
From openid.net/specs/openid-dtp-envelopes-1_0-02.html 1 26 October 2008

draft G. Monroe
 JanRain
 August 9, 2006

OpenID DTP Version 1.0 Envelopes - Draft 02

Abstract

OpenID DTP is a protocol for sending, receiving, and relaying an arbitrary signed and encrypted
payload between two endpoints. DTP Version 1.0 Part 1: Envelopes defines the envelope
formats along with message generation, validation, and error handling.

Table of Contents

1. Requirements Notation
2. Terminology
3. XML Namespaces
4. Messages
 4.1. The Inner Envelope
 4.1.1. The Recipient Elements
 4.1.2. The Sender Element
 4.1.3. The Data Element
 4.2. The Outer Envelope
 4.2.1. The Recipient Elements
 4.2.2. The Signature Element
 4.2.3. The Data Element
 4.3. The Relay Envelope
 4.3.1. The Recipient Elements
 4.3.2. The Relayer Element
 4.3.3. The Data Element
 4.3.4. The Signature Element
5. Message Validation
 5.1. Outer Envelope Validation
 5.2. Relay Envelope Validation
 5.3. Inner Envelope Validation
6. Errors
 6.1. Error Codes
7. Algorithms
 7.1. Signatures
 7.1.1. Signature Generation
 7.1.2. Signature Verification
 7.2. Symmetric Cipher Algorithms
 7.2.1. AES 192 CBC
 7.2.2. AES 256 CBC
 7.2.3. NULL Encryption
 7.3. Key Transport

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 2 26 October 2008

 7.3.1. RSA-OAEP
 7.4. Fingerprints
8. Normative References
Appendix A. Message Schema
§ Author's Address

1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119] (Bradner, B., “Key words for use in RFCs to Indicate
Requirement Levels,” .).

2. Terminology

Identifier:
An Identifier is a URL or XRI.

User:
Either a sender, recipient, or relayer of messages. Users are represented within
this protocol by Identifiers.

Payload:
An octet string of any length to be exchanged between Users.

Reciever Endpoint:
The software processing a recieved message.

3. XML Namespaces

The default namespace for XML fragments in this document without a namespace prefix is
xmlns="http://www.example.com/2006/06/dtp#". Other namespace prefixes used include
xmlns:xrd="xri://$xrd*($v*2.0)".

4. Messages

A Message consists of a set of nested envelopes. The outermost envelope is always an XML
document with a root node of <OuterEnvelope>. The innermost envelope is always an XML
document with a root node of <InnerEnvelope>.

It is possible to nest the innermost envelope in one or more relay documents before it is
encrypted and put in the outermost envelope. This allows for relaying messages while
maintaining the routing metadata, including signatures, with each relay.

4.1. The Inner Envelope

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 3 26 October 2008

An Inner Envelope is an XML document looking something like this:

 <?xml version="1.0"?>
 <InnerEnvelope xmlns="http://www.example.com/2006/06/dtp#">
 <Recipient ...>
 .
 .
 .
 <Sender ...>
 <Data ...>
 </InnerEnvelope>

The InnerEnvelope encapsulates the Payload along with information about the User sending the
Payload and the one or more Users who should recieve it.

4.1.1. The Recipient Elements

Each Recipient element contains a <Identifier> element. The Identifier element contains the
Identifier of the recipient, e.g.,

 <Recipient>
 <Identifier>http://joe.example.com/</Identifier>
 </Recipient>

4.1.2. The Sender Element

The Sender element has two children: a <Identifier> element and a <Fingerprint> element, e.g.,

 <Sender>
 <Identifier>http://bob.example.com/</Identifier>
 <Fingerprint>
 h9LtI0I0ccY7JxcmEP0eFlGZV6Q=
 </Fingerprint>
 </Sender>

The Identifier element contains the Identifier of the User sending the Payload. The contents of
the Fingerprint element are described in Section 7.4 (Fingerprints).

4.1.3. The Data Element

The Data element encapsulates the Payload. Since the Payload is an octet string, it is first
base64 encoded, and then set as the inner text of the Data element. The Type attribute of the
Data element MUST be set to a URI denoting the type of the Payload.

Note: The Data element may have additional namespaced attributes for application-specific
purposes.

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 4 26 October 2008

4.2. The Outer Envelope

An Outer Envelope is an XML document looking something like this:

 <?xml version="1.0"?>
 <OuterEnvelope xmlns="http://www.example.com/2006/06/dtp#">
 <Recipient ...>
 .
 .
 .
 <Signature ...>
 <Data ...>
 </OuterEnvelope>

An Outer Envelope contains an encrypted blob along with the information necessary to decrypt
it and a signature.

4.2.1. The Recipient Elements

Each Recipient element contains two subelements: a <Fingerprint> element, and a
<EncryptedCipherKey> element. The contents of the Fingerprint element are described in
Section 7.4 (Fingerprints). The EncryptedCipherKey element contains the symmetric cipher key
octet string encrypted for the recipient and base64 encoded, e.g.,

 <Recipient>
 <Fingerprint>
 W3et8wAsnqP2CZjsELkn2nVyx5c=
 </Fingerprint>
 <EncryptedCipherKey
 EncryptionAlgorithm="http://www.example.com/2006/06/dtp#rsa-oaep">
 R2EXPGIuZBNuoGoCM79uJG7nCzgeFq1b3VoZ4SdWcZiOGIjBdBt5N
 DyQWN3RvfohYna4NsZN6vUzSzL7S8ojCj7Ny1IlS4HYcwkOY7l6eK
 WM+B/tP40bVmqu8RDoVnziVuJOCO5eM/P1pnA4KTwntoz3SEqiZa8
 RebIhlRyUScE=
 </EncryptedCipherKey>
 </Recipient>

A random octet string must be generated to use as the symmetric cipher key for encryption. The
length of the octet string will vary depending on the symmetric cipher algorithm used.

The symmetric cipher key octet string is encrypted with the Recipient's Public Key using one of
the algorithms described in Section 7.3 (Key Transport). The result of encrypting the symmetric
cipher key is another octet string that must then be base64 encoded before being inserted in the
<EncryptedCipherKey> element.

4.2.2. The Signature Element

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 5 26 October 2008

The Signature element contains a signature of the plain text octet string resulting from
decrypting the contents of the Data element. The signature is generated as described in
Section 7.1.1 (Signature Generation). The result of generating the signature is a new octet
string that must be base64 encoded before it is inserted into the <Signature> element.

The Algorithm attribute of the Signature element MUST be set to the identifier of the signature
algorithm used.

4.2.3. The Data Element

The Data element encapsulates either an encrypted Inner Envelope XML Document or an
encrypted Relay Envelope XML Document. Either way, the XML Document is treated as an
octet string.

The XML Document to be encrypted is passed to a symmetric cipher algorithm (see Section 7.2
(Symmetric Cipher Algorithms)) along with the symmetric cipher key. The result of encryption is
an octet string of cipher text.

The cipher text is then prefixed with the initial vector used by the symmetric cipher and base64
encoded. The CipherAlgorithm attribute of the Data element MUST be set to the identifier of the
cipher algorithm used.

The Contents attribute of the Data element is a string, and MUST be set to a either inner or
relay, denoting the type of its contents.

4.3. The Relay Envelope

A Relay Envelope is an XML document looking something like this:

 <?xml version="1.0"?>
 <RelayEnvelope xmlns="http://www.example.com/2006/06/dtp#">
 <Recipient ...>
 .
 .
 .
 <Relayer ...>
 <Signature ...>
 <Data ...>
 </RelayEnvelope>

The Relay Envelope encapsulates either an Inner Envelope or another Relay Envelope. The
nesting of Relay Envelopes represents the number of times the Inner Envelope has been
relayed.

4.3.1. The Recipient Elements

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 6 26 October 2008

The format of the Recipient elements in a Relay Envelope are identical to those of the Inner
Envelope described in Section 4.1.1 (The Recipient Elements). The Recipients, however, will
more than likely not be the same.

4.3.2. The Relayer Element

The Relayer element has two children: a <Identifier> element and a <Fingerprint> element, e.g.,

 <Relayer>
 <Identifier>http://joe.example.com/</Identifier>
 <Fingerprint>
 W3et8wAsnqP2CZjsELkn2nVyx5c=
 </Fingerprint>
 </Relayer>

The Identifier element contains the Identifier of the User relaying the Inner Envelope. The
contents of the Fingerprint element are described in Section 7.4 (Fingerprints).

4.3.3. The Data Element

The Data element encapsulates either Inner Envelope XML Document or another Relay
Envelope XML Document. Either way, the XML Document is treated as an octet string. It is first
base64 encoded, and then set as the inner text of the Data element. The Contents attribute of
the Data element is a string, and MUST be set to a either inner or relay, denoting the type of its
contents.

4.3.4. The Signature Element

The Signature element contains a signature of the plain text octet string resulting from decoding
the base64 encoded contents of the Data element. The signature is generated as described in
Section 7.1.1 (Signature Generation). The result of generating the signature is a new octet
string that must be base64 encoded before it is inserted into the <Signature> element.

The contents of the Signature element along with its attributes MAY have been extracted from
the Signature element of the Outer Envelope XML Document that originally wrapped the XML
Document enclosed by the Data element of this Relay Envelope. In other words, the signature
may have been generated by someone other than the current Relayer.

5. Message Validation

Message validation always begins with an Outer Envelope. From there each message in the
chain of nested envelopes must be validated, completing with validation of the Inner Envelope.

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 7 26 October 2008

At any point during processing, if a document expected to be well-formed XML does no parse
as such, this corresponds to the MALFORMED_XML error code listed in Section 6.1 (Error
Codes).

Implementions SHOULD validate each envelope against the XML Schema listed in Appendix A
(Message Schema) before any further processing. During processing, if a message does not
validate against the XML Schema, does not contain elements as expected, or contains data that
is not properly encoded, this corresponds to the XML_SCHEMA_MISMATCH error code listed
in Section 6.1 (Error Codes).

5.1. Outer Envelope Validation

The Reciever Endpoint MUST know about at least one of the Recipients listed unless the
CipherAlgorithm attribute of the Data element is set to
http://www.example.com/2006/06/dtp#null. If the Reciever Endpoint does not have a the
corresponding RSA Private Key associated with any of the listed fingerprints, this corresponds
to the NO_KNOWN_RECIPIENTS error code listed in Section 6.1 (Error Codes).

For each Recipient element containing a Fingerprint for which the Reciever Endpoint has the
corresponding private key, the encrypted symmetric cipher key should be decrypted using the
private key, and the algorithm identified by the EncryptionAlgorithm attribute of the
EncryptedCipherKey element. If the encryption algorithm identified by the EncryptionAlgorithm
attribute is not known, this corresponds to the UNKNOWN_ALGORITHM error code listed in
Section 6.1 (Error Codes).

The symmetric cipher key octet string resulting from decryption MUST be the same for all
known recipients. If decryption results in more than one unique octet string, this corresponds to
the CIPHER_KEY_MISMATCH error code listed in Section 6.1 (Error Codes).

Once the symmetric cipher key has been decrypted, it is used to decrypt the encapsulated XML
Document. The ciphertext is extracted by decoding the base64 encoded contents of the Data
element. The ciphertext is then decrypted according to the algorithm specified in the
CipherAlgorithm attribute of the Data element using the symmetric cipher key resulting in an
XML Document. If the symmetric cipher algorithm identified by the CipherAlgorithm attribute is
not known, this corresponds to the UNKNOWN_ALGORITHM error code listed in Section 6.1
(Error Codes). The resulting XML Document can be identified as either a Relay or Inner
Envelope by looking at the Contents attribute of the Outer envelope's Data element.

The signature octet string is extracted by decoding the base64 encoded contents of the
Signature element. The Algorithm attribute of the Signature element indicates the algorithm
used to generate the signature. If the signature algorithm identified by the Algorithm attribute is
not known, this corresponds to the UNKNOWN_ALGORITHM error code listed in Section 6.1
(Error Codes).

To verify the signature over the decrypted XML Document, the document must first be parsed to
extract the Identifier and Fingerprint from the Sender/Relayer element. If no public key is found
for the (Identifier, Fingerprint) pair, this corresponds to the UNKNOWN_OUTER_SIGNER error
code listed in Section 6.1 (Error Codes).

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 8 26 October 2008

Using the public key associated with the (Identifier, Fingerprint) pair, the signature octet string,
and the unmodified plain text resulting from decrypting the contents of the Data element,
signature verification must be performed as described in Section 7.1.2 (Signature Verification). If
signature verification fails, this corresponds to the BAD_OUTER_SIGNATURE error code listed
in Section 6.1 (Error Codes).

5.2. Relay Envelope Validation

The base64 encoded contents of the Data element can be decoded to produce the relayed XML
Document. The resulting XML Document can be identified as either a Relay or Inner Envelope
by looking at the Contents attribute of this envelope's Data element.

The signature octet string is extracted by decoding the base64 encoded contents of the
Signature element. The Algorithm attribute of the Signature element indicates the algorithm
used to generate the signature. If the signature algorithm identified by the Algorithm attribute is
not known, this corresponds to the UNKNOWN_ALGORITHM error code listed in Section 6.1
(Error Codes).

To verify the signature over the relayed XML Document, the document must first be parsed to
extract the Identifier and Fingerprint from the Sender/Relayer element. If no public key is found
for the (Identifier, Fingerprint) pair, this corresponds to the UNKNOWN_RELAY_SIGNER error
code listed in Section 6.1 (Error Codes).

Using the public key associated with the (Identifier, Fingerprint) pair, the signature octet string,
and the unmodified plain text resulting from decoding the contents of the Data element,
signature verification must be performed as described in Section 7.1.2 (Signature Verification). If
signature verification fails, this corresponds to th BAD_RELAY_SIGNATURE error code listed in
Section 6.1 (Error Codes).

5.3. Inner Envelope Validation

The base64 encoded contents of the Data element can be decoded to produce the Payload. If
the Payload type identified by the Type attribute is not known, this corresponds to the
UNKNOWN_PAYLOAD error code listed in Section 6.1 (Error Codes).

6. Errors

In the event that validation of a message fails, in some instances, it MAY be possible to report
the issue to the Sender/Relayer. For this we define a simple XML document and a set of error
codes corresponding to the way in which validation failed.

An Error document has a root element of Error, e.g.,

 <?xml version="1.0"?>
 <Error Code="MALFORMED_XML"
 xmlns="http://www.example.com/2006/06/dtp#">

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 9 26 October 2008

 h9LtI0I0ccY7JxcmEP0eFlGZV6Q=
 </Error>

The Error element has an attribute, Code, indicating the error that occured. The Error element
contains a base64 encoded [SHA-1] (Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1
(SHA1),” .) digest of the bytes that validation was attempted on.

The Error XML document should be wrapped in an Outer envelope and signed with the private
key associated with the Reciever Endpoint. The NULL encryption type should be used, and no
Recipient elements are necessary.

6.1. Error Codes

MALFORMED_XML
At any point, a document expected to be well-formed XML is not.

XML_SCHEMA_MISMATCH
At any point, a document expected to be well-formed XML does not match the
XML Schema listed in Appendix A (Message Schema).

NO_KNOWN_RECIPIENTS
The Reciever Endpoint does not have the corresponding RSA Private Key for
any of the fingerprints listed in the Outer Envelope's Recipient elements.

CIPHER_KEY_MISMATCH
The result of decrypting the cipher key for each known recipient results in more
than one unique octet string.

UNKNOWN_OUTER_SIGNER
The Reciever Endpoint is unable to acquire the RSA Public Key identified by the
(Identifier, Fingerprint) pair in the Sender/Relayer element of the envelope
enclosed in the OuterEnvelope.

UNKNOWN_RELAY_SIGNER
The Reciever Endpoint is unable to acquire the RSA Public Key identified by the
(Identifier, Fingerprint) pair in the Sender/Relayer element of an envelope
enclosed in a RelayEnvelope.

BAD_OUTER_SIGNATURE
The result of running the signature verification algorithm on the enclosed
envelope does not match the signature in the OuterEnvelope.

BAD_RELAY_SIGNATURE
The result of running the signature verification algorithm on an enclosed
envelope does not match the signature in a RelayEnvelope.

UNKNOWN_ALGORITHM
An algorithm specified on an EncryptedCipherKey element, a Data element, or a
Signature element is not supported by the Reciever Endpoint.

UNKNOWN_PAYLOAD
The Type attribute of the Data element of the Inner envelope describing the
Payload is not recognized.

7. Algorithms

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 10 26 October 2008

This section describes the cryptographic algorithms used to digest, sign, and encrypt various
portions of data used to construct messages.

7.1. Signatures

All implementations MUST support the RSA-SHA1 signature algorithms identified by
http://www.example.com/2006/06/dtp#rsa-sha1. The RSA-SHA1 signature algorithms are
described in RFC 2473 [PKCS1] (Kaliski, B. and J. Staddon, “PKCS #1: RSA Cryptography
Specifications Version 2.0,” .), section 8.1.

7.1.1. Signature Generation

Section 8.1.1 of RFC 2437 [PKCS1] (Kaliski, B. and J. Staddon, “PKCS #1: RSA Cryptography
Specifications Version 2.0,” .) describes a function RSASSA-PKCS1-V1_5-SIGN with two
inputs, K and M. K is the Sender's or Relayer's RSA Private Key and M is the XML Document,
treated as an octet string to be signed. The output of RSASSA-PKCS1-V1_5-SIGN is an octet
string.

7.1.2. Signature Verification

Section 8.1.2 of RFC 2473 [PKCS1] (Kaliski, B. and J. Staddon, “PKCS #1: RSA Cryptography
Specifications Version 2.0,” .) describes a function RSASSA-PKCS1-V1_5-VERIFY with three
inputs, (n, e), M, and S. The pair, (n, e), represents the Sender's or Relayer's RSA Public Key,
M is the octet string representing the signed envelope that was signed by the Sender/Relayer,
and S is the signature to be verified.

7.2. Symmetric Cipher Algorithms

These ciphers are used with a symmetric cipher key to encrypt either an Inner Envelope or
Relay Envelope XML Document before being included in the Data element of an Outer
Envelope. Each of these algorithms is identified by a URI. All implementations MUST support
the following ciphers.

7.2.1. AES 192 CBC

Identifier
http://www.example.com/2006/06/dtp#aes192-cbc

AES is used in the Cipher Block Chaining (CBC) mode with a 192 bit key. This algorithm uses a
128 bit initialization vector.

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 11 26 October 2008

7.2.2. AES 256 CBC

Identifier
http://www.example.com/2006/06/dtp#aes256-cbc

AES is used in the Cipher Block Chaining (CBC) mode with a 256 bit key. This algorithm uses a
128 bit initialization vector.

7.2.3. NULL Encryption

Identifier
http://www.example.com/2006/06/dtp#null

If the CipherAlgorithm attribute of the Data element of the Outer envelope is set to this identifier,
the data is not encrypted. All that is needed to retrieve the encapsulated envelope is to decode
the base64 encoded inner text of the Data element. No Recipient elements are needed in the
outer envelope when this algorithm is specified.

7.3. Key Transport

The symmetric cipher key used during symmetric encryption (Symmetric Cipher Algorithms)
must be encrypted for each recipient. To do this, a key transport algorithm using the recipients
public key must be used.

7.3.1. RSA-OAEP

Identifier
http://www.example.com/2006/06/dtp#rsa-oaep

The RSAES-OAEP algorithm, specified in section 7.1. of RFC 2437 [PKCS1] (Kaliski, B. and J.
Staddon, “PKCS #1: RSA Cryptography Specifications Version 2.0,” .), is used to encrypt and
decrypt the symmetric cipher key for each Recipient.

The value input to the key transport function SHOULD be calculated using [SHA-1] (Eastlake, D.
and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” .) and the empty octet string, and MGF1
(with SHA1) SHOULD be used for mask generation during RSAES-OAEP-ENCRYPT and
RSAES-OAEP-DECRYPT.

7.4. Fingerprints

A Fingerprint is a digest of a DER-encoded RSA Public Key. These fingerprints can be used in
combination with an Identifier to aid in caching of Public Keys. The <Fingerprint> element
contains a base64 encoded digest.

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 12 26 October 2008

There is only one type of signature defined. The fingerprint is a [SHA-1] (Eastlake, D. and P.
Jones, “US Secure Hash Algorithm 1 (SHA1),” .) digest of the DER-encoded public key and is
identified by the URI, http://www.example.com/2006/06/dtp#der-sha1.

8. Normative References

[PKCS1] Kaliski, B. and J. Staddon, “PKCS #1: RSA Cryptography Specifications Version
2.0,” RFC 2437.

[RFC2119] Bradner, B., “Key words for use in RFCs to Indicate Requirement Levels.”
[SHA-1] Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” RFC 3174.

Appendix A. Message Schema

<?xml version='1.0' encoding='UTF-8'?>
<schema targetNamespace="http://www.example.com/2006/06/dtp#"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:dtp="http://www.example.com/2006/06/dtp#"
 blockDefault="#all"
 elementFormDefault="qualified"
 version="1.0"
 xml:lang="EN" >

 <complexType name="SignatureType">
 <simpleContent>
 <extension base="base64Binary">
 <attribute name="Algorithm" type="anyURI" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="EncryptedCipherKeyType">
 <simpleContent>
 <extension base="base64Binary">
 <attribute name="EncryptionAlgorithm" type="anyURI"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="SimpleAddressType">
 <sequence>
 <element name="Identifier" type="anyURI"/>
 </sequence>
 </complexType>

 <simpleType name="FingerprintType">
 <restriction base="base64Binary"/>
 </simpleType>

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 13 26 October 2008

 <complexType name="FingerprintedAddressType">
 <complexContent>
 <extension base="dtp:SimpleAddressType">
 <sequence>
 <element name="Fingerprint" type="dtp:FingerprintType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="DataType">
 <restriction base="base64Binary"/>
 </simpleType>

 <simpleType name="ContentsAttrType">
 <restriction base="string">
 <enumeration value="inner"/>
 <enumeration value="relay"/>
 </restriction>
 </simpleType>

 <complexType name="RelayDataType">
 <simpleContent>
 <extension base="dtp:DataType">
 <attribute name="Contents" type="dtp:ContentsAttrType"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="AnnotatedDataType">
 <simpleContent>
 <extension base="dtp:DataType">
 <attribute name="Type" type="anyURI" use="required"/>
 <anyAttribute namespace="##other" processContents="lax"/>
 </extension>
 </simpleContent>
 </complexType>

 <attributeGroup name="EncryptedDataAttrGroup">
 <attribute name="Contents" type="dtp:ContentsType"
 use="required"/>
 <attribute name="CipherAlgorithm" type="anyURI"
 use="required"/>
 </attributeGroup>

 <complexType name="EncryptedDataType">
 <simpleContent>
 <extension base="dtp:DataType">
 <attributeGroup ref="dtp:EncryptedDataAttrGroup"/>
 </extension>
 </simpleContent>
 </complexType>

 <element name="InnerEnvelope">

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 14 26 October 2008

 <complexType>
 <sequence>
 <element name="Recipient" type="dtp:SimpleAddressType"
 maxOccurs="unbounded"/>
 <element name="Sender" type="dtp:FingerprintedAddressType"/>
 <element name="Data" type="dtp:AnnotatedDataType" />
 </sequence>
 </complexType>
 </element>

 <element name="RelayEnvelope">
 <complexType>
 <sequence>
 <element name="Recipient"
 type="dtp:SimpleAddressType"
 maxOccurs="unbounded"/>
 <element name="Relayer" type="dtp:FingerprintedAddressType"/>
 <element name="Signature" type="dtp:SignatureType"/>
 <element name="Data" type="dtp:RelayDataType"/>
 </sequence>
 </complexType>
 </element>

 <element name="OuterEnvelope">
 <complexType>
 <sequence>
 <element name="Recipient" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="Fingerprint"
 type="dtp:FingerprintType"/>
 <element name="EncryptedCipherKey"
 type="dtp:EncryptedCipherKeyType" />
 </sequence>
 </complexType>
 </element>
 <element name="Signature" type="dtp:SignatureType"/>
 <element name="Data" type="dtp:EncryptedDataType"/>
 </sequence>
 </complexType>
 </element>

 <simpleType name="ErrorCodeType">
 <restriction base="string">
 <enumeration value="CIPHER_KEY_MISMATCH"/>
 <enumeration value="NO_KNOWN_RECIPIENTS"/>
 <enumeration value="UNKNOWN_OUTER_SIGNER"/>
 <enumeration value="UNKNOWN_RELAY_SIGNER"/>
 <enumeration value="BAD_OUTER_SIGNATURE"/>
 <enumeration value="BAD_RELAY_SIGNATURE"/>
 <enumeration value="MALFORMED_XML"/>
 <enumeration value="XML_SCHEMA_MISMATCH"/>
 <enumeration value="UNKNOWN_ALGORITHM"/>
 <enumeration value="UNKNOWN_PAYLOAD"/>

From openid.net/specs/openid-dtp-envelopes-1_0-02.html 15 26 October 2008

 </restriction>
 </simpleType>

 <element name="Error">
 <complexType>
 <simpleContent>
 <extension base="base64Binary">
 <attribute name="Code" type="dtp:ErroCodeType"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>

</schema>

Author's Address

 Grant Monroe
 JanRain, Inc.
 5331 SW Macadam Avenue
 Suite #375
 Portland, OR 97239
 USA

Email: grant@janrain.com

	OpenID DTP Version 1.0 Envelopes - Draft 02
	9 Aug 2006 G. Monroe for the OpenID Foundation
	Abstract
	Table of Contents
	1. Requirements Notation
	2. Terminology
	3. XML Namespaces
	4. Messages
	5. Message Validation
	6. Errors
	7. Algorithms
	8. Normative References
	Appendix A. Message Schema
	Author's Address

	
	OpenID Title Page

