
 1
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

X A C M Light Referencei

1. Introduction.
2. Implemented Features and Limitations.
 2.1. Policy, Policy Set References and Local Repo.

2.2. Configuration File.
3. Supported Platforms.
4. WSDL Operations.
5. Binary Installation.
6. Building from Sources.

6.1. Useful Scripts.
6.2. Axis2 Limitations and Bugs.

7. Source and Binary Locations.
7.1. Version 'SNAPSHOT' Locations.
7.2. Other version locations.

8. Test Cases.
8.1. Internal Tests
8.2. XACML 2.0 Conformance Tests.

8.2.1 Mandatory Test Results.
8.2.2 Optional Test Results.

9. References.

1. Introduction.

XACMLight is an Axis2 [1] web service that implements a Policy Decision Point (PDP)
and a Policy Administration Point (PAP) that are defined in XACML 2.0 [2]
specification. This implementation covers all functions that are defined by XAMCL 2.0
(including optional), all mandatory elements and almost all optional features. The current
implementation has been successfully tested against XACML 2.0 conformance test suite
[10] : all applicable tests have been completed successfully.

2. Implemented Features and Limitations.

The following mandatory features defined in XACML 2.0 have been implemented:

1. Mandatory functions
2. All mandatory elements

 2
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

3. All mandatory data types
4. Intrinsic XACML attributes:

a. urn:oasis:names:tc:xacml:1.0:environment:current-time
b. urn:oasis:names:tc:xacml:1.0:environment:current-date
c. urn:oasis:names:tc:xacml:1.0:environment:current-dateTime

The following optional XACML features have been implemented:

1. Multiple results
2. <MissingAttributeDetail> element
3. <StatusMessage> element
4. <StatusDetail> element
5. <AttributeSelector> element
6. Optional functions

The first optional feature above is very useful from practical point of view because it
allows evaluating multiple resources in a single XACML request, the next three are very
helpful for understanding what is wrong with authorization request and/or policy when
the engine returns a 'Indeterminate' result.

XACMLight uses JDK 1.5 XPath implementation for implementing the following
optional functions and elements:

1. <AttributeSelector>
2. xpath-node-count
3. xpath-node-equal
4. xpath-node-match

It means that the version of XPath is determined by the version of this particular
implementation and the version provided in <PolicyDefaults> and <PolicySetDefaults>
will be ignored.

2.1. Policy, Policy Set References and Local Repo.

XACML 2.0 doesn't define how references to policies and policy sets should be resolved.
It says only that if reference is a URL a reference MAY be resolved. XACMLight uses
the following strategy to resolve references:

1. Searches a local repository
2. If a policy or policy set was not found in the local repository, it tries to interpret

the reference as a URL and retrieve it online (e.g. if it's a real http:// URL it will
try to fetch it through HTTP protocol)

 3
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

3. If it's resolved, its version will be validated against 'EarliestVersion' and
'LatestVersion' attributes using algorithm that is described in XACML's
'VersionMatchType' section.

4. If version is in the range the policy or policy set will be inserted, otherwise they
will be ignored.

Local repository must be set in <Repo> section of PDP's initial configuration file.
Unbounded sequences of the following elements are allowed in <Repo> section:

1. <Policy>
2. <PolicySet>
3. <Attribute>

The syntax of the first two elements in the list are defined by policy XSD [8], the syntax
of the third element is defined by context XSD [9]. Policies and Policy Sets in <Repo>
section are used for resolving references. Attributes are used for resolving missing
attributes in request.

2.2. Configuration File.

The name of default configuration file is gryb_info_xacml_config.xml. It must be placed
to an Axis2 CLASSPATH (e.g. to AXIS2_HOME directory) to be available for
XACMLight service. The XSD schema for this file is defined in xacml.wsdl file and
contains the following elements:

1. <Config> - the root element of configuration file. It can contain one <Policy> or
one <PolicySet> element inside.

2. <Repo> - this element is described in section 2.1

3. Supported Platforms.

Since XACMLight is implemented as an Axis2 service, it can run on native Axis2
Apache server or on any other J2EE compliant container using Axix2 war file that allows
deploying aar files to other application servers. The current implementation has been
tested with the native Axis2 server only.

4. WSDL Operations.

WSDL for XACMLight was built using XML schema definitions provided by OASIS
([8]-[9]). The latter schema definitions use abstract XML types and substitution groups
that are not handled well by Apache Data Binding Frameworks ([5]-[6]). The following

 4
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

WSDL operations have been defined in XACMLight's WSDL and implemented in the
scope of this project:

Wsdl
Operation Input Output Description Service

setPolicyRoot <xl:SetPolicyRoot> <xl:Result> Can be used to set up a
root policy or policy set PAP

setRepo <xl:Repo> <xl:Result>

Can be used to set up
PDP's policy and
attribute local repository
(see section 2.1)

PAP

getRepo <xl:GetRepo> <xl:Repo> Returns the current local
repository PAP

setPolicyRoot <xl:SetPolicyRoot> <xl:Result> Can be used to set up a
root policy or policy set PAP

getDecision <ctx:Request> <ctx:Response>
Gets an authorization
decision from PDP
engine

PDP

setPolicies <pol:PolicySet> <xl:Result>

Overrides the root policy
set. Deprecated in
version 2.2: use
setPolicyRoot instead

PAP

getPolicies <xl:GetPolicies> <pol:PolicySet> Returns the current root
policy set PAP

setPolicy <pol:Policy> <xl:Result> Overrides a policy with a
given policy ID PAP

getPolicy <xl:GetPolicy> <pol:Policy> Returns a policy with a
given policy ID PAP

addPolicy <xl:AddPolicy>,
PolicySetId - parent <xl:Result>

Adds a policy with a
given policy ID to a
policy set with a given
policy set ID

PAP

deletePolicy <xl:DeletePolicy> <xl:Result> Deletes a policy with a
given policy ID PAP

where XML namespaces are defined as follows:

Short
Name Full Name Description

ctx urn:oasis:names:tc:xacml:2.0:context:schema:os
XACML's 'context' namespace:
used for defining authorization
request

 5
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

pol urn:oasis:names:tc:xacml:2.0:policy:schema:os
XACML's 'policy' namespace:
used for defining authorization
policies

xl http://gryb.info/schemas/xacml/common
XACMLight's 'common'
namespace: used for defining
XACMLight-specific types

5. Binary Installation.

It would be sufficient to copy the authz.aar file to $AXIS2_HOME/repository/services
directory to make the service working. However, it's recommended to validate the
deployment by running a test that is included to the installation. The following steps will
conduct a shake-up test and validate the service:

1. Install Axis2 1.4-RC4 or later (e.g. from http://people.apache.org/~dims/axis2-
1.4/RC4/axis2-1.4-RC4-bin.zip)

2. Setup $AXIS2_HOME environment variable to point to Axis2 home directory
3. Make sure that you have curl utility in your PATH - it's required for testing
4. Unpack the binary distribution (see "Source and Binary Locations").
5. cd xacmllight-<version>
6. cp info_gryb_xacml_config.xml $AXIS2_HOME -- This file contains XACML

policy that would allow testing all mandatory function and many elements.
7. cp log4j.properties $AXIS2_HOME -- It will enable debug logging. You can

change the location of log file by editing log4j.appender.AUTHZ.File property.
By default the log file will be in 'current' directory, which differs depending on
platform.

8. cp authz.aar $AXIS2_HOME/repository/services
9. Restart (or start) Axis2 server
10. cd test
11. chmod +x *.sh
12. Restart (or start) Axis2 server if you on Windows. On UNIX send.sh will restart

the server.
13. send.sh authz1.xml (or send.bat authz1.xml on Windows) -- It will send a

XACML request to PDP engine.
14. Verify the output XML: it should contain 10 'Permit' decisions.
15. For testing PAP engine use send.sh or test.pl scripts:

 send.sh <file> http://localhost:8080/axis2/services/PapService
<wsdl-operation>
 or
 perl test.pl <XACML-conformance-test-dir> 2>test.txt
 (see "Test Cases" for details)

1. For testing PAP engine use the following command:

 6
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

6. Building from Sources.

XACMLight is a Maven2 [3] project and Maven2 must be installed before the service
could be built. The building machine should have access to Internet because Maven will
download dependency from online repositories. The following steps will allow to build
the project:

1. Install Axis2 1.4-RC4 or later (e.g. from http://people.apache.org/~dims/axis2-
1.4/RC4/axis2-1.4-RC4-bin.zip)

2. Setup $AXIS2_HOME environment variable to point to Axis2 home directory
3. Install Maven 2
4. Setup $M2_REPO environment variable to point to Maven repo directory
5. Make sure that 'curl' utility is in the PATH - it's required for testing
6. If you build on Windows platform make sure that 'sed', 'tar', 'gzip' utilities are

available and are in the PATH
7. Download XACMLight sources (see "Source and Binary Locations") to your

local directory (<xacmllight>)
8. cd <xacmllight>/bin
9. chmod +x *.sh
10. w2j.sh && build.sh && copy_aar.sh - it will build the authz.aar file and copy it to

Axis2 repository
11. send.sh will send the authorization request to PDP and print out the result
12. On Windows platform use *.bat scripts instead of *.sh scripts

6.1. Useful Scripts.

The following useful scripts could be found in <xacmllight>/bin directory of source
distribution. Please check the source to find out what the parameters and their default
values are.

Script Decsription Purpose

build Cleans and rebuilds everything including Eclipse [4] projects
and settings Build

clean Cleans temporary files including files generated by w2j Build

copy_aar Builds and deploys authz.aar to $AXIS2_HOME Build,
Deploy

send Restarts Axis2 service and sends a message (on Windows only
sends without restart) Test

simple_send Sends a message without restarting Axis2 server Test
test.pl Runs tests from XACML 2.0 Conformance Suite [10] Test
w2j Generates proxy classes from WSDL Build

6.2. Axis2 Limitations and Bugs.

 7
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

The following problems have been found in Axis2 framework in the process of
XACMLight implementation:

Problem Decsription Work around

axis2-wsdl2code plugin
can not be used

It looks like this plugin
generates ADB [5] classes only
that don't handle XML abstract
types well

Use wsdl2java with -d
xmlbeans option instead

SystemTypeHolder.class wsdl2java generates the class
and puts it to src dir

The class needs to be
moved to target dir. It's
done by 'build' script

ADB classes can't be used
Substitution groups and abstract
XML types implementations
have bugs

Use xmlbeans

xmlbeans bug

Axis2 server creates
'XmlAnyTypeImpl' instead of
XACML XSD type
'ExpressionType'

See XElementImpl.java for
workaround

Hot deploy doesn't work It looks like Axis2 needs to be
restarted after each deploy send script takes care of it

XmlObject.validate throws
exceptions

validate throws exception` for
valid XMLs see Helper.validate

XmlObject.validate "no
wildcards" error

Validate throws "no wildcards"
error for 'anyAttribute'/lax
elements

see Helper.validate

7. Source and Binary Locations.

7.1. Version 'SNAPSHOT' Locations.

'SNAPSHOT' is the latest XACMLight code that could be found in SVN [7] repository
only at the following URL:
https://xacmllight.svn.sourceforge.net/svnroot/xacmllight/trunk

7.2. Other version locations.

The following versions are available: 2.0, 2.1, 2.2. The latest and recommended stable
version is 2.2. The table below provides locations for SVN, source and binary
distributions:

Distro
Type Location Descriptio

n
Binarie http://downloads.sourceforge.net/xacmllight/xacmllight- Binary

 8
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

s <ver>.tar.gz tarball

Sources http://downloads.sourceforge.net/xacmllight/xacmllight-src-
<ver>.tar.gz

Source
tarball

Sources https://xacmllight.svn.sourceforge.net/svnroot/xacmllight/tags/<ver
>

SVN [7]
repository

* Replace <ver> with a version number to get a real URL.

8. Test Cases.

8.1. Internal Tests

The main test can be performed by calling send.sh authz1.xml (or send.bat authz1.xml)
script from <xacmllight>/bin directory. It will send the authorization request for 10
resources to PDP engine. On UNIX/Linux it will also restart the Axis2 server. On
Windows starting/stopping of Axis2 server should be done manually.

To test PAP/PDP engines use following commands:

 send.sh <path-to-file> <service-url> <wsdl-operation>

The valid <path-to-file> and <wsdl-operation> values are provided in table below:

File Wsdl
Operation Description Service

authz1.xml getDecision Gets an authorization decision from PDP
engine PDP

policyset.set.xml setPolicies Overrides the root policy set PAP
policyset.get.xml getPolicies Returns the current root policy set to a client PAP
policy.set.xml setPolicyy Overrides a policy with a given policy ID PAP

policy.get.xml getPolicyy Returns a policy with a given policy ID to a
client PAP

policy.del.xml deletePolicy Deletes a policy with a given policy ID PAP

policy.add.xml addPolicy Adds a policy with a given policy ID to a
policy set with a given policy set ID PAP

The location of XML sample files:

1. Source distribution: <xacmllight>/authz/src/main/resources
2. Binary distribution: <xacmllight>/test

 9
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

The URLs for PAP/PDP engines are provided below (assuming that Axis2 server runs on
the local machine):

1. http://localhost:8080/axis2/services/PdpService - PDP engine
2. http://localhost:8080/axis2/services/PapService - PAP engine

8.2. XACML 2.0 Conformance Tests.

To test PAP/PDP engines against official XACML conformance tests [10] use the
following command:

 perl test.pl <XACML-conformance-test-dir> 2>test.txt
 where <XACML-conformance-test-dir> - a directory with conformance
tests
 text.tx - the results of tests

8.2.1 Mandatory Test Results.

The total number of tests was: 333, out of which 328 where successful, 5 were not
applicable. The notes on some mandatory tests are provided below:

Test Status Note

IIA004 Not
Applicable

XACMLight doesn't allow policy or policy set that is not
compliant with XSD [8]

IID029.1-
2

Not
Applicable XACMLight has only one root policy set or policy

IID030.1-
2

Not
Applicable XACMLight has only one root policy set or policy

IIE001 Passed The Policy document was changed to use XACMLight local
repository (see info_gryb_xacml_config.xml for details)

IIE002 Passed The Policy document was changed to use XACMLight local
repository (see info_gryb_xacml_config.xml for details)

IIE003 Passed The Policy document was changed to use XACMLight local
repository (see info_gryb_xacml_config.xml for details)

8.2.2 Optional Test Results.

The total number of optional tests was: 44. All of them have been completed successfully
using test.pl utility described above.

9. References.

1. Apache Axis2 - http://ws.apache.org/axis2

 10
From gryb.info/xacml/doc/XACMLightReference.html 3 March 2011

2. XACML 2.0 - http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-
core-spec-os.pdf

3. Maven 2 - http://maven.apache.org/
4. Eclipse - http://www.eclipse.org/
5. Apache ADB - http://ws.apache.org/axis2/1_0/adb/adb-howto.html
6. Apache XMLBeans - http://xmlbeans.apache.org/
7. SVN (Subversion) - http://subversion.tigris.org/
8. XACML 2.0 Policy XSD - http://docs.oasis-open.org/xacml/access_control-

xacml-2.0-policy-schema-cd-04.xsd
9. XACML 2.0 Context XSD - http://docs.oasis-open.org/xacml/access_control-

xacml-2.0-context-schema-cd-04.xsd
10. XACML 2.0 Conformance Tests - http://www.oasis-

open.org/committees/download.php/14846/xacml2.0-ct-v.0.4.zip

Endnotes

i
 Based on the URL this document appears to be authored or edited by Oleg Gryb. This

information was found for him at LinkedIn:

 Security Architect/Staff Engineer at Intuit

Location San Francisco Bay Area

Industry Information Technology and Services

His resume is available from his personal website “gryb.info/resume.”

	XACML Light Reference
	undated, accessed 6 Mar 2011 Oleg Gryb
	Contents
	1. Introduction.
	2. Implemented Features and Limitations.
	3. Supported Platforms.
	4. WSDL Operations.
	5. Binary Installation.
	6. Building from Sources.
	7. Source and Binary Locations.
	8. Test Cases.
	9. References.
	Endnotes

	
	Tech Title Page

