includes a number of methods that provide information about
an item.

5.6.1 Item to Session

This method provides access to the current Session.

Session Item.getSession()

5.6.2 Item in Hierarchy

These methods provide information about the location of an Item within the
workspace hierarchy:

String Item.getName()

returns the name of the Item.

String Item.getPath()

returns the absolute path of the Item.

Node Item.getAncestor(int depth)

returns the ancestor of the Item that is at the specified depth below the root
node.

Node Item.getParent()

returns the parent of the Item.

int Item.getDepth()

returns the depth below the root node of the Item.

5.6.3 Item Subclass

boolean Item.isNode()

returns true if the Item is a Node and false if it is a Property.

5.6.4 Item Comparison

This method is used to determine the repository-level semantic identity of two
Item objects.

boolean Item.isSame(Item otherItem)

returns true if this Item object represents the same actual repository item as the
object otherItem. This method does not compare the states of the two items. For
example, if two Item objects representing the same actual repository item have
been retrieved through two different sessions and one has been modified, then

 94

this method will still return true for these two objects. Note that if two Item
objects representing the same repository item are retrieved through the same
Session they will always reflect the same state so comparing state is not an issue
(see section §10.11.7 Reflecting Item State).

5.6.5 Item Visitor

This method implements the visitor design pattern.

void Item.accept(ItemVisitor visitor)

The ItemVisitor interface defines the methods

void ItemVisitor.visit(Node node) and

void ItemVisitor.visit(Property property)

which the user can implement.

5.7 Node Identifier
The method

String Node.getIdentifier()

returns the identifier of a node.

5.8 Node Index
The method

int Node.getIndex()

returns the index of a node among its same-name siblings (see §22 Same-Name
Siblings). Same-name sibling indexes begin with [1], so this method will return 1
for a node without any same-name siblings.

5.9 Iterators
Methods that return a set of Node or Property objects do so using a
NodeIterator or PropertyIterator, subclasses of RangeIterator.

JCR also specifies the following subclasses of RangeIterator: RowIterator,
NodeTypeIterator, VersionIterator, EventListenerIterator,
AccessControlPolicyIterator, EventIterator and EventJournal.

5.9.1 Iterator Lifespan

The lifespan of an instance of RangeIterator or any of its subclasses is
implementation-specific. For example, in some implementations a
Session.refresh (see §10.11.1 Refresh) might invalidate a previously acquired
NodeIterator while in others it might not.

 95

5.10 Reading Properties
If a session has read access to a single–value property then it can read the value
of that property. If a session has read access to a multi-value property then it can
read all the values of that property.

5.10.1 Getting a Value

The generic value getter for single value properties is

Value Property.getValue().

For multi-value properties it is

Value[] Property.getValues().

Single and multi-value properties can be distinguished by calling

boolean Property.isMultiple().

5.10.2 Value Type

int Value.getType()

returns one of the constants of PropertyType (see §3.6.1 Property Types)
indicating the property type of the Value.

5.10.3 Value Length

The length of a value in a single-value property, as defined in §3.6.7 Length of a
Value, is returned by

long Property.getLength()

Similarly, the method

long[] Property.getLengths()

is used to get an array of the lengths of all the values of a multi-value property.

5.10.4 Standard Value Read Methods

Each property type has a standard Value read method. This is the method that
returns the Java object or primitive type that corresponds naturally to the JCR
property type. A Value may also be readable by a non-standard read method,
depending on whether it is convertible to that method's return type according to
the rules described in §3.6.4 Property Type Conversion. The following sections set
out the standard read method for each type.

5.10.4.1 STRING

String Value.getString()

returns a JCR STRING as a java.lang.String.

 96

5.10.4.2 BINARY

Binary Value.getBinary()

returns a JCR BINARY as a javax.jcr.Binary (see §5.10.5 Binary Object).

5.10.4.3 LONG

long Value.getLong()

returns a JCR LONG as a Java long.

5.10.4.4 DOUBLE

double Value.getDouble()

returns a JCR DOUBLE as a Java double.

5.10.4.5 DECIMAL

BigDecimal Value.getDecimal()

returns a JCR DECIMAL as a java.math.BigDecimal.

5.10.4.6 DATE

Calendar Value.getDate()

returns a JCR DATE as a java.util.Calendar.

5.10.4.7 BOOLEAN

boolean Value.getBoolean()

returns a JCR BOOLEAN as a Java boolean.

5.10.4.8 NAME

String Value.getString()

returns a JCR NAME as a String. The String returned must be the JCR name in
qualified form (see §3.2.5.2 Qualified Form).

5.10.4.9 PATH

String Value.getString()

returns a JCR PATH as a String. The String returned must be the JCR path in
standard form (see §3.4.3.1 Standard Form). However, if the original value was
non-normalized it must be returned non-normalized, preserving the path
structure as it was originally set, including any redundant path segments that
may exist (see §3.4.5 Normalized Paths).

5.10.4.10 REFERENCE and WEAKREFERENCE

String Value.getString()

 97

returns a JCR REFERENCE or WEAKREFERENCE as a String. The value of a
REFERENCE or WEAKREFERENCE is a node referenceable identifier (see §3.8.3
Referenceable Identifiers). Since an identifier is simply a String, the returned
value can be used directly to find the referenced node (see §5.1.4 Getting a Node
by Identifier).

5.10.5 Binary Object

The Binary object returned by Value.getBinary() provides the following
methods:

InputStream Binary.getStream(),

which returns an InputStream representation of the value. Each call to this
method returns a new stream and the API consumer is responsible for calling
close() on the returned stream.

int Binary.read(byte[] b, long position),

which reads successive bytes starting from the specified position in the value into
the passed byte array until either the byte array is full or the end of the value is
encountered.

long Binary.getSize(),

which returns the size of the value in bytes.

5.10.5.1 Disposing of a Binary Object

When an application is finished with a Binary object it should call

void Binary.dispose()

on that object. This will releases all resources associated with the object and
inform the repository that these resources may now be reclaimed.

5.10.5.2 Deprecated Binary Behavior

The Binary interface and its related methods in Property, Value and
ValueFactory replace the deprecated Value.getStream() and
Property.getStream() methods from JCR 1.0. Though these methods have been
deprecated, for reasons of backward compatibility their behavior must conform to
the following rules:

• Once a Value object has been read once using getStream(), all
subsequent calls to getStream() will return the same stream object. This
may mean, for example, that the stream returned is fully or partially
consumed. In order to get a fresh stream the Value object must be
reacquired via Property.getValue() or Property.getValues().

• Unlike in JCR 1.0, calling a get method other than getStream before
calling getStream on the same Value object will never cause an
IllegalStateException.

 98

5.10.6 Dereferencing

PATH, WEAKREFERENCE and REFERENCE properties function as pointers to other
items in the workspace. A PATH can point to a node or a property while a
WEAKREFERENCE or REFERENCE can point only to a referenceable node. REFERENCE
properties enforce referential integrity while WEAKREFERENCE properties and PATH
properties do not. These properties can be dereferenced either manually or
though convenience methods.

5.10.6.1 Manual Dereference

To manually dereference a pointer property it is first read as a string, for example
with

Value.getString().

In the case of WEAKREFERENCE and REFERENCE properties the resulting string is
passed to

Session.getNodeByIdentifier(String id).

In the case of PATH properties the string is passed to

Session.getNode(String absPath) or

Session.getProperty(String absPath)

as appropriate to the target item. Whether the Item is a Node or Property can be
determined with Session.nodeExists or Session.propertyExists (see §5.1.2
Testing for Existence by Absolute Path).

5.10.6.2 Dereferencing Convenience Methods

The Property interface provides convenience methods for dereferencing pointer
properties:

Node Property.getNode()

returns the node pointed to by a single-value property. This method works with
WEAKREFERENCE and REFERENCE properties and with PATH properties that point to
nodes.

Property Property.getProperty()

returns the property pointed to by a single-value PATH property.

For multi-value pointer properties the array of values must be retrieved with
Property.getValues and each individually manually dereferenced.

5.10.7 Backtracking References

Given a referenceable node,

Node.getReferences()

returns all accessible REFERENCE properties in the workspace that point to the
node.

 99

Node.getWeakReferences()

returns all accessible WEAKREFERENCE properties in the workspace that point to
the node.

Note that access control and other implementation-specific limitations my mean
that some references within the workspace are not accessible.

PATH properties are not automatically backtrackable.

5.10.8 Single-Value Property Read Methods

The property interface provides convenience methods for reading single-value
properties which function identically to their Value counterparts.

5.10.9 Reading Multi-Value Properties

A multi-value property can be accessed with

Value[] Property.getValues().

5.10.10 PropertyType Class

The class PropertyType defines integer constants for the property types as well
as string constants for their standardized type names (which are used in
serialization) and two methods for converting back and forth between name and
integer value (see Javadoc).

5.11 Namespace Mapping
The method

void Session.setNamespacePrefix(String prefix,
 String uri)

is used to change the local namespace mappings of the current Session. When
called, all local mappings that include either the specified prefix or the specified
uri are removed and the new mapping is added. However, the method will throw
an exception if

• the specified prefix begins with the characters “xml” (in any combination
of case) or,

• the specified prefix is the empty string or,

• the specified namespace URI is the empty string.

The following methods are also related to the local namespace mapping:

String[] Session.getNamespacePrefixes()

String Session.getNamespaceURI(String prefix)

String Session.getNamespacePrefix(String uri)

 100

6 Query
A repository may support query.

The structure and evaluation semantics of a query are defined by an abstract
query model (AQM) for which two concrete language bindings are specified:

• JCR-SQL2, which expresses a query as a string with syntax similar to SQL,
and

• JCR-JQOM (JCR Java Query Object Model), which expresses a query as a
tree of Java objects.

The languages are both direct mappings of the AQM and are therefore equally
expressive; any query expressed in one can be machine-transformed to the
other.

Whether an implementation supports query can be determined by querying the
repository descriptor table with the key

Repository.QUERY_LANGUAGES.

The returned array contains the constants representing the supported languages
(see §24.2 Repository Descriptors). If a repository supports query it must return
at least the constants for the two JCR-defined languages,

javax.jcr.query.JCR-JQOM and

javax.jcr.query.JCR-SQL2,

indicating support for those languages. In addition, a repository may support
other query languages. These can be either additional language bindings to the
AQM or completely independent of that model.

JCR 1.0 defines a dialect of SQL different from JCR-SQL2, as well as a dialect of
XPath. Support for these languages is deprecated.

6.1 Optional Joins
Support for joins is optional beyond support for query itself. The extent of join
support can be determined by querying the repository descriptor table with the
key

Repository.QUERY_JOINS.

The value returned will be one of

• QUERY_JOINS_NONE: Joins are not supported and therefore queries are
limited to a single selector.

• QUERY_JOINS_INNER: Inner joins are supported.

• QUERY_JOINS_INNER_OUTER: Inner and outer joins are supported.

 101

6.2 Introduction to the Abstract Query Model
This section introduces how queries are specified and evaluated in the AQM.

6.2.1 Selectors

A query has one or more selectors. When the query is evaluated, each selector
independently selects a subset of the nodes in the workspace based on node
type.

In a repository that does not support joins, a query will have only one selector.

6.2.2 Joins

If the query has more than one selector, it also has one or more joins that
transform the sets of nodes selected by each selector into a single set of node-
tuples.

The membership of the set of node-tuples depends on the join type and join
condition of each join. The join type can be inner, left-outer, or right-outer. The
join condition can test the equality of properties' values or the hierarchical
relationship between nodes.

If the query has n selectors, it has n - 1 joins resulting in a set of n-tuples. For
example, if the query has two selectors, it will have one join and produce a set of
2-tuples. If it has three selectors, it will have two joins and produce a set of 3-
tuples. If it has only one selector, it will not have any joins and will produce a set
of 1-tuples, that is, the nodes selected by its only selector.

Support for joins is optional. In a repository that does not support joins, the
node-tuples produced are necessarily singletons. In other words, each node in the
set produced by the (one and only) selector is converted directly into a node-
tuple of size one. All further processing within the query evaluation operates on
these tuples just as it would on tuples of size greater than one.

6.2.3 Constraints

A query can specify a constraint to filter the set of node-tuples by any
combination of:

• Absolute or relative path, for example:

o The node reached by path /pictures/sunset.jpg

o Nodes that are children of /pictures

o Nodes that are descendants of /pictures

• Name of the node, for example:

o Nodes named sunset.jpg

• Value of a property, for example:

o Nodes whose jcr:created property is after 2007-03-
14T00:00:00.000Z

 102

• Length of a property, for example:

o Nodes whose jcr:data property is longer than 100 KB

• Existence of a property, for example:

o Nodes with a jcr:language property

• Full-text search, for example:

o Nodes which have a property that contains the phrase “beautiful
sunset”

6.2.4 Orderings

A query can specify orderings to sort the filtered node-tuples by property value.

6.2.5 Query Results

The filtered and sorted node-tuples form the query results. The query results are
available in two formats:

• A list of node-tuples. For each node-tuple, you can retrieve the node for
each selector. In a repository that does not support joins there will be only
one selector and consequently only one node per tuple.

• A table whose rows are the node-tuples and whose columns are properties
of the nodes in the node-tuples. This is referred to as the tabular view of
the query results. A query can specify which properties appear as columns
in the tabular view.

6.3 Equality and Comparison
When testing for equality or order of two property values of the same type, the
query operators conform to the definitions in §3.6.5 Comparison of Values.

When testing for equality or order of two property values of differing type, the
query operators perform standard property type conversion (see §3.6.4 Property
Type Conversion) and conform to standard value comparison (see §3.6.5
Comparison of Values).

Support for equality and order comparison of BINARY values is not required.

6.4 Query Validity
To be successfully evaluated and produce query results, a query must be valid.

A query is invalid if:

• it cannot be expressed in the AQM, or

• it can be expressed in the AQM, but fails a validation constraint defined
in §6.7 Abstract Query Model and Language Bindings.

An invalid query causes the repository to throw InvalidQueryException. Which
method invocation throws this exception is implementation determined, but for

 103

an invalid query, the exception must be thrown no later than completion of the
Query.execute().

6.5 Search Scope
A query must search the persistent workspace associated with the current
session. It may take into account pending changes to the persistent workspace;
that is, changes which are either unsaved or, within a transaction, saved but
uncommitted.

6.6 Notations
Three notations are used in the following sections: the AQM type grammar, the
JCR-SQL2 EBNF grammar and the JCR-JQOM Java API.

6.6.1 AQM Notation

The AQM is defined as a set of abstract types. The type grammar is written like
this:

type Alpha ::=
Foo foo,
Bar? bar,
Baz+ bazes,
Quux* quuxes

type Beta extends Alpha ::=

String name

enum Foo ::=

Snap,
Crackle,
Pop

which means:

The type Alpha has 4 attributes:

foo: mandatory, of type Foo, which is an enumeration with possible values Snap,
Crackle and Pop.

bar: optional, of type Bar

bazes: a list of one or more Baz items

quuxes: a list of zero or more Quux items

The type Beta is a subtype of Alpha. It inherits Alpha's attributes, and adds:

name: mandatory, a string

6.6.2 JCR-SQL2 Notation

JCR–SQL2 is a mapping of the AQM to a string serialization based on the SQL
language.

Each non-terminal in the JCR-SQL2 EBNF grammar corresponds to the type of the
same name in the AQM grammar. The semantics of each JCR-SQL2 production is

 104

described by reference to the semantics of the corresponding AQM production.
The two grammars are, however, entirely distinct and self- contained. Care
should be taken not to mix productions from one grammar with those of the
other.

The JCR-SQL2 grammar is written like this:

Alpha ::= 'FOO' Foo ['BAR' Bar] 'BAZ' bazes
 ['QUUX' quuxes]

Foo ::= Snap | Crackle | Pop

Snap ::= 'SNAP'

Crackle ::= 'CRACKLE'

Pop ::= 'POP'

Bar ::= /* a Bar */

bazes ::= Baz {Baz}

Baz ::= /* a Baz */

quuxes ::= Quux {Quux}

Quux ::= /* a Quux */

6.6.2.1 String Literals in JCR-SQL2 Grammar

Throughout this section string literals that appear in the syntactic grammar
defining JCR-SQL2 must be interpreted as specified in §1.3.1 String Literals in
Syntactic Grammars except that each character in the string literal must be
interpreted as representing both upper and lower case versions. In other words,
implementations must be case-insensitive with regard to JCR-SQL2.

6.6.3 JCR-JQOM Notation

JCR-JQOM is a mapping of the AQM to a Java API.

Each method and parameter name of the JCR-JQOM Java API corresponds to the
type of the same name in the AQM grammar. The semantics of each JCR-JQOM
method is described by reference to the semantics of the corresponding AQM
production.

A JCR-JQOM query is built by assembling objects created using the factory
methods of QueryObjectModelFactory.

For each AQM type, the following are listed:

• If the AQM type is a non-enum and non-abstract (in the AQM sense, not
the Java sense) then the factory method of QueryObjectModelFactory
used to create an instance of that type is listed.

• If the AQM type is non-enum then the corresponding Java interface is
listed.

 105

• If the AQM type is an enum then the corresponding constants of
QueryObjectModelConstants are listed.

Unless otherwise indicated, the Java interfaces listed in this section are in the
package javax.jcr.query.qom.

6.7 Abstract Query Model and Language Bindings
The following section describes the AQM grammar and its mapping to JCR-SQL2
and JCR-JQOM. For each AQM production, a description of its semantics is
provided, followed by the corresponding JCR-SQL2 production and the
corresponding JCR-JQOM methods.

For queries with only one selector the JCR-SQL2 syntax permits the selector
name to be omitted. In such cases the implementation must automatically
generate a selector name for internal use. If the resulting query is later examined
through the JCR-JQOM API, the automatically produced selector name will be
seen.

6.7.1 Query

AQM

type Query ::=
Source source,
Constraint? constraint,
Ordering* orderings,
Column* columns

A Query consists of:

• A Source. When the query is evaluated, the Source evaluates its selectors
and the joins between them to produce a (possibly empty) set of node-
tuples. This is a set of 1-tuples if the query has one selector (and
therefore no joins), a set of 2-tuples if the query has two selectors (and
therefore one join), a set of 3-tuples if the query has three selectors (two
joins), and so forth.

• An optional Constraint. When the query is evaluated, the constraint
filters the set of node-tuples.

• A list of zero or more Orderings. The orderings specify the order in which
the node-tuples appear in the query results. The relative order of two
node-tuples is determined by evaluating the specified orderings, in list
order, until encountering an ordering for which one node-tuple precedes
the other. If no orderings are specified, or if there is no ordering specified
in which one node-tuple precedes the other, then the relative order of the
node-tuples is implementation determined (and may be arbitrary).

• A list of zero or more Columns to include in the tabular view of the query
results. If no columns are specified, the columns available in the tabular
view are implementation determined, but minimally include, for each
selector, a column for each single-valued non-residual property of the
selector's node type.

 106

JCR-SQL2

Query ::= 'SELECT' columns
 'FROM' Source
 ['WHERE' Constraint]
 ['ORDER BY' orderings]

JCR-JQOM

A query is represented by a QueryObjectModel object, created with:

QueryObjectModel QueryObjectModelFactory.
 createQuery(Source source,
 Constraint constraint,
 Ordering[] orderings,
 Column[] columns)

QueryObjectModel extends javax.jcr.query.Query and declares:

Source QueryObjectModel.getSource()

Constraint QueryObjectModel.getConstraint()

Ordering[] QueryObjectModel.getOrderings()

Column[] QueryObjectModel.getColumns()

6.7.2 Source

AQM

abstract type Source

Evaluates to a set of node-tuples.

JCR-SQL2

Source ::= Selector | Join

JCR-JQOM

Source is an empty interface with subclasses Selector and Join.

6.7.3 Selector

AQM

type Selector extends Source ::=
Name nodeType,
Name selectorName

Selects a subset of the nodes in the workspace based on node type.

The query is invalid if nodeType refers to a node type that has a queryable node
type attribute of false (see §3.7.1.5 Queryable Node Type). Otherwise, if the
queryable node type attribute is true, the following holds:

 107

A selector selects every node in the workspace, subject to access control
constraints, that satisfies at least one of the following conditions:

• the node’s primary node type is nodeType, or

• the node’s primary node type is a subtype of nodeType, or

• the node has a mixin node type that is nodeType, or

• the node has a mixin node type that is a subtype of nodeType.

A selector has a selectorName that can be used elsewhere in the query to
identify the selector.

The query is invalid if selectorName is identical to the selectorName of another
selector in the query.

The query is also invalid if nodeType is not a valid JCR name or is a valid JCR
name but not the name of a node type available in the repository.

JCR-SQL2

Selector ::= nodeTypeName ['AS' selectorName]

nodeTypeName ::= Name

JCR-JQOM

A Selector is created with:

Selector QueryObjectModelFactory.
 selector(String nodeTypeName, String selectorName)

Selector extends Source and declares:

String Selector.getNodeTypeName()

String Selector.getSelectorName()

6.7.4 Name

AQM

type Name

A JCR name.

The query is invalid if the name does not satisfy either the ExpandedName
production in §3.2.5.1 Expanded Form or the QualifiedName production in
§3.2.5.2 Qualified Form.

JCR-SQL2

Name ::= '[' quotedName ']' |
 '[' simpleName ']' |
 simpleName

quotedName ::= /* A JCR Name */

 108

simpleName ::= /* A JCR Name that is also a legal SQL identifier10 */

JCR-JQOM

A JCR name in String form (either qualified or expanded).

6.7.5 Join

Support for joins is optional.

AQM

type Join extends Source ::=
Source left,
Source right,
JoinType joinType,
JoinCondition joinCondition

Performs a join between two node-tuple sources.

If left evaluates to L, a set of m-tuples, and right evaluates to R, a set of n-
tuples, then the join evaluates to J, a set of (m + n)-tuples. The members of J
depend on the joinType and joinCondition.

Let L x R be the Cartesian product of L and R as a set of (m + n)-tuples

L x R = { ℓ ∪ r : ℓ ∈ L, r ∈ R }

and σc(A) be the selection over A of its members satisfying joinCondition ϕc

σc(A) = { a : a ∈ A, ϕc(a) }

Then if joinType is Inner:

J = σc(L x R)

Otherwise, if joinType is LeftOuter:

J = σc(L x R) ∪ (L – πL(σc(L x R)))

where πL(σc(L x R)) is the projection of the m-tuples contributed by L from the
(m + n)-tuples of σc(L x R).

Otherwise, if joinType is RightOuter:

J = σc(L x R) ∪ (R – πR(σc(L x R)))

10 See the SQL:92 rules for <regular identifier> (in ISO/IEC 9075:1992 §5.2
<token> and <separator>).

 109

where πR(σc(L x R)) is the projection of the n-tuples contributed by R from the
(m + n)-tuples of σc(L x R).

The query is invalid if left is the same source as right.

JCR-SQL2

Join ::= left [JoinType] 'JOIN' right 'ON' JoinCondition
 // If JoinType is omitted INNER is assumed.

left ::= Source

right ::= Source

JCR-JQOM

A Join is created with:

Join QueryObjectModelFactory.
 join(Source left,
 Source right,
 String joinType,
 JoinCondition joinCondition)

Join extends Source and declares:

Source Join.getLeft()

Source Join.getRight()

String Join.getJoinType()

JoinCondition Join.getJoinCondition()

6.7.6 JoinType

Support for joins is optional.

AQM

enum JoinType ::=
Inner,
LeftOuter,
RightOuter

JCR-SQL2

JoinType ::= Inner | LeftOuter | RightOuter

Inner ::= 'INNER'

LeftOuter ::= 'LEFT OUTER'

RightOuter ::= 'RIGHT OUTER'

JCR-JQOM

 110

A join type is a String constant. One of:

QueryObjectModelConstants.JCR_JOIN_TYPE_INNER

QueryObjectModelConstants.JCR_JOIN_TYPE_LEFT_OUTER

QueryObjectModelConstants.JCR_JOIN_TYPE_RIGHT_OUTER

6.7.7 JoinCondition

Support for joins is optional.

AQM

abstract type JoinCondition

Filters the set of node-tuples formed from a join.

JCR-SQL2

JoinCondition ::= EquiJoinCondition |
 SameNodeJoinCondition |
 ChildNodeJoinCondition |
 DescendantNodeJoinCondition

JCR-JQOM

JoinCondition is an empty interface with subclasses EquiJoinCondition,
SameNodeJoinCondition, ChildNodeJoinCondition and
DescendantNodeJoinCondition.

6.7.8 EquiJoinCondition

Support for joins is optional.

AQM

type EquiJoinCondition extends JoinCondition ::=
Name selector1Name,
Name property1Name,
Name selector2Name,
Name property2Name

Tests whether the value of a property in a first selector is equal to the value of a
property in a second selector.

A node-tuple satisfies the constraint only if:

• the selector1Name node has a property named property1Name, and

• the selector2Name node has a property named property2Name, and

• the value of property property1Name is equal to the value of property
property2Name, as defined in §3.6.5 Comparison of Values.

The query is invalid if

 111

• either selector1Name or selector2Name is not the name of a selector in
the query, or

• selector1Name is equal to selector2Name, or

• the property1Name is not the same property type as property2Name, or

• either property1Name or property2Name is a multi-valued property, or

• either property1Name or property2Name is a BINARY property and
equality test for BINARY properties is not supported (see §3.6.6
Value.equals Method).

JCR-SQL2

EquiJoinCondition ::= selector1Name'.'property1Name '='
 selector2Name'.'property2Name

selector1Name ::= selectorName

selector2Name ::= selectorName

property1Name ::= propertyName

property2Name ::= propertyName

JCR-JQOM

An EquiJoinCondition is created with:

EquiJoinCondition QueryObjectModelFactory.
 equiJoinCondition(String selector1Name,
 String property1Name,
 String selector2Name,
 String property2Name)

EquiJoinCondition extends JoinCondition and declares:

String EquiJoinCondition getSelector1Name()

String EquiJoinCondition getProperty1Name()

String EquiJoinCondition getSelector2Name()

String EquiJoinCondition getProperty2Name()

6.7.9 SameNodeJoinCondition

Support for joins is optional.

AQM

type SameNodeJoinCondition extends JoinCondition ::=
Name selector1Name,
Name selector2Name,
Path? selector2Path

 112

Tests whether two nodes are “the same” according to the Item.isSame method.

If selector2Path is omitted:

• Tests whether the selector1Name node is the same as the selector2Name
node. A node-tuple satisfies the constraint only if:

selector1Node.isSame(selector2Node)

would return true, where selector1Node is the node for the selector
selector1Name and selector2Node is the node for the selector
selector2Name.

Otherwise, if selector2Path is specified:

• Tests whether the selector1Name node is the same as a node identified
by relative path selector2Path from the selector2Name node. A node-
tuple satisfies the constraint only if:

selector1Node.isSame(
 selector2Node.getNode(selector2Path))

would return true, where selector1Node is the node for the selector
selector1Name and selector2Node is the node for the selector
selector2Name.

The query is invalid if:

• selector1Name is not the name of a selector in the query, or

• selector2Name is not the name of a selector in the query, or

• selector1Name is the same as selector2Name, or

• selector2Path is not a syntactically valid relative path, as defined in
§3.4.3.3 Lexical Path Grammar. However, if selector2Path is
syntactically valid but does not identify a node in the workspace visible to
this session, the query is valid but the constraint is not satisfied.

JCR-SQL2

SameNodeJoinCondition ::=
 'ISSAMENODE(' selector1Name ','
 selector2Name
 [',' selector2Path] ')'

selector2Path ::= Path

JCR-JQOM

A SameNodeJoinCondition is created with:

SameNodeJoinCondition QueryObjectModelFactory.
 sameNodeJoinCondition(String selector1Name,
 String selector2Name,
 String selector2Path)

 113

SameNodeJoinCondition extends JoinCondition and declares:

String SameNodeJoinCondition.getSelector1Name()

String SameNodeJoinCondition.getSelector2Name()

String SameNodeJoinCondition.getSelector2Path()

6.7.10 ChildNodeJoinCondition

Support for joins is optional.

AQM

type ChildNodeJoinCondition extends JoinCondition ::=
Name childSelectorName,
Name parentSelectorName

Tests whether the childSelectorName node is a child of the
parentSelectorName node. A node-tuple satisfies the constraint only if:

childSelectorNode.getParent().isSame(parentSelectorNode)

would return true, where childSelectorNode is the node for the selector
childSelectorName and parentSelectorNode is the node for the selector
parentSelectorName.

The query is invalid if:

• childSelectorName is not the name of a selector in the query, or

• parentSelectorName is not the name of a selector in the query, or

• childSelectorName is the same as parentSelectorName.

JCR-SQL2

ChildNodeJoinCondition ::=
 'ISCHILDNODE(' childSelectorName ','
 parentSelectorName ')'

childSelectorName ::= selectorName

parentSelectorName ::= selectorName

JCR-JQOM

A ChildNodeJoinCondition is created with:

ChildNodeJoinCondition QueryObjectModelFactory.
 childNodeJoinCondition(String childSelectorName,
 String parentSelectorName)

ChildNodeJoinCondition extends JoinCondition and declares:

String ChildNodeJoinCondition.getChildSelectorName()

String ChildNodeJoinCondition.getParentSelectorName()

 114

6.7.11 DescendantNodeJoinCondition

Support for joins is optional.

AQM

type DescendantNodeJoinCondition
extends JoinCondition ::=

Name descendantSelectorName,
Name ancestorSelectorName

Tests whether the descendantSelectorName node is a descendant of the
ancestorSelectorName node. A node-tuple satisfies the constraint only if:

descendantSelectorNode.getAncestor(n).
 isSame(ancestorSelectorNode) &&
 descendantSelectorNode.getDepth() > n

would return true for some non-negative integer n, where
descendantSelectorNode is the node for the selector descendantSelectorName
and ancestorSelectorNode is the node for the selector ancestorSelectorName.

The query is invalid if:

• descendantSelectorName is not the name of a selector in the query, or

• ancestorSelectorName is not the name of a selector in the query, or

• descendantSelectorName is the same as ancestorSelectorName.

JCR-SQL2

DescendantNodeJoinCondition ::=
 'ISDESCENDANTNODE(' descendantSelectorName ','
 ancestorSelectorName ')'

descendantSelectorName ::= selectorName

ancestorSelectorName ::= selectorName

JCR-JQOM

A DescendantNodeJoinCondition is created with:

DescendantNodeJoinCondition QueryObjectModelFactory.
 descendantNodeJoinCondition(String descendantSelectorName,
 String ancestorSelectorName)

DescendantNodeJoinCondition extends JoinCondition and declares:

String DescendantNodeJoinCondition.getDescendantSelectorName()

String DescendantNodeJoinCondition.getAncestorSelectorName()

6.7.12 Constraint

AQM

 115

abstract type Constraint

Filters the set of node-tuples formed by evaluating the query's selectors and the
joins between them.

To be included in the query results, a node-tuple must satisfy the constraint.

JCR-SQL2

Constraint ::= And | Or | Not | Comparison |
 PropertyExistence | FullTextSearch |
 SameNode | ChildNode | DescendantNode

In JCR-SQL2, the following precedence classes apply, in order of evaluation:

Class Constraint
Production

JCR-SQL2 Syntax

1 () (grouping with parentheses)

2 Comparison

PropertyExistence

FullTextSearch

SameNode

ChildNode

DescendantNode

= , <>, <, <=, >, >=, LIKE

IS NOT NULL

CONTAINS()

ISSAMENODE()

ISCHILDNODE()

ISDESCENDANTNODE()

3 Not NOT

4 And AND

5 Or OR

JCR-JQOM

Constraint is an empty interface with subclasses And, Or, Not, Comparison,
PropertyExistence, FullTextSearch, SameNode, ChildNode and
DescendantNode.

6.7.13 And

AQM

type And extends Constraint ::=
Constraint constraint1,
Constraint constraint2

Performs a logical conjunction of two other constraints.

 116

To satisfy the And constraint, a node-tuple must satisfy both constraint1 and
constraint2.

JCR-SQL2

And ::= constraint1 'AND' constraint2

constraint1 ::= Constraint

constraint2 ::= Constraint

JCR-JQOM

An And is created with:

And QueryObjectModelFactory.
 and(Constraint constraint1, Constraint constraint2)

And extends Constraint and declares:

Constraint And.getConstraint1()

Constraint And.getConstraint2()

6.7.14 Or

AQM

type Or extends Constraint ::=
Constraint constraint1,
Constraint constraint2

Performs a logical disjunction of two other constraints.

To satisfy the Or constraint, the node-tuple must either:

• satisfy constraint1 but not constraint2, or

• satisfy constraint2 but not constraint1, or

• satisfy both constraint1 and constraint2.

JCR-SQL2

Or ::= constraint1 'OR' constraint2

JCR-JQOM

An Or is created with:

Or QueryObjectModelFactory.
 or(Constraint constraint1, Constraint constraint2)

Or extends Constraint and declares:

Constraint Or.getConstraint1()

Constraint Or.getConstraint2()

 117

6.7.15 Not

AQM

type Not extends Constraint ::=
Constraint constraint

Performs a logical negation of another constraint.

To satisfy the Not constraint, the node-tuple must not satisfy constraint.

JCR-SQL2

Not ::= 'NOT' Constraint

JCR-JQOM

A Not is created with:

Not QueryObjectModelFactory.
 not(Constraint constraint)

Not extends Constraint and declares:

Constraint Not.getConstraint()

6.7.16 Comparison

AQM

type Comparison extends Constraint ::=
DynamicOperand operand1,
Operator operator,
StaticOperand operand2

Filters node-tuples based on the outcome of a binary operation.

For any comparison, operand2 always evaluates to a scalar value. In contrast,
operand1 may evaluate to an array of values (for example, the values of a multi-
valued property), in which case the comparison is separately performed for each
element of the array, and the Comparison constraint is satisfied as a whole if the
comparison against any element of the array is satisfied.

If operand1 and operand2 evaluate to values of different property types, the
value of operand2 is converted to the property type of the value of operand1 as
described in §3.6.4 Property Type Conversion. If the type conversion fails, the
query is invalid.

Given an operator O and a property instance P of property type T, P can be
compared using O only if:

• The implementation supports comparison of properties of type T using O.
For example, some implementations may permit EqualTo and NotEqualTo
as comparison operators for BINARY properties while others may not.

 118

• Assuming that comparison of properties of type T is supported in general,
the property definition that applies to P (found in the node type of P's
parent node) must also list O among its available query operators (see
§3.7.3.3 Available Query Operators).

If operator is not supported for the property type of operand1, the query is
invalid.

If operand1 evaluates to null (for example, if the operand evaluates the value of
a property which does not exist), the constraint is not satisfied.

The EqualTo operator is satisfied only if the value of operand1 is equal to the
value of operand2, as described in §3.6.5 Comparison of Values.

The NotEqualTo operator is satisfied unless the value of operand1 is equal to the
value of operand2, as described in §3.6.5 Comparison of Values.

The LessThan operator is satisfied only if the value of operand1 is ordered before
the value of operand2, as described in §3.6.5 Comparison of Values.

The LessThanOrEqualTo operator is satisfied unless the value of operand1 is
ordered after the value of operand2, as described in §3.6.5 Comparison of
Values.

The GreaterThan operator is satisfied only if the value of operand1 is ordered
after the value of operand2, as described in §3.6.5 Comparison of Values.

The GreaterThanOrEqualTo operator is satisfied unless the value of operand1 is
ordered before the value of operand2, as described in §3.6.5 Comparison of
Values.

The Like operator is satisfied only if the value of operand1 matches the pattern
specified by the value of operand2, where in the pattern:

• the character “%” matches zero or more characters, and

• the character “_” (underscore) matches exactly one character, and

• the string “\x” matches the character “x”, and

• all other characters match themselves.

JCR-SQL2

Comparison ::= DynamicOperand Operator StaticOperand

JCR-JQOM

A Comparison is created with:

Comparison QueryObjectModelFactory.
 comparison(DynamicOperand operand1,
 String operator,
 StaticOperand operand2)

Comparison extends Constraint and declares:

 119

DynamicOperand Comparsion.getOperand1()

String Comparison.getOperator()

StaticOperand Comparison.getOperand2()

6.7.17 Operator

AQM

enum Operator ::=
EqualTo,
NotEqualTo,
LessThan,
LessThanOrEqualTo,
GreaterThan,
GreaterThanOrEqualTo,
Like

JCR-SQL2

Operator ::= EqualTo | NotEqualTo | LessThan |
 LessThanOrEqualTo | GreaterThan |
 GreaterThanOrEqualTo | Like

EqualTo ::= '='

NotEqualTo ::= '<>'

LessThan ::= '<'

LessThanOrEqualTo ::= '<='

GreaterThan ::= '>'

GreaterThanOrEqualTo ::= '>='

Like ::= 'LIKE'

JCR-JQOM

An operator is a String constant. One of:

QueryObjectModelConstants.JCR_OPERATOR_EQUAL_TO

QueryObjectModelConstants.JCR_OPERATOR_GREATER_THAN

QueryObjectModelConstants.JCR_OPERATOR_GREATER_THAN_OR_EQUAL_TO

QueryObjectModelConstants.JCR_OPERATOR_LESS_THAN

QueryObjectModelConstants.JCR_OPERATOR_LESS_THAN_OR_EQUAL_TO

QueryObjectModelConstants.JCR_OPERATOR_LIKE

QueryObjectModelConstants.JCR_OPERATOR_NOT_EQUAL_TO

 120

6.7.18 PropertyExistence

AQM

type PropertyExistence extends Constraint ::=
Name selectorName,
Name propertyName

Tests the existence of a property.

A node-tuple satisfies the constraint if the selectorName node has a property
named propertyName.

The query is invalid if selectorName is not the name of a selector in the query.

JCR-SQL2

PropertyExistence ::=
 selectorName'.'propertyName 'IS NOT NULL' |
 propertyName 'IS NOT NULL' /* If only one
 selector exists in
 this query*/

 /* Note: The negation, 'NOT x IS NOT NULL'
 can be written 'x IS NULL' */

JCR-JQOM

A PropertyExistence is created with:

PropertyExistence QueryObjectModelFactory.
 propertyExistence(String selectorName, String propertyName)

PropertyExistence extends Constraint and declares:

String PropertyExistence.getSelectorName()

String PropertyExistence.getPropertyName()

6.7.19 FullTextSearch

AQM

type FullTextSearch extends Constraint ::=
Name selectorName,
Name? propertyName,
StaticOperand fullTextSearchExpression

Performs a full-text search.

The full-text search expression is evaluated against the set of full-text indexed
properties within the full-text search scope. If propertyName is specified, the full-
text search scope is the property of that name on the selectorName node in the
node-tuple; otherwise the full-text search scope is implementation determined.

 121

Whether a particular property is full-text indexed can be determined by the full-
text searchable attribute of its property definition (see §3.7.3.4 Full-Text
Searchable).

It is implementation-determined whether fullTextSearchExpression is
independently evaluated against each full-text indexed property in the full-text
search scope, or collectively evaluated against the set of such properties using
some implementation-determined mechanism.

Similarly, for multi-valued properties, it is implementation-determined whether
fullTextSearchExpression is independently evaluated against each element in
the array of values, or collectively evaluated against the array of values using
some implementation-determined mechanism.

The fullTextSearchExpression is a StaticOperand, meaning that it may be
either a literal JCR value or a bound variable (which evaluates to a JCR value).
The value must be a STRING (or convertible to a STRING) that conforms to the
following grammar:

FullTextSearchLiteral ::= Disjunct
 {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

NonSpaceChar ::= Char – SpaceChar
 /* Any Char except SpaceChar */

SpaceChar ::= ' ' /* Unicode character U+0020 */

Char ::= /* Any character */

/* See §1.3.1 String Literals in Syntactic Grammars for details
 on the interpetation of string literals in this grammar */

A query satisfies a FullTextSearch constraint if the value (or values) of the full-
text indexed properties within the full-text search scope satisfy the specified
fullTextSearchExpression, evaluated as follows:

• A term not preceded with “-” (minus sign) is satisfied only if the value
contains that term.

• A term preceded with “-” (minus sign) is satisfied only if the value does
not contain that term.

• Terms separated by whitespace are implicitly “ANDed”.

• Terms separated by “OR” are “ORed”.

• “AND” has higher precedence than “OR”.

 122

• Within a term, each “"” (double quote), “-” (minus sign), and “\”
(backslash) must be escaped by a preceding “\”.

The query is invalid if:

• selectorName is not the name of a selector in the query, or

• fullTextSearchExpression does not conform to the above grammar (as
augmented by the implementation).

The grammar and semantics described above defines the minimal requirement,
meaning that any search string accepted as valid by an implementation must
conform to this grammar. An implementation may, however, restrict acceptable
search strings further by augmenting this grammar and expanding the semantics
appropriately.

If propertyName is specified but, for a node-tuple, the selectorName node does
not have a property named propertyName, the query is valid but the constraint is
not satisfied.

JCR-SQL2

FullTextSearch ::=
 'CONTAINS(' ([selectorName'.']propertyName |
 selectorName'.*') ','
 FullTextSearchExpression ')'
 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

FullTextSearchExpression ::= BindVariable |
 ''' FullTextSearchLiteral '''
 /* see above */

JCR-JQOM

A FullTextSearch is created with:

FullTextSearch QueryObjectModelFactory.
 fullTextSearch(String selectorName,
 String propertyName,
 StaticOperand fullTextSearchExpression)

FullTextSearch extends Constraint and declares:

String FullTextSearch.getSelectorName()

String FullTextSearch.getPropertyName()

StaticOperand FullTextSearch.getFullTextSearchExpression()

6.7.20 SameNode

AQM

type SameNode extends Constraint ::=
Name selectorName,

 123

Path path

Tests whether the selectorName node is reachable by the absolute path
specified. A node-tuple satisfies the constraint only if:

selectorNode.isSame(session.getNode(path))

would return true, where selectorNode is the node for the specified selector.

The query is invalid if:

• selectorName is not the name of a selector in the query, or

• path is not a syntactically valid absolute path (see §3.3.4 Lexical Path
Grammar). Note, however, that if path is syntactically valid but does not
identify a node in the workspace (or the node is not visible to this session,
because of access control constraints), the query is valid but the
constraint is not satisfied.

JCR-SQL2

SameNode ::= 'ISSAMENODE(' [selectorName ','] Path ')'
 /* If only one selector exists in this query, explicit
 specification of the selectorName is optional */

JCR-JQOM

A SameNode is created with:

SameNode QueryObjectModelFactory.
 sameNode(String selectorName, String path)

SameNode extends Constraint and declares:

String SameNode.getSelectorName()

String SameNode.getPath()

6.7.21 ChildNode

AQM

type ChildNode extends Constraint ::=
Name selectorName,
Path path

Tests whether the selectorName node is a child of a node reachable by the
absolute path specified. A node-tuple satisfies the constraint only if:

selectorNode.getParent().isSame(session.getNode(path))

would return true, where selectorNode is the node for the specified selector.

The query is invalid if:

• selectorName is not the name of a selector in the query, or

 124

• path is not a syntactically valid absolute path (see §3.3.4 Lexical Path
Grammar). Note, however, that if path is syntactically valid but does not
identify a node in the workspace (or the node is not visible to this session,
because of access control constraints), the query is valid but the
constraint is not satisfied.

JCR-SQL2

ChildNode ::= 'ISCHILDNODE(' [selectorName ','] Path ')'
 /* If only one selector exists in this query, explicit
 specification of the selectorName is optional */

JCR-JQOM

A ChildNode is created with:

ChildNode QueryObjectModelFactory.
 childNode(String selectorName, String path)

ChildNode extends Constraint and declares:

String ChildNode.getSelectorName()

String ChildNode.getParentPath()

6.7.22 DescendantNode

AQM

type DescendantNode extends Constraint ::=
Name selectorName,
Path path

Tests whether the selectorName node is a descendant of a node reachable by the
absolute path specified. A node-tuple satisfies the constraint only if:

selectorNode.getAncestor(n).isSame(session.getNode(path))
 && selectorNode.getDepth() > n

would return true for some non-negative integer n, where selectorNode is the
node for the specified selector.

The query is invalid if:

• selectorName is not the name of a selector in the query, or

• path is not a syntactically valid absolute path (see §3.3.4 Lexical Path
Grammar). Note, however, that if path is syntactically valid but does not
identify a node in the workspace (or the node is not visible to this session,
because of access control constraints), the query is valid but the
constraint is not satisfied.

JCR-SQL2

DescendantNode ::=
'ISDESCENDANTNODE(' [selectorName ','] Path ')'

 125

 /* If only one selector exists in this query, explicit
 specification of the selectorName is optional */

JCR-JQOM

A DescendantNode is created with:

DescendantNode QueryObjectModelFactory.
 descendantNode(String selectorName, String path)

DescendantNode extends Constraint and declares:

String DescendantNode.getSelectorName()

String DescendantNode.getAncestorPath()

6.7.23 Path

AQM

type Path

A JCR path.

JCR-SQL2

Path ::= '[' quotedPath ']' |
 '[' simplePath ']' |
 simplePath

quotedPath ::= /* A JCR Path that contains non-SQL-legal
 characters */

simplePath ::= /* A JCR Name that contains only SQL-legal
 characters11 */

JCR-JQOM

A JCR path in string form (standard, non-standard, normalized or non-
normalized, see §3.3.5 Standard and Non-Standard Form and §3.3.6.3
Normalized Paths).

6.7.24 Operand

AQM

abstract type Operand

11 See the SQL:92 rules for <regular identifier> (in ISO/IEC 9075:1992 §5.2
<token> and <separator>).

 126

JCR-SQL2

Operand ::= StaticOperand | DynamicOperand
 /* 'Operand' not referenced in JCR-SQL2
 grammar. For possible future use. */

JCR-JQOM

Operand is an empty interface with subclasses StaticOperand and
DynamicOperand.

6.7.25 StaticOperand

AQM

abstract type StaticOperand extends Operand

An operand whose value can be determined from static analysis of the query,
prior to its evaluation.

JCR-SQL2

StaticOperand ::= Literal | BindVariableValue

JCR-JQOM

StaticOperand is an empty interface with subclasses Literal and
BindVariableValue.

6.7.26 DynamicOperand

AQM

abstract type DynamicOperand extends Operand

An operand whose value can only be determined in evaluating the query.

JCR-SQL2

DynamicOperand ::= PropertyValue | Length | NodeName |
 NodeLocalName | FullTextSearchScore |
 LowerCase | UpperCase

JCR-JQOM

DynamicOperand is an empty interface with subclasses PropertyValue, Length,
NodeName, NodeLocalName, FullTextSearchScore, LowerCase and UpperCase.

6.7.27 PropertyValue

AQM

type PropertyValue extends DynamicOperand ::=
Name selectorName,
Name propertyName

 127

Evaluates to the value (or values, if multi-valued) of a property.

If, for a node-tuple, the selectorName node does not have a property named
propertyName, the operand evaluates to null.

The query is invalid if selectorName is not the name of a selector in the query.

JCR-SQL2

PropertyValue ::= [selectorName'.'] propertyName
 /* If only one selector exists in this query,
 explicit specification of the selectorName is
 optional */

JCR-JQOM

A PropertyValue is created with:

PropertyValue QueryObjectModelFactory.
 propertyValue(String selectorName, String propertyName)

PropertyValue extends DynamicOperand and declares:

String PropertyValue.getSelectorName()

String PropertyValue.getPropertyName()

6.7.28 Length

AQM

type Length extends DynamicOperand ::=
PropertyValue propertyValue

Evaluates to the length (or lengths, if multi-valued) of a property. In evaluating
this operand, a repository should use the semantics defined in §3.6.7 Length of a
Value.

If propertyValue evaluates to null, the Length operand also evaluates to null.

JCR-SQL2

Length ::= 'LENGTH(' PropertyValue ')'

JCR-JQOM

A Length is created with:

Length QueryObjectModelFactory.
 length(PropertyValue propertyValue)

Length extends DynamicOperand and declares:

PropertyValue Length.getPropertyValue()

 128

6.7.29 NodeName

AQM

type NodeName extends DynamicOperand ::=
Name selectorName

Evaluates to a NAME value equal to the JCR name of a node.

The query is invalid if selectorName is not the name of a selector in the query.

JCR-SQL2

NodeName ::= 'NAME(' [selectorName] ')'
 /* If only one selector exists in this query, explicit
 specification of the selectorName is optional */

JCR-JQOM

A NodeName is created with:

NodeName QueryObjectModelFactory.
 nodeName(String selectorName)

NodeName extends DynamicOperand and declares:

String NodeName.getSelectorName()

6.7.30 NodeLocalName

AQM

type NodeLocalName extends DynamicOperand ::=
Name selectorName

Evaluates to a STRING value equal to the JCR local name of a node.

The query is invalid if selectorName is not the name of a selector in the query.

JCR-SQL2

NodeLocalName ::= 'LOCALNAME(' [selectorName] ')'
 /* If only one selector exists in this query,
 explicit specification of the selectorName is
 optional */

JCR-JQOM

A NodeLocalName is created with:

NodeLocalName QueryObjectModelFactory.
 nodeLocalName(String selectorName)

NodeLocalName extends DynamicOperand and declares:

String NodeLocalName.getSelector()

 129

6.7.31 FullTextSearchScore

AQM

type FullTextSearchScore extends DynamicOperand ::=
Name selectorName

Evaluates to a DOUBLE value equal to the full-text search score of a node.

Full-text search score ranks a selector's nodes by their relevance to the
fullTextSearchExpression specified in a FullTextSearch. The values to which
FullTextSearchScore evaluates and the interpretation of those values are
implementation specific. FullTextSearchScore may evaluate to a constant value
in a repository that does not support full-text search scoring or has no full-text
indexed properties.

The query is invalid if selector is not the name of a selector in the query.

JCR-SQL2

FullTextSearchScore ::= 'SCORE(' [selectorName] ')'
 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

JCR-JQOM

A FullTextSearchScore is created with:

FullTextSearchScore QueryObjectModelFactory.
 fullTextSearchScore(String selectorName)

FullTextSearchScore extends DynamicOperand and declares:

String FullTextSearchScore.getSelector()

6.7.32 LowerCase

AQM

type LowerCase extends DynamicOperand ::=
DynamicOperand operand

Evaluates to the lower-case string value (or values, if multi-valued) of operand.

If operand does not evaluate to a string value, its value is first converted to a
string as described in §3.6.4 Property Type Conversion. The lower-case string
value is computed as though the toLowerCase() method of java.lang.String
were called.

If operand evaluates to null, the LowerCase operand also evaluates to null.

JCR-SQL2

LowerCase ::= 'LOWER(' DynamicOperand ')'

 130

JCR-JQOM

A LowerCase is created with:

LowerCase QueryObjectModelFactory.
 lowerCase(DynamicOperand operand)

LowerCase extends DynamicOperand and declares:

DynamicOperand LowerCase.getOperand()

6.7.33 UpperCase

AQM

type UpperCase extends DynamicOperand ::=
DynamicOperand operand

Evaluates to the upper-case string value (or values, if multi-valued) of operand.

If operand does not evaluate to a string value, its value is first converted to a
string as described in §3.6.4 Property Type Conversion. The upper-case string
value is computed as though the toUpperCase() method of java.lang.String
were called.

If operand evaluates to null, the UpperCase operand also evaluates to null.

JCR-SQL2

UpperCase ::= 'UPPER(' DynamicOperand ')'

JCR-JQOM

An UpperCase is created with:

UpperCase QueryObjectModelFactory.
 upperCase(DynamicOperand operand)

UpperCase extends DynamicOperand and declares:

DynamicOperand UpperCase.getOperand()

6.7.34 Literal

AQM

type Literal extends StaticOperand ::=
javax.jcr.Value Value

A JCR value.

JCR-SQL2

Literal ::= CastLiteral | UncastLiteral

CastLiteral ::= 'CAST(' UncastLiteral ' AS ' PropertyType ')'

 131

PropertyType ::= 'STRING' | 'BINARY' | 'DATE' | 'LONG' | 'DOUBLE' |
 'DECIMAL' | 'BOOLEAN' | 'NAME' | 'PATH' |
 'REFERENCE' | 'WEAKREFERENCE' | 'URI'

UncastLiteral ::= UnquotedLiteral | ''' UnquotedLiteral ''' |
 '“' UnquotedLiteral '“'

UnquotedLiteral ::= /* String form of a JCR Value, as defined in
 §3.5.4 Conversion of Values */

An UncastLiteral may be interpreted as a Value of property type STRING or
some other type inferred from static analysis. A CastLiteral, on the other hand,
is interpreted as the string form of a Value of the PropertyType indicated.

JCR-JQOM

A JCR Value. A Value object can be created using ValueFactory (see §6.10
Literal Values). Note that unlike in the case of JCR-SQL2, property type
information is intrinsic to the Value object, so no equivalent of the CAST function
is needed in JCR-JQOM.

6.7.35 BindVariable

AQM

type BindVariableValue extends StaticOperand ::=
Prefix bindVariableName

Evaluates to the value of a bind variable.

The query is invalid if no value is bound to bindVariableName.

JCR-SQL2

BindVariableValue ::= '$'bindVariableName

bindVariableName ::= Prefix

JCR-JQOM

A BindVariableValue is created with:

BindVariableValue QueryObjectModelFactory.
 bindVariableValue(String bindVariableName)

BindVariableValue extends StaticOperand and declares:

StaticOperand BindVariableValue.getBindVariableName()

6.7.36 Prefix

AQM

type Prefix

A JCR prefix.

 132

The query is invalid if the prefix does not satisfy the prefix production in
§3.2.5.2 Qualified Form.

JCR-SQL2

Prefix ::= /* A String that conforms to the JCR Name
 prefix syntax. Not required to be an actual
 prefix in use in the repository. The prefix
 syntax is used simply to characterize the
 range of possible variables. */

JCR-JQOM

A string that conforms to the JCR Name prefix syntax. This is not required to be
an actual prefix in use in the repository. The prefix syntax is used simply to
characterize the range of possible variables.

6.7.37 Ordering

AQM

type Ordering ::=
DynamicOperand operand,
Order order

Determines the relative order of two node-tuples by evaluating operand for each.

For a first node-tuple, nt1, for which operand evaluates to v1, and a second
node-tuple, nt2, for which operand evaluates to v2:

If operand is a PropertyValue (see §6.7.27 PropertyValue) of a property P and
the query-orderable attribute of the property definition of P is false (see
§3.7.3.5 Query-Orderable) then the relative order of nt1 and nt2 is
implementation determined, otherwise, if the query-orderable attribute is true,
then:

If order is Ascending, then:

• if either v1 is null, v2 is null, or both v1 and v2 are null, the relative
order of nt1 and nt2 is implementation determined, otherwise

• if v1 is a different property type than v2, the relative order of nt1 and nt2
is implementation determined, otherwise

• if v1 is ordered before v2, as described in §3.6.5 Comparison of Values,
then nt1 precedes nt2, otherwise

• if v1 is ordered after v2, as described in §3.6.5 Comparison of Values,
then nt2 precedes nt1, otherwise

• the relative order of nt1 and nt2 is implementation determined and may
be arbitrary.

Otherwise, if order is Descending, then:

 133

• if either v1 is null, v2 is null, or both v1 and v2 are null, the relative
order of nt1 and nt2 is implementation determined, otherwise

• if v1 is a different property type than v2, the relative order of nt1 and nt2
is implementation determined, otherwise

• if v1 is ordered before v2, as described in §3.6.5 Comparison of Values,
then nt2 precedes nt1, otherwise

• if v1 is ordered after v2, as described in §3.6.5 Comparison of Values,
then nt1 precedes nt2, otherwise

• the relative order of nt1 and nt2 is implementation determined and may
be arbitrary.

The query is invalid if operand does not evaluate to a scalar value.

JCR-SQL2

orderings ::= Ordering {',' Ordering}

Ordering ::= DynamicOperand [Order]

If Order is omitted in the JCR-SQL2 statement the default is ASC (see §6.7.38
Order).

JCR-JQOM

An ascending Ordering is created with:

Ordering QueryObjectModelFactory.
 ascending(DynamicOperand operand)

A descending Ordering is created with:

Ordering QueryObjectModelFactory.
 descending(DynamicOperand operand)

Ordering declares:

DynamicOperand Ordering.getOperand()

String Ordering.getOrder()

6.7.38 Order

AQM

enum Order ::=
Ascending,
Descending

Order is either Ascending or Descending.

JCR-SQL2

Order ::= Ascending | Descending

 134

Ascending ::= 'ASC'

Descending ::= 'DESC'

JCR-JQOM

An order is a String constant. One of:

QueryObjectModelConstants.JCR_ORDER_ASCENDING

QueryObjectModelConstants.JCR_ORDER_DESCENDING

6.7.39 Column

AQM

type Column ::=
Name selectorName,
Name? propertyName,
Name? columnName

Defines a column to include in the tabular view of query results.

If propertyName is not specified, a column is included for each single-valued non-
residual property of the node type specified by the nodeType attribute of the
selector selectorName.

If propertyName is specified, columnName is required and used to name the
column in the tabular results. If propertyName is not specified, columnName must
not be specified, and the included columns will be named
“selectorName.propertyName”.

The query is invalid if:

• selectorName is not the name of a selector in the query, or

• propertyName is specified but does not evaluate to a scalar value, or

• propertyName is specified but columnName is omitted, or

• propertyName is omitted but columnName is specified, or

• the columns in the tabular view are not uniquely named, whether those
column names are specified by columnName (if propertyName is specified)
or generated as described above (if propertyName is omitted).

If propertyName is specified but, for a node-tuple, the selectorName node does
not have a property named propertyName, the query is valid and the column has
null value.

JCR-SQL2

columns ::= (Column ',' {Column}) | '*'

Column ::= ([selectorName'.']propertyName
 ['AS' columnName]) |

 135

 (selectorName'.*')
 /* If only one selector exists in this query, explicit
 specification of the selectorName preceding the
 propertyName is optional */

selectorName ::= Name

propertyName ::= Name

columnName ::= Name

JCR-JQOM

A Column is created with:

Column QueryObjectModelFactory.
 column(String selectorName,
 String propertyName,
 String columnName)

Column declares:

String Column.getSelectorName()

String Column.getPropertyName()

String Column.getColumnName()

6.8 QueryManager
The query function is accessed through the QueryManager object, acquired
through

QueryManager Workspace.getQueryManager().

6.8.1 Supported Languages

String[] QueryManager.getSupportedQueryLanguages()

returns an array of strings representing the supported query languages. In all
repositories that support query, the array will contain at least the string constants

Query.JCR_SQL2 and

Query.JCR_JQOM.

Any additional languages also supported will also be listed in the returned array.

6.9 Query Object
A new Query object can be created with

Query QueryManager.
 createQuery(String statement, String language).

The language parameter is a string representing one of the supported languages.
The statement parameter is the query statement itself. This method is used for
languages that are string-based (i.e., most languages, such as JCR-SQL2) as well

 136

as for the string serializations of non-string-based languages (such as JCR-
JQOM). For example, the call

QM.createQuery(S, Query.JCR_SQL2),

where QM is the QueryManager and S is a JCR-SQL2 statement, returns a Query
object encapsulating S.

However, the call

QM.createQuery(S, Query.JCR_JQOM)

also works. It returns a QueryObjectModel (a subclass of Query) holding the JCR-
JQOM object tree equivalent to S.

In either case the returned Query object encapsulates the resulting query. In
some repositories the first method call (with JCR-SQL2 specified) may also result
in a QueryObjectModel, though this is not required.

6.9.1 QueryObjectModelFactory

To programmatically build a query tree using JCR-JQOM the user acquires a
QueryObjectModelFactory using

QueryObjectModelFactory QueryManager.getQOMFactory().

The user then builds the query tree using the factory methods of
QueryObjectModelFactory, ultimately resulting in a QueryObjectModel object (a
subclass of Query) representing the query.

6.9.1.1 Serialized Query Object Model

The JCR-SQL2 language, in addition to being a query language in its own right is
also the standard serialization of a valid JCR-JQOM object tree. Since the two
languages are formally equivalent they can always be roundtripped.

6.9.2 Getting the Statement

String Query.getStatement()

returns the statement set for the query. If the Query was created with an
explicitly supplied statement string parameter using QueryManager.createQuery
then this method returns that statement. The statement returned must be
semantically identical to the original statement but need not be an identical string
(for example, it may be normalized).

If the Query is actually a QueryObjectModel created with
QueryObjectModelFactory.createQuery then Query.getStatement must return
the serialized form of the query, in JCR-SQL2 syntax.

6.9.3 Getting the Language

String Query.getLanguage()

 137

returns the language in which the query is specified. If the Query was created
with an explicitly supplied language string parameter using
QueryManager.createQuery then this method returns that string.

If the Query is actually a QueryObjectModel created with
QueryObjectModelFactory.createQuery then Query.getLanguage will return
the string constant Query.JCR_SQL2.

6.9.4 Query Limit

Query.setLimit(long limit)

Sets the maximum size of the result set, expressed in terms of the number of
Rows, as found in the table-view of the QueryResult (see §6.11 QueryResult).

6.9.5 Query Offset

Query.setOffset(long offset)

Sets the offset within the full result set at which the returned result set should
start, expressed in terms of the number of Rows to skip, as found in the table-
view of the QueryResult (see §6.11 QueryResult).

6.9.6 Bind Variables

A query may contain variables.

void Query.bindValue(String varName, Value value)

binds value to the variable varName.

In JCR-SQL2 a bind variable is indicated by a leading dollar-sign. In JCR-JQOM it
is a QOM object created with the QueryObjectModelFactory (see §6.7.35
BindVariable).

The method

String[] Query.getBindVariableNames()

returns the names of the bind variables in the query. If the query does not
contains any bind variables then an empty array is returned.

6.9.7 Stored Query

When a new Query object is first created it is a transient query. If the repository
supports the node type nt:query, then a transient query can be stored in content
by calling

Node Query.storeAsNode(String absPath).

This creates an nt:query node at the specified path. A save is required to persist
the node.

6.9.7.1 nt:query

The nt:query node type is defined as follows:

 138

[nt:query]
 - jcr:statement (STRING)
 - jcr:language (STRING)

jcr:statement holds the string returned by Query.getStatement().

jcr:language holds the string returned by Query.getLanguage().

If the language of this query is JCR-JQOM, jcr:statement will hold the JCR-SQL2
serialization of the JCR-JQOM object tree and Query.getStatement() will return
that string. Also, since the original query was constructed using JCR-JQOM,
jcr:language records the language as “JCR-JQOM” and Query.getLanguage()
returns “JCR-JQOM”.

6.9.7.2 Stored Query Path

String Query.getStoredQueryPath()

returns the absolute path of a Query that has been stored as a node.

6.9.7.3 Retrieving a Stored Query

Query QueryManager.getQuery(Node node)

retrieves a previously persisted query and instantiates it as a Query object.

6.9.7.4 Namespace Fragility

Note that the query statement stored within a stored query (the value of the
property jcr:statement) is stored as a simple string. Therefore, if it contains
qualified JCR names it will be namespace-fragile. If the stored query is run in a
context where a prefix used maps to a different namespace than it did upon
creation then the query will not reproduce the original result. To mitigate this,
users should either,

• always use expanded form names within queries, or

• always ensure that appropriate namespace mappings are in place when a
stored query is executed.

6.10 Literal Values
When creating a Comparison object (see 6.7.16 Comparison) a user may wish to
pass a literal property value (see 6.7.34 Literal) in the form of a Value object.
Value objects are created using the ValueFactory acquired through

ValueFactory Session.getValueFactory().

(see §10.4.3 Creating Value Objects).

6.11 QueryResult
Once a query has been defined, it can be executed. The method

QueryResult Query.execute()

 139

returns the a QueryResult object. The QueryResult is returned in two formats:
as a table and as a list of nodes.

6.11.1 Table View

The table view of a result is accessed with

RowIterator QueryResult.getRows()

The returned RowIterator holds a series of Row objects. A Row object represents
a single row of the query result table which corresponds to a node-tuple returned
by the query.

6.11.1.1 Row

Upon retrieving an individual Row, the set of Values making up that row can be
retrieved with

Value[] Row.getValues()

The values are returned in that same order as their corresponding column names
are returned by QueryResult.getColumns.

Value Row.getValue(String columnName)

returns the Value of the indicated column of the Row. The names of the columns
can be retrieved with

String[] QueryResult.getColumnNames().

In queries with only one selector included among the specified columns, each Row
corresponds to a single Node. In such cases

Node Row.getNode()

returns that Node.

In queries with more than one selector included among the specified columns, a
particular selector must be indicated in order to retrieve its corresponding Node .
This is done using

Node Row.getNode(String selectorName).

The available selector names can be retrieved with

String[] QueryResult.getSelectorNames().

If the Row is from a result involving outer joins, it may have no Node
corresponding to the specified selector, in which case this method returns null.

The methods

String Row.getPath() and

String Row.getPath(String selectorName)

 140

are equivalent to Row.getNode().getPath() and
Row.getNode(String selectorName).getPath(), respectively. However, some
implementations may be able gain efficiency by not resolving the actual Node.

The method

double Row.getScore(String selectorName)

returns the full text search score for this row that is associated with the specified
selector. This is equivalent to the score of the Node associated with that this Row
and that selector.

If no FullTextSearchScore AQM object (see §6.7.31 FullTextSearchScore) is
associated with the specified selector this method will still return a value but that
value may not be meaningful or may simply reflect the minimum possible
relevance level (for example, in some systems this might be a score of 0).

If this Row is from a result involving outer joins, it may have no Node
corresponding to the specified selector, in which case this method returns an
implementation selected value, as it would if there were no
FullTextSearchScore associated with the selector.

The method

double Row.getScore()

works identically to Row.getScore(String selectorName), but only in cases
where there is exactly one selector and therefore its name need not be explicitly
specified.

6.11.2 Node View

For queries with only one selector

QueryResult.getNodes()

returns an iterator over all matching nodes in the order specified by the query.
For queries with more than one selector the order in which nodes are returned is
implementation-specific.

6.12 Query Scope
Each Query is bound to a Session object via the QueryManager through which it
was created and the Workspace object through which that QueryManager was
acquired. Through its associated Workspace and Session objects a query is
therefore bound to a single persistent workspace and a single transient store.

6.12.1 Access Restrictions

A query result always respects the access restrictions of its bound Session. This
includes all restrictions, as reflected in the capabilities of the Session, which
encompasses privileges, permissions and other restrictions (see §9 Permissions
and Capabilities).

 141

In general, if the bound Session does not have read access to a particular item,
then that item will not be included in the result set even if it would otherwise
constitute a match.

6.12.2 Queryable Content

A query runs against either

• the content of its bound persistent workspace, without regard to any
pending changes in its bound transient store, or

• the content of its bound persistent workspace as modified by the pending
changes in its bound transient store.

The choice of which scope to use is an implementation-variant.

6.12.3 Query Result Items

Regardless of which scope is used, when an item is accessed from within a
QueryResult object, the state of the item returned will obey the same semantics
as if it were retrieved using a normal Node.getNode or Node.getProperty: the
item state will reflect any pending changes in transient store of the Session. As a
result, it is possible that an item returned as a match will not reflect the state
that caused it to be a match (i.e., its persistent state). Applications can clear the
Session (either through save or refresh(false)) before running a query in
order to avoid such discrepancies.

 142

7 Export
A JCR repository must support export of content to two XML formats: system
view and document view.

7.1 Exporting a Subgraph
Export operates on a subgraph of a workspace. Given a repository R with
workspace W and a node N within W the following sections describe the algorithm
for producing the system view and document view serializations of the subgraph
rooted at N.

In a repository that supports shareable nodes the set of nodes below N may not
be a tree, it may, more generally, be a subgraph with unique source N (see §3.9
Shareable Nodes Model).

7.2 System View
The exported system view XML document is constructed as follows:

1. For every namespace used within the subgraph rooted at N, the
corresponding JCR namespace mapping in the current session is included
as an XML namespace declaration such that any use of a namespace prefix
is within the scope of the appropriate namespace declaration.

2. Other JCR namespace mappings in the current session may be included as
XML namespace declarations in the exported document.

3. The JCR namespace mapping of the prefix xml may be excluded from the
namespace declarations in the exported document.

4. A namespace declaration for the URI http://www.jcp.org/jcr/sv/1.0, is
included such that any use of the corresponding namespace prefix is
within the scope of the declaration. In this section the prefix sv is
assumed, making the declaration
xmlns:sv=“http://www.jcp.org/jcr/sv/1.0”.

5. Each JCR node becomes an XML element <sv:node>.

6. Each JCR property becomes an XML element <sv:property>.

7. The name of each JCR node or property becomes the value of the sv:name
attribute of the corresponding <sv:node> or <sv:property> element.

8. If the root node of a workspace is included in the serialized subgraph, it
receives the name jcr:root.

9. The property type of each content repository property is recorded in the
sv:type attribute of the corresponding <sv:property> element, using the
standard string forms for property type names as returned by the method
PropertyType.nameFromValue.

 143

10. The value of each BINARY JCR property is Base6412 encoded and the
resulting string is included as XML text within an <sv:value> element
within the <sv:property> element.

11. The value of each non-BINARY JCR property is converted to string form
according to the standard conversion (see §3.6.4 Property Type
Conversion) and the resulting string is included as XML text within an
<sv:value> element within the <sv:property> element.

a. Entity references are used to escape characters which cannot be
included as literals within XML text (see §7.5 Escaping of Values).

b. If, after conversion to string and entity escaping is performed, the
string form of a value still contains characters which cannot appear
in an XML document (neither as literals nor as character
references13) then:

i. The string form is further encoded using Base64 encoding.

ii. The attribute xsi:type=“xsd:base64Binary” is added to
the <sv:value> element.

iii. The namespace mappings for xsi and xsd are added to the
exported XML document so that the xsi:type attribute is
within their scope. The namespace declarations required are
xmlns:xsd=“http://www.w3.org/2001/XMLSchema” and
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-
instance”. Note that the prefixes representing these two
namespaces need not be literally “xsd” and “xsi”. Any two
prefixes are permitted as long as the corresponding
namespace declarations are changed accordingly.

12. A multi-value property is converted to an <sv:property> element
containing multiple <sv:value> elements. The order of the <sv:value>
elements reflects the order of the value array returned by
Property.getValues. If a property is multi-valued but happens to have
only one value, then the attribute sv:multiple=“true” must be added to
the corresponding <sv:property> element. If the property is multi-valued
and has more than one value then the sv:multiple=“true” attribute may
be added.

12 See http://tools.ietf.org/html/rfc4648 §4.

13 See http://www.w3.org/TR/REC-xml/#charsets,
http://www.w3.org/TR/REC-xml/#NT-CharRef, and
http://www.w3.org/TR/REC-xml/#wf-Legalchar.

 144

13. The hierarchy of the content repository nodes and properties is reflected in
the hierarchy of the corresponding XML elements.

14. Within an <sv:node> element all <sv:property> subelements must occur
before the first <sv:node> subelement.

15. The first <sv:property> element in an <sv:node> element must be
jcr:primaryType (see §3.7.10 Base Primary Node Type).

16. If a node has a jcr:mixinTypes property, then the second
<sv:property> element in the <sv:node> element must be
jcr:mixinTypes (see §3.7.10 Base Primary Node Type).

17. In the case of referenceable nodes, the third <sv:property> element in
the <sv:node> element must be jcr:uuid (see §3.8.1.1
mix:referenceable).

18. The order of the <sv:node> subelements of a parent <sv:node> must
reflect the order in which the corresponding child nodes are returned by
Node.getNodes().

19. Shared nodes are exported as described in §14.7 Export.

A writable repository may support import using system view (see §11 Import).

7.3 Document View
The document view provides a more human-readable serialization than system
view. Unlike system view, document view is lossy. It does not preserve all
information in the subgraph.

1. For every namespace used within the subgraph rooted at N, the
corresponding JCR namespace mapping in the current session is included
in the exported document such that any use of the namespace prefix in
the exported document is within the scope of the appropriate namespace
declaration.

2. Other JCR namespace mappings in the current session may be included as
XML namespace declarations in the exported document.

3. The JCR namespace mapping of the prefix xml may be excluded from the
namespace declarations in the exported document.

4. Each JCR node N becomes an XML element of the same name, N.

5. If the root node of a workspace is included in the serialized subgraph, it
becomes an XML elements with the name jcr:root.

6. Each child node C of N becomes a subelement C of XML element N.

7. The order of the subelements of element N must reflect the order in which
the corresponding child nodes are returned by Node.getNodes.

8. Each property P of node N becomes an XML attribute P of XML element N.

 145

9. If P is a BINARY property its value is Base64 encoded. The resulting string
becomes the value of the XML attribute P.

10. If P is a non-BINARY property its value is converted to string form
according to the standard conversion (see §3.6.4 Property Type
Conversion). Entity references are used to escape characters which cannot
be included as literals within attribute values (see §7.5 Escaping of
Values).

A writable repository may support document view import (see §11.1 Importing
Arbitrary XML).

The following sections describe the exceptions to the above general rules.

7.3.1 XML Text

In a repository that supports it, on document view import XML text is converted
to the special node/property structure jcr:xmltext/jcr:xmlcharacters (see
§11.1 Importing Document View). When this structure is exported back to XML
the process is reversed.

If a child node of N called jcr:xmltext is encountered and that jcr:xmltext
node has one and only one child item and that item is a single-valued property
called jcr:xmlcharacters, then the jcr:xmltext node is not converted into an
XML element. Instead, the value of the jcr:xmlcharacters property becomes
text within the body of the XML element N. Entity references are used to escape
characters which cannot be included as literals within XML text (see §7.5
Escaping of Values) however, escaping of whitespace is not performed (see
§7.3.3 Multi-Value Properties). Two or more jcr:xmltext nodes adjacent within
the ordering of a child node set will have the values of their respective
jcr:xmlcharacters concatenated into a single resulting XML text node.

7.3.2 Invalid Item Names

If the name of a content repository item I is not a valid XML element or attribute
name (as the case may be) then on export the repository may either ignore the
item in question or employ the escaping scheme described in §7.4 Escaping of
Names. Which approach is taken is implementation-dependent.

7.3.3 Multi-Value Properties

If a multi-value property P is encountered on export, the repository may either
ignore the multi-value property or serialize it as an attribute whose value is an
XML Schema list type14 (i.e., a whitespace-delimited list of strings). If the latter
approach is taken then:

14 See http://www.w3.org/TR/xmlschema-0/#ListDt for more information about
the XML Schema list type.

 146

• Each value in the property is converted to a string according to standard
conversion, see §3.6.4 Property Type Conversion. If the multi-value
property contains no values, then it is serialized as an empty string.

• All literal whitespace within each string is escaped, as well as any
characters that should not be included as literals in any case, see §7.5
Escaping of Values.

• The final attribute value is constructed by concatenating the resulting
strings, with the addition of the space delimiter, into a single string. The
order of concatenation must be the same as the order in which the values
appear in the Value array returned by Property.getValues.

• Furthermore, if multi-value property serialization is supported, then a
mechanism must be adopted whereby upon re-import the distinction
between multi- and single- value properties is not lost, see §7.5 Escaping
of Values.

• Note that this escaping of space literals does not apply to the value of
jcr:xmltext/jcr:xmlcharacters when it is converted to XML text. In
that case only the standard XML entity escaping is required, regardless of
whether multi-value property serialization is supported (see §7.3.1 XML
Text and §7.5 Escaping of Values).

7.3.4 Invalid Characters in Values

If the string form of the value of property P contains characters which cannot
appear in XML documents at all (neither as literals nor as character references15)
then the attribute P is simply excluded from the document view serialization and
does not appear at all.

7.4 Escaping of Names
Though a JCR prefix is always a valid XML prefix, the JCR local name may not be
a valid XML name. Consequently, for document view serialization, each JCR name
is converted to a valid XML name (as defined by XML 1.0) by translating invalid
characters into escaped numeric entity encodings16.

The escape character is the underscore (“_”). Any invalid character is escaped as
xHHHH, where HHHH is the four-digit hexadecimal UTF-16 code for the character.

15 See http://www.w3.org/TR/REC-xml/#charsets,
http://www.w3.org/TR/REC-xml/#NT-CharRef, and
http://www.w3.org/TR/REC-xml/#wf-Legalchar.

16 This escaping scheme is based on the scheme described in ISO/IEC 9075-
14:2003 for converting arbitrary strings into valid XML element and attribute
names.

 147

When producing escape sequences the implementation should use lowercase
letters for the hex digits a-f. When unescaping, however, both upper and
lowercase alphabetic hexadecimal characters must be recognized.

Escaping and unescaping is done by parsing the name from left to right.

The underscore character (“_”), when appearing as literal, is itself escaped if it is
followed by xHHHH where H is one of the following characters:
0123456789abcdefABCDEF.

For example,

“My Documents” is encoded as “My_x0020_Documents”.

“My_Documents” is not encoded.

“My_x0020Documents” is encoded as “My_x005f_x0020Documents”.

“My_x0020_Documents” is encoded as “My_x005f_x0020_Documents”.

“My_x0020 Documents” is encoded as “My_x005f_x0020_x0020_Documents”.

7.5 Escaping of Values
When a non-BINARY value is serialized during either system view or document
view export, it is first converted to string form using standard value conversion,
see §3.6.4 Property Type Conversion. BINARY values are encoded using Base64.
The resulting string then undergoes any further changes required by the standard
XML escaping rules17.

In document view serialization, if the property being serialized is multi-valued (or
if the implementation chooses to encode spaces in single-value properties as well,
see below) then the value or values must be further encoded by escaping any
occurrence of one of the four whitespace characters: space, tab, carriage return
and line feed. The scheme used to encode these characters is the same as that
described in §7.4 Escaping of Names. Note that in this restricted context,
applying those escaping rules amounts to the following: a space becomes
x0020, a tab becomes _x0009_, a carriage return becomes _x000D_, a line feed
becomes _x000A_ and any underscore (_) that occurs as the first character of a
sequence that could be misinterpreted as an escape sequence becomes _x005f_.

Finally, in document view export, the value of the attribute representing a multi-
value property is constructed by concatenating the results of the above escaping
into a space-delimited list.

In document view export (though not in system view), if multi-value property
serialization is supported (see §7.3.3 Multi-Value Properties) then a mechanism
must be adopted whereby upon re-import the distinction between multi- and

17 See http://www.w3.org/TR/xml/#syntax.

 148

single- value properties is not lost. One option is that escaping of space literals
must be applied to the value of all single-value properties as well. Another option
is that when an XML document is imported in document view, each attribute is
assumed to be a single-value property unless out-of-band information defines it
to be multi-valued (for example, if the applicable node type defines the property
as multi-valued or the XML document is associated with a schema definition that
indicates that the attribute is a list value). The approach taken is implementation-
specific.

Note that the value of a jcr:xmlcharacters property used to represent XML text
(see §7.3.1 XML Text) is not space-escaped, regardless of the prevailing multi-
value property serialization policy.

7.6 Export API
Exported XML can be output either as a stream or as a series of SAX events. The
export methods are found in the Session object.

7.6.1 System View Export

The methods

void Session.exportSystemView(String absPath,
 ContentHandler contentHandler,
 boolean skipBinary,
 boolean noRecurse)

and

void Session.exportSystemView(String absPath,
 OutputStream out,
 boolean skipBinary,
 boolean noRecurse)

serialize the item subgraph starting at absPath.

The first method serializes content to XML as a series of SAX events triggered by
the repository calling the methods of the supplied org.xml.sax.ContentHandler.

The second method serializes content to an XML stream and outputs it to the
supplied java.io.OutputStream.

The resulting XML is in the system view form.

If skipBinary is true then any properties of type BINARY will be serialized with
empty sv:value elements. In the case of multi-value BINARY properties, the
number of values in the property will be reflected in the serialized output, though
they will all be empty.

If skipBinary is false then the actual values of each BINARY property are
serialized.

If noRecurse is true then only the node at absPath and its properties, but not its
child nodes, are serialized. If noRecurse is false then the entire subgraph is
serialized.

 149

7.6.2 Document View Export

The methods

void Session.exportDocumentView(String absPath,
 ContentHandler contentHandler,
 boolean skipBinary,
 boolean noRecurse)

and

void Session.exportDocumentView(String absPath,
 OutputStream out,
 boolean skipBinary,
 boolean noRecurse)

work identically to their respective system view variants, except that the resulting
XML is in the document view form.

7.7 Export Scope
Export obeys the access restrictions of the bound Session. If the Session lacks
read access to some subsection of the specified content, that section is not
exported.

The exported output reflects the state of the bound persistent workspace as
modified by the transient store of the bound Session. This means that pending
changes and all namespace mappings in the namespace registry, as modified by
the current session-mappings, are reflected in the output.

7.8 Encoding
XML streams produced by export must be encoded in UTF-8 or UTF-16 as per the
XML specification18.

18 See http://www.w3.org/TR/xml/#charsets.

 150

8 Node Type Discovery
All repositories are required to support methods for the discovery of the following
node type-related information:

• Which node types are supported in the repository.

• The definition of a supported node type.

• The node type of a node.

• The definition of an item in the node type of its parent.

8.1 NodeTypeManager Object
A repository has a single, global node type registry that holds all node types
available in the repository. The registry is represented by a NodeTypeManager
object acquired through

NodeTypeManager Workspace.getNodeTypeManager().

The method

NodeType NodeTypeManager.getNodeType(String nodeTypeName)

returns the NodeType object representing the specified registered node type.
NodeTypeManager also provides the following related methods for accessing
registered node types:

boolean NodeTypeManager.hasNodeType(String nodeTypeName)

NodeTypeIterator NodeTypeManager.getPrimaryNodeTypes()

NodeTypeIterator NodeTypeManager.getMixinNodeTypes()

NodeTypeIterator NodeTypeManager.getAllNodeTypes()

8.2 NodeType Object
The NodeType interface is a subclass of NodeTypeDefinition, which provides
access methods to the static definitional characteristics of a node type.

NodeType adds methods relevant to a “live” node type that is registered in a
repository.

Repositories that support node type management must implement
NodeTypeTemplate, which is another subclass of NodeTypeDefinition (see §19
Node Type Management).

The NodeType interface provides methods to access the attributes of a node type:

8.2.1 Name

String NodeTypeDefinition.getName()

returns the name of the node type (see §3.7.1.1 Node Type Name).

 151

8.2.2 Supertypes and Subtypes

String[] NodeTypeDefinition.getDeclaredSupertypeNames()

returns the list of the names of declared supertypes in this definition (see
§3.7.1.2 Supertypes).

In a repository that supports node type management NodeTypeDefinition
objects not bound to a live node type may be encountered (for example, in the
form of a NodeTypeTemplate). In such cases this method may return null.

NodeType additionally provides the following methods for accessing supertype and
subtype information

NodeType[] NodeType.getDeclaredSupertypes()

NodeType[] NodeType.getSuperTypes()

boolean NodeType.isNodeType(String nodeTypeName)

NodeTypeIterator NodeType.getDeclaredSubtypes()

NodeTypeIterator NodeType.getSubtypes()

8.2.3 Abstract

boolean NodeTypeDefinition.isAbstract()

returns true if the node type is abstract and false otherwise (see §3.7.1.3
Abstract).

8.2.4 Mixin

boolean NodeTypeDefinition.isMixin()

returns true if the node type is a mixin and false if it is a primary type (see
§3.7.1.4 Mixin).

8.2.5 Queryable Node Type

boolean NodeTypeDefinition.isQueryable()

returns true if the node type is queryable and false otherwise (see §3.7.1.5
Queryable Node Type).

8.2.6 Orderable Child Nodes

boolean NodeTypeDefinition.hasOrderableChildNodes()

returns true if the node type supports orderable child nodes and false otherwise
(see §3.7.1.6 Orderable Child Nodes). Support for orderable child nodes is
optional (see §23 Orderable Child Nodes).

8.2.7 Primary Item

String NodeTypeDefinition.getPrimaryItemName()

 152

returns the primary item of the node type, if any (see §3.7.1.7 Primary Item).

8.2.8 Property Definitions

The set of property definitions is represented by an array of PropertyDefinition
objects, accessed through the following methods:

PropertyDefinition[]
 NodeTypeDefinition.getDeclaredPropertyDefinitions()

PropertyDefinition[] NodeType.getPropertyDefinitions()

(see §3.7.1.8 Property Definitions)

8.2.9 Child Node Definitions

The set of child node definitions is represented by an array of NodeDefinition
objects, accessed through the following methods:

NodeDefinition[]
 NodeTypeDefinition.getDeclaredChildNodeDefinitions()

NodeDefinition[] NodeType.getChildNodeDefinitions()

(see §3.7.1.8 Property Definitions)

8.3 ItemDefinition Object
The attributes common to both property and child node definitions are accessed
through the ItemDefinition interface. Attributes specific to property definitions
or child node definitions are accessed through the PropertyDefinition and
NodeDefinition interfaces, respectively. These interfaces are both subclasses of
ItemDefinition. The ItemDefinition interface provides methods to access the
following attributes:

8.3.1 Name

String ItemDefinition.getName()

returns the JCR Name (in qualified form) of the item to which the definition
applies or “*”, indicating that the definition is residual (see §3.7.2.1 Item
Definition Name).

8.3.2 Protected

boolean ItemDefinition.isProtected()

returns true if the item is protected and false otherwise (see §3.7.2.2
Protected).

8.3.3 Auto-Created

boolean ItemDefinition.isAutoCreated()

returns true if the item is auto-created and false otherwise (see §3.7.2.3 Auto-
Created).

 153

8.3.4 Mandatory

boolean ItemDefinition.isMandatory()

returns true if the item is mandatory and false otherwise (see §3.7.2.4
Mandatory).

8.3.5 On-Parent-Version

int ItemDefinition.getOnParentVersion()

returns the on-parent-version setting of the definition; one of the constants of
OnParentVersionAction (see §3.7.2.5 On-Parent-Version).

8.3.6 Declaring Node Type

NodeType ItemDefinition.getDeclaringNodeType()

returns the NodeType object that contains this definition (see §8.2 NodeType
Object).

8.4 PropertyDefinition Object
The attributes specific to property definitions are accessed through the
PropertyDefinition interface, which is a subclass of ItemDefinition:

8.4.1 Required Type

int PropertyDefinition.getRequiredType()

returns the property type setting of the definition, which must be one of the
constants of the PropertyType interface (see §3.7.3.1 Property Type).

8.4.2 Default Values

Value[] PropertyDefinition.getDefaultValues()

returns the default values of the definition (see §3.7.3.2 Default Values).

8.4.3 Available Query Operators

String[] PropertyDefinition.getAvailableQueryOperators()

returns an array of String constants indicating which query operators are
supported for this property (see §3.7.3.3 Available Query Operators). The
constants are defined in the class QueryObjectModelConstants and represent
the operators defined in §6.7.16 Comparison.

8.4.4 Full-Text Searchable

boolean NodeTypeDefinition.isFullTextSearchable()

returns true if the property is full-text searchable and false otherwise (see
§3.7.3.4 Full-Text Searchable).

 154

8.4.5 Query-Orderable

boolean NodeTypeDefinition.isQueryOrderable()

returns true if the property is query-orderable and false otherwise (see §3.7.3.5
Query-Orderable).

8.4.6 Value Constraints

String[] PropertyDefinition.getValueConstraints()

returns the value constraints of the definition (see §3.7.3.6 Value Constraints),

8.4.7 Multi-value

boolean PropertyDefinition.isMultiple()

returns true if the definition defines a multi-value property and false if it defines
a single value property (see §3.7.3.7 Multi-Value).

8.5 NodeDefinition Object
The attributes specific to child node definitions are accessed through the
NodeDefinition interface, which is a subclass of ItemDefinition:

8.5.1 Required Primary Node Types

The methods

NodeType[] NodeDefinition.getRequiredPrimaryTypes() and

String[] NodeDefinition.getRequiredPrimaryTypeNames()

return information about the required primary node types of the definition
(§3.7.4.1 Required Primary Node Types). The latter method returns the names of
the node types while the former method returns the live NodeType objects
representing the types. The former only functions if the NodeDefinition is part
of a live registered NodeType.

8.5.2 Default Primary Node Type

The methods

NodeType NodeDefinition.getDefaultPrimaryType() and

String NodeDefinition.getDefaultPrimaryTypeName()

return information about the default primary node type of the definition (§3.7.4.2
Default Primary Node Type). The latter method returns the name of the node
type while the former method returns the live NodeType object representing the
type. The former only functions if the NodeDefinition is part of a live registered
NodeType.

8.5.3 Same-Name Siblings

boolean NodeDefinition.allowsSameNameSiblings()

 155

returns true if the definition allows same-name sibling nodes and false
otherwise (see §3.7.4.3 Same-Name Siblings).

8.6 Node Type Information for Existing Nodes
Given an existing Node, the methods

NodeType Node.getPrimaryNodeType() and

NodeType[] Node.getMixinNodeTypes()

return, respectively, the primary and mixin node types of the node. The method

boolean Node.isNodeType(String nodeTypeName)

returns true if the Node is of the specified node type, according to the is-of-type
relation (see §3.7.6.3 Is-of-Type Relation), and false otherwise.

8.6.1.1 Discovery of Item Definitions

The Node and Property interfaces offer methods that allow direct access to the
NodeDefinition or PropertyDefinition within the node type of a parent node
that is applicable to a particular child item:

NodeDefinition Node.getDefinition()

PropertyDefinition Property.getDefinition()

The definition that applies to an item is determined upon creation of that item
(see §3.7.7 Applicable Item Definition).

8.6.1.2 Root Node Definition

The method getDefinition called on the root node must return a valid, non-
null, NodeDefinition object. The values returned by the methods of this object
must be as follows:

• getName(): ““, the empty string.

• getDeclaringNodeType(): A valid NodeType object (see §8.6.1.3 Root
Declaring Node Type).

• isMandatory(): true

• isAutoCreated(): true

• isProtected(): false

• allowsSameNameSiblings(): false

• getOnParentVersion(): VERSION, if versioning is supported and the root
node is capable of being made versionable, IGNORE otherwise.

• getDefaultPrimaryType(): A valid non-null NodeType object (see §3.7.8
Root Node Type).

 156

• getRequiredPrimaryTypes(): An array containing a single NodeType
object identical with that returned by getDefaultPrimaryType.

8.6.1.3 Root Declaring Node Type

Calling getDeclaringNodeType() on the NodeDefinition of the root node must
return a valid NodeType object. The values returned by the methods of this object
must be as follows:

• getName() returns the name of a node type N, where N is implementation-
determined.

• isNodeType(String nodeTypeName) returns true if an only if
nodeTypeName is N or a supertype of N.

• getChildNodeDefinitions() and getDeclaredChildNodeDefinitions()
both return an array containing the child node definition of the root node.

All other methods either return false (if they return a boolean) or an empty
array (if they return an array).

 157

9 Permissions and Capabilities

9.1 Permissions
Permissions encompass the restrictions imposed by any access control restrictions
that may be in effect upon the content of a repository, either implementation
specific or JCR-defined (see §16 Access Control Management).

In repositories that support Access Control this will include the restrictions
governed by privileges but may also include any additional policy-internal
refinements with effects too fine-grained to be exposed through privilege
discovery (see §16.2 Privilege Discovery).

Permissions are reported through

boolean Session.hasPermission(String absPath, String actions)

which returns true if this Session has permission to perform all of the specified
actions at the specified absPath and returns false otherwise. Similarly,

 void Session.checkPermission(String absPath, String actions)

throws an AccessDeniedException if the this Session does not have permission
to perform the specified actions and returns quietly if it does.

The actions parameter is a comma separated list of action strings, of which
there are four, defined as follows:

add_node: The permission to add a node at absPath.

set_property: The permission to set (add or change) a property at
absPath.

remove: The permission to remove an item at absPath.

read: The permission to retrieve (and read the value of, in the case of a
property) an item at absPath.

The permission actions add_node, set_property and remove will only be relevant
in a writable repository. In a read-only repository they will always return false.

The information returned through these methods only reflects access control-
related restrictions, not other kinds of restrictions such as node type constraints.
For example, even though hasPermission may indicate that a particular Session
may add a property at /A/B/C, the node type of the node at /A/B may prevent
the addition of a property called C.

Methods for testing restrictions more broadly are provided by the capabilities
feature (see §9.2 Capabilities). For information on the relationships among
permissions, privileges and capabilities, see §16.6 Privileges Permissions and
Capabilities.

 158

9.2 Capabilities
Capabilities encompass the restrictions imposed by permissions, but also include
any further restrictions unrelated to access control. The method

boolean Session.hasCapability(String methodName,
 Object target,
 Object[] arguments)

checks whether an operation can be performed given as much context as can be
determined by the repository, including:

• Permissions granted to the current user, including access control
privileges.

• Current state of the target object (reflecting locks, checked-out status,
retention and hold status etc.).

• Repository capabilities.

• Node type-enforced restrictions.

• Repository configuration-specific restrictions.

The implementation of this method is best effort: returning false guarantees
that the operation cannot be performed, but returning true does not guarantee
the opposite.

The methodName parameter identifies the method in question by its name as
defined in the Javadoc.

The target parameter identifies the object on which the specified method is
called.

The arguments parameter contains an array of type Object consisting of the
arguments to be passed to the method in question. In cases where a parameter
is a Java primitive type it must be converted to its corresponding Java object
form.

For example, given a Session S and Node N then

boolean b = S.hasCapability("addNode", N, new Object[]{"foo"});

will result in b == false if a child node called foo cannot be added to the node N
within the session S.

 159

10 Writing
A repository may be writable.

Whether an implementation supports writing can be determined by querying the
repository descriptor table with

Repository.WRITE_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

10.1 Types of Write Methods
A JCR write method is either a session-write or a workspace-write.

10.1.1 Session-Write

Changes made through a session-write are buffered in a transient store
associated with that method's current session (see §3.1.8.2 Current Session and
Workspace). The transient store permits a series of changes to be made without
validation at every step, thus allowing item structures to be temporarily invalid
while they are being constructed. Once completed, the change set can be saved.

• Before save, a change in transient store is pending.

• Upon save, all changes in transient store are dispatched.

10.1.2 Workspace-Write

• A change made through a workspace-write is immediately dispatched.

10.1.3 Transactions

• In the absence of a transaction, every dispatched change is immediately
persisted.

• Within a transaction, dispatched changes are persisted upon commit.

(see §21 Transactions).

10.1.4 Visibility of Changes

A change that is pending or dispatched (but not persisted) is visible only to the
session through which that change was made. A change that is persisted is visible
to all other sessions bound to the same persistent workspace that have sufficient
read permission.

10.1.5 Write Methods

The write API is divided into the two types as follows.

10.1.5.1 Session-Write

The session-write methods are

 160

• Node.addNode, setProperty and orderBefore.

• Property.setValue.

• Item.remove.

• Node.removeShare, and removeSharedSet.

• Session.move, removeItem and importXML.

• Query.storeAsNode.

• Node.setPrimaryType, addMixin and removeMixin.

• RetentionManager.addHold, removeHold, setRetentionPolicy and
removeRetentionPolicy.

• AccessControlManager.setPolicy and removePolicy.

10.1.5.2 Workspace-Write Methods

The workspace-write methods are:

• Workspace.move, copy, clone, restore and importXML.

• VersionManager.checkin, checkout, checkpoint, restore,
restoreByLabel, merge, cancelMerge, doneMerge, createActivity ,
removeActivity and createConfiguration.

• Node.update and followLifecycleTransition.

• LockManager.lock and unlock.

• VersionHistory.addVersionLabel, removeVersionLabel and
removeVersion.

• Session.save.

• Methods of org.xml.sax.ContentHandler acquired through
Workspace.getContentHandler.

• Workspace.createWorkspace and deleteWorkspace (these create or
delete another workspace, though they do not affect this workspace).

10.1.5.3 Optional In-Content Side-Effects

Some repositories may choose to expose internal state data as virtual content
within a workspace. For example, the set of registered node types may be so
exposed.

In such cases, methods which directly affect the exposed internal state and, as a
side effect, change virtual content must do so in a workspace-write manner. For
example, NodeTypeManager.registerNodeType and unregisterNodeType should
immediately dispatch changes to the in-content node type representation.

 161

10.2 Core Write Methods
The core write methods of JCR are those write methods of the API whose write
effect is not incidental to the support of another feature, such as versioning,
import, locking, and so forth. Both session-write and workspace-write methods
are among the core write methods. The core write methods are:

• Node.addNode, setProperty and orderBefore.

• Property.setValue.

• Item.remove.

• Node.removeShare, and removeSharedSet.

• Session.move, and removeItem.

• Workspace.move, copy, clone.

• Session.save.

10.3 Session and Workspace Objects
Given the set S0..Sn of Session objects bound to a persistent workspace WP, for
each Si, there exists a distinct Workspace object Wi, bound one-to-one to Si, that
represents the view of WP through the access permissions of Si.

Despite their one-to-one correspondence, Session and Workspace are defined as
separate objects in order to differentiate the behavior of session-write methods
from the behavior of workspace-write methods.

10.3.1 Writing Without a Transaction

The following diagram depicts the behavior of write methods without a
transaction.

 162

 163

10.3.2 Writing Within a Transaction

The following diagrams depicts the behavior of write methods within a
transaction.

10.4 Adding Nodes and Setting Properties
This section covers the JCR API methods for adding new nodes and properties
and changing the values of existing properties.

10.4.1 Adding a Node

The methods

Node Node.addNode(String relPath, String primaryNodeTypeName)

 164

and

Node Node.addNode(String relPath)

add a node at the specified location relative to this Node. The former specifies the
intended primary node type of the node, while the latter assumes that the
repository can determine the intended type from the node type of the parent.

Node.addNode is a session-write method and therefore requires a Session.save
to dispatch the change (see §10.11 Saving).

10.4.2 Setting a Property

The generic method for setting a property is

Property Node.setProperty(String name, Value value, int type).

This method sets the property of this Node with the specified name to the specified
value and the specified type, converting the given value to that type if necessary.
If the property already exists its value is changed. If it does not exist, it is added.

Node.setProperty is a session-write method and therefore requires a
Session.save to dispatch the change (see §10.11 Saving).

10.4.2.1 Changing Existing Properties

An existing property can also be changed with

void Property.setValue(Value value).

Property.setValue is a session-write method and therefore requires a
Session.save to dispatch the change (see §10.11 Saving).

10.4.2.2 Type-Specific Signatures

Signatures of Node.setProperty and Property.setValue are also provided in
which the intended JCR type is implied by the Java type passed in. For example,

Node.setProperty(String name, Calendar value)

sets a JCR DATE property called name to the specified value. See the Javadoc for
the full set of signatures.

10.4.2.3 Setting a DECIMAL Property

When setting a property of type DECIMAL using

Node.setProperty(String name, BigDecimal value) or

Property.setValue(BigDecimal value)

the java.math.BigDecimal object passed must be an instance of the actual class
BigDecimal, not an instance of a subclass.

 165

10.4.2.4 No Null Values

Every property must have a value. The range of property states does not include
having a “null value”, or “no value”. Setting a property to “null” is equivalent to
removing that property (see §10.9 Removing Nodes and Properties).

10.4.2.5 Multi-value Properties and Null

As with single-value properties, there is no such thing as a null value. If a value
within a multi-value property is set to null, this is equivalent to removing that
value from the value array. In such a case the array is automatically compacted,
shifting the indices of those values with an index greater than that of the
removed value by -1. However, while no value within a multi-value property can
be null, a multi-value property can exist with no values (i.e., it can be an empty
array).

10.4.2.6 Setting Multi-value vs. Single-value Properties

Multi-value and single-value properties are set using different signatures of
Node.setProperty and Property.setValue. Multi-value properties must be set
using the signatures that take either a Value[] or String[]. Single-value
properties must be set using the signatures that take non-array value arguments.
An attempt to set a multi-value property with a non-array value argument, or a
single-value property with an array value argument, will throw a
ValueFormatException.

10.4.3 Creating Value Objects

In many cases a property must be set using a Value object. Value objects are
created using a ValueFactory, acquired through

ValueFactory Session.getValueFactory().

The generic Value creation method is

Value ValueFactory.createValue(String value, int type)

which takes the string-form of the specified type and returns a Value of that type
using standard property type conversion (see §3.6.4 Property Type Conversion).

10.4.3.1 Type-Specific Methods

ValueFactory also provides methods for creating values of each property type
from the corresponding Java type. See the Javadoc for the full set of signatures.

10.4.3.2 Creating a BINARY Value

To create a BINARY value a javax.jcr.Binary object is first created from a
stream using

Binary ValueFactory.createBinary(InputStream stream)

and then passed to

Value ValueFactory.createValue(Binary value).

 166

10.5 Selecting the Applicable Item Definition
An addNode or setProperty method must determine which, if any, item
definitions of the parent node apply to the new child item, based on the name of
the new item and, if provided, its type.

If more than one item definition still applies even after taking the name and type
constraints into consideration, the repository may either fail the add attempt or
automatically select one of the item definitions based on implementation-specific
criteria.

For example, if the parent node P has two residual child node definitions that
differ only by their OPV value (see §3.7.2.5 On-Parent-Version), then even if both
a name and a primary type are supplied in the call to addNode this will not be
sufficient information to unambiguously determine which residual definition the
new node should fall under. In such a case, an implementation might
automatically select one of the definitions based on the implementation-specific
rule that a node with the name X will always have an OPV of V while other nodes
will have an OPV of W.

When Node.setProperty is used to change the value of an existing property,
cases where the intended property is ambiguous are handled in the same way as
when the method is used to create a new property.

10.6 Moving Nodes
The method

void Session.move(String srcAbsPath, String destAbsPath)

moves the subgraph at srcAbsPath to a new location at destAbsPath. This is a
session-write operation (see §10.1.1 Session-Write). The method

void Workspace.move(String srcAbsPath, String destAbsPath)

does the same, but is a workspace-write operation (see §10.1.1 Workspace-
Write).

10.6.1 Referenceable vs Non-Referenceable Nodes

A referenceable node is guaranteed to maintain the same identifier across a move
operation.

Non-referenceable nodes, on the other hand, may be tied either partially or
entirely (as in the case where the identifier equals the path) to their position in
the hierarchy and therefore may change identifier upon move.

Though nothing prevents an implementation from making non-referenceable node
identifiers as stable as referenceable node identifiers, a user cannot rely upon this
across repository vendors. For an overview of how identifiers behave with
different methods see §25.1 Treatment of Identifiers.

 167

10.7 Copying Nodes
Nodes can be copied from one path location to another within a workspace and,
in repositories with more than one workspace, across workspaces (see §3.10
Multiple Workspaces and Corresponding Nodes). A copy operation on a node
copies the node and its subgraph. Properties cannot be copied individually.

10.7.1 Copying Within a Workspace

The method

void Workspace.copy(String srcAbsPath, String destAbsPath)

copies the node at srcAbsPath and its subgraph to a new location at
destAbsPath. This is a workspace-write operation (see §10.1.1 Workspace-
Write).

10.7.2 Copying Across Workspaces

In a repository with more than one workspace, the method

void Workspace.copy(String srcWorkspace,
 String srcAbsPath,
 String destAbsPath)

copies the node at srcAbsPath in srcWorkspace and its subgraph to a new
location at destAbsPath in the current workspace. This is a workspace-write
operation (see §10.1.2 Workspace-Write).

10.7.3 Copying to an Empty Location

When a node N is copied to a path location where no node currently exists, a new
node N' is created at that location. The subgraph rooted at and including N' (call
it S') is created and is identical to the subgraph rooted at and including N (call it
S) with the following exceptions:

• If the copy is within the same workspace, every node in S' is given a new
and distinct identifier. If the copy is to another workspace, every
referenceable node in S' is given a new and distinct identifier while every
non-referenceable node in S' may be given a new and distinct identifier
(see §3.8 Referenceable Nodes).

• The repository may automatically drop any mixin node type T present on
any node M in S. Dropping a mixin node type in this context means that
while M remains unchanged, its copy M' will lack the mixin T and any child
nodes and properties defined by T that are present on M. For example, a
node M that is mix:versionable may be copied such that the resulting
node M' will be a copy of N except that M' will not be mix:versionable
and will not have any of the properties defined by mix:versionable. In
order for a mixin node type to be dropped it must be listed by name in the
jcr:mixinTypes property of M. The resulting jcr:mixinTypes property of
M' will reflect any change.

 168

• If a node M in S is referenceable and its mix:referenceable mixin is not
dropped on copy, then the resulting jcr:uuid property of M' will reflect
the new identifier assigned to M'.

• Each REFERENCE or WEAKEREFERENCE property R in S is copied to its new
location R' in S'. If R references a node M within S then the value of R' will
be the identifier of M', the new copy of M, thus preserving the reference
within the subgraph (see §3.8 Referenceable Nodes).

10.7.4 Copying to an Existing Node

When a node N is copied to a location where a node N' already exists the
repository may either immediately throw an ItemExistsException or attempt to
update the node N' by selectively replacing part of its subgraph with a copy of
the relevant part of the subgraph of N. If the node types of N and N' are
compatible, the implementation supports update-on-copy for these node types
and no other errors occur, then the copy will succeed. Otherwise an
ItemExistsException is thrown.

Which node types can be updated on copy and the details of any such updates
are implementation-dependent. For example, some implementations may support
update-on-copy for mix:versionable nodes. In such a case the versioning-related
properties of the target node would remain unchanged (jcr:uuid,
jcr:versionHistory, etc.) while the substantive content part of the subgraph
would be replaced with that of the source node.

10.8 Cloning and Updating Nodes
A node can be cloned to another workspaces to create a new corresponding node
(see §3.10 Corresponding Nodes)

10.8.1 Cloning Nodes Across Workspaces

Corresponding nodes can be created by cloning a node from one workspace to
another using:

void Workspace.clone(String srcWorkspace,
 String srcAbsPath,
 String destAbsPath,
 boolean removeExisting)

This method clones the subgraph at srcAbsPath in srcWorkspace to
destAbsPath in this workspace. The clone method clones both referenceable
and non-referenceable nodes and preserves the identifier of every node in the
source subgraph.

If there already exists anywhere in this workspace a node with the same identifier
as an incoming node from srcWorkspace, and removeExisting is false, then
clone will throw an ItemExistsException.

If removeExisting is true then the existing node is removed from its current
location and the cloned node with the same identifier from srcWorkspace is
copied to this workspace as part of the copied subgraph (that is, not into the

 169

former location of the old node). The subgraph of the cloned node will reflect the
state of the clone in srcWorkspace, in other words the existing node will be
moved and changed. If the existing node cannot be moved and changed because
of node type constraints, access control constraints or because its parent is
checked-in (or its parent is non-versionable but its nearest versionable ancestor
is checked-in), then the appropriate exception is thrown
(ConstraintViolationException, AccessControlException or
VersionException, respectively).

In the case of shareable nodes, it is possible to clone a node into its own
workspace (see §14.1 Creation of Shared Nodes).

10.8.2 Getting a Corresponding Node

Finding the path of a node's corresponding node in another workspace is done
with

String Node.getCorrespondingNodePath(String workspaceName).

This method returns the absolute path of the node in the specified workspace that
corresponds to this node.

10.8.3 Updating Nodes Across Workspaces

Node correspondence governs the behavior of the update method:

void Node.update(String srcWorkspace)

causes this node to be updated to reflect the state of its corresponding node in
srcWorkspace.

If this node does have a corresponding node in the workspace srcWorkspace,
then this replaces this node and its subgraph with a clone of the corresponding
node and its subgraph.

If this node does not have a corresponding node in srcWorkspace, then the
method has no effect.

If the update succeeds, the changes made to this node and its subgraph are
applied to the workspace immediately, there is no need to call save.

The update method does not respect the checked-in status of nodes. An update
may change a node even if it is currently checked-in.

Node.update works for both versionable and non-versionable nodes (see §3.13
Versioning Model)

10.9 Removing Nodes and Properties
Removing a node or property can be done with

void Item.remove()

On the item to be removed itself, or

void Session.removeItem(String absPath)

 170

Where absPath specifies the item to be removed.

These methods are session-write and therefore require a Session.save to
dispatch the change.

10.9.1 Setting a Property to Null

A property can also be removed by setting its value to null. When this is done,
the null parameter must be cast to a non-array type for single-value properties
and an array type for multi-value properties.

Note that setting a multi-value property to an array containing null values is
different from setting it to a null cast to an array type. In the former case, all
null values within the array are removed and the array is compacted to include
only non-null values even if this results in a multi-value property being set to an
empty array. In the latter case the entire property is removed. For example,

p.setValue((String[])null)

would remove property p, whereas

p.setValue(new String[]{“a”, null, “b”})

would set p to [“a”,”b”] and

p.setValue(new String[]{null})

would set p to the empty array, [] (see §10.4.2.4 No Null Values).

10.9.1.1 Removing a REFERENCE Target

To remove a node that is the target of a REFERENCE property, one must first
remove that REFERENCE property (with the exception of REFERENCE properties
within the frozen node of a version, see §3.13.4.6 References in a Frozen Node).

The check for referential integrity is done on persist of the removal. If the
subgraph to be removed contains a node that is the target of a REFERENCE
property outside that subgraph, a ReferentialIntegrityException is thrown.

10.10 Node Type Assignment
Most writable repository implementations will support assignment of primary and
mixin node types on node creation. Some implementations may also support
assignment of new primary or mixin node types to existing nodes.

10.10.1 Node Type Assignment Behavior

On Node.addNode the primary node type of the new node is assigned. In cases
where a Node.addNode does not explicitly specify a primary node type, it is
determined by the applicable child node definition (see §3.7.7 Applicable Item
Definition). Otherwise, it is determined by the node type name passed. The
jcr:primaryType property is created immediately and set to the name of the
primary node type. This property is defined as mandatory in the node type
nt:base (see §3.7.10 Base Primary Node Type) and will therefore appear on
every node.

 171

The constraints enforced by the assigned node type may take effect immediately,
or on persist. Whichever is chosen, this node type assignment behavior must be
consistent across all methods that assign node types (Node.setPrimaryType,
Node.addMixin and Node.removeMixin, see §10.10.2 Updating a Node's Primary
Type and §10.10.3 Assigning Mixin Node Types).

If immediate effect is implemented then conflicts with other mixins or with the
primary type are detected immediately and an exception thrown. If on-persist
effect is implemented, such conflicts are detected and the appropriate exception
thrown on persist. This validation can also be performed pre-emptively with

boolean Node.canAddMixin(String mixinName).

10.10.2 Updating a Node's Primary Type

A repository may permit the primary type of a node to be changed during its
lifetime. Repositories are free to limit the scope of permitted changes both in
terms of which nodes may be changed and which changes are allowed.

The method for changing the primary type of a particular node is

void Node.setPrimaryType(String nodeTypeName).

This method changes the primary node type of the node to nodeTypeName, and
immediately changes the jcr:primaryType property of the node appropriately.

Semantically, the new node type takes effect in accordance with the node type
assignment behavior of the repository (see §10.10.1 Node Type Assignment
Behavior).

10.10.3 Assigning Mixin Node Types

In addition to its single primary node type, a node may have one or more mixin
node types assigned to it (see §3.7.5 Mixin Node Types). Assignment of mixin
types is done through

void Node.addMixin(String mixinName).

A repository that supports the assignment of mixin types may permit mixin
addition only before the first save of a node (in effect, only on node creation) or it
may permit mixin addition and removal during the lifetime of a node. Removal of
mixin node types is done with

void Node.removeMixin(String mixinName).

10.10.3.1 jcr:mixinTypes

When a new mixin type is assigned using Node.addMixin, the name of the mixin
is added immediately to the multi-valued jcr:mixinTypes property. If the
property does not exist, it is created. This property is defined as non-mandatory
in the node type nt:base and therefore may appear on any node. When a mixin
is removed with Node.removeMixin the name of the mixin type is immediately
removed from the property.

 172

Semantically, any changes to mixin node types take effect in accordance with the
node type assignment behavior of the repository (see §10.10.1 Node Type
Assignment Behavior).

10.10.3.2 Pre-emptive Node Type Validation

A NodeType object can be queried to pre-emptively determine whether a
particular child item's addition or removal is allowed by that node type. The
methods are:

boolean NodeType.canSetProperty(String propertyName,
 Value value)

boolean NodeType.canSetProperty(String propertyName,
 Value[] values)

boolean NodeType.canAddChildNode(String childNodeName)

boolean NodeType.canAddChildNode(String childNodeName,
 String nodeTypeName)

boolean NodeType.canRemoveNode(String nodeName)

boolean NodeType.canRemoveProperty(String propertyName)

10.10.3.3 Automatic Addition and Removal of Mixins

A repository may automatically assign a mixin type to a node upon creation. For
example if, as a matter of configuration, all nt:file nodes in a repository are to
be versionable, then the repository may automatically assign the mixin type
mix:versionable to each such node as it is created.

Similarly, a repository may automatically strip incoming imported nodes of any
mixin node types that the repository does not support (see §11.3 Respecting
Property Semantics).

Note that this behavior is distinct from that of adding a mixin type as a supertype
of some primary types in the node type inheritance hierarchy (see §3.7.16.1.2
Additions to the Hierarchy). Though the two features may both be employed in
the same repository, they differ in that one affects the actual hierarchy of the
supported node types, while the other works on a node-by-node basis.

10.11 Saving
When a change is made to an item through a session-write method bound to a
session S, that change is immediately visible through all subsequent read method
calls through S. When

void Session.save()

is performed on S, all pending changes recorded in S are dispatched. Without
transactions this causes the changes to be persisted. Within a transaction the
changes must first be committed in order to be persisted. When a change is
persisted it becomes visible to other sessions bound to the same persistent
workspace.

 173

From the point of view of a session S, the apparent state of an Item bound to S
does not change upon a save of S (apart from the values returned by isNew or
isModified, see §10.11.3 Item Status) since that state will have been visible to
S since the session-write method call that caused it.

If one or more of the pending changes cause an exception to be thrown on save,
then no pending changes are dispatched and the set of pending changes recorded
on the session is left unaffected.

10.11.1 Refresh

The method

void Session.refresh(boolean keepChanges)

refreshes the state of the transient session store.

If keepChanges is false, all pending changes in the session are discarded and all
items bound to that session revert to their current dispatched state. Without
transactions, this is the current persisted state. Within a transaction, this state
will reflect persistent storage as modified by changes that have been saved but
not yet committed.

If keepChanges is true then pending changes are not discarded but items that do
not have changes pending have their state refreshed to reflect the current
persisted state, thus revealing changes made by other sessions.

If an exception occurs on refresh, the set of all pending changes recorded on the
session is left unaffected and the state of all bound Items is also unaffected.

10.11.2 Session Status

The method

boolean Session.hasPendingChanges()

is used to determine if a session holds pending changes.

10.11.3 Item Status

Whether an Item has pending changes can be determined with

boolean Item.isModified().

Whether an Item constitutes part of the pending changes of its parent can be
determined with

boolean Item.isNew().

10.11.4 Persisting by Identifier

When a change to an item is persisted, the item in the persistent workspace to
which that pending change is written is determined as follows:

• If the changed Item is a Node with identifier I, then the changes are
written to the persistent node with identifier I.

 174

• If the changed Item is a Property named P of a Node with identifier I,
then the change is written to the persistent property P of the persistent
node with identifier I.

These principles apply to both referenceable and non-referenceable nodes (see
§3.8 Referenceable Nodes). For an overview of how identifiers behave with
different methods see §25.1 Treatment of Identifiers.

10.11.5 Timing of Validation

For session-write methods, implementers have flexibility in deciding whether a
particular validation is to be performed immediately on invocation of the write
method or later on persist. For example, in the case Node.addNode, an
implementer might immediately check that the path given is valid while
postponing validation of node type constraints until persist-time.

• It is suggested that an implementation perform each validation as soon as
possible, given the underlying design of the repository.

• It is required that an implementation prohibit the emergence of a
persistent state in violation of the validation rules defined by this
specification.

10.11.6 Invalid States

If an item has been modified in the Session but not yet persisted, and its
corresponding item in the persistent workspace is altered through a workspace-
write method, this has no effect on the transient state of the Session. The
altered item in the Session remains and may be persisted later. However, the
change made to the workspace may render the attempt to persist the session-
change invalid (for example, if the workspace-change removed the parent of the
session-change item). Note that this is precisely the same situation as would
arise if a change were made to a workspace through another Session. In both
cases the persist of the change may throw an InvalidItemStateException.

10.11.7 Reflecting Item State

When changes are made to an Item object, those changes are recorded in its
bound Session and immediately reflected in the Item object itself. A subsequent
re-retrieval of the same item entity through a method bound to the same
Session, will return an Item object reflecting the recent change. Note that this
includes acquisition of nodes and properties through standard getter methods
such as getNode and also retrieval through other means, such as a query (see §6
Query).

Whether the second Item object is the same actual Java object instance as the
first is an implementation issue. However, the state reflected by the object must
at all times be consistent with any other Item object bound to the same Session
that represents the same actual item entity. The criteria of item identity in this
context are those described in §10.11.4 Persisting by Identifier.

 175

10.11.8 Invalid Items

An Item object may become invalid for a number of reasons.

If Item.remove has been called on the item any subsequent calls to any read or
write methods or invocations of save or refresh on that Item, from within the
same Session, will throw an InvalidItemStateException. Before the removal is
saved it may be cancelled by a Session.refresh(false). At this point the
invalid Item object may become valid again, or the repository may require a new
Item object to be acquired. Which approach is taken is a matter of
implementation.

An InvalidItemStateException may be thrown immediately on a write method
of an Item if the change being made would, upon persist, conflict with a change
made and persisted through another Session. If detection of the conflict is only
possible at persist-time, then an InvalidItemStateException will be thrown at
that point. Whether a conflict is detected when the change is made or on persist
depends on the implementation.

Apart from these specific cases, the validity of an Item must be as stable as the
identifiers used in the repository (see §3.3 Identifiers).

10.11.9 Seeing Changes Made by Other Sessions

Transient storage of pending changes in a Session may be implemented a
number of ways. A repository is free to use any approach as long as it guarantees
that two Item objects bound to the same Session will never reflect conflicting
state information.

10.12 Namespace Registration
A repository has a single namespace registry (see §3.5.1 Namespace Registry)
represented by the NamespaceRegistry object, acquired through

NamespaceRegistry Workspace.getNamespaceRegistry().

NamespaceRegistry allows for persistent changes to namespaces through the
following methods.

10.12.1 Registering a Namespace

void NamespaceRegistry.
 registerNamespace(String prefix, String uri)

sets a one-to-one mapping between prefix and uri in the global namespace
registry of this repository.

Assigning a new prefix to a URI that already exists in the namespace registry
erases the old prefix. Apart from the XML restriction (see §10.9.3 Namespace
Restrictions) this can almost always be done, though an implementation is free to
prevent particular remappings by throwing a NamespaceException. Re-assigning
an already registered prefix to a new URI in effect unregisters its former URI.

 176

10.12.2 Unregistering a Namespace

The method

void NamespaceRegistry.unregisterNamespace(String prefix)

removes a namespace mapping from the registry.

10.12.3 Namespace Restrictions

The following restrictions apply to registering, re-registering and unregistering
namespaces:

• To avoid conflicts with XML , attempting to register a prefix that begins
with the characters “xml” (in any combination of case) will throw a
NamespaceException.

• Attempting to re-assign or unregister a built-in prefix (jcr, nt, mix, sv,
xml, or the empty prefix) will throw a NamespaceException.

• An attempt to unregister a namespace that is not currently registered will
throw a NamespaceException.

• An implementation may prevent the re-assignment or unregistration of
any prefixes for implementation-specific reasons by throwing a
NamespaceException.

10.12.4 Namespace Information

The following methods provide information about the state of the registry:

String[] NamespaceRegistry.getPrefixes()

returns all currently registered prefixes.

String[] NamespaceRegistry.getURIs()

returns all currently registered URIs.

String NamespaceRegistry.getURI(String prefix)

returns the URI currently mapped to the given prefix.

String NamespaceRegistry.getPrefix(String uri)

returns the prefix currently mapped to the given uri.

10.12.4.1 Relationship to Session Namespace Mapping

The repository namespace registry serves as the default mapping and is copied to
a session's internal mapping table on session creation. The mappings can then be
changed independently of the registry within the scope of that session. The
methods shown here affect and report only the state of the central registry.
Existing local namespace mappings will not be affected by changes to the
persistent namespace registry.

 177

11 Import
A repository may support the bulk import of content from XML. Two XML
mappings are defined: document view and system view. The former is used
primarily for the import of arbitrary XML into the repository while the latter is a
full serialization of repository content (see §7 Export). A repository that supports
import must support both formats.

Whether an implementation supports import can be determined by querying the
repository descriptor table with

Repository.OPTION_XML_IMPORT_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

11.1 Importing Document View
The document view XML mapping (see §7.3 Document View) allows the import of
arbitrary XML into the repository. On import, the repository first checks if the
incoming XML appears to be a system view document. If it does not, then it is
assumed to be in document view form, and the following occurs:

1. For each XML namespace declaration with prefix P and URI U:

a. If the namespace registry already contains a mapping of some
prefix P' to U (where P' may or may not be equal to P) then the
namespace registry is left unchanged.

b. If the namespace registry does not contain a mapping to U then
such a mapping is added to the registry. The prefix assigned may
be P, if P is not already used in the registry, otherwise the
repository must generate and assign a new, previously unused,
prefix.

2. Each XML element E becomes a JCR node of the same name, E.

3. The node type of the JCR node E is determined by the implementation in
accordance with its policy on respecting property semantics (see §11.3
Respecting Property Semantics and §11.4 Determining Node Types).

4. Each child XML element C of XML element E becomes a JCR child node C of
node E.

5. Each XML attribute A within an XML element E becomes a property A of
JCR node E. The value of each XML attribute A becomes the value of the
corresponding property A.

6. The type of each imported property is determined by the implementation
in accordance with its policy on respecting property semantics (see §11.3
Respecting Property Semantics and §11.4 Determining Node Types).

7. Escape sequences representing non-XML-valid characters in element
names and whitespace in attribute values may be encountered (for
example, if the incoming XML stream is the product of an earlier

 178

document view export). In such cases, whether the escape sequences are
decoded is left up to the implementation. Note that the predefined entity
references &, <, >, ' and ", as well as all other
entity and character references, must be decoded in any case, in
accordance with the XML specification.

8. An implementation that respects node type information may be able to
determine whether a particular attribute is intended to be a single or
multi-value property, and treat any spaces embedded in the value
accordingly (either as delimiters or as literal spaces). Implementations are
also free to rely on information external to this specification (such as any
schema associated by the incoming XML) to help determine the intended
interpretation of whitespace within a particular incoming attribute value.

9. Text within an XML element E becomes a STRING property called
jcr:xmlcharacters of a JCR node called jcr:xmltext, which itself
becomes a JCR child node of the node E. The value of
E/jcr:xmltext/jcr:xmlcharacters will be the character data passed to
ContentHandler.characters.

10. If import is done through the ContentHandler returned by
getImportContentHandler, data passed to
ContentHandler.ignorableWhitespace is ignored.

11. If import is done through importXML, pure whitespace between elements
(that is, a string containing no non-whitespace characters) is ignored.
However, whitespace leading, trailing and between non-whitespace
characters is included in the text that is stored in
E/jcr:xmltext/jcr:xmlcharacters.

11.1.1 Roundtripping

Not all information within the infoset of an XML document is maintained on import
to document view. Information lost will include processing instructions, the
distinction between text and CDATA and namespace scoping at the sub-document
level. As a result, perfect roundtripping of a full XML infoset is not possible
through document view.

On document view import, the repository will automatically add repository
metadata in the form of JCR properties (at least jcr:primaryType, for example),
if these are not already present in the incoming XML. When re-exported using
document view, the resulting XML will contain these properties in the form of XML
attributes. As a result, the application must take care of stripping out unwanted
repository metadata.

11.2 Import System View
Given a system view XML document the subgraph constructed upon import is
determined by reversing the mapping discussed in §7.2 System View. Though the
mapping is largely straightforward some special considerations are discussed in
§11.3 Respecting Property Semantics and §11.9 Importing jcr:root.

 179

11.3 Respecting Property Semantics
During either system or document view import, XML elements (in system view) or
XML attributes (in document view) may be encountered that correspond to JCR
properties with repository-level semantics such as the jcr-prefixed properties of
such node types as nt:base, mix:referenceable or mix:versionable, among
others.

When an element or attribute representing such a property is encountered, an
implementation may either skip it or respect it.

• A repository that respects a particular element or attribute must import it
and alter the internal state of the repository in accordance with the
semantics of the property given the configuration of that repository
instance. For example, a repository that respects jcr:primaryType will
attempt to create a node of the indicated primary node type. If that node
type is not supported, the repository will throw an exception.

• A repository that skips an element or attribute must not import it all. It
must not import it but then ignore the semantics of the resulting property.

The implementation-specific policy regarding what to skip and what to respect
must be internally consistent. For example, it makes no sense to skip
jcr:mixinTypes (thus missing the presence of mix:lockable, for example) and
yet respect jcr:lockOwner and jcr:lockIsDeep.

If an implementation chooses to skip jcr:primaryType, the node type of the
imported node is determined by the implementation (see §11.5 Determining
Node Types).

11.4 Determining Node Types
In cases of XML import where primary node type information is unavailable,
either because it is skipped or because it is not available (as is the case on
document view import of arbitrary XML), the implementation must determine an
appropriate node type to assign to each newly created node. How this is done is
implementation-dependent.

11.5 Determining Property Types
On import of arbitrary XML using document view, the implementation must
determine a suitable property type for each incoming property. Determination of
the property type must be done as follows:

• If the property type is determinable from the node type assigned to its
node (regardless of how this node type is itself determined; see §11.5
Determining Node Types) then that property type is used.

• If the property type is not determinable from the node type assigned to its
node then the determination of the property is left up to the
implementation. For example, an implementation may use STRING
properties exclusively, or attempt to “guess” the type according to an
analysis of the content.

 180

11.6 Event-Based Import Methods
The Workspace and Session interfaces provide the following event-based import
methods:

org.xml.sax.ContentHandler
 Workspace.getImportContentHandler(String parentAbsPath,
 int uuidBehavior)

and

org.xml.sax.ContentHandler
 Session.getImportContentHandler(String parentAbsPath,
 int uuidBehavior)

These methods return an org.xml.sax.ContentHandler without altering either
the Workspace or Session. The actual changes to the repository are made
through the methods of the ContentHandler19. Invalid XML data will cause the
ContentHandler to throw a SAXException.

If the incoming XML is a system view XML document then it is interpreted as
such, otherwise it is imported as document view.

The incoming XML is imported into a subgraph of items immediately below the
node at parentAbsPath.

11.6.1 Workspace Event-Based Import

A ContentHandler acquired through the Workspace method dispatches changes
immediately. Node type constraints are enforced by the ContentHandler by
throwing a SAXException during deserialization. However, which node type
constraints are enforced depends upon whether node type information in the
imported data is respected, and this is an implementation-specific issue (see
§11.3 Respecting Property Semantics).

11.6.2 Session Event-Based Import

A ContentHandler acquired through the Session will build the graph of new
items in the transient session store. The changes are then dispatched on save.

Different node type constraints may be enforced at different times. Those that
would be immediately enforced on a core write method (see §10.2 Core Write
Methods) of that particular implementation will cause the returned
ContentHandler to throw an immediate SAXException. All other node type
constraints are enforced as they would be if made through the core write
methods. However, which node type constraints are enforced also depends upon

19 See http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/
ContentHandler.html.

 181

whether node type information in the imported data is respected, which is an
implementation-specific issue (see §11.3 Respecting Property Semantics).

11.7 Stream-Based Import Methods
The Workspace and Session interfaces provide the following stream-based import
methods:

void Workspace.importXML(String parentAbsPath,
 InputStream in,
 int uuidBehavior)

and

void Session.importXML(String parentAbsPath,
 InputStream in,
 int uuidBehavior)

These methods import the XML document in the input stream and add the
resulting item subgraph as a child of the node at parentAbsPath. If the incoming
XML is a system view XML document then it is interpreted as such, otherwise it is
imported as document view.

11.7.1 Workspace Stream-Based Import

On Workspace.importXML changes are dispatched immediately. Node type
constraints are enforced by throwing a ConstraintViolationException.
However, which node type constraints are enforced depends upon whether node
type information in the imported data is respected, which is an implementation-
specific issue (see §11.3 Respecting Property Semantics).

11.7.2 Session Stream-Based Import

On Session.importXML changes remain pending until dispatched on save. Node
type constraints that would be immediately enforced on a core write method (see
§10.2 Core Write Methods) of that particular implementation will cause an
immediate ConstraintViolationException during import. All other node type
constraints are enforced as they would be if made through the core write
methods. However, which node type constraints are enforced depends upon
whether node type information in the imported data is respected, and this is an
implementation-specific issue (see §11.3 Respecting Property Semantics).

11.8 Identifier Handling
The uuidBehavior flag governs how the identifiers of imported nodes are
handled. There are four options, defined as constants in the interface
javax.jcr.ImportUUIDBehavior:

11.8.1 Create New Identifiers

IMPORT_UUID_CREATE_NEW: Incoming nodes are assigned newly created identifiers
upon addition to the workspace. As a result, identifier collisions never occur.

 182

11.8.2 Remove Existing Node

IMPORT_UUID_COLLISION_REMOVE_EXISTING: If an incoming non-shareable node
has the same identifier as a node already existing in the workspace then the
already existing node (and its subgraph) is removed from wherever it may be in
the workspace before the incoming node is added. Note that this can result in
nodes “disappearing” from locations in the workspace that are remote from the
location to which the incoming subgraph is being written. In the case of shareable
node, however, the behavior differs (see §14.1.2 Shared Node Creation on
Import).

11.8.3 Replace Existing Node

IMPORT_UUID_COLLISION_REPLACE_EXISTING: If an incoming non-shareable node
has the same identifier as a node already existing in the workspace, then the
already existing node is replaced by the incoming node in the same position as
the existing node. Note that this may result in the incoming subgraph being
disaggregated and “spread around” to different locations in the workspace. In the
most extreme case this behavior may result in no node at all being added as child
of parentAbsPath. This will occur if the topmost element of the incoming XML has
the same identifier as an existing node elsewhere in the workspace. In the case of
shareable node, however, the behavior differs (see §14.1.2 Shared Node Creation
on Import).

11.8.4 Throw on Identifier Collision

IMPORT_UUID_COLLISION_THROW: If an incoming non-shareable node has the
same identifier as a node already existing in the workspace, then either a
SAXException is thrown by the ContentHandler (in the case of event-based
import) or an ItemExistsException is thrown by the importXML method (in the
case of stream-based import). In the case of shareable nodes, the behavior
differs (see §14.1.2 Shared Node Creation on Import).

11.8.5 Usage of Term UUID

The term “UUID” occurs in the names of certain properties, classes and methods
in JCR 1.0. This usage is maintained in JCR 2.0 to preserve compatibility with JCR
1.0. However, in the context of JCR 2.0 these names should be understood to
apply to identifiers in general and not just identifiers that use of the UUID syntax,
or that possess global uniqueness.

11.9 Importing jcr:root
If the root node of a workspace is exported it will be rendered in XML (in either
view) under the name jcr:root. In addition, if the root node is referenceable this
will be recorded in the serialization of the jcr:uuid property.

If this XML document is imported back into the workspace a number of different
results may occur, depending on the methods and settings used to perform the
import. The following summarizes the possible results of using various
uuidBehavior values (in either using either
Workspace.getImportContentHandler or Workspace.importXML) when a node

 183

with the same identifier as the existing root node is encountered on import (the
constants below are defined in the interface javax.jcr.ImportUUIDBehavior).

IMPORT_UUID_CREATE_NEW: The XML element representing jcr:root is
rendered as a normal node at the position specified (with the name
jcr:root). It gets a new identifier, so there is no effect on the existing
root node of the workspace.

IMPORT_UUID_COLLISION_REMOVE_EXISTING: If deserialization is done
through a ContentHandler (acquired by getImportContentHandler) a
SAXException will be thrown. Similarly, if deserialization is done through
importXML a ConstraintViolationException will be thrown. Note that
this is simply a special case of the general rule that under this
uuidBehavior setting, an exception will be thrown on any attempt to
import a node with the same identifier as the node at parentAbsPath or
any of its ancestors (which, of course, includes the root node).

IMPORT_UUID_COLLISION_REPLACE_EXISTING: This setting is equivalent to
importing into the Session and then calling save since save always
operates according to identifier. In both cases the result is that the root
node of the workspace will be replaced along with its subgraph (i.e., the
whole workspace), just as if the root node had been altered through the
normal getNode-make change-save cycle.

IMPORT_UUID_COLLISION_THROW: Under this setting a ContentHandler
will throw a SAXException and the importXML method will throw
ItemExistsException.

Note that an implementation is always free to prevent the replacement of a root
node (or indeed any node) either through access control restrictions or other
implementation-specific restrictions.

 184

12 Observation
A repository may support observation, which enables an application to receive
notification of persistent changes to a workspace. JCR defines a general event
model and specific APIs for asynchronous and journaled observation. A repository
may support asynchronous observation, journaled observation or both.

Whether an implementation supports asynchronous or journaled observation can
be determined by querying the repository descriptor table with the keys

Repository.OPTION_OBSERVATION_SUPPORTED or

Repository.OPTION_JOURNALED_OBSERVATION_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

12.1 Event Model
A persisted change to a workspace is represented by a set of one or more events.
Each event reports a single simple change to the structure of the persistent
workspace in terms of an item added, changed, moved or removed. The six
standard event types are:

NODE_ADDED,
NODE_MOVED,
NODE_REMOVED,
PROPERTY_ADDED,
PROPERTY_REMOVED and
PROPERTY_CHANGED.

A seventh event type,

PERSIST,

may also appear in certain circumstances (see §12.7.3 Event Bundling in
Journaled Observation).

12.2 Scope of Event Reporting
The scope of event reporting is implementation-dependent. An implementation
should make a best-effort attempt to report all events, but may exclude events if
reporting them would be impractical given implementation or resource limitations.
For example, on an import, move or remove of a subgraph containing a large
number of items, an implementation may choose to report only events associated
with the root node of the affected graph and not those for every subitem in the
structure.

12.2.1 Externally Caused Events

Some implementations may expose capabilities through the JCR API while also
being writable through a mechanism external to JCR. Whether events are
generated for changes made through such external means is left up to the
implementation.

 185

12.3 The Event Object
Each event generated by the repository is represented by an Event object.

12.3.1 Event Types

The type of an Event is retrieved through

int Event.getType()

which returns one of the int constants found in the Event interface: NODE_ADDED,
NODE_MOVED, NODE_REMOVED, PROPERTY_ADDED, PROPERTY_REMOVED,
PROPERTY_CHANGED or PERSIST.

12.3.2 Event Information

Each Event is associated with a path, an identifier and an information map, the
interpretation of which depend upon the event type.

The event path is retrieved through

String Event.getPath(),

the identifier through

String Event.getIdentifier()

and the information map through

java.util.Map Event.getInfo()

If the event is a NODE_ADDED or NODE_REMOVED then,

o Event.getPath() returns the absolute path of the node that was
added or removed.

o Event.getIdentifier() returns the identifier of the node that was
added or removed.

o Event.getInfo() returns an empty Map object.

If the event is NODE_MOVED then,

o Event.getPath() returns the absolute path of the destination of the
move.

o Event.getIdentifier() returns the identifier of the node that was
moved.

o Event.getInfo() returns a Map containing parameter information from
the method that caused the event (see §12.4.3 Event Information on
Move and Order).

If the event is a PROPERTY_ADDED, PROPERTY_CHANGED or PROPERTY_REMOVED then,

o Event.getPath() returns the absolute path of the property that was
added, changed or removed.

 186

o Event.getIdentifier() returns the identifier of the parent node of
the property that was added, changed or removed.

o Event.getInfo() returns an empty Map object.

If the event is a PERSIST (see §12.6.3 Event Bundling in Journaled Observation)
then Event.getPath() and Event.getIdentifier() return null and
Event.getInfo() returns an empty Map.

12.3.3 Event Information on Move and Order

On a NODE_MOVED event, the Map object returned by Event.getInfo() contains
parameter information from the method that caused the event. There are three
JCR methods that cause this event type: Session.move, Workspace.move and
Node.orderBefore.

If the method that caused the NODE_MOVE event was a Session.move or
Workspace.move then the returned Map has keys srcAbsPath and destAbsPath
with values corresponding to the parameters passed to the move method, as
specified in the Javadoc.

If the method that caused the NODE_MOVE event was a Node.orderBefore then
the returned Map has keys srcChildRelPath and destChildRelPath with values
corresponding to the parameters passed to the orderBefore method, as specified
in the Javadoc.

12.3.3.1 Externally Caused NODE_MOVED Event

In a repository that reports events caused by mechanisms external to JCR (see
§12.2.1 Externally Caused Events), the keys and values found in the information
map returned on a NODE_MOVED are implementation-dependent.

12.3.4 User ID

An Event also records the identity of the Session that caused it.

String Event.getUserID()

returns the user ID of the Session, which is the same value that is returned by
Session.getUserID() (see §4.4.1 User).

12.3.5 User Data

An Event may also contain arbitrary string data specific to the session that
caused the event. A session may set its current user data using

void ObservationManager.setUserData(Sting userData).

Typically a session will set this value in order to provide information about its
current state or activity. Any events produced by the session while its user data is
set to particular value will carry that value with them. A process responding to
these events will then be able to access this information through

String Event.getUserData()

 187

and use the retrieved data to provide additional context for the event, beyond
that provided by the identify of the causing session alone.

12.3.6 Event Date

An event also records the time of the change that caused it. This acquired
through

long Event.getDate()

The date is represented as a millisecond value that is an offset from the epoch
January 1, 1970 00:00:00.000 GMT (Gregorian). The granularity of the returned
value is implementation-dependent.

12.4 Event Bundling
A repository that supports observation may support event bundling under
asynchronous observation, journaled observation, or both.

In such a repository, events are produced in bundles where each corresponds to a
single atomic change to a persistent workspace and contains only events caused
by that change (see §10.1 Types of Write Methods).

For example, given a session with a set of pending node and property additions,
on persist, a NODE_ADDED or PROPERTY_ADDED is produced, as appropriate, for
each new item. This set of events is the event bundle associated with that
particular persist operation. By grouping events together in this manner,
additional contextual information is provided, simplifying the interpretation of the
event stream.

12.4.1 Event Ordering

In both asynchronous and journaled observation the order of events within a
bundle and the order of event bundles is not guaranteed to correspond to the
order of the operations that produced them.

12.5 Asynchronous Observation
Asynchronous observation enables an application to respond to changes made in
a workspace as they occur.

An application connects with the asynchronous observation mechanism by
registering an event listener with the workspace. Listeners apply per workspace,
not repository-wide; they only receive events for the workspace in which they are
registered. An event listener is an application-specific class implementing the
EventListener interface that responds to the stream of events to which it has
been subscribed.

This observation mechanism is asynchronous in that the operation that causes an
event to be dispatched does not wait for a response to the event from the
listener; execution continues normally on the thread that performed the
operation.

 188

12.5.1 Observation Manager

Registration of event listeners is done through the ObservationManager object
acquired from the Workspace through

ObservationManager Workspace.getObservationManager().

12.5.2 Adding an Event Listener

An event listener is added to a workspace with

void ObservationManager.
 addEventListener(EventListener listener,
 int eventTypes,
 String absPath,
 boolean isDeep,
 String[] uuid,
 String[] nodeTypeName,
 boolean noLocal)

The EventListener object passed is provided by the application. As defined by
the EventListener interface, this class must provide an implementation of the
onEvent method:

void EventListener.onEvent(EventIterator events)

When an event occurs that falls within the scope of the listener (see 12.6.3 Event
Filtering), the repository calls the onEvent method invoking the application-
specific logic that processes the event.

12.5.3 Event Filtering

Which events a listener receives are determined as follows.

12.5.3.1 Access Privileges

An event listener will only receive events for which its Session (the Session
associated with the ObservationManager through which the listener was added)
has sufficient access privileges.

12.5.3.2 Event Types

An event listener will only receive events of the types specified by the
eventTypes parameter of the addEventListener method. The eventTypes
parameter is an int composed of the bitwise AND of the desired event type
constants.

12.5.3.3 Local and Nonlocal

If the noLocal parameter is true, then events generated by the Session through
which the listener was registered are ignored.

 189

12.5.3.4 Node Characteristics

Node characteristic restrictions on an event are stated in terms of the associated
parent node of the event. The associated parent node of an event is the parent
node of the item at (or formerly at) the path returned by Event.getPath().

12.5.3.4.1 Location

If isDeep is false, only events whose associated parent node is at absPath will
be received.

If isDeep is true, only events whose associated parent node is at or below
absPath will be received.

It is permissible to register a listener for a path where no node currently exists.

12.5.3.4.2 Identifier

Only events whose associated parent node has one of the identifiers in the uuid
String array will be received. If this parameter is null then no identifier-related
restriction is placed on events received. Note that specifying an empty array
instead of null results in no nodes being listened to. The uuid is used for
backwards compatibility with JCR 1.0.

12.5.3.4.3 Node Type

Only events whose associated parent node is of one of the node types in the
nodeTypeNames String array will be received. If this parameter is null then no
node type-related restriction is placed on events received. Note that specifying an
empty array instead of null results in no nodes being listened to.

12.5.4 Re-registration of Event Listeners

The filters of an already-registered EventListener can be changed at runtime by
re-registering the same EventListener Java object with a new set of filter
arguments. The implementation must ensure that no events are lost during the
changeover.

12.5.5 Implementation-Specific Restrictions

In addition to the filters placed on a listener though the addEventListener
method, the scope of observation support, in terms of which subgraphs are
observable, may also be subject to implementation-specific restrictions. For
example, in some repositories observation of changes in the jcr:system
subgraph may not be supported (see 3.11 System Node).

12.5.6 Event Iterator

In asynchronous observation the EventIterator holds an event bundle or a
single event, if bundles are not supported. EventIterator inherits the methods
of RangeIterator and adds an Event-specific next method:

Event EventIterator.nextEvent()

 190

(see §5.9 Iterators)

12.5.7 Listing Event Listeners

EventListenerIterator ObservationManager.
 getRegisteredEventListeners()

12.5.7.1 EventListenerIterator

Methods that return a set of EventListener objects (such as
ObservationManager.getRegisteredEventListeners) do so using an
EventListenerIterator. The EventListenerIterator class inherits the
methods of RangeIterator and adds an EventListener-specific next method:

EventListener EventListenerIterator.nextEventListener()

(see §5.9 Iterators)

12.5.8 Removing Event Listeners

void ObservationManager.
 removeEventListener(EventListener listener)

12.5.9 User Data

void ObservationManager.setUserData(String userData)

12.6 Journaled Observation
Journaled observation allows an application to periodically connect to the
repository and receive a report of changes that have occurred since some
specified point in the past (for example, since the last connection). Whether a
repository records a per-workspace event journal is up to the implementation's
configuration.

12.6.1 Event Journal

The EventJournal of a workspace instance is acquired by calling either

EventJournal ObservationManager.getEventJournal()

or

EventJournal getEventJournal(int eventTypes,
 String absPath,
 boolean isDeep,
 String[] uuid,
 String[] nodeTypeName,
 boolean noLocal).

Events reported by this EventJournal instance will be filtered according to the
current session's access rights, any additional restrictions specified through
implementation-specific configuration and, in the case of the second signature, by
the parameters of the method. These parameters are interpreted in the same way
as in the method addEventListener.

 191

An EventJournal is an extension of EventIterator that provides the additional
method skipTo(Calendar date).

void EventJournal.skipTo(Calendar date)

12.6.2 Journaling Configuration

An implementation is free to limit the scope of journaling both in terms of
coverage (that is, which parts of a workspace may be observed and which events
are reported) and in terms of time and storage space. For example, a repository
can limit the size of a journal log by stopping recording after it has reached a
certain size, or by recording only the tail of the log (deleting the earliest event
when a new one arrives). Any such mechanisms are assumed to be within the
scope of implementation configuration.

12.6.3 Event Bundling in Journaled Observation

In journaled observation dispatching is done by the implementation writing to the
event journal.

If event bundling is supported a PERSIST event is dispatched when a persistent
change is made to workspace bracketing the set of events associated with that
change. This exposes event bundle boundaries in the event journal.

Note that a PERSIST event will never appear within an EventIterator since, in
asynchronous observation, the iterator itself serves to define the event bundle.

In repositories that do not support event bundling, PERSIST events do not appear
in the event journal.

12.7 Importing Content
Whether events are generated for each node and property addition that occurs
when content is imported into a workspace (see §11 Import) is left up to the
implementation.

12.8 Exceptions
The method EventListener.onEvent does not specify a throws clause. This does
not prevent a listener from throwing a RuntimeException, although any listener
that does should be considered to be in error.

 192

13 Workspace Management
A repository may support workspace management, which enables the creation
and deletion of workspaces through the JCR API. A repository that supports this
feature must support the semantics of multiple workspaces (see §3.10 Multiple
Workspaces) and support cross-workspace operations (see §10.7.2 Copying
Across Workspaces and §10.8 Cloning and Updating Nodes).

Whether an implementation supports workspace management can be determined
by querying the repository descriptor table with

Repository.OPTION_WORKSPACE_MANAGMENT_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

13.1 Creation and Deletion of Workspaces
The method

void Workspace.createWorkspace(String name)

creates a new workspace with the specified name. The new workspace will
contain only a root node. The new workspace can be accessed through a login
specifying its name.

void Workspace.createWorkspace(String name,
 String srcWorkspace)

creates a new workspace with the specified name initialized with a clone of the
content of the workspace srcWorkspace (see §10.8.1 Cloning Nodes Across
Workspaces). Semantically, this method is equivalent to creating a new
workspace and manually cloning srcWorkspace to it. However, this method may
assist some implementations in optimizing subsequent Node.update and
Node.merge calls between the new workspace and its source. The new workspace
can be accessed through a login specifying its name.

void Workspace.deleteWorkspace(String name)

Deletes the workspace with the specified name from the repository, deleting all
content within it.

 193

14 Shareable Nodes
A repository may support shareable nodes. This section describes the syntax and
behavior of the Java API for shareable nodes. For details on the shareable nodes
model see §3.9 Shareable Nodes Model.

Whether an implementation supports shareable nodes can be determined by
querying the repository descriptor table with

Repository.OPTION_SHAREABLE_NODES_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

14.1 Creation of Shared Nodes
Cloning a mix:shareable node into the same workspace is the standard way of
creating a shared node.

Given workspace W, and an existing mix:shareable node at /A/B/C, the call

W.clone(“W”, “/A/B/C”, “/X/Y/Z”, false)

will create a new node at /X/Y/Z that shares with /A/B/C.

Note that if the removeExisting flag is set to true, the Workspace.clone does
not create a shared node, but instead behaves identically to a Workspace.move.

14.1.1 Shared Node Creation on Restore

If VersionManager.restore, restoreByLabel, merge or update is called and this
call would create a node with the same identifier as that of an existing
mix:shareable node in the same workspace without at the same time removing
that existing node (that is, removeExisting is set to false), then the new node
is created and is added to the shared set of the existing mix:shareable node.

14.1.2 Shared Node Creation on Import

During import the behavior of the IMPORT_UUID_COLLISION_THROW indicates that
if an incoming referenceable node has the same identifier as an existing
mix:shareable node in the workspace, the incoming node is created and added
to the shared set of the existing mix:shareable node (see §3.9.1
mix:shareable). Note that if the import in question is a Session import (see
§11.6.2 Session Event-Based Import and §11.7.2 Session Stream-Based Import)
new shared transient nodes will be created. These nodes are not considered to be
new, in the sense that Node.isNew will return false.

14.2 Shared Set
The shared set of a node consists of all nodes (including itself) with which it
shares. This set is retrieved with

NodeIterator Node.getSharedSet().

 194

14.3 Removing Shared Nodes
The method

void Node.removeShare()

removes the node from its shared set without affecting the other nodes in the
set. The method

void Node.removeSharedSet()

removes the node and all the members of its shared set.

In the first case, assuming more than one member in the shared set, the children
of the removed node are unaffected since they still have at least one other node
as parent. In the second case, however, the children of the shared set are
removed.

In cases where the shared set consists of a single node, or when these methods
are called on a non-shareable node, their behavior is identical to Node.remove().

When applied to a shared node with at least one other member in its shared set,
the method

void Item.remove or

void Session.removeItem

may behave as Node.removeShare() or as Node.removeSharedSet(). Which
behavior is adopted is an implementation issue.

The behavior of Node.remove() is permitted to vary across repositories because
the details of the underlying implementation will make one or the other of the
behaviors more natural for that repository. In particular if a repository
implements a shared set by one “primary” parent (that controls the lifetime of the
child) and zero or more “secondary” parents (that reference that child), then
Item.remove is most naturally interpreted differently on the primary parent and
one of the secondary parents. To force that repository to do a Node.removeShare
on the primary parent would require that implementation to pick one of the
secondary parents as the new primary parent, and change all of the other
secondary parents to refer to that new primary parent.

For all three methods, the removal is dispatched on Session.save().

14.4 Transient Layer
When a change is made to a shared node in the transient layer,
Node.isModified becomes true and that change is visible in all nodes in the
shared set of that node. After a transient shared node is dispatched,
Node.isModified becomes false for all nodes in the shared set of that node.

14.5 Copy
The new nodes created by a copy are never in the shared set of any node that
existed before the copy, but if two nodes A and B in the source of a copy are in

 195

the same shared set S, then the two resulting nodes A' and B' in the destination
of the copy must both be in the same shared set S', where S and S' are disjoint.

14.6 Share Cycles
In an implementation that forbids share cycles, any session-write method that
can create a shared node will cause a ShareCycleException to be thrown either
immediately or on save, if persisting the change would result in a share cycle.

Similarly, any workspace-write method that can create a shared node will throw a
ShareCycleException if completion of the operation would result in a share
cycle.

In an implementation that does not prevent share cycles, checking for cycles is
left to the repository user.

14.7 Export
When more than one shared node in a given shared set is exported to an XML
document, the first node in that shared set is exported in the normal fashion
(with all of its properties and children), but any subsequent shared node in that
shared set is exported as a special node of type nt:share, which contains only
the jcr:uuid property of the shared node and the jcr:primaryType property
indicating the type nt:share. Note that nt:share only appears in a serialization
document, and never appears as a node type of a node in a repository.

14.8 Import
When an XML element with node type nt:share is imported into a repository that
does not support shared nodes, the import must fail (getImportContentHandler
will throw a SAXException, while importXML will throw an
UnsupportedRepositoryOperationException).

14.9 Observation
When a property of a shared node is modified, or when a child item is added to or
deleted from a shared node, although that property or child node modification is
performed on every node in the shared set of that node, only one event is fired
for the shared set. Which node in the shared set is identified in the event is
implementation-defined.

14.10 Locking
When a lock is added or removed from a shared node, it is automatically added or
removed from every node in the shared set of that node.

If at least one share-ancestor of a node N holds a deep locked then that lock
applies to N, resulting in N being locked.

14.11 Node Type Constraints
All the nodes in a shared set always have the same declared primary node type
and the same set of assigned mixin node types. Since different nodes in the
shared set may have different parents, those parents must be of an appropriate
node type to have a child of with these types.

 196

If the members of a shared set correspond to child node definitions (in their
respective parents) with conflicting protected settings, the effective protected
value of all the members of the shared set will be the logical OR of the protected
settings of the set of child node definitions.

14.12 Versioning
If a node is versionable then all nodes within its shared set share the same
version history. Under full versioning this follows logically from the fact that the
nodes all share the same jcr:versionHistory reference (see §3.13.2.2
mix:versionable), pointing to a single common nt:versionHistory node (see
§3.13.5.1 nt:versionHistory).

On check-in of a node N within the shared set, its versionable state is determined
just as in the non-shared case, but because the node is shared, the resulting
version will also reflect the versionable state of any node N' in the shared set of
N.

On check-in of a parent M of a shared node N the contribution of N to the
versionable state of M is determined according to the OPV of N. Note that the OPV
of two nodes N and N' in the same shared set (with parent node M and M',
respectively) may differ because the OPV of N is determined by the node type of
M, while that of N' is determined by the node type of M'.

14.13 Restore
The effect of shared nodes on restore falls into three cases:

• A restore that causes the creation of a new shared node (see §14.1.1
Shared Node Creation on Restore).

• A restore that causes the removal of a shared node: In this case the
particular shared node is removed but its descendants continue to exist
below the remaining members of the shared set.

• A restore causes a change to the state of a shared node: Any change is
reflected in all nodes in its shared set.

• A restore that causes a change below a shared node: The subgraph is
changed as usual and the change is visible through many paths.

14.14 IsSame
If node /a/b shares with node /a/c then these two nodes are considered “the
same” according to the Item.isSame() method. Additionally, if the shared nodes
have a property p, then /a/b/p and /a/c/p are also considered “the same”. If
they have a child node x then, similarly, /a/b/x and /a/c/x are also the “the
same”.

14.15 RemoveMixin
If an attempt is made to remove the mix:shareable mixin node type from a node
in a shared set the implementation may either throw a
ConstraintViolationException or allow the removal and change the subgraph
in some implementation-specific manner. One possibility is to replace the node

 197

with a copy that has no children (if this does not violate the node type restrictions
of that node). Another possibility is to give the node a copy of all of its
descendants (unless the resulting copy operation would be unfeasible, as would
be the case if a share cycle were involved).

14.16 Query
If a query matches two or more nodes in a shared set, whether all of these nodes
or just one is returned in the query result is an implementation issue.

This variability is allowed since different implementations might have different
“natural” behaviors, and it would be expensive for an implementation to compute
the answer that is “unnatural” for that implementation.

If a query matches a descendant node of a shared set, it appears in query results
only once.

 198

15 Versioning
A repository may support simple versioning or full versioning. This section
describes the syntax and behavior of the Java API for both types of versioning.
Details on the underlying concepts, data structures and node types can be found
in §3.13 Versioning Model.

Whether an implementation supports simple versioning can be determined by
querying the repository descriptor table with

Repository.OPTION_SIMPLE_VERSIONING_SUPPORTED.

Whether it supports full versioning can be determined by querying

Repository.OPTION_VERSIONING_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

15.1 Creating a Versionable Node
A new versionable node is created by assigning it the appropriate mixin type:
mix:simpleVersionable under simple versioning or mix:versionable under full
versioning. This may be done either to an existing node, through a
Node.addMixin or at node creation, through assignment of a primary type that
inherits from the mixin. Some repositories may also automatically assign a
versionable mixin on creation of certain nodes (see §3.7.6 Node Type Inheritance
and §10.10 Node Type Assignment).

Under both simple and full versioning, on persist of a new versionable node N
that neither corresponds nor shares with an existing node:

• The jcr:isCheckedOut property of N is set to true and

• A new VersionHistory (H) is created for N. H contains one Version, the
root version (V0) (see §3.13.5.2 Root Version).

Additionally, under full versioning:

• A new nt:versionHistory node is created and bound to the
VersionHistory object H .

o The jcr:versionableUuid property of H is set to the identifier of N.

o If N is the result of a copy operation then the jcr:copiedFrom
property of H is set as described in §15.1.4 Copying Versionable
Nodes and Version Lineage. Otherwise this property is not added.

o A new nt:versionLabels node (L) is created as the
jcr:versionLabels child node of H.

o A new nt:version node is created and bound to V0. This node
becomes the jcr:rootVersion child node of H.

 A new nt:frozenNode node (F) is created as the
jcr:frozenNode child node of V0. F does not hold any state

 199

information about N except the node type and identifier
information found in jcr:frozenPrimaryType,
jcr:frozenMixinTypes, and jcr:frozenUuid properties
(see §3.13.4 Frozen Nodes).

• The REFERENCE property jcr:versionHistory of N is initialized to the
identifier of H. This constitutes a reference from N to its version history.

• The REFERENCE property jcr:baseVersion of N is initialized to the
identifier of V0. This constitutes a reference from N to its current base
version.

• The multi-value REFERENCE property jcr:predecessors of N is initialized
to contain a single identifier, that of V0 (the same as jcr:baseVersion).

15.1.1 VersionHistory Object

The version history of a versionable node is represented by a VersionHistory
object acquired through

VersionHistory Node.getVersionHistory()

or

VersionHistory
 VersionManager.getVersionHistory(String absPath)

where absPath is the absolute path to the node.

Conversely, given a VersionHistory, the versionable node to which it belongs
can be found through

String VersionHistory.getVersionableIdentifier()

which returns the identifier of the versionable node, which can then be used to
get the node itself (see §5.1.4 Getting a Node by Identifier).

15.1.1.1 Root Version

The root version of a version history is accessed through

Version VersionHistory.getRootVersion().

Under full versioning the root version can also be accessed through a
Node.getNode or an equivalent standard content access method, since it also
exists as an nt:version child node of the nt:versionHistory node, called
jcr:rootVersion.

15.1.1.2 Versions

The full set of versions within a version history can be retrieved through

VersionIterator VersionHistory.getAllVersions().

 200

If the version graph of this history is linear then the versions are returned in
order of creation date, from oldest to newest. Otherwise the order of the returned
versions is implementation-dependent.

Alternatively, the method

VersionIterator VersionHistory.getAllLinearVersions()

returns an iterator over all the versions in the line of descent from the root
version to the base version that is bound to the workspace through which this
VersionHistory was acquired.

Within a version history H, B is the base version bound to workspace W if and only
if there exists a versionable node N in W whose version history is H and B is the
base version of N.

The line of descent from version V1 to V2, where V2 is an eventual successor of V1,
is the ordered list of versions starting with V1 and proceeding through each direct
successor to V2.

The versions are returned in order of creation date, from oldest to newest.

Note that in a simple versioning repository the behavior of this method is
equivalent to returning all versions in the version history in order from oldest to
newest.

Versions can also be retrieved directly by name, using

Version VersionHistory.getVersion(String versionName),

or by label, using,

Version VersionHistory.getVersionByLabel(String label)

(see §15.4 Version Labels).

15.1.1.3 Frozen Nodes

The frozen nodes within each of the versions within the history can be accessed
directly from the VersionHistory through

NodeIterator VersionHistory.getAllFrozenNodes() and

NodeIterator VersionHistory.getAllLinearFrozenNodes().

These methods return the frozen nodes within the version history corresponding
to, and in the same order as, the Version objects returned by
VersionHistory.getAllVersions and VersionHistory.getAllLinearVersions,
respectively.

15.1.1.4 VersionHistory Extends Node

The VersionHistory interface extends Node. Under simple versioning version
histories are not represented by nodes in content, so the methods inherited from
Node are not required to function and may instead throw a
RepositoryException. Under full versioning the VersionHistory object

 201

represents the corresponding nt:versionHistory node and its Node methods
must function accordingly.

15.1.2 Getting the Base Version

The method

Version VersionManager.getBaseVersion(String absPath)

returns the current base version of the versionable node at absPath.

15.1.3 Moving Versionable Nodes

When an existing versionable node is moved to a new location with
Workspace.move or Session.move, it maintains the same version history and no
changes are made to that history.

15.1.4 Copying Versionable Nodes and Version Lineage

Under both simple and full versioning, when an existing versionable node N is
copied to a new location either in the same workspace or another, and the
repository preserves the versionable mixin (see §10.7.4 Dropping Mixins on
Copy):

• A copy of N, call it M, is created, as usual.

• A new, empty, version history for M, call it HM, is also created.

Under full versioning:

• The properties jcr:versionHistory, jcr:baseVersion and
jcr:predecessors of M are not copied from N but are initialized as usual.

• The jcr:copiedFrom property of HM is set to point to the base version of N.

15.1.4.1 Version Lineage

The jcr:copiedFrom property allows an application to determine the lineage of a
version across version histories that were produced by copying a versionable
node to a new location.

15.1.5 Cloning Versionable Nodes

Under both simple and full versioning, when a versionable node N is cloned to
another workspace:

• A clone of N, call it N’, is created, as usual.

• N’ is initialized to have the same version history and base version as N.

Under full versioning:

• The jcr:versionHistory, jcr:baseVersion and jcr:predecessors
properties of N are copied to N’ unchanged.

 202

15.1.6 Sharing Versionable Nodes

Under both simple and full versioning, when a new node N’ is added to the
shared set of a shareable, versionable node N:

• The shared node N’ is created, as usual.

• N’ is initialized to have the same version history and base version as N.
Unlike in the case of cloning (see §15.1.5 Cloning Versionable Nodes) the
base versions of N and N’ will always remain identical.

Under full versioning:

• Because nodes in the same shared set have identical properties,
mix:versionable nodes in the same shared set will necessarily have
identical jcr:versionHistory, jcr:baseVersion and jcr:predecessors
properties.

15.2 Check-In: Creating a Version
A new version of a versionable node is created using

 Version VersionManager.checkin(String absPath)

where absPath is the absolute path of the node.

On check-in of a versionable node N with version history H:

• If N is not mix:simpleVersionable or mix:versionable, an
UnsupportedRepositoryOperationException is thrown, otherwise,

• if N has unsaved changes pending, an InvalidItemStateException is
thrown, otherwise,

• if N is already checked-in, this method has no effect and returns the base
version (see §3.13.6.2 Base Version) of N, otherwise,

• if N has a jcr:mergeFailed property present, a VersionException is
thrown (notice that this is enforced in any case due to the ABORT setting of
the jcr:mergeFailed property's OnParentVersion attribute).

Otherwise:

• The subgraph rooted at N is made read-only (see §15.2.2 Read-Only on
Check-In).

• A new Version, V, is created with a system-determined version name (see
§15.2.1.1 Version Name) and a created date (see §15.2.1.2 Created Date)
as part of its state. Under full versioning, a new nt:version node is bound
to V and added as a child node of H, with the version name as its node
name and the created date as the value of its jcr:created property.

• The versionable state of N is recorded in the frozen node F of V as
described in §3.13.9 Versionable State. Under full versioning, F is added
as the jcr:frozenNode child node of V.

 203

• V is added to the version history of N as the direct successor of the base
version of N. Under full versioning:

o The jcr:predecessors property of N is copied to the
jcr:predecessors property of V.

o The jcr:predecessors property of N is set to the empty array.

o A reference to V is added to the jcr:successors property of each
of the nt:version nodes referred to by the jcr:predecessors
property of V.

• The base version of N is changed to V. Under full versioning, the
jcr:baseVersion property of N is changed to refer to V.

• The jcr:isCheckedOut property of N is set to false. This change is a
workspace-write and therefore does not require a save.

• N is now checked-in.

• V is returned.

15.2.1 Version Object

A version is represented by a Version object.

15.2.1.1 Version Name

The name given to a version is automatically generated and must be unique
within its version history. How the name is generated is up to the
implementation. The name of a version is retrieved with the method

String Item.getName(),

inherited by Version. Under simple versioning this is the only inherited method
that is required to function (see §15.2.1.7 Version Extends Node).

15.2.1.2 Created Date

Calendar Version.getCreated()

returns a timestamp indicating the date and time that the version was created.
The precision of the timestamp is implementation-dependent.

15.2.1.3 Containing History

VersionHistory Version.getContainingHistory()

returns the VersionHistory that contains this Version.

15.2.1.4 Predecessors

Version[] Version.getPredecessors()

 204

returns the direct predecessors of this Version. Under simple versioning this set
will be at most of size 1. Under full versioning, this set maybe of size greater than
1, indicating a merge within the version graph.

The method

Version Version.getLinearPredecessor()

returns the direct predecessor of this Version along the same line of descent
returned by VersionHistory.getAllLinearVersions in the current workspace
(see §3.1.8.2 Current Session and Workspace), or null if no such direct
predecessor exists. Note that under simple versioning the behavior of this method
is equivalent to getting the unique direct predecessor (if any) of this version.

15.2.1.5 Successors

Version[] Version.getSuccessors()

returns the direct successors of this Version. Under simple versioning this set will
be at most of size 1. Under full versioning, this set maybe of size greater than 1,
indicating a branch within the version graph.

The method

Version Version.getLinearSuccessor()

returns the direct successor of this Version along the same line of descent
returned by VersionHistory.getAllLinearVersions in the current workspace
(see §3.1.8.2 Current Session and Workspace), or null if no such direct
successor exists. Note that under simple versioning the behavior of this method is
equivalent to getting the unique direct successor (if any) of this version.

15.2.1.6 Frozen Node

The frozen node of a version is access with

 Node Version.getFrozenNode().

Under simple versioning without in-content version store the frozen node has no
parent and therefore methods that depend on a node being within the workspace
tree (Item.getPath(), Item.getParent(), etc.) throw RepositoryException.
Under full versioning a frozen node is the child of an nt:version within the in-
content version store and so has all the characteristics of a normal node.

15.2.1.7 Version Extends Node

The Version interface extends Node. Under simple versioning, however, versions
are not represented by nodes in content, consequently the inherited methods,
other than Item.getName() (see §15.2.1.1 Version Name), are not required to
function. These methods may throw a RepositoryException. Under full
versioning the methods of Version inherited from Node function on the actual
node in content that backs that version (see §3.13.3.1 nt:version).

 205

15.2.2 Read-Only on Check-In

When a versionable node is checked in, it and its subgraph become read-only.
The effect of read-only status on a node depends on the on-parent-version (OPV)
status of each of its child items.

When a node N becomes read-only:

• No property of N can be added, removed or have its value changed unless
it has an on-parent-version setting of IGNORE.

• No child node of N can be added or removed unless it has an on-parent-
version setting of IGNORE.

• Every existing child node of N becomes read-only unless it has an on-
parent-version setting of IGNORE or has an on-parent-version setting of
VERSION and is itself versionable.

These restrictions apply to all methods with the exception of
VersionManager.restore, VersionManager.restoreByLabel (see §15.7
Restoring a Version), VersionManager.merge (see §15.9 Merge) and
Node.update (see §10.8.3 Updating Nodes Across Workspaces). These
operations do not respect checked-in status.

Note that remove of a read-only node is possible, as long as its parent is not
read-only, since removal is an alteration of the parent node.

15.3 Check-Out
A checked-in node is checked-out using

 void VersionManager.checkout(String absPath),

where absPath is the absolute path of the node.

The checked-out state indicates to the repository and other clients that the latest
version of N is “being worked on” and will typically be checked-in again at some
point in the future, thus creating a new version.

On checkout of a node N:

• If N is already checked-out, this method has no effect.

• If N is not versionable, an UnsupportedRepositoryOperationException is
thrown.

Otherwise,

• The jcr:isCheckedOut property of N is set to true.

• N and all nodes and properties in the subgraph of N lose their read-only
status.

• Under full versioning, the current value of the jcr:baseVersion property
of N is copied to the jcr:predecessors property of N.

This method is a workspace-write. There is no need to call save.

 206

15.3.1.1 Testing for Checked-Out Status

Only the actual versionable node has a jcr:isCheckedOut property, however, the
checked-in read-only effect extends into the subgraph of the versionable node
(see §15.2.2 Read-Only on Check-In). The method

boolean VersionManager.isCheckedOut(String absPath)

returns false if the node at absPath is read-only due to a check-in operation.
The method returns false otherwise.

Alternatively, the method

boolean Node.isCheckedOut()

can also be used directly on the node in question.

15.3.2 Checkpoint

The method

Version VersionManager.checkpoint(String absPath)

is a shortcut for checkin followed immediately by checkout.

15.4 Version Labels
A version label is a JCR name (see §3.2 Names) associated with a version. A
version may have zero or more labels. Within a given version history, a particular
label may appear a maximum of once. Labels are typically used to add
application-level information to a stored version.

Under simple versioning labels are added, accessed and removed only through
the version-label-specific API.

Under full versioning version labels are also exposed in content. Each
nt:versionHistory node has a subnode called jcr:versionLabels of type
nt:versionLabels:

15.4.1.1 nt:versionLabels

[nt:versionLabels]
 - * (REFERENCE) protected ABORT
 < 'nt:version'

Each version label is stored as a REFERENCE property whose name is the label
name and whose target is the nt:version node within the nt:versionHistory to
which the label applies. Dereferencing a label property is equivalent to calling
VersionHistory.getVersionByLabel.

15.4.1.2 Adding a Version Label

The method

void VersionHistory.
 addVersionLabel(String versionName,

 207

 String label,
 boolean moveLabel).

adds the specified label to the version with the specified versionName. The
label must be a JCR name in either qualified or expanded form and therefore
must conform to the syntax restrictions that apply to such names. In particular a
colon (“:”) should not be used unless it is intended as a prefix delimiter in a
qualified name (see §3.2.5 Lexical Form of JCR Names).

In a full versioning system, VersionHistory.addVersionLabel adds the
appropriate REFERENCE to the nt:versionLabels node. The addition of a label is
a workspace-write and therefore does not require a save.

If the specified label is already assigned to a version in this history and
moveLabel is true then the label is removed from its current location and added
to the version with the specified versionName. If moveLabel is false, then an
attempt to add a label that already exists in this version history will throw a
LabelExistsVersionException.

15.4.1.3 Testing for a Version Label

The method

boolean VersionHistory.hasVersionLabel(String label)

returns true if any version in the version history has the given label. The
method

boolean VersionHistory.hasVersionLabel(Version version,
 String label)

returns true if the specified version has the specified label.

15.4.1.4 Getting Version Labels

The method

String[] VersionHistory.getVersionLabels()

returns all the version labels on all the versions in the version history. The
method

String[] VersionHistory.getVersionLabels(Version version)

returns all version labels on the specified version.

15.4.1.5 Removing a Version Label

The method

void VersionHistory.removeVersionLabel(String label)

removes the specified label from this version history.

 208

In a full versioning system, VersionHistory.removeVersionLabel removes the
appropriate REFERENCE from the nt:versionLabels. The change is a workspace-
write and therefore does not require a save.

15.5 Searching Version Histories
In simple versioning, version histories are not searchable from within the JCR
API. In order to make version histories searchable under JCR, version storage
must be exposed in content. Since simple versioning repositories may expose
version storage (it is simply not required), searchable versions are effectively an
optional extension of simple versioning (see §3.13.7 Version Storage and §6
Query).

Under full versioning, the exposure of version storage as content in the
workspace allows the stored versions and their associated version meta-data to
be searched or traversed just like any other part of the workspace.

15.6 Retrieving Version Storage Nodes
When an nt:versionHistory or nt:version node is acquired through a query or
directly through a getNode, the actual Java type of the returned object must be
VersionHistory (in the case nt:versionHistory nodes) or Version (in the case
of nt:version nodes). This allows the application to cast the returned object to
either Version or VersionHistory and use it in methods that take those types.

15.7 Restoring a Version
Restoring a versionable node to the state recorded in an earlier version can be
done with

void VersionManager.restore (Version version,
 boolean removeExisting).

Given a version V and a boolean flag B, and letting N be the versionable node in
this workspace of which V is a version and F be the frozen node of V, on
restore(V, B), if N has unsaved changes pending, an
InvalidItemStateException is thrown, otherwise:

15.7.1 Simple vs. Full Versioning Before Restore

Under simple versioning, if N is checked-in then it is automatically checked-out
before the restore is performed.

Under full versioning the restore methods work regardless of whether the node
in question is checked-out or checked-in.

Under both simple and full versioning, the changes are made through workspace-
write and therefore do not require save.

15.7.2 Restoring Type and Identifier

The primary type, mixin types and identifier of N are set as follows:

 209

• The jcr:primaryType property of N (and, semantically, the actual primary
node type of N) is set to the value recorded in the
jcr:frozenPrimaryType of F.

• The jcr:mixinTypes property of N (and, semantically, the actual mixin
node types of N) is set to the value(s) recorded in the
jcr:frozenMixinTypes of F.

• The jcr:uuid property of N (and, semantically, the actual identifier of N) is
set to the value recorded in the jcr:frozenUuid of F.

15.7.3 Restoring Properties

For each property P present on F (other than jcr:frozenPrimaryType,
jcr:frozenMixinTypes and jcr:frozenUuid):

• If P has an OPV of COPY or VERSION then F/P is copied to N/P, replacing
any existing N/P.

• F will never have a property with an OPV of IGNORE, INITIALIZE, COMPUTE
or ABORT (see §15.2 Check-In: Creating a Version).

For each property P present on N but not on F:

• If P has an OPV of COPY, VERSION or ABORT then N/P is removed. Note that
while a node with a child item of OPV ABORT cannot be versioned, it is
legal for a previously versioned node to have such a child item added to it
and then for it to be restored to the state that it had before that item was
added, as this step indicates.

• If P has an OPV of IGNORE then no change is made to N/P.

• If P has an OPV of INITIALIZE then, if N/P has a default value (either
defined in the node type of N or implementation-defined) its value is
changed to that default value. If N/P has no default value then it is left
unchanged.

• If P has an OPV of COMPUTE then the value of N/P may be changed
according to an implementation-specific mechanism.

15.7.4 Identifier collision

An identifier collision occurs when a node exists outside the subgraph rooted at A
with the same identifier as a node that would be introduced by the restore
operation. The result in such a case is governed by the removeExisting flag. If
removeExisting is true, then the incoming node takes precedence, and the
existing node (and its subgraph) is removed (if possible; otherwise a
RepositoryException is thrown). If removeExisting is false, then an
ItemExistsException is thrown and no changes are made.

 210

15.7.5 Chained Versions on Restore

Each child node C of N where C has an OPV of VERSION and C is mix:versionable,
is represented in F not as a copy of N/C but as special node containing a
reference to the version history of C. On restore, the following occurs.

• If the workspace currently has an already existing node corresponding to
C’s version history and the removeExisting flag of the restore is set to
true, then that instance of C becomes the child of the restored N.

• If the workspace currently has an already existing node corresponding to
C’s version history and the removeExisting flag of the restore is set to
false then an ItemExistsException is thrown.

• If the workspace does not have an instance of C then one is restored from
C’s version history:

o If the restore was initiated through a restoreByLabel where L is
the specified label and there is a version of C with the label L then
that version is restored.

o If the version history of C does not contain a version with the label
L or the restore was initiated by a method call that does not specify
a label then the workspace in which the restore is being performed
will determine which particular version of C will be restored. This
determination depends on the configuration of the workspace and
is outside the scope of this specification.

15.7.6 Restoring Child Nodes

For each child node C present on F:

• If C has an OPV of COPY or VERSION:

o B is true, then F/C and its subgraph is copied to N/C, replacing any
existing N/C and its subgraph and any node in the workspace with
the same identifier as C or a node in the subgraph of C is removed.

o B is false, then F/C and its subgraph is copied to N/C, replacing
any existing N/C and its subgraph unless there exists a node in the
workspace with the same identifier as C, or a node in the subgraph
of C, in which case an ItemExistsException is thrown , all
changes made by the restore are rolled back leaving N unchanged.

Under full versioning each child node C of N where C has an OPV of
VERSION and C is versionable, is represented in F not as a copy of
N/C but as special node of type nt:versionedChild containing a
reference to the version history of C. On restore, N/C in the
workspace is replaced by a version of C. The determination of which
version of C to use is implementation-dependent (see §15.7.5
Chained Versions on Restore).

 211

In a repository that supports orderable child nodes, the relative
ordering of the set of child nodes C that are copied from F is
preserved.

• F will never have a child node with an OPV of IGNORE, INITIALIZE,
COMPUTE or ABORT (see §15.2 Check-In: Creating a Version).

For each child node C present on N but not on F:

• If C has an OPV of COPY, VERSION or ABORT then N/C is removed. Note that
while a node with a child item of OPV ABORT cannot be versioned, it is
legal for a previously versioned node to have such a child item added to it
and then for it to be restored to the state that it had before that item was
added, as this step indicates.

• If C has an OPV of IGNORE then no change is made to N/C.

• If C has an OPV of INITIALIZE then N/C is re-initialized as if it were newly
created, as defined in its node type.

• If C has an OPV of COMPUTE then N/C may be re-initialized according to an
implementation-specific mechanism.

15.7.7 Simple vs. Full Versioning after Restore

Under simple versioning N is automatically checked-in.

Under full versioning the jcr:isCheckedOut property of N is set to false (though
the other elements of a check-in are not performed). Additionally, the
jcr:baseVersion property of N is set to V. Note that after the next check-out
(see §15.3 Check-Out) and subsequent check-in of N the version V will acquire an
additional direct successor, forming a branch.

15.7.8 Restore Variants

The method

void VersionManager.restore(String absPath,
 Version version,
 boolean removeExisting)

takes the Version object and a target path. This method only works in cases
where no node exists at absPath. It is used to restore nodes that have been
removed or to introduce new subgraphs into a workspace based on state stored
in a version.

15.7.8.1 Restore by Version Name

The method

void VersionManager.restore(String absPath,
 String versionName,
 boolean removeExisting)

 212

takes a version name instead of the actual Version object. The version to be
restored is identified by name from within the version history of the node at
absPath. This method requires that the node at absPath exist and be a
versionable node.

15.7.8.2 Restore by Version Label

The method

void VersionManager.restoreByLabel(String absPath,
 String versionLabel,
 boolean removeExisting)

takes a version label instead of a Version object (see §15.2.1 Version Object).
The version to be restored is identified by label from within the version history of
the node at absPath. This method requires that the node at absPath exist and be
a versionable node.

15.7.8.3 Restoring a Group of Versions

The method

void VersionManager.
 restore(Version[] versions, boolean removeExisting)

is used to simultaneously restore multiple versions. This may be necessary in
cases where sequential restoration is impossible due to a cycle of REFERENCE
properties in the nodes to be restored.

15.8 Removing a Version
In some implementations it may be possible to remove versions from within a
version history using VersionHistory.removeVersion. In such cases the version
graph must be automatically repaired so that the direct successor of the removed
version becomes the direct successor of the direct predecessor of the removed
version.

The method

void VersionHistory.removeVersion(String versionName)

removes the named version from this version history and automatically repairs
the version graph. If the version to be removed is V, V's direct predecessor set is
P and V's direct successor set is S, then the version graph is repaired s follows:

• For each member of P, remove the reference to V from its direct successor
list and add references to each member of S.

• For each member of S, remove the reference to V from its direct
predecessor list and add references to each member of P.

This change is a workspace-write; there is no need to call save.

15.9 Merge
The method

 213

NodeIterator VersionManager.
 merge(String absPath, String srcWorkspace,
 boolean bestEffort, boolean isShallow)

performs the first step in a merge of two corresponding nodes:

The merge method can be called on a versionable or non-versionable node.

Like update, merge does not respect the checked-in status of nodes. A merge may
change a node even if it is currently checked-in.

If this node (the one on which merge is called) does not have a corresponding
node in the indicated workspace, then the merge method returns quietly and no
changes are made.

If isShallow is true and this node, despite having a corresponding node, is
nevertheless non-versionable then the merge method also returns quietly and no
changes are made.

Otherwise, the following happens:

If isShallow is true then a merge test is performed on this node, call it N. If
isShallow is false then a merge test is performed recursively on each
versionable node, N within the subgraph rooted at this node.

The merge test is performed by comparing N with its corresponding node in
srcWorkspace, call it N'.

The merge test is done by comparing the base version of N (call it V) and the base
version of N' (call it V').

For any versionable node N there are three possible outcomes of the merge test:
update, leave or failed.

If N does not have a corresponding node then the merge result for N is leave.

If N is currently checked-in then:

• If V' is an eventual successor of V, then the merge result for N is update.

• If V' is an eventual predecessor of V or if V and V' are identical (i.e., are
actually the same version), then the merge result for N is leave.

• If V is neither an eventual successor of, eventual predecessor of, nor
identical with V', then the merge result for N is failed. This is the case
where N and N' represent divergent branches of the version graph.

If N is currently checked-out then:

• If V' is an eventual predecessor of V or if V and V' are identical (i.e., are
actually the same version), then the merge result for N is leave.

• If any other relationship holds between V and V', then the merge result
for N is fail.

 214

If bestEffort is false then the first time a merge result of fail occurs, the entire
merge operation on this subgraph is aborted, no changes are made to the
subgraph and a MergeException is thrown. If no merge result of fail occurs then:

• Each versionable node N with result update is updated to reflect the state
of N'. The state of a node in this context refers to its set of properties and
child node links.

• Each versionable node N with result leave is left unchanged, unless N is the
child of a node with status update and N does not have a corresponding
node in srcWorkspace, in which case it is removed.

If bestEffort is true then:

• Each versionable node N with result update is updated to reflect the state
of N'. The state of a node in this context refers to its set of properties and
child node links.

• Each versionable node N with result leave is left unchanged, unless N is the
child of a node with status update and N does not have a corresponding
node in srcWorkspace. I such a case, N is removed.

• Each versionable node N with result failed is left unchanged except that
the identifier of V' (which is, in some sense, the “offending” version; the
one that caused the merge to fail on that N) is added to the multi-value
REFERENCE property jcr:mergeFailed of N. If the identifier of V' is
already in jcr:mergeFailed, it is not added again. The jcr:mergeFailed
property never contains repeated references to the same version. If the
jcr:mergeFailed property does not yet exist then it is created. If present,
the jcr:mergeFailed property will always contain at least one value. If
not present on a node, this indicates that no merge failure has occurred on
that node. Note that the presence of this property on a node will in any
case prevent it from being checked-in because the OnParentVersion
setting of jcr:mergeFailed is ABORT.

• This property can later be used by the application to find those nodes in
the subgraph that have failed to merge and thus require special attention
(see §15.9.2 Merging Branches). This property is multi-valued so that a
record of successive failed merges can be kept.

In either case, (regardless of whether bestEffort is true or false) for each
non-versionable node (including both referenceable and non-referenceable), if the
merge result of its nearest versionable ancestor is update, or if it has no
versionable ancestor, then it is updated to reflect the state of its corresponding
node. Otherwise, it is left unchanged. The definition of corresponding node in this
context is the same as usual: the match is done by identifier.

Note that a deep merge performed on a subgraph with no versionable nodes at all
(or indeed in a repository that does not support versioning in the first place) will
be equivalent to an update.

The merge method returns a NodeIterator over all versionable nodes in the
subgraph that received a merge result of fail.

 215

Note that if bestEffort is false, then merge will either return an empty iterator
(since no merge failure occurred) or throw a MergeException (on the first merge
failure that was encountered).

If bestEffort is true, then the iterator will contain all nodes that received a fail
during the course of this merge operation.

All changes made by merge are workspace-write, and therefore this method does
not require a save.

15.9.1 Merge Algorithm

The above declarative description can also be expressed in pseudo-code as
follows:

let ws' be the workspace against which the merge is done.
let bestEffort be the flag passed to merge.
let isShallow be the flag passed to merge.
let failedset be a set of identifiers, initially empty.
let startnode be the node on which merge was called.
domerge(startnode).
return the nodes with the identifiers in failedset.

domerge(n)
 let n' be the corresponding node of n in ws'.
 if no such n' doleave(n).
 else if n is not versionable doupdate(n, n').
 else if n' is not versionable doleave(n).
 let v be base version of n.
 let v' be base version of n'.
 if v' is an eventual successor of v and
 n is not checked-in doupdate(n, n').
 else if v is equal to or an eventual predecessor of v' doleave(n).
 else dofail(n, v').

dofail(n, v')
 if bestEffort = false throw MergeException.
 else add identifier of v' (if not already present) to the
 jcr:mergeFailed property of n,
 add identifier of n to failedset,
 if isShallow = false
 for each versionable child node c of n domerge(c).

doleave(n)
 if isShallow = false
 for each child node c of n domerge(c).

doupdate(n, n')
 replace set of properties of n with those of n'.
 let S be the set of child nodes of n.
 let S' be the set of child nodes of n'.
 judging by the name of the child node:

 216

 let C be the set of nodes in S and in S'
 let D be the set of nodes in S but not in S'.
 let D' be the set of nodes in S' but not in S.
 remove from n all child nodes in D.
 for each child node of n' in D' copy it (and its subgraph) to n
 as a new child node (if an incoming node has the same
 identifier as a node already existing in this workspace,
 the already existing node is removed).
 for each child node m of n in C domerge(m).

15.9.2 Merging Branches

When a merge test on a node N fails, this indicates that the two base versions V
and V' are on separate branches of the version graph. Consequently, determining
the result of the merge is not simply a matter of determining which version is the
eventual successor of the other in terms of version history. Instead, the subgraph
of N' must be merged into the subgraph of N according to some domain specific
criteria which must be performed at the application level, for example, through a
merge tool provided to the user.

The jcr:mergeFailed property is used to tag nodes that fail the merge test so
that an application can find them and deal appropriately with them. The
jcr:mergeFailed property is multi-valued so that information about merge
failures is not lost if more than one successive merge is attempted before being
dealt with by the application.

After the subgraph of N' is merged into N, the application must also merge the
two branches of the version graph. This is done by calling N.doneMerge(V')
where V' is retrieved by following the reference stored in the jcr:mergeFailed
property of N. This has the effect of moving the reference-to-V' from the
jcr:mergeFailed property of N to its jcr:predecessors property.

If, on the other hand, the application chooses not to join the two branches, then
cancelMerge(V') is performed. This has the effect of removing the reference to
V' from the jcr:mergeFailed property of N without adding it to
jcr:predecessors.

Once the last reference in jcr:mergeFailed has been either moved to
jcr:predecessors (with doneMerge) or just removed from jcr:mergeFailed
(with cancelMerge) the jcr:mergeFailed property is automatically removed,
thus enabling this node to be checked-in, creating a new version (note that
before the jcr:mergeFailed is removed, its OnParentVersion setting of ABORT
prevents check-in). This new version will have a direct predecessor connection to
each version for which doneMerge was called, thus joining those branches of the
version graph.

All changes made by doneMerge and cancelMerge are workspace-write and
therefore do not require save.

 217

15.9.3 Merging Activities

In repositories that support activities (see §15.12 Activities) merging an activity
into another workspace is done with the method

VersionManager.merge(Node activityNode).

(see §15.12.7 Merging an Activity into Another Workspace).

15.10 Serialization of Version Storage
Serialization of version information can be done in the same way as normal
serialization by serializing the subgraph below
/jcr:system/jcr:versionStorage. The special status of these nodes with
respect to versioning is transparent to the serialization mechanism.

The serialized content of the source version storage can be imported as “normal”
content on the target repository, but it will not actually be interpreted and
integrated into the repository as version storage data unless it is integrated into
or used to replace the target repository's own version storage.

Methods for doing this kind of “behind the scenes” alteration to an existing
version storage (whether based on the serialized version storage of another
repository, or otherwise) are beyond the scope of this specification.

15.11 Versioning within a Transaction
In a repository that supports both versioning and transactions, all versioning
operations must be fully transactional, meaning that they can be bracketed within
a transaction and rolled-back just like any other set of operations.

15.12 Activities
Activities provide a way of grouping together a set of logically related changes
performed in a workspace and then later merging this set of changes into another
workspace.

Before starting to make a particular set of changes, the user sets the current
activity. Each subsequent checkout made within the scope of that activity will
associate that activity with that checked-out versionable, and will create a version
that is tagged with the specified activity when that versionable is subsequently
checked-in.

Abstractly, therefore, an activity is a set of changes that produce new versions.
However, if that set includes changes that produce more than one version within
a particular version history, then those versions must all be on the same line of
descent, that is, there must be a non-branching sequence of direct successor
relationships beginning at the root version of the version history that reaches
every version in the set. This ensures that there is always at most one “latest”
version that contains all changes in a given version history for a given activity.

15.12.1 Support for Activities

Support for activities is an optional addition to the full versioning feature. An
implementation that supports versioning may support activities.

 218

Whether a particular implementation supports activities can be determined by
querying the repository descriptor table with

Repository.OPTION_ACTIVITIES_SUPPORTED.

A return value of true indicates support for activities (see §24.2 Repository
Descriptors).

15.12.2 Related Node Types

Activities are represented by nodes of node type nt:activity:

[nt:activity] > mix:referenceable
 - jcr:activityTitle (STRING) mandatory autocreated protected

The relationship between version and activity is modeled by the property
jcr:activity, in the mix:versionable and nt:version node types:

[mix:versionable] > mix:simpleVersionable, mix:referenceable
 mixin
 - jcr:versionHistory (REFERENCE) mandatory protected IGNORE
 < 'nt:versionHistory'
 - jcr:baseVersion (REFERENCE) mandatory protected IGNORE
 < 'nt:version'
 - jcr:predecessors (REFERENCE) mandatory protected multiple
 IGNORE < 'nt:version'
 - jcr:mergeFailed (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:activity (REFERENCE) protected IGNORE < 'nt:activity'
 - jcr:configuration (REFERENCE) protected IGNORE
 < 'nt:configuration'

[nt:version] > mix:referenceable
 - jcr:created (DATE) mandatory autocreated protected
 ABORT
 - jcr:predecessors (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:successors (REFERENCE) protected multiple ABORT
 < 'nt:version'
 - jcr:activity (REFERENCE) protected ABORT < 'nt:activity'
 + jcr:frozenNode (nt:frozenNode) protected ABORT

15.12.3 Activity Storage

Activities are persisted as nodes of type nt:activity under system-generated
node names in activity storage below /jcr:system/jcr:activities.

The organization of this subgraph is left up to the implementation (for example,
there may be intervening nodes structuring the activity storage).

Similar to the /jcr:system/jcr:versionStorage subgraph, the activity storage
is a single repository wide store, but is reflected into each workspace. However
access control may be employed so that different sessions see different parts of
the tree.

 219

15.12.3.1 Activity Storage is Read-Only

The activity storage subgraph is not writable through the core write methods (see
§10.2 Core Write Methods). It can only be altered through the activity-specific
write methods described in this section.

15.12.4 Creating an Activity

Activities are created using:

Node VersionManager.createActivity(String title)

creates a new nt:activity node at an implementation-determined location in
the /jcr:system/jcr:activities subgraph and returns it.

The name of the nt:activity node is automatically generated by the repository.
The repository may use the title parameter as a hint to give a value to the
jcr:activityTitle property of the new node. The new node addition is
dispatched immediately and therefore does not require a save.

15.12.5 Setting the Current Activity

Node VersionManager.setActivity(Node activity)

is called by the user to set the current activity on the session by specifying a
previously created nt:activity node. Changing the current activity is done by
calling setActivity again. Cancelling the current activity is done by calling
setActivity(null) and results in the session having no current activity. The
method returns the previously set nt:activity node or null if no such node
exists.

Assuming,

• the current activity of session S is represented by node A and

• node N is a versionable node with version history H,

then each checkout of node N made through S while A is in effect causes the
following:

• If there exists another workspace with node N' where N' also has version
history H, N' is checked out and the jcr:activity property of N'
references A, then the check-out fails with an
ActivityViolationException indicating which workspace currently has
the check-out.

• If there is a version in H that is not an eventual predecessor of N but
whose jcr:activity references A, then the check-out fails with an
ActivityViolationException.

• Otherwise, the jcr:activity property of N is set to reference A and when
N is subsequently checked in, the jcr:activity property of the new
version is set to reference A, and the jcr:activity property of N is
removed.

 220

15.12.6 Getting the Current Activity

The method

Node VersionManager.getActivity()

returns the node representing the current activity or null if there is no current
activity.

15.12.7 Merging an Activity into Another Workspace

Once an activity has been completed, the changes that it records can be imported
into another workspace. This is done with a variant of the merge method:

NodeIterator VersionManager.merge(Node activityNode)

This method merges the changes that were made under the specified activity into
this workspace.

An activity A will be associated with a set of versions through the jcr:activity
reference of each version node in the set. We call each such associated version a
member of A.

For each version history H that contains one or more members of A, one such
member will be the latest member of A in H. The latest member of A in H is the
version in H that is a member of A and that has no eventual successor versions
that are also members of A.

The set of versions that are the latest members of A in their respective version
histories is called the change set of A. It fully describes the changes made under
the activity A.

This method performs a shallow merge, with bestEffort equal to true, into this
workspace (see §15.9 Merge) of each version in the change set of the activity
specified by activityNode. If there is no corresponding node in this workspace
for a given member of the change set, that member is ignored.

This method returns a NodeIterator over all versionable nodes in the subgraph
that received a merge result of fail (see §15.9.1 Merge Algorithm).

All changes made through this method are workspace-write and therefore do not
require save.

15.12.8 Removing an Activity

Some repositories may support

void VersionManager.removeActivity(Node activityNode)

which removes the specified activity node from the activity storage and
automatically removes all REFERENCE properties referring to that node in all
workspaces, with the exception of REFERENCE properties in version storage. The
existence of a REFERENCE to the activity node from within version storage will
cause an exception to be thrown. Changes made through this method are
workspace-write and therefore do not require save.

 221

15.13 Configurations and Baselines
A configuration is the subgraph of a specifically designated versionable node
(called the configuration root node) in a workspace, minus any parts of that
subgraph that are themselves designated as configurations. A baseline is the
state of a configuration at some point in time, recorded in version storage as a
version object.

15.13.1 Support for Configurations and Baselines

Support for configurations and baselines is an optional addition to the full
versioning feature. An implementation that supports full versioning may support
configurations and baselines. Whether a particular implementation supports
configurations and baselines can be determined by querying the repository
descriptor table with

 Repository.OPTION_BASELINES_SUPPORTED.

A return value of true indicates support for configurations and baselines (see
§24.2 Repository Descriptors).

15.13.2 Configuration Proxy Nodes

Each configuration in a given workspace is represented by a distinct proxy node
of type nt:configuration located in configuration storage within the same
workspace under /jcr:system/jcr:configurations/. The configuration storage
in a particular workspace is specific to that workspace. It is not a common
repository-wide store mirrored into each workspace, as is the case with version
storage.

The proxy node of a configuration is used to perform certain operations on that
configuration. In particular, version operations performed on the proxy node act
not only on that node itself but also on the configuration it represents, as a
whole. Creating a baseline, for example, is done by performing a checkin on a
configuration’s proxy node.

15.13.2.1 nt:configuration

Every configuration proxy node is of type nt:configuration:

 [nt:configuration] > mix:versionable
 - jcr:root (REFERENCE) mandatory autocreated protected

This node type is a subtype of mix:versionable and adds a single property, the
REFERENCE property jcr:root, which points to the root node of the configuration
that this proxy represents.

Since every configuration proxy node is versionable, each has a version history.
The versions within this history store state information about configuration
represented by the proxy node, in addition to information about the proxy node
itself.

 222

15.13.2.2 Structure of Configuration Storage

The organization of configuration storage is left up to the implementation (for
example, there may be intervening nodes structuring the storage). It is expected
that access control will also be employed to ensure that only sessions with
appropriate authorization may create or have access to particular configurations.

15.13.3 Creating a Configuration

A configuration is created by designating a mix:versionable node N in the
workspace as a configuration root node. This is done by calling

Node VersionManager.
 createConfiguration(String absPath)

where absPath is the path of N.

On creation of a new configuration with root N, a new proxy node C, of type
nt:configuration, is created under /jcr:system/jcr:configurations/ and a
new version history HC is created for C with a root version B0. Note that HC is also
called a baseline history and its contained versions, including B0, are called
baselines. The baselines within HC store not only the state of C but also the state
of the configuration represented by C (see 15.13.4.1 Creating a Baseline).

The properties of C and N are initialized as follows:

• N/jcr:configuration points to C.

• C/jcr:root points to N.

• C/jcr:versionHistory points to HC.

• C/jcr:baseVersion points to B0.

The createConfiguration call will fail if

• the node at absPath is not mix:versionable.

• the node at absPath is already a configuration root (i.e., if it already has a
jcr:configuration property).

• There exists in the subgraph at N a versionable node that has never been
checked-in (i.e., one whose base version is still its root version).

The createConfiguration method is workspace-write. Therefore the changes it
makes are dispatched immediately and a save is not required.

15.13.4 Baselines

A baseline records the state of a configuration at some particular time and is
represented by a version (i.e., an nt:version node) of the nt:configuration
node in question.

 223

15.13.4.1 Creating a Baseline

A baseline is created by performing a checkin on a configuration proxy node
(i.e., a node of type nt:configuration found in configuration storage). Note that
since nt:configuration is subtype of mix:versionable, a configuration node
will have its own version history, distinct from the version history of its
configuration root node.

On checkin of the configuration proxy node C:

• The state of the C is recorded in a new baseline B just as it would be in a
normal version.

• In addition, the current base version of every versionable node in the
configuration is also recorded.

How the configuration state information is stored is up to the repository. It need
not be stored as content in the substructure of the nt:version node. For
example, some repositories are likely to have some efficient internal mechanisms
involving lists of identifiers, possibly stated as a delta against the direct
predecessor baseline. The only requirement is that baselines be “restoreable”.

15.13.4.2 Restoring a Baseline

Using the method

VersionManager.restore(Version version, boolean removeExisting)

where version is a baseline Version object, C is the nt:configuration node
whose version history contains version and N is the configuration root node
pointed to by C/jcr:root:

• The state of C is restored to the state recorded in version and
C/jcr:baseVersion is set to point to version (as in the restore of any
normal version).

• Each versionable node M in the subgraph below and including N is restored
to the state recorded in V where V is the version of M in M’s version history
that was recorded in B (i.e., the base version of M at the time B was
created).

The removeExisting parameter behaves just as in a normal restore expect that
that it applies to all nodes restored below N. The same behavior applies for the
multi-version signature of restore,

VersionManager.restore(Version[] versions,
 boolean removeExisting)

except that multiple baselines may be restored simultaneously.

15.13.4.3 Creating a Configuration from an Existing Baseline

The method

 224

VersionManager.restore(String absPath,
 Version version,
 boolean removeExisting),

where version is a baseline Version object and absPath is a path to a location
where no node exists but which has a suitable parent node, creates a new
configuration at absPath by restoring the baseline version. A configuration proxy
node C with C/jcr:root pointing to the root node of the new configuration at
absPath is automatically created in configuration storage. If a node already exists
at absPath, the method fails. The variant signatures

VersionManager.restore(String absPath,
 String versionName,
 boolean removeExisting),

and

VersionManager.restoreByLabel(String absPath,
 String label,
 boolean removeExisting),

work identically except that the baseline to be restored is identified either by
name or by label instead of being passed in as a Version object.

 225

16 Access Control Management
A repository may support access control management, enabling the following:

• Privilege discovery: Determining the privileges that a user has in relation
to a node.

• Assigning access control policies: Setting the privileges that a user has in
relation to a node using access control policies specific to the
implementation.

Whether a particular implementation supports access control can be determined
by querying the repository descriptor table with

Repository.OPTION_ACCESS_CONTROL_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

16.1 Access Control Manager
Access control is exposed through a

 javax.jcr.security.AccessControlManager

acquired from the Session using

AccessControlManager Session.getAccessControlManager().

16.2 Privilege Discovery
A privilege represents the ability to perform a particular set of operations on a
node. Each privilege is identified by a JCR name.

JCR defines a set of standard privileges within the Privilege interface. An
implementation may add additional privileges, using an appropriate
implementation-specific namespace for their names.

16.2.1 Aggregate Privileges

A privilege may be an aggregate privilege. Aggregate privileges are sets of other
privileges. Granting, denying, or testing an aggregate privilege is equivalent to
individually granting, denying, or testing each privilege it contains. The privileges
contained by an aggregate privilege may themselves be aggregate privileges if
the resulting privilege graph is acyclic.

16.2.2 Abstract Privileges

A privilege may be an abstract privilege. Abstract privileges cannot themselves be
granted or denied, but can be individually tested and can be composed into
aggregate privileges which are granted or denied.

Abstract privileges facilitate application interoperability against repositories
supporting different privilege granularities. For example, consider aggregate
privilege p containing privileges p1 and p2. In repository A, p1 and p2 are not
abstract and can therefore be individually granted, whereas in repository B both

 226

p1 and p2 are abstract and cannot be individually granted. For both repositories,
however, an application can test whether a user has privilege p1, even though in
repository B, p1 can only be acquired through non-abstract privilege p.

A privilege can be both aggregate and abstract.

16.2.3 Standard Privileges

A repository must support the following standard privileges identified by the
string constants of javax.jcr.security.Privilege:

• jcr:read: The privilege to retrieve a node and get its properties and their
values.

• jcr:modifyProperties: The privilege to create, remove and modify the
values of the properties of a node.

• jcr:addChildNodes: The privilege to create child nodes of a node.

• jcr:removeNode: The privilege to remove a node.

• jcr:removeChildNodes: The privilege to remove child nodes of a node.

In order to actually remove a node requires jcr:removeNode on that node
and jcr:removeChildNodes on the parent node. The distinction is
provided in order to distinguish implementations that internally model a
“remove” as a “delete” from those that model it as an “unlink”. A
repository that uses the “delete” model can have jcr:removeChildNodes
in every access control policy, so that removal is effectively controlled by
jcr:removeNode. Conversely, a repository that uses the “unlink” model
can have jcr:removeNode in every access control policy.

• jcr:write: An aggregate privilege that contains:

o jcr:modifyProperties

o jcr:addChildNodes

o jcr:removeNode

o jcr:removeChildNodes

• jcr:readAccessControl: The privilege to read the access control settings
of a node.

• jcr:modifyAccessControl: The privilege to modify the access control
settings of a node.

• jcr:lockManagement: The privilege to lock and unlock a node (see §17
Locking).

• jcr:versionManagement: The privilege to perform versioning operations
on a node (see §15 Versioning).

 227

• jcr:nodeTypeManagement: The privilege to add and remove mixin node
types and change the primary node type of a node (see §10.10 Node Type
Assignment).

• jcr:retentionManagement: The privilege to perform retention
management operations on a node (see §20 Retention and Hold).

• jcr:lifecycleManagement: The privilege to perform lifecycle operations
on a node (see §18 Lifecycle Management).

• jcr:all: An aggregate privilege that contains:

o jcr:read

o jcr:write

o jcr:readAccessControl

o jcr:modifyAccessControl

o jcr:lockManagement

o jcr:versionManagement

o jcr:nodeTypeManagement

o jcr:retentionManagement

o jcr:lifecycleManagement

Whether a privilege is abstract is an implementation variant, with the exception
that jcr:all is never an abstract privilege. For example, a repository unable to
separately control the abilities to add child nodes, remove child nodes, and set
properties could make jcr:modifyProperties, jcr:addChildNodes, and
jcr:removeChildNodes abstract privileges within the aggregate privilege
jcr:write.

Similarly, whether any one of these privileges is aggregate is an implementation
variant, with the exception that jcr:write and jcr:all are always aggregate
privileges.

A repository should also add all implementation-defined privileges to jcr:all.

The standard privilege names are defined as expanded form JCR names in string
constants of javax.jcr.security.Privilege.

16.2.4 Supported Privileges

The privileges available for a particular node can be determined through

Privilege[]
 AccessControlManager.
 getSupportedPrivileges(String absPath)

where absPath is the location of the node. Note that this method does not return
the privileges held by a Session with respect to the specified node, but rather the

 228

privileges supported by the repository with respect to that node (see §16.3.7
Testing Privileges).

16.2.5 Retrieving Privileges by Name

A Privilege object can be obtained from the AccessControlManager through

Privilege
 AccessControlManager.
 privilegeFromName(String privilegeName)

where privilegeName identifies an existing Privilege (see §16.3.6 Privilege
Object). Since the privilege name is a JCR name it may be passed in either
qualified or expanded form (see §3.2.6 Use of Qualified and Expanded Names).

16.2.6 Privilege Object

The characteristics of a Privilege object are exposed through the following
methods:

 String Privilege.getName()

returns the name of this privilege. Since the privilege name is a JCR name it must
be returned in qualified form (see §3.2.6 Use of Qualified and Expanded Names).

 boolean Privilege.isAbstract()

returns whether the privilege is abstract.

 boolean Privilege.isAggregate()

returns whether the privilege is aggregate.

 Privilege[] Privilege.getDeclaredAggregatePrivileges().

If this privilege is aggregate, this method returns the privileges directly contained
within it. Otherwise, it returns an empty array.

 Privilege[] Privilege.getAggregatePrivileges().

If this privilege is aggregate, this method returns the privileges it contains, the
privileges contained by any aggregate privileges among those, and so on (i.e.,
the transitive closure of privileges contained by the initial privilege). Otherwise, it
returns an empty array.

16.2.7 Testing Privileges

The method

boolean AccessControlManager.
 hasPrivileges(String absPath, Privilege[] privileges)

returns whether the Session has the specified privileges for the node at absPath.
Testing an aggregate privilege is equivalent to testing each non-aggregate
privilege among the set returned by calling
Privilege.getAggregatePrivileges().

 229

The method

Privilege[] AccessControlManager.getPrivileges(String absPath)

returns the privileges the session has for absolute path absPath. The returned
privileges are those for which hasPrivileges would return true.

The set of privileges held by a session with respect to a particular node are the
result of

• access control policies applied using JCR (see §16.4 Access Control
Policies),

• privilege affecting mechanisms external to JCR, if any.

The set of privileges reported by the privilege test methods reflects the current
net effect of these mechanisms. It does not reflect unsaved access control
policies.

16.3 Access Control Policies
The privileges granted to a user can be controlled by assigning access control
policies to nodes. The content and semantics of these policies are implementation
specific and may be based on any mechanism, including access control lists or
role-responsibility assignments. JCR does not expose the internals of policies, nor
does it provide a mechanism for defining them. However, it does provide a
marker interface AccessControlPolicy and two derived interfaces
NamedAccessControlPolicy and AccessControlList (see §16.6 Access Control
Lists). Furthermore, JCR provides means to:

• Find which polices are available to be bound to a node.

• Bind a policy to a node.

• Get the policies bound to a given node (including transient modifications).

• Get the policies that affect access to a given node.

• Unbind a policy from a node.

In addition to these methods, any effect that a policy has on a node is always
reflected in the information returned by the privilege discovery methods (see
§16.2.7 Testing Privileges). Note that the scope of the effect of an access control
policy may not be identical to the node to which that policy is bound (see §16.4.2
Binding a Policy to a Node).

16.3.1 Applicable Policies

AccessControlPolicyIterator
 AccessControlManager.getApplicablePolicies(String absPath)

returns a list of access control policies that are capable of being applied to the
node at absPath. The mechanism for defining the set of policies applicable to a
particular node is implementation-dependent. For a given node, the set of
applicable policies available at a specific time may depend on the set of policies

 230

bound to the node at that time. Therefore, the set returned by this method may
vary between calls as policies are bound and unbound.

16.3.2 Binding a Policy to a Node

The method

void AccessControlManager.
 setPolicy(String absPath, AccessControlPolicy policy)

binds a policy to the node at absPath. The behavior of the call

acm.setPolicy(absPath, policy)

differs depending on how the policy object was originally acquired. If policy
was acquired through

acm.getApplicablePolicies(absPath)

then policy is added to the node at absPath. On the other hand, if policy was
acquired through

acm.getPolicies(absPath)

then that policy object (after, presumably, being altered) replaces its older
version on the node at absPath (see §16.3.4 Getting the Bound Policies)

16.3.3 Binding vs. Effect

A policy is bound to a node upon completion of the setPolicy call but only takes
effect upon Session.save.

16.3.4 Getting the Bound Policies

The method

AccessControlPolicy[]
 AccessControlManager.getPolicies(String absPath)

returns the policies bound to the node at absPath. If this method is called from
the AccessControlManager of a Session which holds pending, unsaved policy
bindings, then the policies returned will reflect the transient state instead of the
persisted state. If there are no policies bound to the node at absPath through the
JCR API this method returns an empty array.

 231

16.3.5 Scope of a Policy

When an access control policy takes effect, it may affect the accessibility
characteristics not only of the node to which it is bound but also of nodes
elsewhere in the workspace.20 The method

AccessControlPolicy[]
 AccessControlManager.getEffectivePolicies(String absPath)

performs a best-effort search to determine the policies in effect on the node at
absPath.

16.3.6 Default Access Control

If a node has no effective policy assigned through the JCR API, then an
implementation-specific default policy must be in effect and this policy must be
returned by AccessControlManager.getEffectivePolicies. The default
privileges for the node are determined by the implementation in accordance with
this default policy.

16.3.7 Removing a Policy

The method

 void AccessControlManager.
 removePolicy(String absPath, AccessControlPolicy policy)

removes the specified AccessControlPolicy from the node at absPath. An
AccessControlPolicy can only be removed if it was previously bound to the
specified node through this API. The effect of the removal only takes place upon
Session.save().

16.3.8 Interaction with the Transient Layer and Transactions

Changes to access control are session-write operations (see §10.1.1 Session-
Write) and interact with the transient layer and persistent store no differently
than other such operations:

• A node which has had a policy set or removed is marked as modified until
the changes are saved.

20 One common case is a policy that affects both its bound node and the subgraph
below that node. However, any such deepness attribute is internal to the policy
and, like any other internal characteristic of a policy, opaque to the JCR API
except insofar as it is part of the human-readable name and description. Note
also that, strictly speaking, a policy is not required to affect even its bound node,
though such an implementation would be uncommon.

 232

• The access control modifications can be reverted by calling
Session.refresh(false).

• The changes are visible to sessions other than the session making the
change no earlier than its being dispatched (i.e., saved if outside a
transaction, committed if within a transaction).

• Depending on the repository implementation, the changes may not be
reflected in another session until that session reacquires the modified node
(for example, by calling Session.refresh).

16.3.9 Access to Properties

Access to a property is controlled by the effective access control policies of its
parent node.

16.3.10 Access Control Restrictions

A repository may restrict which nodes may be access controlled. For example a
document-centric repository might allow only nt:hierarchyNode nodes to be
access controlled. A repository may automatically add access control policies to a
newly created node based upon an implementation-determined default.

16.3.11 Exposing Policies in Content

A repository may expose a node's access control policies as child nodes or
properties. If it does so, then the add, remove and save semantics of the item
must match those of the policy it represents.

16.3.12 Interaction with Protected Properties

Many features of JCR expose repository metadata as protected properties defined
by mixin node types. For example, locking status is exposed by the properties
jcr:lockOwner and jcr:lockIsDeep defined by mix:lockable. Changes to
protected properties can only be made indirectly through a feature-specific API
(for example, Node.lock), not through a generic write method like
Node.setProperty. Such changes are not governed by the
jcr:modifyProperties privilege, but rather by the particular feature-specific
privilege, for example, jcr:lockManagement (see §16.2.3 Standard Privileges).

16.3.13 Interaction with Versioning

JCR does not mandate a specific approach to access control of versioning nodes.
Whatever approach is taken, any restrictions placed on operations as a
consequence of access control are in addition to the restrictions imposed by the
versioning feature itself (for example, checked-in nodes being immutable).

16.4 Named Access Control Policies
The NamedAccessControlPolicy extends the AccessControlPolicy marker
interface. A NamedAccessControlPolicy represents an opaque, immutable policy
with a name, which must be a JCR name. The name is accessed through

 String NamedAccessControlPolicy.getName().

 233

16.5 Access Control Lists
AccessControlList extends the AccessControlPolicy marker interface. An
AccessControlList represents a list of AccessControlEntry objects. Before
being bound to a node, the AccessControlList is mutable.

16.5.1 Access Control Entries

An AccessControlEntry represents the association of one or more
javax.jcr.security.Privilege objects with a specific
java.security.Principal. These are accessed through

 Privilege[] AccessControlEntry.getPrivileges()

and

 java.security.Principal AccessControlEntry.getPrincipal().

16.5.2 Getting the Access Control Entries

AccessControlEntry[]
 AccessControlList.getAccessControlEntries()

returns all access control entries present on the AccessControlList policy. It
reflects the current state of the policy including modifications that have not yet
been persisted.

16.5.3 Adding an Access Control Entry

boolean AccessControlList.addAccessControlEntry(
 java.security.Principal prinicipal,
 Privilege[] privileges)

adds an access control entry consisting of the specified principal and the
specified privileges to the AccessControlList policy and returns true if the
AccessControlList was thereby modified.

How the entries are grouped within the list is implementation-specific. An
implementation may, for example, combine the specified privileges with those
added by a previous call to addAccessControlEntry for the same Principal.
However, a call to addAccessControlEntry for a given Principal can never
remove a Privilege added by a previous call.

16.5.4 Removing an Access Control Entry

void AccessControlList.
 removeAccessControlEntry(AccessControlEntry ace)

removes the specified AccessControlEntry from the AccessControlList policy.
This method is guaranteed to affect only the privileges of the principal defined
within the specified AccessControlEntry. Only exactly those entries obtained
from AccessControlList.getAccessControlEntries can be removed through
this API.

 234

16.5.5 Modification vs. Effect

An access control entry is added to or removed from an AccessControlList upon
completion of the addAccessControlEntry or removeAccessControlEntry call,
respectively. However, those modifications only take effect once the policy has
been bound to a node through AccessControlManager.setPolicy and saved.

16.5.6 Privileges to Manage Entries

The user must have the jcr:modifyAccessControl privilege to add or remove
access control entries and the jcr:readAccessControl privilege to read access
control entries from an AccessControlList.

16.5.7 Principal Discovery

The discovery of java.security.Principals is outside the scope of this
specification.

16.6 Privileges Permissions and Capabilities
In JCR, the terms privilege, permission and capability have precise and distinct
meanings.

16.6.1 Privileges

The set of privileges held by a session with respect to a particular node are the
result of access control policies applied using JCR and any other privilege
affecting mechanisms external to JCR that may exist, if any.

16.6.2 Permissions

Testing for permissions is a feature that all repositories must support regardless
of whether they support access control management.

In repositories that do support access control management, the permissions
encompass the restrictions imposed by privileges, but also include any additional
policy-internal refinements with effects too fine-grained to be exposed through
privilege discovery. A common case may be to provide finer-grained access
restrictions to individual properties or child nodes of the node to which the policy
applies.

In the case of a policy that does not define any refinements, testing privileges is
equivalent to using these methods with the following mapping:

The action on I, a is equivalent to

add_node node jcr:addChildNode on the parent of I.

set_property property jcr:modifyProperties on the parent of I.

remove node jcr:removeChildNodes on the parent of I and
jcr:removeNode on I.

remove property jcr:modifyProperties on the parent of I.

 235

read node jcr:read on I.

read property jcr:read on the parent of I.

16.6.3 Capabilities

Capabilities encompass the restrictions imposed by permissions, but also include
any further restrictions unrelated to access control. These include constraints
enforced by node types, versioning or any other JCR or implementation-specific
mechanism. Capabilities are reported by Session.hasCapability (see §9.2
Capabilities). The reporting of capabilities is always subject to practical
limitations, but should be as accurate as possible, given the design of the
implementation.

 236

17 Locking
A repository may support locking, which enables a user to temporarily prevent
other users from changing a node or subgraph of nodes.

Whether an implementation supports locking can be determined by querying the
repository descriptor table with

Repository.OPTION_LOCKING_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

17.1 Lockable
A lock is placed on a node by calling LockManager.lock (see §17.11.1
LockManager.lock). The node on which a lock is placed is called the holding node
of that lock. Only nodes with mixin node type mix:lockable (inherited as part of
their primary node type or explicitly assigned) may hold locks. The definition of
mix:lockable is:

[mix:lockable]
 mixin
 - jcr:lockOwner (STRING) protected IGNORE
 - jcr:lockIsDeep (BOOLEAN) protected IGNORE

17.2 Shallow and Deep Locks
A lock can be specified as either shallow or deep. A shallow lock applies only to its
holding node and its properties. A deep lock applies to its holding node and all its
descendants. Consequently, there is a distinction between a lock being held by a
node and a lock applying to a node. A lock always applies to its holding node.
However, if it is a deep lock, it also applies to all nodes in the holding node's
subgraph. When a lock applies to a node, that node is said to be locked.

Since a deep lock applies to all nodes in the lock-holding node's subgraph, this
may include both mix:lockable nodes and non-mix:lockable nodes. The deep
lock applies to both categories of node equally and it does not add any
jcr:lockOwner or jcr:lockIsDeep properties to any of the deep-locked
mix:lockable nodes. However, if any such nodes exist and they already have
these properties, this means that they are already locked, and hence the attempt
to deep lock above them will fail.

Additionally, assuming a deep lock exists above a mix:lockable node, any
attempt to lock this lower level mix:lockable node will also fail, because it is
already locked from above.

17.3 Lock Owner
Initially, the session through which a lock is placed is the owner of that lock. This
means the session has the power to alter the locked node and to remove the
lock. In the case of open-scoped locks (as opposed to session-scoped, see §17.7
Session-Scoped and Open-Scoped Locks) control of the lock may be given to
another session during the lifetime of that lock. In some implementations giving
control of a lock to another session will remove control from the previous session,

 237

in others, more than one session may simultaneously own the same open-scoped
lock.

Repositories may support client-specified lock owner information. If this is the
case, the jcr:lockOwner property will be set to the value supplied upon lock
creation, and will not change during the lifetime of the lock. Otherwise, when a
lock is created, the jcr:lockOwner property is set to the user ID bound to the
locking Session (that is, the string returned by Session.getUserID) or another
implementation-dependent string identifying the user.

In implementations that do not support client-specified lock owner information,
when an open-scoped lock is moved to a new owner, or assigned an additional
one (if supported), the jcr:lockOwner property may be automatically altered to
reflect the change.

Strictly speaking it is the session, not the user, that owns a particular lock at a
particular time. The jcr:lockOwner property is used for informational purposes,
so that a client application can, for example, display this information to other
users. For this reason the user is sometimes informally referred to as the lock
owner.

In implementations that record the user ID in jcr:lockOwner, that user will not
automatically have the ability to alter the locked node if accessing it through
another session. Transfer (or, if supported, addition) of ownership must be done
explicitly from one session to another and is not governed by the user ID
associated with a session.

17.4 Placing and Removing a Lock
When LockManager.lock is performed on a mix:lockable node, the properties
defined in that node type are automatically created and set as follows:

• jcr:lockOwner is set to the supplied owner info, the user ID associated
with the session that set the lock (this is the value returned by
Session.getUserID) or another implementation-dependent string
identifying the user.

jcr:lockIsDeep is set to reflect whether the lock is deep or not.

When LockManager.unlock is performed on a locked mix:lockable node,
through a session that owns the lock these two properties are removed.

Additionally, the content repository may give permission to some sessions to
remove locks for which they are not the owner. Typically such “lock-superuser”
capability is intended to facilitate administrational clean-up of orphaned open-
scoped locks.

An attempt to call LockManager.lock or LockManager.unlock for a node that is
not mix:lockable will throw a LockException, as will an attempt to lock an
already locked node or unlock an already unlocked node.

 238

17.5 Lock Token
The method LockManager.lock returns a Lock object. If the lock is open-scoped
the lock will contain a lock token. A lock token is a string that uniquely identifies a
particular lock and acts as a key granting lock ownership to any session that hold
the token.

In order to use the lock token as a key, it must be added to the session, thus
permitting that session to alter the nodes to which the lock applies or to remove
the lock. When a lock token is attached to a Session, the session becomes an
owner of the lock.

The method LockManager.lock automatically adds the lock token for a newly
placed open-scoped lock to the current session.

The client can also control which lock tokens are attached to the session through
the LockManager methods addLockToken, removeLockToken and getLockTokens.

17.6 Session-Scoped and Open-Scoped Locks
When a lock is placed on a node, it can be specified to be either a session-scoped
lock or an open-scoped lock. A session-scoped lock automatically expires when
the session through which the lock owner placed the lock expires. An open-
scoped lock does not expire until it is explicitly unlocked, it times out or an
implementation-specific limitation intervenes.

In the case of open-scoped locks, the lock token must be attached to the current
session in order to alter any nodes locked by that token's lock.

In the case of session-scoped locks, the user need not explicitly do anything since
the lock is automatically associated with the session and expires with it in any
case.

With open–scoped locks the token is automatically attached to the session.
However, the user must additionally ensure that a reference to the lock token is
preserved separately so that it can later be attached to another session since,
presumably, an open-scoped lock is being used to avoid co-expiration with the
initial session. It is for handling these cases of attaching an existing lock token
from a previous session to a new session that the methods
LockManager.addLockToken, LockManager.removeLockToken and
LockManager.getLockTokens are provided (see §17.11 LockManager Object).

To determine an existing lock’s scoping, the method Lock.isSessionScoped is
provided.

If a Lock is session-scoped, the method Lock.isLockOwningSession can be used
to determine whether the current session is the lock owner.

An implementation may support simultaneous ownership of open-scoped locks
across sessions.

17.7 Effect of a Lock
If a lock applies to a node (i.e., the node either holds the lock or is a descendant
of a node holding a deep lock), then to all sessions except the lock-owning

 239

session, the same restrictions apply with respect to the node as would apply if the
node were protected (see §3.7.2.2 Protected).

Removing a node is considered an alteration of its parent. This means that a node
within the scope of a lock may be removed by a session that is not an owner of
that lock, assuming no other restriction prevents the removal. Similarly, a locked
node and its subgraph may be moved by a non-lock-owning session if no
restriction prevents the alteration of the source and destination parent nodes.

Locked nodes can always be read and copied by any session with sufficient access
privileges.

When an action is prevented due to a lock, a LockException is thrown either
immediately or on the subsequent save. Implementations may differ on which of
these behaviors is used to enforce locking.

There is at most one lock on any node at one time.

17.8 Timing Out
Implementations may support client-supplied timeout information, but are not
required to do so. Additionally, an implementation may remove (unlock) any lock
at any time due to implementation-specific criteria.

17.9 Locks and Persistence
When a new node is added below a deep lock by that lock's owning session
LockManager.isLocked(Node) will report true even before the node is
persisted21. However, since the node is not visible to other Sessions, its locked
status has no effect until it is persisted.

17.10 Locks and Transactions
Locking and unlocking are treated just like any other operation in the context of a
transaction. For example, consider the following series of operations:

begin
 lock
 do A
 save
 do B
 save
 unlock
commit

21 Recall that outside a transaction persistence of transient state occurs
immediately upon a Session.save while, within a transaction, the effect of any
Session.save calls is deferred until commit of the transaction.

 240

In this example the lock and unlock have no effect. This series of operations is
equivalent to:

begin
 do A
 save
 do B
 save
commit

The reason for this is that changes to a workspace are only made visible to other
Sessions upon commit of the transaction, and this includes changes in the locked
status of a node. As a result, if a lock is enabled and then disabled within the
same transaction, its effect never makes it to the persistent workspace and
therefore it does nothing.

In order to use locks properly (that is, to prevent the “lost update problem”),
locking and unlocking must be done in separate transactions. For example:

begin
 lock
commit

begin
 do A
 save
 do B
 save
 unlock
commit

This series of operations would ensure that the actions A and B are protected by
the lock.

17.11 LockManager Object
The methods for locking, unlocking and querying the locking status of a node are
found in the LockManager, acquired through

 LockManager Workspace.getLockManager().

17.11.1 Locking a Node

Lock LockManager.lock(String absPath,
 boolean isDeep,
 boolean isSessionScoped,
 long timeout,
 String ownerInfo)

places a lock on the node at absPath. If successful, the node is said to hold the
lock.

If isDeep is true then the lock applies to the specified node and all its
descendant nodes; if false, the lock applies only to the specified node. On a

 241

successful lock, the jcr:lockIsDeep property of the locked node is set to this
value.

If isSessionScoped is true then this lock will expire upon the expiration of the
current session (either through an automatic or explicit Session.logout); if
false, this lock does not expire until it is explicitly unlocked, it times out, or it is
automatically unlocked due to an implementation-specific limitation.

The timeout parameter specifies the number of seconds until the lock times out
(if it is not refreshed in the meantime, see §10.11.1 Refresh). An implementation
may use this information as a hint or ignore it altogether. Clients can discover the
actual timeout by inspecting the returned Lock object.

The ownerInfo parameter can be used to pass a string holding owner information
relevant to the client. An implementation may either use or ignore this
parameter. If it uses the parameter it must set the jcr:lockOwner property of
the locked node to this value and return this value on Lock.getLockOwner. If it
ignores this parameter the jcr:lockOwner property (and the value returned by
Lock.getLockOwner) is set to either the value returned by Session.getUserID of
the owning session or an implementation-specific string identifying the owner.

The method returns a Lock object representing the new lock.

If the lock is open-scoped the returned lock will include a lock token. The lock
token is also automatically added to the set of lock tokens held by the current
Session.

The addition or change of the properties jcr:lockIsDeep and jcr:lockOwner are
persisted immediately; there is no need to call save.

It is possible to lock a node even if it is checked-in (see §15.2.2 Read-Only on
Check-In).

17.11.2 Getting a Lock

Lock LockManager.getLock(String absPath)

returns the Lock object that applies to the node at absPath. This may be either a
lock on the node itself or a deep lock on a node above that node.

If the current session holds the lock token for this lock and the lock is open-
scoped, then the returned Lock object contains that lock token (accessible
through Lock.getLockToken). If this Session does not hold the applicable lock
token and the lock is open-scoped, the returned Lock object may return the lock
token. Otherwise, the returned Lock object will not contain the lock token and its
Lock.getLockToken method will return null (see §17.12.4 Getting a Lock
Token).

17.11.3 Unlocking a Node

 void LockManager.unlock(String absPath)

Removes the lock, and the properties jcr:lockOwner and jcr:lockIsDeep, from
the node at absPath. These changes are persisted automatically; there is no need

 242

to call save. As well, the corresponding lock token is removed from the set of lock
tokens held by the current session.

If this node does not currently hold a lock or holds a lock for which this Session
is not the owner, then a LockException is thrown.

The system may give permission to a non-owning session to unlock a lock.
Typically such “lock-superuser” capability is intended to facilitate administrational
clean-up of orphaned open-scoped locks.

It is possible to unlock a node even if it is checked-in (see §15.2.2 Read-Only on
Check-In).

17.11.4 Testing for Lock Holding

boolean LockManager.holdsLock(String absPath)

returns true if the node at absPath holds a lock; otherwise returns false. To
hold a lock means that the node has actually had a lock placed on it specifically,
as opposed to having a lock apply to it due to a deep lock held by a node above.

17.11.5 Testing for Locked Status

boolean LockManager.isLocked(String absPath)

returns true if the node at absPath is locked either as a result of a lock held by
the specified node or by a deep lock on a node above that node; otherwise
returns false.

Alternatively, the method

boolean Node.isLocked()

can be used directly on the node in question.

17.11.6 Adding a Lock Token

void LockManager.addLockToken(String lockToken)

adds the specified lock token to the current session. Holding a lock token makes
this session the owner of the lock specified by that particular lock token. If the
implementation does not support simultaneous lock ownership this method will
transfer ownership of the lock corresponding to the specified lockToken to the
current session, otherwise the current session will become an additional owner of
that lock. In either case, if the implementation does not support client-specified
lock owner information, this method may cause a change in the jcr:lockOwner
property (and the value returned by Lock.getLockOwner) of the lock
corresponding to the specified lockToken (see §17.5 Lock Token).

17.11.7 Getting Lock Tokens

String[] LockManager.getLockTokens()

 243

returns an array containing all lock tokens currently held by the current session.
Note that any such tokens will represent open-scoped locks, since session–scoped
locks do not have tokens.

17.11.8 Removing a Lock Token

void LockManager.removeLockToken(String lockToken)

Removes the specified lockToken from the current session, causing the session
to no longer be an owner of the lock associated with the lockToken. If the
implementation does not support client-specified lock owner information, this
method may cause a change in the jcr:lockOwner property (and the value
returned by Lock.getLockOwner) of the lock corresponding to the specified
lockToken (see §17.5 Lock Token).

17.12 Lock Object
The Lock object represents a lock on a particular node. It is acquired either on
lock creation through LockManager.lock or after lock creation through
LockManager.getLock.

17.12.1 Getting the Lock Owner

String Lock.getLockOwner()

returns the value of the jcr:lockOwner property. This is either the client-
supplied lock owner information, the user ID bound to the session that holds the
lock or an implementation-specific string identifying the user (see §4.4.1 User).

The lock owner's identity is only provided for informational purposes. It does not
govern who can perform an unlock or make changes to the locked nodes; that
depends entirely upon the session that holds the lock token.

17.12.2 Testing Lock Depth

boolean Lock.isDeep()

returns true if this is a deep lock; false otherwise.

17.12.3 Getting the Lock Holding Node

Node Lock.getNode()

returns the lock holding node. Note that N.getLock().getNode() (where N is a
locked node) will only return N if N is the lock holder. If N is in the subgraph of the
lock holder, H, then this call will return H.

17.12.4 Getting a Lock Token

String Lock.getLockToken()

may return the lock token for this lock. If this lock is open-scoped and the current
session holds the lock token for this lock, then this method will return that lock
token. If the lock is open-scoped and the current session does not hold the lock
token, it may return the lock token. Otherwise this method will return null.

 244

17.12.5 Testing Lock Aliveness

boolean Lock.isLive()

returns true if this Lock object represents a lock that is currently in effect. If this
lock has been unlocked either explicitly or due to an implementation-specific
limitation (like a timeout) then it returns false. Note that this method is intended
for those cases where one is holding a Lock Java object and wants to find out
whether the lock (the repository-level entity that is attached to the lockable
node) that this object originally represented still exists. For example, a timeout or
explicit unlock will remove a lock from a node but the Lock Java object
corresponding to that lock may still exist, and in that case its isLive method will
return false.

17.12.6 Testing Lock Scope

boolean Lock.isSessionScoped()

Returns true if this is a session-scoped lock and the scope is bound to the
current session. Returns false otherwise.

17.12.7 Testing Lock Owning Session

boolean Lock.isLockOwningSession()

Returns true if the current session is the owner of this lock, either because it is
session-scoped and bound to this session or open-scoped and this session
currently holds the token for this lock. Returns false otherwise.

17.12.8 Getting Seconds Remaining

long Lock.getSecondsRemaining()

If this lock's time-to-live is governed by a timer, the number of remaining
seconds until time out is returned. If this lock's time-to-live is not governed by a
timer, then this method returns Long.MAX_VALUE.

17.12.9 Refreshing a Lock

void Lock.refresh()

If this lock's time-to-live is governed by a timer, this method resets that timer. If
this lock's time-to-live is not governed by a timer, then this method has no effect.

17.13 LockException
When a method fails due to the presence or absence of a lock on a particular
node a LockException is thrown.

LockException extends RepositoryException, adding the method

String LockException.getFailureNodePath(),

which returns the absolute path of the node that caused the error, or null if the
implementation chooses not to, or cannot, return a path.

 245

18 Lifecycle Management
A repository may support lifecycle management, enabling users to:

• Discover the state of a node within a lifecycle.

• Promote or demote nodes through a lifecycle by following a transition from
the current state to a new state.

The names and semantics of the supported lifecycle states and transitions are
implementation-specific.

Whether an implementation supports lifecycle management can be determined by
querying the repository descriptor table with

Repository.OPTION_LIFECYCLE_SUPPORTED.

A return value of true indicates support (see §24.2 Repository Descriptors).

18.1 mix:lifecycle
[mix:lifecycle]
 mixin
 - jcr:lifecyclePolicy (REFERENCE) protected INITIALIZE
 - jcr:currentLifecycleState (STRING) protected INITIALIZE

Only nodes with mixin node type mix:lifecycle may participate in a lifecycle.
The mixin adds two properties:

• jcr:lifecyclePolicy: This property is a reference to another node that
contains lifecycle policy information. The definition of the referenced node is
not specified.

• jcr:currentLifecycleState: This property is a string identifying the current
lifecycle state of this node. The format of this string is not specified.

18.2 Node Methods
The Node interface provides the following methods related to lifecycles. If the
node does not have the mix:lifecycle mixin, the methods will return
UnsupportedRepositoryOperationException.

void Node.followLifecycleTransition(String transition)

causes the lifecycle state of this node to undergo the specified transition.

This method may change the value of the jcr:currentLifecycleState property,
in most cases it is expected that the implementation will change the value to that
of the passed transition parameter, though this is an implementation-specific
issue. If the jcr:currentLifecycleState property is changed the change is
persisted immediately, there is no need to call save.

String[] Node.getAllowedLifecycleTransitions()

returns the list of valid state transitions for this node.

 246

19 Node Type Management
A repository may support node type management. Depending on implementation-
specific limitations (see §19.3 Node Type Registration Restrictions), this feature
may include some or all of the following:

• Adding a node type to the registry.

• Removing a node type from the registry.

• Updating the definition of a registered node type that is not currently in
use as the node type of any node in the repository.

• Updating the definition of a registered node type that is currently in use as
the node type of a node in the repository.

• Import of node type definitions to the repository.

• Export of node types from the repository.

Whether a particular implementation supports node type management and the
restrictions in place with regard to this feature can be determined by querying the
repository descriptor table with the constants listed in §24.2.4 Node Type
Management.

19.1 NodeTypeDefinition
The NodeTypeDefinition interface provides methods for discovering the static
definition of a node type. These are accessible both before and after the node
type is registered. Its subclass NodeType adds methods that are relevant only
when the node type is “live”; that is, after it has been registered.

In implementations that support node type registrations, NodeTypeDefinition
serves as the superclass of both NodeType and NodeTypeTemplate. In
implementations that do not support node type registration, only objects
implementing the subclass NodeType will be encountered.

19.2 NodeTypeManager
The NodeTypeManager interface provides the following methods related to
registering node types. For methods of this interface that are related to node type
discovery, see §8 Node Type Discovery. In implementations that do not support
node type management, the methods of NodeTypeManager will throw an
UnsupportedRepositoryOperationException.

19.2.1 Creating a NodeTypeTemplate

NodeTypeTemplate NodeTypeManager.createNodeTypeTemplate()

returns an empty NodeTypeTemplate which can then be used to define a node
type and passed to registerNodeType.

NodeTypeTemplate NodeTypeManager.
 createNodeTypeTemplate(NodeTypeDefinition ntd)

 247

returns a NodeTypeTemplate holding the specified NodeTypeDefinition. This
template may then be altered and passed to registerNodeType.

19.2.2 Creating a NodeDefinitionTemplate

NodeDefinitionTemplate NodeTypeManager.
 createNodeDefinitionTemplate()

returns an empty NodeDefinitionTemplate which can then be used to create a
child node definition and attached to a NodeTypeTemplate.

19.2.3 Creating a PropertyDefinitionTemplate

PropertyDefinitionTemplate NodeTypeManager.
 createPropertyDefinitionTemplate()

returns an empty PropertyDefinitionTemplate which can then be used to
create a property definition and attached to a NodeTypeTemplate.

19.2.4 Registering a Node Type

NodeType NodeTypeManager.
 registerNodeType(NodeTypeDefinition ntd, boolean allowUpdate)

registers a new node type or updates an existing node type using the specified
definition and returns the resulting NodeType object. Typically, the object passed
to this method will be a NodeTypeTemplate (a subclass of NodeTypeDefinition)
acquired from NodeTypeManager.createNodeTypeTemplate and then filled-in
with definition information. If allowUpdate is true then an attempt to change the
definition of an already registered node type will be made (see §19.2.4.1
Updating Node Types), otherwise an attempt to register a node type with the
same name as an already registered one will fail immediately.

NodeTypeIterator NodeTypeManager.
 registerNodeTypes(NodeTypeDefinition[] ntds,
 boolean allowUpdate)

registers or updates the specified array of NodeTypeDefinition objects. This
method is used to register or update a set of node types with mutual
dependencies. It returns an iterator over the resulting NodeType objects. The
effect of the method is “all or nothing”; if an error occurs, no changes are made.

19.2.4.1 Updating Node Types

A repository that supports node type management may support updates to a
node type already in use as the type of an existing node. The extent of any such
capability is implementation dependent. For example, some implementations may
permit only changes which do not invalidate existing content, while others may
allow larger changes. How any resulting incompatibilities are resolved is also
implementation dependent. Any changes to the type of an exiting node must take
effect in accordance with the node type assignment behavior of the repository
(see §10.10.1 Node Type Assignment Behavior).

 248

19.2.5 Unregistering a Node Type

void NodeTypeManager.unregisterNodeType(String nodeTypeName)

unregisters the specified node type.

void NodeTypeManager.
 unregisterNodeTypes(String[] nodeTypeNames)

unregisters the specified set of node types. This method is used to unregister a
set of node types with mutual dependencies.

19.2.6 Testing for Node Types

boolean NodeTypeManager.hasNodeType(String nodeTypeName)

returns true if a node type with the specified name is registered and returns
false otherwise.

19.3 Node Type Registration Restrictions
A repository must prevent the registration of any node type that uses a reserved
namespace either in its name or in the name of any of its item definitions (see
3.4 Namespace Mapping).

A repository may restrict the range of node types that can be registered
according to implementation-specific criteria. This is most relevant in cases where
a JCR repository is built on top of an existing content store which has intrinsic
limitations that restrict the space of supported node types.

19.4 Templates
Node types are defined programmatically by setting the attributes of template
objects and passing these to the NodeTypeManager.

The NodeTypeTemplate is a container holding the node type's attributes and its
property and child node definitions, which are themselves represented by
NodeDefinitionTemplate and PropertyDefinitionTemplate objects,
respectively.

The user registers a node type by first acquiring a NodeTypeTemplate and the
necessary PropertyDefinitionTemplate or NodeDefinitionTemplate objects
through the NodeTypeManager (see §19.2 NodeTypeManager). The attributes of
these objects are then set, with the appropriate PropertyDefinitionTemplate
and NodeDefinitionTemplate objects added to the NodeTypeTemplate object.
The resulting NodeTypeTemplate object is then passed to a registration method of
the NodeTypeManager.

19.4.1 NodeTypeTemplate

NodeTypeTemplate, like NodeType, is a subclass of NodeTypeDefinition, so it
shares with NodeType those methods that are relevant to a static definition. In
addition to the methods inherited from NodeTypeDefinition, NodeTypeTemplate
provides methods for setting the attributes of the definition. The setter methods
are named appropriately according to the attribute that they set (see 3.6.1 Node

 249

Type Definition Attributes). Consult the Javadoc for details on the method
signatures.

19.4.1.1 Setting Property and Child Node Definitions

Setting the property definitions within a node type template is done by adding
PropertyDefinitionTemplate objects to the mutable List object retrieved from

List NodeTypeTemplate.getPropertyDefinitionTemplates().

Similarly, setting the child node definitions is done by adding
NodeDefinitionTemplate objects to the mutable List object retrieved from

List NodeTypeTemplate.getNodeDefinitionTemplates().

19.4.1.2 Default Values of Node Type Attributes

See the corresponding get methods for each attribute in NodeTypeDefinition
(see §19.1 NodeTypeDefinition) for the default values assumed when a new
empty NodeTypeTemplate is created.

19.4.2 PropertyDefinitionTemplate

The PropertyDefinitionTemplate interface extends PropertyDefinition (see
§8.4 PropertyDefinition Object) with the addition of write methods, enabling the
characteristics of a child property definition to be set, after which the
PropertyDefinitionTemplate is added to a NodeTypeTemplate. The setter
methods are named appropriately according to the attribute that they set (see
§3.7.2 Item Definition Attributes and §3.7.3 Property Definition Attributes).
Consult the Javadoc for details on the method signatures.

19.4.2.1 Default Values of Property Definition Attributes

See the corresponding get methods for each attribute in PropertyDefinition
(see §8.4 PropertyDefinition Object) for the default values assumed when a new
empty PropertyDefinitionTemplate is created.

19.4.3 NodeDefinitionTemplate

The NodeDefinitionTemplate interface extends NodeDefinition (see §8.5
NodeDefinition Object) with the addition of write methods, enabling the
characteristics of a child node definition to be set, after which the
NodeDefinitionTemplate is added to a NodeTypeTemplate. The setter methods
are named appropriately according to the attribute that they set (see §3.7.2 Item
Definition Attributes and §3.7.4 Child Node Definition Attributes). Consult the
Javadoc for details on the method signatures.

19.4.3.1 Default Values of Child Node Definition Attributes

See the corresponding get methods for each attribute in NodeDefinition (see
§8.5 NodeDefinition Object) for the default values assumed when a new empty
NodeDefinitionTemplate is created.

 250

20 Retention and Hold
A repository may support retention and hold, which enables an external retention
management application to apply retention policies to repository content and
supports the concepts of hold and release22.

Whether a particular implementation supports these features can be determined
by querying the repository descriptor table with

Repository.OPTION_RETENTION_SUPPORTED.

a return value of true indicates support (see §24.2 Repository Descriptors).

This API is intended for use by a retention and hold management system (often
external to the repository). It should not be used as a substitute for normal
access control.

20.1 Retention Manager
Retention and hold is exposed through a

 javax.jcr.retention.RetentionManager

acquired from the Session using

RetentionManager Session.getRetentionManager().

All changes made through the retention and hold API are session-mediated and
therefore require a Session.save() to go into effect.

20.2 Placing a Hold
The method

Hold RetentionManager.
 addHold(String absPath, String name, boolean isDeep)

places a hold on the node at absPath. If isDeep is false, a shallow hold is
placed. If isDeep is true, a deep hold is placed. The method returns the resulting
Hold object. The hold only takes effect upon Session.save(). A node may have
more than one hold.

The format and interpretation of the name is application-dependent. It need not
be unique.

22 In some systems this feature is called “freeze” or “legal hold” (when the hold
is applied due to legal requirements).

 251

20.3 Effect of a Hold
A shallow hold in effect on a node N has the same effect as would be the case if N
were protected.

A deep hold in effect on a node N has the same effect as would be the case if N
and all nodes in its subgraph were protected (see §3.7.2.2 Protected).

20.4 Getting the Holds present on a Node
The method

Hold[] RetentionManager.getHolds(String absPath)

returns all holds on the node at absPath.

20.5 Removing a Hold
The method

void RetentionManager.
 removeHold(String absPath, Hold hold)

removes the specified hold from the node at absPath. The removal only takes
effect upon Session.save().

20.6 Hold Object
The Hold interface defines two methods:

String Hold.getName()

which returns the name of the hold, and

boolean Hold.isDeep()

which reports whether the hold is deep or shallow.

20.7 Setting a Retention Policy
void RetentionManager.
 setRetentionPolicy(String absPath, RetentionPolicy policy)

sets the retention policy of the node at absPath to that defined in the specified
retention policy object. The policy only takes effect upon Session.save().

20.8 Getting a Retention Policy
RetentionPolicy RetentionManager.
 getRetentionPolicy(String absPath)

returns the retention policy on the node at absPath or null if no retention policy
has been set on the node.

20.9 Effect of a Retention Policy
Interpretation and enforcement of a retention policy is an implementation issue.
However, in all cases a retention policy in effect on a node N:

 252

• prevents the removal of N and

• prevents the addition and removal of all child nodes of N and

• prevents the addition, removal and change of all properties of N.

20.10 RetentionPolicy object
The RetentionPolicy interface defines one method:

String RetentionPolicy.getName()

which returns the name of the policy.

20.11 Removing a Retention Policy
void RetentionManager.removeRetentionPolicy(String absPath)

removes the current retention policy on this node, if any. The removal only takes
effect upon a call to Session.save().

 253

21 Transactions
A repository may support transactions.

Whether a particular implementation supports transactions can be determined by
querying the repository descriptor table with

Repository.OPTION_TRANSACTIONS_SUPPORTED.

A return value of true indicates support for transactions (see Repository
Descriptors).

A repository that supports transactions must adhere to the Java Transaction API
(JTA) specification23.

The actual methods used to control transaction boundaries are not defined by this
specification. For example, there are no begin, commit or rollback methods in JCR
API. These methods are defined by the JTA specification.

The JTA provides for two general approaches to transactions, container managed
transactions and user managed transactions. In the first case, container managed
transactions, the transaction management is taken care of by the application
server and it is entirely transparent to the application using the API. The JTA
interfaces javax.transaction.TransactionManager and
javax.transaction.Transaction are the relevant ones in this context (though
the client, as mentioned, will never have a need to use these).

In the second case, user managed transactions, the application using the API
may choose to control transaction boundaries from within the application. In this
case the relevant interface is javax.transaction.UserTransaction. This is the
interface that provides the methods begin, commit, rollback and so forth. Note
that behind the scenes the javax.transaction.TransactionManager and
javax.transaction.Transaction are still employed, but again, the client does
not deal with these.

A content repository implementation must support both of these approaches if it
supports transactions.

23 See http://java.sun.com/products/jta/index.html.

 254

21.1 Container Managed Transactions: Sample Request Flow

21.2 User Managed Transactions: Sample Code
// Get user transaction (for example, through JNDI)
UserTransaction utx = ...

// Get a node
Node n = ...

// Start a user transaction
utx.begin();

// Do some work
n.setProperty("myapp:title", "A Tale of Two Cities")
n.save();

Transactional
Application 

Application 
Server 

Transaction 
Manager 

XARepository 

XASession 

XAResource 

begin

getSession

login

new

new

getXAResource

enlistResource

start

application performs operations

logout

delistResource

end

commit

prepare

commit

 255

// Do some more work
n.setProperty("myapp:author", "Charles Dickens")
n.save();

// Commit the user transaction
utx.commit();

21.3 Save vs. Commit
Throughout this specification we often mention the distinction between transient
and persistent levels. The persistent level refers to the (one or more) workspaces
that make up the actual content storage of the repository. The transient level
refers to in-memory storage associated with a particular Session object.

In these discussions we usually assume that operations occur outside the context
of transactions; it is assumed that save and other workspace-altering methods
immediately effect changes to the persistent layer, causing those changes to be
made visible to other sessions.

This is not the case, however, once transactions are introduced. Within a
transaction, changes made by save (or other, workspace-direct, methods) are
transactionalized and are only persisted and published (made visible to other
sessions), upon commit of the transaction. A rollback will, conversely, revert the
effects of any saves or workspace-direct methods called within the transaction.

Note, however, that changes made in the transient storage are not recorded by a
transaction. This means that a rollback will not revert changes made to the
transient storage of the Session. After a rollback the Session object state will
still contain any pending changes that were present before the rollback.

21.4 Single Session Across Multiple Transactions
Because modifications in the transient layer are not transactionalized, the
possibility exists for some implementations to allow a Session to be shared
across transactions. This possibility arises because in JTA, an XAResource may be
successively associated with different global transactions and in many
implementations the natural mapping will be to make the Session implement the
XAResource. The following code snippet illustrates how an XAResource may be
shared across two global transactions:

// Associate the resource (our Session) with a global
// transaction xid1
res.start(xid1, TMNOFLAGS);

// Do something with res, on behalf of xid1
// ...

// Suspend work on this transaction
res.end(xid1, TMSUSPEND);

// Associate (the same!) resource with another
// global transaction xid2
res.start(xid2, TMNOFLAGS);

// Do something with res, on behalf of xid2
// ...

 256

// End work
res.end(xid2, TMSUCCESS);

// Resume work with former transaction
res.start(xid1, TMRESUME);

// Commit work recorded when associated with xid2
res.commit(xid2, true);

In cases where the XAResource corresponds to a Session (that is, probably most
implementations), items that have been obtained in the context of xid1 would
still be valid when the Session is effectively associated with xid2. In other
words, all transactions working on the same Session would share the transient
items obtained through that Session.

In those implementations that adopt a copy-on-read approach to transient
storage (see §10.11.9 Seeing Changes Made by Other Sessions) this will mean
that the a session is disassociated from a global transaction. This is however,
outside the scope of this specification.

 257

22 Same-Name Siblings
A repository may support same-name siblings (SNS), which enables a node to
have more than one child node with the same name.

Whether a particular implementation supports same-name siblings can be
determined by querying the repository descriptor table with

Repository.NODE_TYPE_MANAGEMENT_SAME_NAME_SIBLINGS_SUPPORTED.

A return value of true indicates support for transactions (see Repository
Descriptors).

22.1 Scope of Same-Name Siblings
Same-name sibling capability is defined per child node in the node type definition
of the parent node using the same-name sibling attribute of the child node
definition. Therefore, whether a particular child node can have sibling node with
the same name depends on that child node's scoping child node definition (see
§3.7.2.1 Item Definition Name).

A repository supports same-name siblings by permitting the registration of node
types (or by providing built-in node types) with child node definitions that have a
same-name sibling attribute of true. Disallowing same-name siblings consists in
preventing the availability of such node types.

22.2 Addressing Same-Name Siblings by Path
A particular node within a same-name sibling group can be addressed by
embedding an array-like notation within the path. For example the path
/a/b[2]/c[3] specifies the third child node called c of the second child node
called b of the node a below the root.

The indexing of same-name siblings begins at 1, not 0. This is done for backwards
compatibility with JCR 1.0 and in particular the support in that specification for
XPath, which uses a base-1 index.

A name in a content repository path that does not explicitly specify an index
implies an index of 1. For example, /a/b/c is equivalent to /a[1]/b[1]/c[1].

The indexing is based on the order in which child nodes are returned in the
iterator acquired through Node.getNodes().

Same-name siblings are indexed by their position relative to each other in this
larger ordered set. For example, the order of child nodes returned by a getNodes
on some parent might be:

[A, B, C, A, D]

In this case, A[1] refers the first node in the list and A[2] refers to the fourth
node in the list.

If a node with same-name siblings is removed, this decrements by one the
indices of all the siblings with indices greater than that of the removed node. In

 258

other words, a removal compacts the array of same-name siblings and causes the
minimal re-numbering required to maintain the original order but leave no gaps
in the numbering.

The relative ordering of a set of same-name sibling nodes is not guaranteed to be
persistent unless the nodes are specified to also be orderable (see §23 Orderable
Child Nodes). Non-orderable same-name siblings can only be relied upon to act
as an anonymous, unordered collection of nodes, though an implementation is
free to make the ordering more stable.

22.3 Reading and Writing Same-Name Siblings

22.3.1 Getting a Same-Name Sibling Set

NodeIterator Node.getNodes(String namePattern)

can be used to retrieve a same-name sibling set. This method returns an iterator
over all the child nodes of the calling node that have the specified pattern. Making
namePattern just a name, without wildcards, retrieves all the child nodes with
that name, see §5.2.2 Iterating Over Child Items.

22.3.2 Getting a Particular Same-Name Sibling Node

In the method

Node Node.getNode(String relPath),

if relPath contains a path element that refers to a node with same-name sibling
nodes without explicitly including an index using the array-style notation ([x]),
then the index [1] is assumed.

22.3.3 Getting a Node's Index

int Node.getIndex()

returns the index of this node within the ordered set of its same-name sibling
nodes. This index is the one used to address same-name siblings using the
square-bracket notation, e.g., /a[3]/b[4]. For nodes that do not have same-
name-siblings, this method will always return 1.

22.3.4 When a Same-Name Sibling is a Primary Item

In cases where the primary child item of a node specifies the name of a set of
same-name sibling child nodes, the node returned by

Item Node.getPrimaryItem()

will be the one among the same-name siblings with index [1].

22.3.5 Removing a Same-Name Sibling Node

If a node with same-name siblings is removed using

void Node.remove()

 259

this decrements by one the indices of all the siblings with indices greater than
that of the removed node. In other words, a removal compacts the array of
same-name siblings and causes the minimal re-numbering required to maintain
the original order but leave no gaps in the numbering.

22.4 Properties Cannot Have Same-Name Siblings
Properties cannot have sibling properties of the same name. However, they may
have multiple values (see §3.6.3 Single and Multi-Value Properties).

22.5 Effect of Access Denial on Read of Same-Name Siblings
In most cases, the nodes and properties to which a user does not have read
access will simply appear not to exist on a read attempt (see §5.5 Effect of
Access Denial on Read).

However, a repository that supports same-name siblings may violate this general
rule in the case where a user is denied access to a subset of same-name sibling
nodes. In such a case, a repository may choose not to compact the indices of the
same-name-sibling set (thus “hiding” the any inaccessible nodes), but instead
allow “holes” to appear in the index count.

For example, consider the nodes M/N, M/N[2] and M/N[3] with identifiers x, y and
z, respectively:

M/N (x)
M/N[2] (y)
M/N[3] (z)

On M.getNodes(), a user with no read access to the node with identifier y will
observe one of two behaviors, depending on the implementation. A repository
that compacts indices on read denial will return

M/N (x)
M/N[2] (z)

while a repository that does not compact indices will return

M/N (x)
M/N[3] (z)

Which behavior is followed is implementation-determined. Note however, that in
the case where a subset of same-name siblings is actually removed (as opposed
to hidden from certain users), index compaction is required (see §22.2.5
Removing a Same-Name Sibling Node).

 260

23 Orderable Child Nodes
A repository may support orderable child nodes, which enables persistent, client-
controlled ordering of a node's child nodes.

Whether a particular implementation supports orderable child nodes can be
determined by querying the repository descriptor table with

Repository.NODE_TYPE_MANAGEMENT_ORDERABLE_CHILD_NODES_SUPPORTED.

A return value of true indicates support for transactions (see Repository
Descriptors).

23.1 Scope of Orderable Child Nodes
The orderable child nodes setting is defined per node type. Whether the child
nodes of a node N are orderable depends on the node type of N.

A repository supports orderable child nodes by permitting the registration of node
types with an orderable child node setting of true. Disallowing orderable child
nodes consists in preventing the availability of such node types.

For a given NodeType T:

• If T.hasOrderableChildNodes() returns true then all nodes with primary
type T must have orderable child nodes.

• If T.hasOrderableChildNodes() returns false then some nodes with
primary type T may have orderable child nodes.

Only the primary node type of a node is relevant to the orderable status of its
child nodes. This setting on a mixin node type of a node has no meaning.

If a node has orderable child nodes then at any time its child node set has a
current order, reflected in the iterator returned by Node.getNodes()(see §5.2.2
Iterating Over Child Items). If a node does not have orderable child nodes then
the order of nodes returned by Node.getNodes is not guaranteed and may
change at any time.

23.2 Ordering Child Nodes
If a node has orderable child nodes then their current order can be changed using

void Node.orderBefore(String srcChildRelPath,
 String destChildRelPath).

This method moves the child node at srcChildRelPath and inserts it immediately
before its sibling at destChildRelPath in the child node list. To place the node
srcChildRelPath at the end of the list, a destChildRelPath of null is used.

Apart from the case where destChildRelPath is null, both of these arguments
must be relative paths of depth 1, in other words, they must be the names of
child nodes, possibly suffixed with an index. (see §3.2 Names and §3.4 Paths).

 261

If srcChildRelPath and destChildRelPath are the identical, then no change is
made.

Changes to the current order are visible immediately through the current Session
and are persisted to the workspace on Session.save.

23.3 Adding a New Child Node
When a child node is added to a node that has orderable child nodes it is added to
the end of the list.

23.4 Orderable Same-Name Siblings
If a node supports orderable child nodes and same-name siblings then the order
of the nodes within a set of same-name siblings must be persisted and be re-
orderable by the client. For example, given the following initial ordering of child
nodes,

[A, B, C, A, D]

a call to

orderBefore(“A[2]”,”A[1]”)

will cause the child node currently called A[2] to be moved to the position before
the child node currently called A[1], the resulting order will be:

[A, A, B, C, D]

where the first A is the one that was formerly after C and the second A is the one
that was formerly at the head of the list.

Note, however, that after the completion of this operation the indices of the two
nodes have now switched, due to their new positions relative to each other. What
was formerly A[2] is now A[1] and what was formerly A[1] is now A[2].

23.5 Non-orderable Child Nodes
When a node does not support orderable child nodes this means that it is left up
to the implementation to maintain the order of child nodes. Applications should
not, in this case, depend on the order of child nodes returned by
Node.getNodes(), as it may change at any time.

23.6 Properties are Never Orderable
Properties are never client orderable, the order in which properties are returned
by Node.getProperties() is always maintained by the implementation and can
change at any time.

 262

24 Repository Compliance
A JCR implementation must support the basic repository features:

• Repository acquisition and user authentication and authorization (see §4
Connecting)

• Reading through path, identifier and browse access (see §5 Reading)

• Query (see §6 Query)

• Export (see §7 Export)

• Node Type Discovery (see §8 Node Type Discovery)

• Permission and capability checking (see §9 Permissions and Capabilities)

These features must be supported by all JCR repositories.

In addition, a repository may support any subset of the additional features
defined in sections §10 to §23.

The presence of each additional feature is individually testable either through
querying the value of a repository descriptor (see §24.2 Repository Descriptors)
or testing for the availability of a specific node type (see §24.3 Node Type-
Related Features), thus allowing an application to programmatically determine
the capabilities of a specific JCR implementation.

An implementation that supports all the additional features defined in this
specification is a fully-compliant repository.

24.1 Definition of Support
By indicating support for testable feature, a repository asserts that it fully
conforms to the semantics of that feature as defined in this specification, with two
possible exceptions:

• aspects of the feature clearly indicated as being optional (i.e., should,
may, should not), and

• aspects of the feature testable by their own repository descriptors (for
example, whether a repository supports joins is separately testable from
whether it supports searches in general).

However, to indicate that it supports a testable feature, a repository is only
required to support that feature in some, not all, contexts. For example, a
repository may restrict its support for a feature based on access control, path, or
other criteria.

24.2 Repository Descriptors
Repository descriptors are used to test support for repository features that have a
behavioral (as opposed to a data-model) aspect.

 263

Each descriptor is identified by a unique key, which is a string. An implementation
must recognize all the standard keys defined in this specification and may
recognize additional implementation-specific keys. The full set of valid keys (both
standard and implementation-specific) for an implementation is returned by

String[] Repository.getDescriptorKeys().

The method

 boolean Repository.isStandardDescriptor(String key)

returns true if key is the name of a standard descriptor defined within this
specification and false if it is either a valid implementation-specific key or not a
valid key.

The method

boolean Repository.isSingleValueDescriptor(String key)

returns true if key is the name of a single value descriptor and false otherwise.

The value of a particular descriptor is found by passing that descriptor's key to
either

Value Repository.getDescriptorValue(String key)

or

Value[] Repository.getDescriptorValues(String key).

depending on whether that key is defined to return a single or a multiple value.

The JCR 1.0 method

String Repository.getDescriptor()

is still supported as a convenience method. The call

String s = repository.getDescriptor(key);

is equivalent to

Value v = repository.getDescriptorValue(key);
String s = (v == null) ? null : v.getString();

24.2.1 Repository Information

Key Descriptor

SPEC_VERSION_DESC STRING: The version of the specification that this repository

implements. For JCR 2.0 the value of this descriptor is

“2.0”.

SPEC_NAME_DESC STRING: The name of the specification that this repository

implements. For JCR 2.0 the value of this descriptor is

“Content Repository for Java Technology API”.

 264

REP_VENDOR_DESC STRING: The name of the repository vendor.

REP_VENDOR_URL_DESC STRING: The URL of the repository vendor.

REP_NAME_DESC STRING: The name of this repository implementation.

REP_VERSION_DESC STRING: The version of this repository implementation.

24.2.2 General

Key Descriptor

WRITE_SUPPORTED BOOLEAN: Returns true if and only if repository content can

be updated through the JCR API , as opposed to having read-

only access (see §10 Writing).

IDENTIFIER_STABILITY STRING: Returns one of the following javax.jcr.Repository

constants indicating the stability of non-referenceable

identifiers:

• IDENTIFIER_STABILITY_METHOD_DURATION:

Identifiers may change between method calls

• IDENTIFIER_STABILITY_SAVE_DURATION: Identifiers

are guaranteed stable within a single save/refresh

cycle.

• IDENTIFIER_STABILITY_SESSION_DURATION:

Identifiers are guaranteed stable within a single

session.

• IDENTIFIER_STABILITY_INDEFINITE_DURATION:

Identifiers are guaranteed to be stable forever. Note

that referenceable identifiers always have this level

of stability.

See 3.7 Identifiers and §3.8 Referenceable Nodes.

OPTION_XML_IMPORT_SUPPORTED BOOLEAN: Returns true if and only if XML import is supported

(see §11 Import).

OPTION_UNFILED_CONTENT_SUPPORTED BOOLEAN: Returns true if and only if unfiled content is

supported (see §3.12 Unfiled Content).

OPTION_SIMPLE_VERSIONING_

SUPPORTED

BOOLEAN: Returns true if and only if simple versioning is

supported (see §3.13 Versioning Model and §15 Versioning).

OPTION_ACTIVITIES_SUPPORTED BOOLEAN: Returns true if and only if activities are supported

(see §15.12 Activities).

OPTION_BASELINES_SUPPORTED BOOLEAN: Returns true if and only if configurations and

baselines are supported (see §3.13 Versioning Model and

§15.13 Configurations and Baselines).

 265

Key Descriptor

OPTION_ACCESS_CONTROL_SUPPORTED BOOLEAN: Returns true if and only if access control is

supported (see §16 Access Control Management).

OPTION_LOCKING_SUPPORTED BOOLEAN: Returns true if and only if locking is supported (see

§17 Locking).

OPTION_OBSERVATION_SUPPORTED BOOLEAN: Returns true if and only if asynchronous

observation is supported (see §12 Observation).

OPTION_JOURNALED_OBSERVATION_

SUPPORTED

BOOLEAN: Returns true if and only if journaled observation is

supported (see §12 Observation).

OPTION_RETENTION_SUPPORTED BOOLEAN: Returns true if and only if retention and hold are

supported (see §20 Retention and Hold).

OPTION_LIFECYCLE_SUPPORTED BOOLEAN: Returns true if and only if lifecycle management is

supported (see §18 Lifecycle Management).

OPTION_TRANSACTIONS_SUPPORTED BOOLEAN: Returns true if and only if transactions are

supported (see §21 Transactions).

OPTION_WORKSPACE_MANAGEMENT_

SUPPORTED

BOOLEAN: Returns true if and only if workspace management

is supported (see §13 Workspace Management).

OPTION_NODE_AND_PROPERTY_WITH_SAME_

NAME_SUPPORTED

BOOLEAN: Returns true if and only if node and property with

same name is supported (see §5.1.8 Node and Property with

Same Name).

24.2.3 Node Operations

Key Descriptor

OPTION_UPDATE_PRIMARY_NODE_TYPE_

SUPPORTED

BOOLEAN: Returns true if and only if the primary node type of

an existing node can be updated (see §10.10.2 Updating a

Node's Primary Type).

OPTION_UPDATE_MIXIN_NODE_TYPES_

SUPPORTED

BOOLEAN: Returns true if and only if the mixin node types of

an existing node can be added and removed (see §10.10.3

Assigning Mixin Node Types).

OPTION_SHAREABLE_NODES_SUPPORTED BOOLEAN: Returns true if and only if the creation of shareable

nodes is supported (see §3.9 Shareable Nodes Model and §14

Shareable Nodes).

24.2.4 Node Type Management

These repository descriptors characterize the types of nodes an API consumer
may register (see §19 Node Type Management). They do not constrain a
repository's built-in node types (see §3.7 Node Types).

 266

Key Descriptor

OPTION_NODE_TYPE_MANAGEMENT_

SUPPORTED

BOOLEAN: Returns true if and only if node type management

is supported.

NODE_TYPE_MANAGEMENT_INHERITANCE STRING: Returns one of the following javax.jcr.Repository

constants indicating the level of support for node type

inheritance:

• NODE_TYPE_MANAGEMENT_INHERITANCE_MINIMAL:

Registration of primary node types is limited to

those which have only nt:base as supertype.

Registration of mixin node types is limited to those

without any supertypes.

• NODE_TYPE_MANAGEMENT_INHERITANCE_SINGLE:

Registration of primary node types is limited to

those with exactly one supertype. Registration of

mixin node types is limited to those with at most

one supertype.

• NODE_TYPE_MANAGEMENT_INHERITANCE_MULTIPLE:

Primary node types can be registered with one or

more supertypes. Mixin node types can be registered

with zero or more supertypes.

NODE_TYPE_MANAGEMENT_OVERRIDES_

SUPPORTED

BOOLEAN: Returns true if and only if override of inherited

property or child node definitions is supported (see §3.7.6

Node Type Inheritance).

NODE_TYPE_MANAGEMENT_PRIMARY_ITEM_

NAME_SUPPORTED

BOOLEAN: Returns true if and only if primary items are

supported (see §3.7.1.7 Primary Item).

NODE_TYPE_MANAGEMENT_ORDERABLE_

CHILD_NODES_SUPPORTED

BOOLEAN: Returns true if and only if preservation of child

node ordering is supported (see §5.2.2.1 Child Node Order

Preservation).

NODE_TYPE_MANAGEMENT_RESIDUAL_

DEFINITIONS_SUPPORTED

BOOLEAN: Returns true if and only if residual property and

child node definitions are supported (see §3.7.2.1.2 Item

Definition Name and Residual Definitions).

NODE_TYPE_MANAGEMENT_AUTOCREATED_

DEFINITIONS_SUPPORTED

BOOLEAN: Returns true if and only if autocreated properties

and child nodes are supported (see §3.7.2.3 Auto-Created).

NODE_TYPE_MANAGEMENT_SAME_NAME_

SIBLINGS_SUPPORTED

BOOLEAN: Returns true if and only if same-name sibling child

nodes are supported (see §3.7.4.3 Same-Name Siblings).

NODE_TYPE_MANAGEMENT_PROPERTY_TYPES LONG[]: Returns an array holding the

javax.jcr.PropertyType constants for the property types

(including UNDEFINED, if supported) that a registered node

type can specify, or a zero-length array if registered node

types cannot specify property definitions (see §3.6.1 Property

 267

Types).

NODE_TYPE_MANAGEMENT_MULTIVALUED_

PROPERTIES_SUPPORTED

boolean: Returns true if and only if multi-value properties

are supported (see §3.6.3 Single and Multi-Value Properties).

NODE_TYPE_MANAGEMENT_MULTIPLE_

BINARY_PROPERTIES_SUPPORTED

BOOLEAN: Returns true if and only if registration of a node

types with more than one BINARY property is permitted (see

§3.6.1.7 BINARY).

NODE_TYPE_MANAGEMENT_VALUE_

CONSTRAINTS_SUPPORTED

BOOLEAN: Returns true if and only value-constraints are

supported (see §3.7.3.6 Value Constraints).

NODE_TYPE_MANAGEMENT_UPDATE_IN_USE_

SUPORTED

BOOLEAN: Returns true if and only the update of node types

is supported for node types currently in use as the type of an

existing node in the repository.

24.2.5 Query

Key Descriptor

QUERY_LANGUAGES STRING[]: Returns an array holding the constants

representing the supported query languages, or a zero-sized

array if query is not supported (see §6 Query).

QUERY_STORED_QUERIES_SUPPORTED BOOLEAN: Returns true if and only if stored queries are

supported (see §6.9.7 Stored Query).

QUERY_FULL_TEXT_SEARCH_SUPPORTED BOOLEAN: Returns true if and only if full-text search is

supported (see §6.7.19 FullTextSearch).

QUERY_JOINS STRING: Returns one of the following javax.jcr.Repository

constants indicating the level of support for joins in queries:

• QUERY_JOINS_NONE: Joins are not supported. Queries

are limited to a single selector.

• QUERY_JOINS_INNER: Inner joins are supported.

• QUERY_JOINS_INNER_OUTER: Inner and outer joins

are supported.

See §6.7.5 Join.

24.2.6 Deprecated Descriptors

Key Descriptor

LEVEL_1_SUPPORTED BOOLEAN: Returns true if and only if

 268

• OPTION_XML_EXPORT_SUPPORTED = true and

• QUERY_LANGUAGES is of non-zero length.

These semantics are identical to those in JCR 1.0. This

constant is deprecated.

LEVEL_2_SUPPORTED BOOLEAN: Returns true if and only if

• LEVEL_1_SUPPORTED = true,

• WRITE_SUPPORTED = true and

• OPTION_XML_IMPORT_SUPPORTED = true.

These semantics are identical to those in JCR 1.0. This

constant is deprecated.

OPTION_QUERY_SQL_SUPPORTED BOOLEAN: Returns true if and only if the (deprecated) JCR

1.0 SQL query language is supported . This constant is

deprecated.

QUERY_XPATH_POS_INDEX BOOLEAN: Returns false unless the (deprecated) JCR 1.0

XPath query language is supported. If JCR 1.0 XPath is

supported then this descriptor has the same semantics as

in JCR 1.0. This constant is deprecated.

QUERY_XPATH_DOC_ORDER BOOLEAN: Returns false unless the (deprecated) JCR 1.0

XPath query language is supported. If JCR 1.0 XPath is

supported then this descriptor has the same semantics as

in JCR 1.0. This constant is deprecated.

24.2.7 Implementation-Specific Descriptors

Implementers are free to introduce their own descriptors. The descriptor keys
should use Java package-style names in namespaces controlled by the
implementer. The Repository.isStandardDescriptor method must return false
for these keys.

24.3 Node Type-Related Features
The node type registry is used to test support for features which correspond to a
JCR-defined node type. For example, support for referenceable nodes as a feature
is equivalent to support for the node type mix:referenceable. Such features are
more data model-oriented than the behavioral features reported by descriptors.

Testing for the availability of a particular node type is done using

boolean NodeTypeManager.hasNodeType(String nodeTypeName)

Any node types associated with a particular feature are described in the section
describing that feature.

 269

The presence of the indicated node types in the node type registry (tested with
NodeTypeManager.hasNodeType, see §8.1 NodeTypeManager Object) indicates
support for the corresponding feature.

Node Type Feature

mix:referenceable Referenceable nodes (see §3.8 Referenceable Nodes).

mix:created

mix:mimeType

mix:lastModified

mix:title

mix:language

nt:hierarchyNode

nt:file

nt:linkedFile

nt:folder

nt:resource

nt:address

Standard application node types, a repository can support a

subset (see §3.7.11 Standard Application Node Types).

mix:etag Entity tags (see §3.7.12 Entity Tags).

nt:unstructured Unstructured content (see §3.7.13 Unstructured Content).

nt:nodeType

nt:propertyDefinition

nt:childNodeDefinition

Node type definition storage in content (see §3.7.14 Node

Type Definition Storage).

24.4 Implementation Issues
JCR adapters built against some existing repositories may require a connection to
the back-end repository to determine whether a feature is supported. Using
methods on Repository (as opposed, for example, to methods on Session) to
test support for a feature is therefore potentially problematic. However, several
approaches are open to such adapters:

• Establish a transient connection to the back-end (for example, using
service-to-service authentication or as “guest”) to determine support for a
feature.

• Determine the features supported by the back-end upon application
deployment, and store this in configuration file locally available to the JCR
adapter at runtime.

• Report the feature set supported by the type of back end, which may be a
superset of the feature set supported by the specific instance of that back-
end type.

 270

25 Appendix

25.1 Treatment of Identifiers
A number of different methods in the API transfer node state from one location to
another. They often differ in how they treat the identifier of the node. Some
methods always behave the same way in this regard, others have various options
that control their behavior. The following table summarizes the behaviors of the
methods.

Method Referenceable
Identifiers

Non-referenceable
Identifiers

Save

Identifiers must be preserved, with the possible exception
of the first save of a new node (see §3.7.1 Identifier
Assignment). The state of a transient node is saved to the
persistent node with the same identifier.

Copy
(within a workspace)

New identifiers must be created.

Copy
(between workspaces)

New referenceable
identifiers must be
created.

New non-referenceable
identifiers may be created. The
stability of non-referenceable
identifiers is a repository
implementation variant.

Move Referenceable identifiers
must be preserved.

Clone, Restore Referenceable identifiers
must be preserved. On
conflict with an existing
node a flag governs
whether the existing
node is removed or an
exception thrown.

Update, Merge Referenceable identifiers
must be preserved. On
conflict with an existing
node, that node is
replaced at its existing
location in the target
workspace.

Non-referenceable identifiers
may be preserved. The stability
of non-referenceable identifiers
is a repository implementation
variant.

Import A flag determines whether new identifiers are created or
incoming ones preserved. On conflict with an existing
node the options are to either replace the existing node in
place, remove the existing node, or throw an exception.

 271

25.2 Compact Node Type Definition Notation
The following grammar defines the compact node type definition (CND) notation
used to define node types throughout this specification.

25.2.1 String Literals in CND Grammar

Throughout this section string literals that appear in the syntactic grammar
defining CND must be interpreted as specified in §1.3.1 String Literals in
Syntactic Grammars.

25.2.2 Variant Node Type Definitions

In a CND, the presence of a question mark (“?”) indicates that an attribute in
question can vary across repository implementations (see §3.7.10 Base Primary
Node Type and 3.7.11 Standard Application Node Types).

In the case of the queryable node type attribute, the absence of an explicit
keyword (either query or noquery) indicates that the attribute is a variant.

Such variant node type definitions cannot be instantiated in a repository as-is. If
an implementation supports a variant node type its node type registry must
contain a definition of that node type in which each variant attribute is resolved to
a concrete value.

25.2.3 CND Grammar

/* A CND consists of zero or more blocks, each of which is
 either a namespace declaration or a node type definition.
 Namespace prefixes referenced in a node type definition
 block must be declared in a preceding namespace declaration
 block. */
Cnd ::= {NamespaceMapping | NodeTypeDef}

/* A namespace declaration consists of prefix/URI pair. The
 prefix must be a valid JCR namespace prefix, which is the
 same as a valid XML namespace prefix. The URI can in fact be
 any string. Just as in XML, it need not actually be a URI,
 though adhering to that convention is recommended. */
NamespaceMapping ::= '<' Prefix '=' Uri '>'
Prefix ::= String
Uri ::= String

/* A node type definition consists of a node type name followed
 by an optional supertypes block, an optional node type
 attributes block and zero or more blocks, each of which is
 either a property or child node definition. */
NodeTypeDef ::= NodeTypeName [Supertypes]
 [NodeTypeAttribute {NodeTypeAttribute}]
 {PropertyDef | ChildNodeDef}

/* The node type name is delimited by square brackets and must
 be a valid JCR name. */
NodeTypeName ::= '[' String ']'

/* The list of supertypes is prefixed by a '>'. If the node
 type is not a mixin then it implicitly has nt:base as a
 supertype even if neither nt:base nor a subtype of nt:base

 272

 appears in the list or if this element is absent. A question
 mark indicates that the supertypes list is a variant. */
Supertypes ::= '>' (StringList | '?')

/* The node type attributes are indicated by the presence or
 absence of keywords. */
NodeTypeAttribute ::= Orderable | Mixin | Abstract | Query |
 PrimaryItem

/* In the following, mention of a keyword, like 'orderable',
 refers to all the forms of that keyword, including short
 forms ('ord' and 'o', for example) */

/* If 'orderable' is present without a '?' then orderable child
 nodes is supported. If 'orderable' is present with a '?'
 then orderable child nodes is a variant. If 'orderable'
 is absent then orderable child nodes is not supported. */
Orderable ::= ('orderable' | 'ord' | 'o') ['?']

/* If 'mixin' is present without a '?' then the node type is a
 mixin. If 'mixin' is present with a '?' then the mixin
 status is a variant. If 'mixin' is absent then the node type
 is primary. */
Mixin ::= ('mixin' | 'mix' | 'm') ['?']

/* If 'abstract' is present without a '?' then the node type is
 abstract. If 'abstract' is present with a '?' then the
 abstract status is a variant. If 'abstract' is absent then
 the node type is concrete. */
Abstract ::= ('abstract' | 'abs' | 'a') ['?']

/* If 'query' is present then the node type is
 queryable. If 'noquery' is present then the node type is
 not queryable. If neither query nor noquery are present then
 the queryable setting of the node type is a variant. */
Query ::= ('noquery' | 'nq') | ('query' | 'q')

/* If 'primaryitem' is present without a '?' then the string
 following it is the name of the primary item of the node
 type. If 'primaryitem' is present with a '?' then
 the primary item is a variant. If 'primaryitem' is absent
 then the node type has no primary item. */
PrimaryItem ::= ('primaryitem'| '!')(String | '?')

/* A property definition consists of a property name element
 followed by optional property type, default values, property
 attributes and value constraints elements. */
PropertyDef ::= PropertyName [PropertyType] [DefaultValues]
 [PropertyAttribute {PropertyAttribute}]
 [ValueConstraints]

/* The property name, or '*' to indicate a residual property
 definition, is prefixed with a '-'. */
PropertyName ::= '-' String

/* The property type is delimited by parentheses ('*' is a
 synonym for UNDEFINED). If this element is absent,
 STRING is assumed. A '?' indicates that this attribute is
 a variant. */
PropertyType ::= '(' ('STRING' | 'BINARY' | 'LONG' | 'DOUBLE' |
 'BOOLEAN' | 'DATE' | 'NAME' | 'PATH' |

 273

 'REFERENCE' | 'WEAKREFERENCE' |
 'DECIMAL' | 'URI' | 'UNDEFINED' | '*' |
 '?') ')'

/* The default values, if any, are listed after a '='. The
 attribute is a list in order to accommodate multi-
 value properties. The absence of this element indicates that
 there is no static default value reportable. A '?' indicates
 that this attribute is a variant */
DefaultValues ::= '=' (StringList | '?')

/* The value constraints, if any, are listed after a '<'. The
 absence of this element indicates that no value constraints
 reportable within the value constraint syntax. A '?'
 indicates that this attribute is a variant */
ValueConstraints ::= '<' (StringList | '?')

/* A child node definition consists of a node name element
 followed by optional required node types, default node types
 and node attributes elements. */
ChildNodeDef ::= NodeName [RequiredTypes] [DefaultType]
 [NodeAttribute {NodeAttribute}]

/* The node name, or '*' to indicate a residual property
 definition, is prefixed with a '+'. */
NodeName ::= '+' String

/* The required primary node type list is delimited by
 parentheses. If this element is missing then a required
 primary node type of nt:base is assumed. A '?' indicates
 that the this attribute is a variant. */
RequiredTypes ::= '(' (StringList | '?') ')'

/* The default primary node type is prefixed by a '='. If this
 element is missing then no default primary node type is set.
 A '?' indicates that this attribute is a variant */
DefaultType ::= '=' (String | '?')

/* The property attributes are indicated by the presence or
 absence of keywords. */
PropertyAttribute ::= Autocreated | Mandatory | Protected |
 Opv | Multiple | QueryOps | NoFullText |
 NoQueryOrder

/* The node attributes are indicated by the presence or
 absence of keywords. */
NodeAttribute ::= Autocreated | Mandatory | Protected |
 Opv | Sns

/* If 'autocreated' is present without a '?' then the item
 is autocreated. If 'autocreated' is present with a '?' then
 the autocreated status is a variant. If 'autocreated' is
 absent then the item is not autocreated. */
Autocreated ::= ('autocreated' | 'aut' | 'a')['?']

/* If 'mandatory' is present without a '?' then the item
 is mandatory. If 'mandatory' is present with a '?' then
 the mandatory status is a variant. If 'mandatory' is
 absent then the item is not mandatory. */
Mandatory ::= ('mandatory' | 'man' | 'm') ['?']

 274

/* If 'protected' is present without a '?' then the item
 is protected. If 'protected' is present with a '?' then
 the protected status is a variant. If 'protected' is
 absent then the item is not protected. */
Protected ::= ('protected' | 'pro' | 'p') ['?']

/* The OPV status of an item is indicated by the presence of
 that corresponding keyword. If no OPV keyword is present
 then an OPV status of COPY is assumed. If the keyword 'OPV'
 followed by a '?' is present then the OPV status of the item
 is a variant.
Opv ::= 'COPY' | 'VERSION' | 'INITIALIZE' | 'COMPUTE' |
 'IGNORE' | 'ABORT' | ('OPV' '?')

/* If 'multiple' is present without a '?' then the property
 is multi-valued. If 'multiple' is present with a '?' then
 the multi-value status is a variant. If 'multiple' is
 absent then the property is single-valued. */
Multiple ::= ('multiple' | 'mul' | '*') ['?']

/* The available query comparison operators are listed after
 the keyword 'queryops'. If 'queryops' is followed by a '?'
 then this attribute is a variant. If this element is absent
 then the full set of operators is available. */
QueryOps ::= ('queryops' | 'qop')
 (('''Operator {','Operator}''') | '?')
Operator ::= '=' | '<>' | '<' | '<=' | '>' | '>=' | 'LIKE'

/* If 'nofulltext' is present without a '?' then the property
 does not support full text search. If 'nofulltext' is
 present with a '?' then this attribute is a variant. If
 'nofulltext' is absent then the property does support full
 text search. */
NoFullText ::= ('nofulltext' | 'nof') ['?']

/* If 'noqueryorder' is present without a '?' then query
 results cannot be ordered by this property. If
 'noqueryorder' is present with a '?' then this attribute is
 a variant. If 'noqueryorder' is absent then query results
 can be ordered by this property. */
NoQueryOrder ::= ('noqueryorder' | 'nqord') ['?']

/* If 'sns' is present without a '?' then the child node
 supports same-name siblings. If 'sns' is present with a '?'
 then this attribute is a variant. If 'sns' is absent then
 the child node does support same-name siblings. */
Sns ::= ('sns' | '*') ['?']

/* Strings */
StringList ::= String {',' String}
String ::= QuotedString | UnquotedString

/* Quotes are used to allow for strings (i.e., names, prefixes,
 URIs, values or constraint strings) with characters that
 would otherwise be interpreted as delimiters in CND. */
QuotedString ::= SingleQuotedString | DoubleQuotedString

/* Within a SingleQuotedString, single quote literals (') must
 be escaped. */
SingleQuotedString ::= ''' UnquotedString '''

 275

/* Within a DoubleQuotedString, double quote literals (") must
 be escaped. */
DoubleQuotedString ::= '"' UnquotedString '"'
UnquotedString ::= XmlChar {XmlChar}
XmlChar ::= /* see §3.2.2 Local Names */

25.2.3.1 Case Insensitive Keywords

The keywords of CND, though defined above as terminal strings with specific
cases, are in fact case-insensitive. For example, STRING can be written string,
String or even StRiNg.

25.2.3.2 Escaping

The standard Java escape sequences are supported:

\n newline

\t tab

\b backspace

\f form feed

\r return

\” double quote

\' single quote

\” double quote

\\ back slash

\uHHHH Unicode character in hexadecimal

25.2.3.3 Comments

Comments can be included in the notation using either of the standard Java
forms. A comment is defined as:

Comment ::= LineComment | BlockComment
LineComment ::= "//" LineCommentText
BlockComment ::= "/*" BlockCommentText "*/"
LineCommentText ::= /* Any text ending in a newline */
BlockComment ::= /* Any text except the end-block-comment
 character pair */

A comment can appear between any two valid tokens of the CND grammar.
Comments are not defined within the main CND grammar, but are intended to be
stripped during preprocessing, prior to the actual parsing of the CND.

25.2.3.4 Extension Syntax

Vendor-specific extensions are supported through the extension syntax:

VendorExtension ::= "{" Vendorname VendorBody "}"

 276

VendorName ::= /* A unique vendor-specific identifier
 containing no whitespace */
VendorBody ::= /* Any string not including "}" */

Like a comment, an extension can appear between any two tokens of the CND
grammar. Extensions are not defined within the main CND grammar, but are
intended to be handled during preprocessing, prior to the actual parsing of the
CND. The first whitespace-delimited token of the extension should be a unique
vendor-specific identifier. The semantics of the extension body are
implementation-specific.

25.2.3.5 Whitespace and Short Forms

The notation can be compacted by taking advantage of the following the fact that
spacing around keychars ([] > , - () = <), newlines and indentation are not
required. So, the following is also well-formed:

[x]>y,z orderable mixin -p(DATE)=a,b primary mandatory
autocreated protected multiple VERSION <c,d

Additionally, though spaces are required around the keywords (orderable, mixin,
date, mandatory, etc.), short forms for keywords can be used. So, this:

[x]>y,z o m-p(DATE)=a,b ! m a p * VERSION <c,d

is also well-formed.

25.2.4 Examples

Here is a “worst-case scenario” example that demonstrates all the features of the
notation:

/* An example node type definition */

// The namespace declaration
<ns = 'http://namespace.com/ns'>

// Node type name
[ns:NodeType]

// Supertypes
> ns:ParentType1, ns:ParentType2

// This node type is abstract
abstract

// This node type supports orderable child nodes
orderable

// This is a mixin node type
mixin

// This node type is not queryable
noquery

// ex:property is the primary item
primaryitem ex:property

// A property called 'ex:property' of type STRING

 277

- ex:property (STRING)

// The default values for this (multi-value) property are...
= 'default1', 'default2'

// This property is...
mandatory autocreated protected

// ...and multi-valued.
multiple

// It has an on-parent-version setting of...
VERSION

// The constraint settings are...
< 'constraint1', 'constraint2'

// The supported query operators are...
queryops '=, <>, <, <=, >, >=, LIKE'

// The property is not full text searchable
nofulltext

// query results are not orderable by this property
noqueryorder

// A child node called ns:node which must be of
// at least the node types ns:reqType1 and ns:reqType2
+ ns:node (ns:reqType1, ns:reqType2)

// with default primary node type is...
= ns:defaultType

// This node is...
mandatory autocreated protected

// supports same name siblings
sns

// and has an on-parent-version setting of ...
VERSION

	JSR 283 Content Repository for Java Technology API 2.0 Speciication
	10 Aug 2009 David Nuescheler and Peeter Plegaze, Day Management AG
	Contents
	1 Preface
	2 Introduction
	3 Repository Model
	4 Connecting
	5 Reading
	6 Query
	7 Export
	8 Node Type Discovery
	9 Permissions and Capabilities
	10 Writing
	11 Import
	12 Observation
	13 Workspace Management
	14 Shareable Nodes
	15 Versioning
	16 Access Control Management
	17 Locking
	18 Lifecycle Management
	19 Node Type Management
	20 Retention and Hold
	21 Transactions
	22 Same-Name Siblings
	23 Orderable Child Nodes
	24 Repository Compliance
	25 Appendix

	
	Sun Microsystems Title Page

