
RDF Site Summary 1.0 Modules:
Rich Equivalents
Author

Jon Hanna, Spin Solutions

Version
Latest Version http://purl.org/rss/1.0/modules/richequiv/

Status
Draft

Rights
Copyright © 2000 by the Authors.

Permission to use, copy, modify and distribute the RDF Site Summary 1.0
Specification and its accompanying documentation for any purpose and
without fee is hereby granted in perpetuity, provided that the above copyright
notice and this paragraph appear in all copies. The copyright holders make no
representation about the suitability of the specification for any purpose. It is
provided "as is" without expressed or implied warranty.
This copyright applies to the RDF Site Summary 1.0 Specification and
accompanying documentation and does not extend to the RSS format itself.

Description
This module defines elements defining properties which are equivalent to the
title and description properties defined by the core RSS1.0 Spec, but allowing
for the use of xml elements as content.

Namespace Declarations
• xmlns:reqv="http://purl.org/rss/1.0/modules/richequiv/"

From web.resource.org/rss/1.0/modules/richequiv/ 1 1 September 2003

mailto:jon@spin.ie
http://www.spin.ie/
http://purl.org/rss/1.0/modules/richequiv/

Model
<channel>, <item>, <textinput> elements

• <reqv:title> ANY
• <reqv:description> ANY

Motivation
RSS has always defined a title and description element. The RSS1.0 Spec
defines these as containing Parsed Character Data (i.e. plain text), but authors
have desired a way to use richer content, in particular HTML, in the rendering
of these elements.

The "solution" hit upon was to abuse the text-based nature of XML and
HTML and to store the text of an XML fragment as the content of the
element. For example to transmit the HTML fragment:

<p>A description.</p>

The author would treat the HTML as text and encode it XML producing:

<p>A description.</p>

They would then make that the content of the relevant element:

<description><p>A description.</p></description>

When being read by an RSS parser that understood this convention (note that
it is not documented in any of the RSS specs) and which successfully
determined that the convention was being used in this case it would then
convert the text back into the HTML fragment, (hopefully) check it for
potential security risks, and then use this HTML in the rendering of the
description.

There has been much debate about the validity, or even sanity, of this
approach (some arguments against are given in Appendix C). In the end
though no matter who has the strongest position in the debate the difference

From web.resource.org/rss/1.0/modules/richequiv/ 2 1 September 2003

will be problematic because either style can produce RSS content that will
break on parsers written to use the other convention. Heuristics can help this
problem but can quickly become a complicated piece of code as one refines
them for more outside cases, and are never guaranteed to work since there is
no way to know for certain whether the author intended to transmit the XML
element or the actual mark-up itself (in the above example we can't be certain
the author didn't want the rendering to be of a less-than symbol followed by a
p, and so on).

This module aims to bypass this debate by introducing elements which have
the same semantics as the <title> and <description> elements, but which allow
for any well-formed XML fragment (a well-formed fragment is any XML that
would be well-formed where it wrapped with another element).

This solves the determinism problem, since there is no double-encoding it is
clear what is XML and what is text, it allows the content to be used sensibly
with RDF with no overhead for non-RDF users, simplifies implementation
(the XML is already XML, no need to parse it twice - especially awkward for
RSS parsers that work on XML trees, such as XSLT-based parsers), and as a
bonus offers a safe way to introduce content from other XML applications
with full backwards compatibility to parsers which don't support them.
With the use of a few techniques this module can be as easy to use for even
naïve xml-as-text parsers. This is important for ensuring that RSS
implementations that start with such a mechanism aren't discouraged from
using it and opt for the double-encoding technique.

Relation to mod_content
To some degree mod_content solves a similar problem; the transmission of
arbitrary XML content, primarily HTML. However the purpose of that XML
is different than in the case of mod_content, where the idea is to transmit more
complete pieces of content rather than descriptions.
Some people may be using mod_content as a more "civilised" alternative to
the double-encoding technique, and they will hopefully welcome this module.
It is possible that the same XML may be a good value for both the
<content:item> and <reqv:desciption> elements. As such it may be appropriate
for a <content:item> element to have an rdf:resource attribute that points to a
fragment identifier reflecting the value of an id attribute on an element that is
the content of the <reqv:desciption> element. However resolving such
references is impossible without a validating XML parser - which is beyond
the requirements for processing other RSS elements.

From web.resource.org/rss/1.0/modules/richequiv/ 3 1 September 2003

Syntax
<reqv:title> and <reqv:description> can appear where <title> and <description> as
defined in RSS1.0 can appear, and have the same meaning.

They MUST have an attribute with a namespace name of
http://www.w3.org/1999/02/22-rdf-syntax-ns#, a local name of parseType and a
value of "Literal" (in other words they must be <reqv:title rdf:parseType="Literal">
and <reqv:description rdf:parseType="Literal">).

They can contain any XML content. The type of the content is indicated by
the use of namespaces. <reqv:title rdf:parseType="Literal" xmlns=""> can be used
to contain XML from the default namespace (i.e. which doesn't use
namespaces).

Multiple occurances of each element is allowed, although rendering parsers
are expected to ignore all but one. rdf:Alt or other RDF collections MUST
NOT be used, to preserve the equivalence with the related RSS elements, and
to ease non-RDF based implementations.

Although document order isn't significant when considering the RSS as RDF,
there is no reason why document order can't be used in determining which
element to use in rendering. As such the suggested method for determining
which element to use in the case of multiple equivalents being available is to
use the first element in document order which the renderer is capable of using.
Rendering parsers are free however to make a choice based on
implementation-specific criteria. If a rendering parser does use criteria other
than document order they MUST be deterministic; in other words if the parser
repeatedly encounters the same RSS and no applicable settings have been
changed it MUST always pick the same element as before.

Note on Charset Encoding
The elements defined in this document are conceived as transmitting XML
elements and text nodes, not the text that represents them. As such the
encoding is the same as the parent document, implementations are free to re-
encode XML obtained from the RSS (e.g. converting from UTF-8 to UTF-16)
as suits their purposes.

Implementation Notes
The following outlines techniques that will enable the elements to work
correctly across implementations based on the XML Infoset, DOM trees, SAX

From web.resource.org/rss/1.0/modules/richequiv/ 4 1 September 2003

events, RDF, or direct manipulation of the text the XML is persisted to. All of
the following SHOULD be done, but none is stuff that MUST be done. The
author notes that the ease in fulfilling each of these varies depending on the
technologies used.

For RSS Producers

1. Encode in UTF-8, but use character references for characters with
positions above U+007F (e.g. for non-ASCII characters). This ensures
interoperability with parsers which don't parse UTF-16 (yes they aren't
real XML parsers then, but these do exist!) and even with naïve
implementations that assume US-ASCII or ISO 8859-1).

2. Always place relevant namespace information on the <reqv:title> and
<reqv:description> elements, even if this means duplication (see below) to
make it easier to detect what sort of XML is used.

3. If it is vital that namespace information be retained then put the
declaration directly onto the elements enclosed, so that a simple cut-and-
paste operation on the contents will retain the namespaces.

4. In cases where the namespace may cause confusion place it on the
enclosing <reqv:title> or <reqv:description> element only. E.g To
conform with one of the XHTML1.0 DTDs the namespace must
only be declared on the root <html> element. Further most browsers
still don't accept a namespace prefix for HTML elements, hence to
encode a fragment one should use:

<reqv:title rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <p>A description.</p>

</reqv:title>

This ensures that tree-based parsers have the correct namespace
information but text-based parsers doing a copy-and-paste
technique will have a fragment that works well when inserted into
a HTML document.

5. Don't use any entity references, since your <!DOCTYPE> will be needed
to process them naïve cut-and-paste operations may fail.

From web.resource.org/rss/1.0/modules/richequiv/ 5 1 September 2003

For RSS consumers

1. Always check the namespace of the elements you receive, don't just
assume it's HTML (actually that one is a MUST rather than a SHOULD).

2. The basic procedure for obtaining content from these elements is:
1. Look for instances of the relevant element (say your currently

rendering the description, so look for <reqv:description>) when
you encounter it examine the namespace of the elements to
ascertain if you can make use of it. In the case of XML
without namespaces (xmlns="") further heuristics may be
needed to determin the type of XML in question.

2. If you can't use it repeat the above step, otherwise you have
your description, stop looking for <reqv:description>.

3. If you fail to find an appropriate <reqv:description> then render
the <description>, treating it as plain text.

3. You are free to perform any operation on the XML that retains the
infoset information, e.g. Canonicalisation, Exclusive Canonicalisation,
changing namespace prefixes etc. If passing the XML to another
component for further processing you can encode it using any character
set. Such decisions should be made in the context of what you need from
this XML once you've received it. You may also remove any namespace
context that isn't use, but which is inherited from the containing
document.

RDF Schema
The following schema is embedded into this document (along with some other
metadata). Note that it defines a circular subPropertyOf relationship between
the elements defined in this document and their equivalents in the core
RSS1.0 module. The effect of this is to cause an RDFS closure to produce the
same graphs from the contents of the elements defined here as if those
contents were in the respective RSS elements, and vice versa.

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"

 xml:lang="en">

 <rdf:Property
rdf:about="http://purl.org/rss/1.0/modules/richequiv/des
cription"

 rdfs:label="Description"

 rdfs:comment="A rich XML description.">

From web.resource.org/rss/1.0/modules/richequiv/ 6 1 September 2003

 <rdfs:subPropertyOf>

 <rdf:Description
rdf:about="http://purl.org/rss/1.0/description">

 <rdfs:subPropertyOf
rdf:resource="http://purl.org/rss/1.0/modules/richequiv/
description" />

 </rdf:Description>

 </rdfs:subPropertyOf>

 <rdfs:isDefinedBy
rdf:resource="http://purl.org/rss/1.0/modules/richequiv/
" />

 </rdf:Property>

 <rdf:Property
rdf:about="http://purl.org/rss/1.0/modules/richequiv/tit
le"

 rdfs:label="Title"

 rdfs:comment="An XML descriptive title.">

 <rdfs:subPropertyOf>

 <rdf:Description
rdf:about="http://purl.org/rss/1.0/title">

 <rdfs:subPropertyOf
rdf:resource="http://purl.org/rss/1.0/modules/richequiv/
title" />

 </rdf:Description>

 </rdfs:subPropertyOf>

 <rdfs:isDefinedBy
rdf:resource="http://purl.org/rss/1.0/modules/richequiv/
" />

 </rdf:Property>

 </rdf:RDF>

Security Considerations
The security issues of this module are far-reaching and by no means trivial. It
is worth noting however that all of these concerns also apply to the double-
encoding technique, with the added danger that because it is not defined by
any standard or specification there is nowhere to engage with these issues.
Note also that the applicability and severity of these issues will vary according
to other factors. For instance applications which send HTML to a browser
need to be particularly careful if the browser considers the HTML to be from a
"local" source, as it may trust this source and hence use a more lax security
model.

1. When receiving unknown XML formats do not attempt to render them.
Apart from XML formats explicitly described as having no namespace
name (xmlns="") one should assume the XML is of a format you have no

From web.resource.org/rss/1.0/modules/richequiv/ 7 1 September 2003

use for and not attempt to guess further from heuristics or naïvely passing
it to a browser. Many modern browsers accept many forms of XML,
some of which are "active" and may contain malware, and at least one of
which you don't know about!

2. Check the XML you receive for potentially dangerous elements. In
HTML these elements are <script>, <object>, <applet> and the non-
standard <embed> and <xml>, and any element that would cause the
access of a URI beginning with "javascript:" "vbscript:" or "data:".
There are cases where such elements are safe, but validation should work
on a "default to secure" basis - i.e. rather than use the element unless
something else indicates it is unsafe you should drop the element unless
something else proves to your program that it is safe (whether because
your program has clever analysis of what the element is doing, or
because you trust the source).

3. When attempting to validate XML for dangerous content (see above)
make sure that your validation occurs after processing the text's character
set. Much software exists that will erroneously misinterpret certain illegal
UTF-8 values as legal values, for example they may treat a byte of value
0xC0 followed by a byte of value 0xBC as a UTF-8 encoding of U+003C
(a less-than character). This means that you could search the string for
"<script" and fail to find it, hence letting it through to a browser which
may "fix" the UTF-8 and go on to execute the script. The solution is to
either fix such illegal UTF-8 encodings first, or else to throw an error
when an illegal UTF-8 sequence is found.

From web.resource.org/rss/1.0/modules/richequiv/ 8 1 September 2003

Appendices
The following are for information only, and are not normative.

Appendix A: Example

The following example uses the module to provide HTML equivalents of the
title and description of the channel and items. In the case of the channel title
an SVG image is also provided.

<?xml version="1.0"?>

 <rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:reqv="http://purl.org/rss/1.0/modules/richequiv/"

 xmlns="http://purl.org/rss/1.0/">

 <channel
rdf:about="http://www.example.com/feed.rss">

 <title>Example.com</title>

 <link>http://www.example.com/</link>

 <reqv:title rdf:parseType="Literal"

 xmlns="http://www.w3.org/1999/xhtml">

 <h1>Example.com</h1>

 </reqv:title>

 <reqv:title rdf:parseType="Literal"

 xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <svg

 xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

 viewBox="0 0 176 44"

 preserveAspectRatio="xMidYMid">

 <a
xlink:href="http://www.example.com">

 <ellipse

 style="fill: blue; stroke: green;"

 cx="88" cy="22"

 rx="84" ry="18"/>

 <text style="font-
family: arial, helvetica, sans-serif;

 font-size: 10.00;

 font-weight: bold;

From web.resource.org/rss/1.0/modules/richequiv/ 9 1 September 2003

 fill: red;"

 x="60" y="25">Example.com</text>

 </svg>

 </reqv:title>

 <description>

 The Hyphothetical Portal™

 </description>

 <reqv:description rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <hr />

 <p>The Hyphothetical
Portal™</p>

 </reqv:description>

 <items>

 <rdf:Seq>

 <rdf:li
resource="http://www.example.com/item1.html"/>

 <rdf:li
resource="http://www.example.com/item2.html"/>

 </rdf:Seq>

 </items>

 </channel>

 <item
rdf:about="http://www.example.com/item1.html">

 <title>First Example Item</title>

 <reqv:title rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <h2>First Example Item</h2>

 </reqv:title>

<link>http://www.example.com/item1.html</link>

 <description>

 Our first example Item.

 </description>

 <reqv:description rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <p>Our 1st example Item.</p>

 </reqv:description>

 </item>

 <item
rdf:about="http://www.example.com/item2.html">

 <title>Second Example Item</title>

<link>http://www.example.com/item2.html</link>

 <reqv:title rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <h3>Second Example Item</h3>

From web.resource.org/rss/1.0/modules/richequiv/ 10 1 September 2003

 </reqv:title>

 <description>

 Our second example Item.

 </description>

 <reqv:description rdf:parseType="Literal"
xmlns="http://www.w3.org/1999/xhtml">

 <p>Our 2nd example Item.</p>

 </reqv:description>

 </item>

 </rdf:RDF>

Appendix B: Use with XML Inclusions.

e

 of

agment, as opposed to an entire document, has
plentation difficulties.

o
 <include> element as defined in

ML Inclusions (XInclude) Version 1.0.

er that would not be the most
fficient way of carrying out such an action.

s

 for handling XInclude it could
be a very powerful addition to an RSS parser.

Appendix C: Arguments Against Double-Encoding

The following list is probably not complete:

With large pieces of XML there would be an obvious advantage in stating a
URI from which the XML could be downloaded. There are a few possibl
approaches one could take with this, but they each have disadvantages.
One would be to allow the use of rdf:resource on the elements defined above.
Another would be to create new elements for this purpose. However both
these approaches would lose there equivalency with the RSS elements.
In addition referencing a fr
im

Because of this no such mechanism is provided. The author does note
however that it is a perfectly valid interpretation of the specification above t
use the elements defined here to contain an
X

A parser choosing to process such an item (identified by the namespace name
of http://www.w3.org/2001/XInclude) should be capable of determining if it can
handle the fragment referenced as soon as such information is available. In
effect this would be the same as processing the XInclude and then deciding
whether to process the new element(s), howev
e

The task is probably daunting, and could likely require updates as XInclude i
only at Candidate Recommendation stage and some questions remain open.
However with the assistance of a tool or library

From web.resource.org/rss/1.0/modules/richequiv/ 11 1 September 2003

From web.resource.org/rss/1.0/modules/richequiv/ 12 1 September 2003

• It's simply not in any of the Specs. Implementing a specification should
not require mind-reading.

• It is error-prone, especially if truncation occurs in transit (which does
happen with some RSS producers) causing such errors as unclosed
elements and incomplete tags.

• It ties RSS to HTML as it's only possible mechanism for rendering. This
is limiting at best. Strong links between web technologies tend to hamper
their development. As an example, the growth of HTML itself is partly
due to the fact that it is not strongly tied to any of the technologies that
are often used with it (HTTP, GIF, JPEG, CSS, Java, Javascript etc. all
have "meeting points" with HTML, but all have uses not related to
HTML, and vice-versa).

• While rendering HTML is easy if the task can be farmed out to an
already existing browser, it is extremely complicated for any other
implementation. This limits the available options to someone planning to
implement HTML. And creates a "right way" of doing something which
may not suit a particular programmer or particular programming task.

• It limits the ability of the parser to decide on how something should be
displayed, which hence ceases to be the perogative of the person actually
reading it.

• It puts the decision on how HTML should be produced at a point in the
process where little is known about the browser that is displaying it.
Conversely if HTML is produced by the parser it may be able to do so
with knowledge of bugs and features of the browser being used, and
optomise for that.

• It complicates the task of searching for content that may produce security
breeches.

• It doesn't display well in RSS parsers that don't use the convention.
• Probably the most compelling argument is this: It is simply impossible to

tell with 100% certainty when the convention is being used and when it
isn't. Even the cleverest heuristics can only tell if someone might have
been using it. As such failures to operate correctly are guaranteed.

	RDF Site Summary 1.0 Modules: Rich Equivalents
	2000 Jon Hanna, Spin Solutions
	Author
	Version
	Status
	Rights
	Description
	Namespace Declarations
	Model
	Motivation
	Relation to mod_content
	Syntax
	Note on Charset Encoding
	Implementation Notes
	For RSS Producers
	For RSS consumers

	RDF Schema
	Security Considerations
	Appendices
	Appendix A: Example
	Appendix B: Use with XML Inclusions.
	Appendix C: Arguments Against Double-Encoding

	
	rss-dev Title Page

