
From openid.net/specs/openid-authentication-1_1.html 1 31 January 2009

 D. Recordon

 B. Fitzpatrick

 May 2006

OpenID Authentication 1.1

Abstract

OpenID Authentication provides a way to prove that an End User owns an Identity URL. It does
this without passing around their password, email address, or anything they don't want it to.

OpenID is completely decentralized meaning that anyone can choose to be a Consumer or
Identity Provider without having to register or be approved by any central authority. End User's
can pick which Identity Provider they wish to use and preserve their Identity as they move
between Providers.

While nothing in the protocol requires JavaScript or modern browsers, the authentication
scheme plays nicely with "AJAX"-style setups, so an End User can prove their Identity to a
Consumer without having to leave the page they are on.

The OpenID Authentication specification does not provide any mechanism to exchange profile
information, though Consumers of an Identity can learn more about an End User from any
public, semantically interesting documents linked thereunder (FOAF, RSS, Atom, vCARD, etc.).
Extensions are being built on top of the foundation created by OpenID Authentication to provide
mechanisms to exchange profile information.

Table of Contents

1. Requirements Notation
2. Terminology
3. Overview
 3.1. Transforming a HTML Document Into an Identifier
 3.1.1. Delegating Authentication
 3.2. Submitting a Claimed Identifier
 3.3. Consumer Site Fetches the Identifier URL
 3.4. Smart vs Dumb Mode
 3.5. Consumer Verifies the Identifier
4. Modes
 4.1. associate
 4.1.1. Request Parameters
 4.1.2. Response Parameters
 4.1.3. Extra Notes
 4.2. checkid_immediate
 4.2.1. Request Parameters
 4.2.2. Response Parameters
 4.2.3. Extra Notes

From openid.net/specs/openid-authentication-1_1.html 2 31 January 2009

 4.3. checkid_setup
 4.3.1. Request Parameters
 4.3.2. Respone Parameters
 4.3.3. Extra Notes
 4.4. check_authentication
 4.4.1. Request Parameters
 4.4.2. Response Parameters
 4.4.3. Extra Notes
5. Security Considerations
Appendix A. Default Values
Appendix A.1. Diffie-Hellman P Value
Appendix B. Error Responses
Appendix C. Key-Value Format
Appendix D. Limits
Appendix E. Misc
6. Normative References
§ Authors' Addresses

1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

2. Terminology

End User:
The actual human user who wants to prove their Identity to a Consumer.

Identifier:
An Identifier is just a URL. The whole flow of the OpenID Authentication protocol
is about proving that an End User is, owns, a URL.

Claimed Identifier:
An Identifier that the End User says they own, though that has not yet been
verified by the Consumer.

Verified Identifier:
An Identifier that the End User has proven to a Consumer that they own.

Consumer:
A web service that wants proof that the End User owns the Claimed Identifier.

Identity Provider:
Also called "IdP" or "Server". This is the OpenID Authentication server that a
Consumer contacts for cryptographic proof that the End User owns the Claimed
Identifier.
How the End User authenticates to their Identity Provider is outside of the scope
of OpenID Authenticaiton.

User-Agent:

From openid.net/specs/openid-authentication-1_1.html 3 31 January 2009

The End User's web browser. No special plug-ins or JavaScript required.

3. Overview

3.1. Transforming a HTML Document Into an Identifier

In order for a Consumer to know the Identity Provider authoritative for an Identifier, the End
User must add markup to the HEAD section of the HTML document located at their URL. The
host of the HTML document is NOT REQUIRED to also be the End User's Identity Provider; the
Identifier URL and Identity Provider can be fully decoupled services.

To use http://example.com/ as the End User's Identifier http://openid.example.com as their
Identity Provider, the following tag would be added to the HEAD section of the HTML document
returned when fetching their Identifier URL.

<link rel="openid.server" href="http://openid.example.com/">

3.1.1. Delegating Authentication

If the End User's host is not capable of running an Identity Provider, or the End User wishes to
use one running on a different host, they will need to delegate their authentication. For example,
if they want to use their website, http://www.example.com/, as their Identifier, but don't have the
means, or desire, to run an Identity Provider.

If they have a LiveJournal account (say, user "exampleuser"), and know that LiveJournal
provides an OpenID Identity Provider and that it'll assert that they control the Identifier
http://exampleuser.livejournal.com/ they would be able to delegate their authentication to
LiveJournal's Identity Provider..

So, to use www.example.com as their Identifier, but have Consumers actually verify
http://exampleuser.livejournal.com/ with the Identity Provider located at
http://www.livejournal.com/openid/server.bml, they'd add the following tags to the HEAD section
of the HTML document returned when fetching their Identifier URL.

<link rel="openid.server" href="http://www.livejournal.com/openid/server.bml">

<link rel="openid.delegate" href="http://exampleuser.livejournal.com/">

Now, when a Consumer sees that, it'll talk to http://www.livejournal.com/openid/server.bml and
ask if the End User is exampleuser.livejournal.com, never mentioning www.example.com
anywhere on the wire.

From openid.net/specs/openid-authentication-1_1.html 4 31 January 2009

The main advantage of this is that an End User can keep their Identifier over many years, even
as services come and go; they'll just keep changing who they delegate to.

3.1.2. Important Notes

• The declared openid.server URL MAY contain existing query parameters and they
MUST be properly preserved when appending extra query parameters. For example, not
adding a second question mark if one already exists.

• The openid.server and openid.delegate URLs MUST be absolute URLs. Consumers
MUST NOT attempt to resolve relative URLs.

• The openid.server and openid.delegate URLs MUST NOT include entities other than &,
<, >, and ". Other characters that would not be valid in the HTML document or that
cannot be represented in the document's character encoding MUST be escaped using
the %xx mechanism as described in [RFC2396] .

3.2. Submitting a Claimed Identifier

Continuing this example, the End User visits a Consumer site which supports OpenID
Authentication. The Consumer presents the End User with a form field for them to enter their
Identifier URL.

For Example:

 |[logo]example.com | [Login Button]

3.2.1. Important Notes

• It is RECOMMENDED that every Consumer place the OpenID logo at the beginning of
the form field where the End User enters their Identifier URL.

• The End User is NOT REQUIRED to prefix their Identifier URL with "http://" or postfix it
with a trailing slash. Consumers MUST canonicalize the Identifier URL, following
redirects, and note the final URL. The final, canonicalized URL is the End User's
Identifier.

• It is RECOMMENDED that the form field be named "openid_url" so User-Agent's will
auto-complete the End User's Identifier URL in the same way the eCommerce world
tends to use conventions like "address1" and "address2".

3.3. Consumer Site Fetches the Identifier URL

From openid.net/specs/openid-authentication-1_1.html 5 31 January 2009

Now the Consumer site fetchs the document located at the End User's Claimed Identifier. The
Consumer then parses the HEAD section for the "openid.server" and the optional
"openid.delegate" declarations.

3.3.1. Important Notes

• The End User could be malicious and try to make the Consumer connect to an internal
network, tarpit, etc. It is RECOMMENDED that Consumers use a paranoid HTTP library
like LWPx::ParanoidAgent that protects against these sorts of attacks.

• Consumers MUST implement support for Delegation (Delegating Authentication).

3.4. Smart vs Dumb Mode

OpenID Authentication supports both a "smart mode" and "dumb mode" to accomodate
Consumers of differing capabilities. A smart Consumer does a little more work at the beginning
to save itself work later, but requires local caching of state information. A dumb Consumer is
completely stateless, but requires extra an HTTP request.

3.4.1. Important Notes for Smart Mode

• It's RECOMMENDED that a Consumer first submit an associate request (associate) to
the End User's Identity Provider and request a shared secret if the Consumer does not
already have one cached. This shared secret SHOULD be used as the HMAC-SHA1 key
in future identity check requests until it expires.

• The shared secret can be exchanged either in plain-text or encrypted with a Diffie-
Hellman-negotiated secret. Note that if Diffie-Hellman is used, it's only used in the
associate mode. The checkid_immediate (checkid_immediate) and checkid_setup
(checkid_setup) modes assume the Consumer already has a shared secret, regardless
of how it got it.

3.5. Consumer Verifies the Identifier

The Consumer now constructs a URL to the Identity Provider's checkid_immediate
(checkid_immediate) (or checkid_setup (checkid_setup)) URLs and sends the User-Agent to it.

By sending the User-Agent there, the End User's cookies and whatever other login credentials
are sent back to their trusted Identity Provider. The Identity Provider does its work, appends its
response onto the supplied openid.return_to URL, and sends the User-Agent back to the
Consumer.

From openid.net/specs/openid-authentication-1_1.html 6 31 January 2009

4. Modes

4.1. associate

• Description: Establish a shared secret between Consumer and Identity Provider.
• HTTP method: POST
• Flow: Consumer -> IdP -> Consumer

4.1.1. Request Parameters

• openid.mode

Value: "associate"

• openid.assoc_type

Value: Preferred association type

Default: "HMAC-SHA1"

Note: Optional; Currently only one value.

• openid.session_type

Value: Blank or "DH-SHA1"

Default: Blank. (cleartext)

Note: It is RECOMMENDED that DH-SHA1 mode is used to encrypt the shared secret.

• openid.dh_modulus

Value: base64(btwoc(p))

Note: See Appendix A.1 (Diffie-Hellman P Value) for default p value.

• openid.dh_gen

Value: base64(btwoc(g))

Default: g = 2

From openid.net/specs/openid-authentication-1_1.html 7 31 January 2009

Note: Only if using DH-SHA1 session_type. Should be specified if openid.dh_modulus is
specified.

• openid.dh_consumer_public

Value: base64(btwoc(g ^ x mod p))

Note: REQUIRED if using DH-SHA1 session_type.

4.1.2. Response Parameters

Response format: Key-Value Pairs

• assoc_type

Value: The association type for the returned handle.

Note: The only current mode is HMAC-SHA1, and all Consumers MUST support it.
When caching, the Consumer MUST map an assoc_handle to both its secret and its
assoc_type.

• assoc_handle

Value: The association handle to be provided in future transactions.

Note: Consumers MUST NOT reuse this association handle after the corresponding
expires_in value.

• expires_in

Value: The number of seconds this association handle is good for in base10 ASCII.

• session_type

Value: The encryption mode that the Provider chose. MAY be blank, absent, or "DH-
SHA1".

• dh_server_public

Value: base64(btwoc(g ^ y mod p))

Description: The Provider's Diffie-Hellman public key (Rescorla, E., “Diffie-Hellman Key
Agreement Method,” .) [RFC2631], if using DH-SHA1.

• enc_mac_key

From openid.net/specs/openid-authentication-1_1.html 8 31 January 2009

Value: base64(SHA1(btwoc(g ^ (xy) mod p)) XOR secret(assoc_handle))

Description: The encrypted shared secret, if using DH-SHA1.

• mac_key

Value: base64(secret(assoc_handle))

Description: The plaintext shared secret, if not using DH-SHA1.

4.1.3. Extra Notes

• A Consumer can ask a server for DH-SHA1 encryption and get back a plaintext secret. If
this troubles you, don't use the handle and instead use dumb mode with that Identity
Provider.

If somebody sniffed the plaintext secret, it won't matter, since you'll never accept queries
using that association handle. If the Identity Provider can't do DH-SHA1, it's probably
limited in some way, but using dumb mode is still safe, if not a little slower.

• If the Identity Provider chooses the server private key 1 <= y < p-1. The shared DH-
SHA1 secret is thus g ^ xy mod p = (g ^ x) ^ y mod p = (g ^ y) ^ x mod p. For more
information, read the Crypt::DH docs.

• The underlying mac_key MUST be the same length as the output of H, the hash function
- in this instance, 160 bits (20 bytes) for DH-SHA1.

• If the Provider does not support DH-SHA1, they WILL ignore the DH-SHA1 fields in the
request and reply exactly as to a non-DH-SHA1 request.

• When using DH-SHA1, the resulting key SHOULD be treated as a binary string.
• Most integers are represented in big-endian signed two's complement, Base64 encoded.

In other words, btwoc is a function that takes a bigint and returns its shortest big-endian
two's complement notation

4.2. checkid_immediate

• Description: Ask an Identity Provider if a End User owns the Claimed Identifier, getting
back an immediate "yes" or "can't say" answer.

• HTTP method: GET
• Flow: Consumer -> User-Agent -> IdP -> User-Agent -> Consumer

4.2.1. Request Parameters

• openid.mode

From openid.net/specs/openid-authentication-1_1.html 9 31 January 2009

Value: "checkid_immediate"

• openid.identity

Value: Claimed Identifier

• openid.assoc_handle

Value: The assoc_handle from the associate request.

Note: Optional; Consumer MUST use check_authentication if an association handle isn't
provided or the Identity Provider feels it is invalid.

• openid.return_to

Value: URL where the Provider SHOULD return the User-Agent back to.

• openid.trust_root

Value: URL the Provider SHALL ask the End User to trust.

Default: return_to URL

Optional; the URL which the End User SHALL actually see to approve.

4.2.2. Response Parameters

Response format: query string arguments

4.2.2.1. Always Sent

• openid.mode

Value: "id_res"

4.2.2.2. Sent on Failed Assertion

• openid.user_setup_url

Value: URL to redirect User-Agent to so the End User can do whatever's necessary to
fulfill the assertion.

From openid.net/specs/openid-authentication-1_1.html 10 31 January 2009

4.2.2.3. Sent on Positive Assertion

• openid.identity

Value: Verified Identifier

• openid.assoc_handle

Value: Opaque association handle being used to find the HMAC key for the signature.

• openid.return_to

Value: Verbatim copy of the return_to URL parameter sent in the request, before the
Provider modified it.

• openid.signed

Value: Comma-seperated list of signed fields.

Note: Fields without the "openid." prefix that the signature covers. For example,
"mode,identity,return_to".

• openid.sig

Value: base64(HMAC(secret(assoc_handle), token_contents)

Note: Where token_contents is a key-value format string of all the signed keys and
values in this response. They MUST be in the same order as listed in the openid.signed
field. Consumer SHALL recreate the token_contents string prior to checking the
signature. See Appendix D (Limits).

• openid.invalidate_handle

Value: Optional; The association handle sent in the request if the Provider did not accept
or recognize it.

4.2.3. Extra Notes

• This mode is commonly used for "AJAX"-style setups. The more classic mode to check a
Claimed Identifier is checkid_setup (checkid_setup).

• An Identity Provider SHOULD only assert URLs that it manages/produces directly. If a
End User wants to assert other URLs outside of that Identity Provider's realm, they
MUST use delegation (Delegating Authentication).

From openid.net/specs/openid-authentication-1_1.html 11 31 January 2009

• The openid.return_to URL provided MAY contain an existing query string, and the
Provider MUST preserve it when appending the response parameters. OpenID
Consumer's SHOULD add a self-signed nonce with Consumer-local timestamp in the
openid.return_to URL parameters to prevent replay attacks. Details of that are left up to
the Consumer.

However, because the openid.return_to URL is signed by the Idenity Provide, a
Consumer can make sure outside parties haven't sent id_res responses with
mismatching openid.return_to URLs and signatures.

• If the Identity Provider didn't accept/recognize the provided assoc_handle for whatever
reason, it'll choose its own to use, and copy the one provided back into
openid.invalidate_handle, to tell the Consumer to stop using it. The Consumer SHOULD
then send it along in a check_authentication (check_authentication) request to verify it
actually is no longer valid.

• If the Identifier assertion fails, the Identity Provider provides the openid.user_setup_url
for where the End User can do whatever's necessary to fulfill the assertion, be it login,
setup permissions, etc. The server SHOULD return a URL which doesn't imply anything
about what's needed, so the Consumer is left in the dark about why the assertion failed.

The Identity Provider handling SHOULD eventually return the End User to the
openid.return_to URL, acting like a checkid_setup response, with either a "id_res" or
"cancel" mode.

• The openid.return_to URL MUST descend from the openid.trust_root, or the Identity
Provider SHOULD return an error. Namely, the URL scheme and port MUST match. The
path, if present, MUST be equal to or below the value of openid.trust_root, and the
domains on both MUST match, or, the openid.trust_root value contain a wildcard like
http://*.example.com. The wildcard SHALL only be at the beginning. It is
RECOMMENDED Identity Provider's protect their End Users from requests for things
like http://*.com/ or http://*.co.uk/.

• In the response, the Identity Provider's signature MUST cover openid.identity and
openid.return_to.

4.3. checkid_setup

• Description: Ask an Identity Provider if a End User owns the Claimed Identifier, but be
willing to wait for the reply. The Consumer will pass the User-Agent to the Identity
Provider for a short period of time which will return either a "yes" or "cancel" answer.

• HTTP method: GET
• Flow: Consumer -> User-Agent -> [IdP -> User-Agent ->]+ Consumer

4.3.1. Request Parameters

• openid.mode

Value: "checkid_setup"

From openid.net/specs/openid-authentication-1_1.html 12 31 January 2009

• openid.identity

Value: Claimed Identifier

• openid.assoc_handle

Value: The assoc_handle from the associate request.

Note: Optional; Consumer MUST use check_authentication if an association handle isn't
provided or the Identity Provider feels it is invalid.

• openid.return_to

Value: URL where the Provider SHOULD return the User-Agent back to.

• openid.trust_root

Value: URL the Provider SHALL ask the End User to trust.

Default: return_to URL

Optional; the URL which the End User SHALL actually see to approve.

4.3.2. Respone Parameters

Response format: query string arguments

4.3.2.1. Always Sent

• openid.mode

Value: "id_res" or "cancel"

4.3.2.2. Sent on Positive Assertion

• openid.identity

Value: Verified Identifier

• openid.assoc_handle

From openid.net/specs/openid-authentication-1_1.html 13 31 January 2009

Value: Opaque association handle being used to fine the HMAC key for the signature.

• openid.return_to

Value: Verbatim copy of the return_to URL parameter sent in the request, before the
Provider modified it.

• openid.signed

Value: Comma-seperated list of signed fields.

Note: Fields without the "openid." prefix that the signature covers. For example,
"mode,identity,return_to".

• openid.sig

Value: base64(HMAC(secret(assoc_handle), token_contents)

Note: Where token_contents is a key-value format string of all the signed keys and
values in this response. They MUST be in the same order as listed in the openid.signed
field. Consumer SHALL recreate the token_contents string prior to checking the
signature. See Appendix D (Limits).

• openid.invalidate_handle

Value: Optional; The association handle sent in the request if the Provider did not accept
or recognize it.

4.3.3. Extra Notes

• In the response, the Identity Provider's signature MUST cover openid.identity and
openid.return_to.

• In a lot of cases, the Consumer won't get a cancel mode; the End User will just quit or
press back within their User-Agent. But if it is returned, the Consumer SHOULD return to
what it was doing. In the case of a cancel mode, the rest of the response parameters will
be absent.

4.4. check_authentication

• Description: Ask an Identity Provider if a message is valid. For dumb, stateless
Consumers or when verifying an invalidate_handle response.

WARNING: Only validates signatures with stateless association handles. Identity
Providers MUST NOT ever validate a signature for an association handle whose secret

From openid.net/specs/openid-authentication-1_1.html 14 31 January 2009

has been shared with anybody. They MUST differentiate its stateless vs. associated
association handles, and only offer check_authentication service on the stateless
handles.

• HTTP method: POST
• Flow: Consumer -> IdP -> Consumer

4.4.1. Request Parameters

• openid.mode

Value: "check_authentication"

• openid.assoc_handle

Value: The association handle from checkid_setup or checkid_immediate response.

• openid.sig

Value: The signature from the checkid_setup or checkid_immediate request the
Consumer wishes to verify.

• openid.signed

Value: The list of signed fields from the checkid_setup or checkid_immediate request the
Consumer wishes to verify the signature of.

• openid.*

Value: The Consumer MUST send all the openid.* response parameters from the
openid.signed list which they'd previously gotten back from a checkid_setup or
checkid_immediate request, with their values being exactly what were returned from the
Provider.

• openid.invalidate_handle

Value: Optional; association handle returned via invalidate_handle.

4.4.2. Response Parameters

Response format: Key-Value Pairs

• openid.mode

Value: "id_res"

From openid.net/specs/openid-authentication-1_1.html 15 31 January 2009

• is_valid

Value: "true" or "false"

Description: Boolean; whether the signature is valid.

• invalidate_handle

Value: opaque association handle

Description: If present, the Consumer SHOULD uncache the returned association
handle.

4.4.3. Extra Notes

• Identity Providers MUST implement this mode for error recovery and dumb Consumers,
which can't keep state locally, but it's RECOMMENDED that it is used as little as
possible, as it shouldn't be necessary most the time. It's good for debugging, though, as
you develop your Consumer library.

• If you got an invalidate_handle response during a checkid_setup or checkid_immediate
request, that means the Identity Provider didn't recognize the association handle, maybe
it lost it, and had to pick its own.

This means the Consumer will have to fallback to dumb mode, since you don't have the
shared secret which the Identity Provider is using. While doing this check_authentication
request, also send along the invalidate_handle response from the Identity Provider and
it'll be checked to see if it actually is missing/bogus.

• When verifying the signature using openid.* query values, the openid.mode value must
be changed to "id_res".

5. Security Considerations

• While the OpenID Authentication protocol often refers to using HTTP, HTTPS can be
used for additional security. It is RECOMMENDED it is used during the associate mode
(associate) and helps to protect against man in the middle, DNS, and some phishing
attacks.

• Consumers SHOULD NOT use IFrames or popup's when requesting an End User login
via OpenID.

Appendix A. Default Values

From openid.net/specs/openid-authentication-1_1.html 16 31 January 2009

Appendix A.1. Diffie-Hellman P Value

1551728981814736974712322577637155\ 3991572480196691540447970779531405\
7629378541917580651227423698188993\ 7278161526466314385615958256881888\
8995127215884267541995034125870655\ 6549803580104870537681476726513255\
7470407658574792912915723345106432\ 4509471500722962109419434978392598\
4760375594985848253359305585439638443

Appendix B. Error Responses

This section pertains to protocol/run-time errors, not authentication errors. Authentication errors
are defined in the protocol.

• No error codes have been defined; just unstructured natural language error text.
• If it's a GET request with bad arguments, but a valid openid.return_to URL, the Identity

Provider SHALL redirect the User-Agent with openid.mode=error and
openid.error=Error+Text set.

• If it's a GET request with bad arguments, and no valid openid.return_to URL, the Identity
Provider SHALL return a "400 Bad Request" with any content-type and error message it
wants.

• If it's a GET request with no arguments, the Identity Provider SHALL show a 200
text/html error saying "This is an OpenID server endpoint. For more information, see
http://openid.net/".

• If it's a POST request with bad/no arguments, the Identity Provider SHALL return a 400
Bad Eequest with the Key-Value response format containing a single key "error" with the
natural language text. The Identity Provider can add any additonal keys it wishes in this
case.

Appendix C. Key-Value Format

Lines of:

• some_key:some value
• There MUST NOT be a space before or after the colon.
• Newline characters MUST be Unix-style, just ASCII character 10 ("\n").
• Newlines MUST BE at end of each line as well as between lines.
• MIME type is unspecified, but text/plain is RECOMMENDED.
• Character encoding MUST BE UTF-8.

Appendix D. Limits

• Identifier URL: 255 max bytes

From openid.net/specs/openid-authentication-1_1.html 17 31 January 2009

• Identity Provider URL: 2047 max bytes, after Consumer-added URL arguments. The raw
endpoint URL SHOULD be kept well below this.

• return_to URL: 2047 max bytes, after Identity Provider added URL arguments. The raw
return_to URL SHOULD be kept well below this.

• assoc_handle: 255 characters or less, and consist only of ASCII characters in the range
33-126 inclusive (ie printable non-whitespace characters).

Appendix E. Misc

• Timestamps must be in w3c format, and must be in the UTC timezone, indicated with a
"Z". For example: 2005-05-15T17:11:51Z

6. Normative References

[RFC2119] Bradner, B., “Key words for use in RFCs to Indicate Requirement Levels.”
[RFC2396] Berners-Lee, T., “Uniform Resource Identifiers (URI): Generic Syntax.”
[RFC2631] Rescorla, E., “Diffie-Hellman Key Agreement Method.”

Authors' Addresses

 David Recordon
Email: drecordon@verisign.com

 Brad Fitzpatrick

Email: brad@danga.com

	OpenID Authentication 1.1
	May 2006 D. Recordon and B. Fitzpatrick, OpenID Foundation
	Abstract
	Table of Contents
	1. Requirements Notation
	2. Terminology
	3. Overview
	4. Modes
	5. Security Considerations
	Appendix A. Default Values
	Appendix B. Error Responses
	Appendix C. Key-Value Format
	Appendix D. Limits
	Appendix E. Misc
	6. Normative References
	Authors' Addresses

	
	OpenID Title Page

