
pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 1 of 190

 1

OASIS Service Provisioning Markup 2

Language (SPML) Version 2 3

OASIS Standard 4

2006 April 1 5

Document identifier: pstc-spml2-os.pdf 6

Location: http://www.oasis-open.org/committees/provision/docs/ 7

Send comments to: pstc-comment@lists.oasis-open.org 8

Editor: 9

Gary Cole, Sun Microsystems (Gary.P.Cole@Sun.com) 10

Contributors: 11

Jeff Bohren, BMC 12
Robert Boucher, CA 13
Doron Cohen, BMC 14
Gary Cole, Sun Microsystems 15
Cal Collingham, CA 16
Rami Elron, BMC 17
Marco Fanti, Thor Technologies 18
Ian Glazer, IBM 19
James Hu, HP 20
Ron Jacobsen, CA 21
Jeff Larson, Sun Microsystems 22
Hal Lockhart, BEA 23
Prateek Mishra, Oracle Corporation 24
Martin Raepple, SAP 25
Darran Rolls, Sun Microsystems 26
Kent Spaulding, Sun Microsystems 27
Gavenraj Sodhi, CA 28
Cory Williams, IBM 29
Gerry Woods, SOA Software 30

Abstract: 31

This specification defines the concepts and operations of an XML-based provisioning 32
request-and-response protocol. 33

Status: 34

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 2 of 190

This is an OASIS Standard document produced by the Provisioning Services Technical 35
Committee. It was approved by the OASIS membership on 1 April 2006. 36

If you are on the provision list for committee members, send comments there. If you are not 37
on that list, subscribe to the provision-comment@lists.oasis-open.org list and send 38
comments there. To subscribe, send an email message to provision-comment-39
request@lists.oasis-open.org with the word "subscribe" as the body of the message.40

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 3 of 190

Table of contents 41

1 Introduction... 7 42
1.1 Purpose .. 7 43
1.2 Organization ... 7 44
1.3 Audience... 7 45
1.4 Notation .. 8 46

1.4.1 Normative sections ... 8 47

1.4.2 Normative terms.. 8 48

1.4.3 Typographical conventions ... 8 49

1.4.4 Namespaces ... 9 50

2 Concepts .. 10 51
2.1 Domain Model .. 10 52

2.1.1 Requestor ... 10 53

2.1.2 Provider... 11 54

2.1.3 Target.. 11 55

2.1.3.1 Target Schema .. 11 56

2.1.3.2 Supported Schema Entities ... 12 57

2.1.3.3 Capabilities... 12 58

2.1.4 Provisioning Service Object (PSO)... 13 59

2.2 Core Protocol.. 13 60
2.3 Profile.. 13 61

3 Protocol .. 14 62
3.1 Request/Response Model .. 14 63

3.1.1 Conversational flow... 16 64

3.1.2 Status and Error codes ... 16 65

3.1.2.1 Status (normative).. 17 66

3.1.2.2 Error (normative) .. 17 67

3.1.2.3 Error Message (normative) .. 18 68

3.1.3 Synchronous and asynchronous operations .. 19 69

3.1.3.1 ExecutionMode attribute .. 19 70

3.1.3.2 Async Capability .. 19 71

3.1.3.3 Determining execution mode ... 20 72

3.1.3.4 Results of asynchronous operations (normative) .. 22 73

3.1.4 Individual and batch requests ... 22 74

3.2 Identifiers .. 22 75

3.2.1 Request Identifier (normative) .. 23 76

3.2.2 Target Identifier (normative) ... 23 77

3.2.3 PSO Identifier (normative) .. 24 78

3.3 Selection... 26 79

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 4 of 190

3.3.1 QueryClauseType ... 26 80

3.3.2 Logical Operators.. 26 81

3.3.3 SelectionType ... 27 82

3.3.3.1 SelectionType in a Request (normative).. 27 83

3.3.3.2 SelectionType Processing (normative) .. 28 84

3.3.3.3 SelectionType Errors (normative) .. 29 85

3.3.4 SearchQueryType... 29 86

3.3.4.1 SearchQueryType in a Request (normative) ... 30 87

3.3.4.2 SearchQueryType Errors (normative).. 31 88

3.4 CapabilityData .. 32 89

3.4.1 CapabilityDataType... 32 90

3.4.1.1 CapabilityData in a Request (normative) ... 33 91

3.4.1.2 CapabilityData Processing (normative) ... 34 92

3.4.1.3 CapabilityData Errors (normative).. 37 93

3.4.1.4 CapabilityData in a Response (normative) .. 37 94

3.5 Transactional Semantics .. 39 95
3.6 Operations .. 39 96

3.6.1 Core Operations.. 39 97

3.6.1.1 listTargets... 39 98

3.6.1.2 add ... 50 99

3.6.1.3 lookup... 56 100

3.6.1.4 modify... 61 101

3.6.1.5 delete ... 71 102

3.6.2 Async Capability ... 74 103

3.6.2.1 cancel... 75 104

3.6.2.2 status.. 77 105

3.6.3 Batch Capability .. 83 106

3.6.3.1 batch .. 83 107

3.6.4 Bulk Capability .. 90 108

3.6.4.1 bulkModify.. 90 109

3.6.4.2 bulkDelete .. 92 110

3.6.5 Password Capability ... 95 111

3.6.5.1 setPassword... 95 112

3.6.5.2 expirePassword ... 97 113

3.6.5.3 resetPassword ... 98 114

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 5 of 190

3.6.5.4 validatePassword... 100 115

3.6.6 Reference Capability... 103 116

3.6.6.1 Reference Definitions... 105 117

3.6.6.2 References... 106 118

3.6.6.3 Complex References ... 106 119

3.6.6.4 Reference CapabilityData in a Request (normative) ... 111 120

3.6.6.5 Reference CapabilityData Processing (normative).. 113 121

3.6.6.6 Reference CapabilityData Errors (normative).. 115 122

3.6.6.7 Reference CapabilityData in a Response (normative) 115 123

3.6.7 Search Capability.. 116 124

3.6.7.1 search .. 117 125

3.6.7.2 iterate ... 123 126

3.6.7.3 closeIterator ... 129 127

3.6.8 Suspend Capability ... 133 128

3.6.8.1 suspend.. 133 129

3.6.8.2 resume ... 135 130

3.6.8.3 active.. 137 131

3.6.9 Updates Capability.. 140 132

3.6.9.1 updates .. 141 133

3.6.9.2 iterate ... 147 134

3.6.9.3 closeIterator ... 152 135

3.7 Custom Capabilities.. 157 136
4 Conformance (normative) .. 158 137

4.1 Core operations and schema are mandatory... 158 138
4.2 Standard capabilities are optional .. 158 139
4.3 Custom capabilities must not conflict ... 158 140
4.4 Capability Support is all-or-nothing .. 159 141
4.5 Capability-specific data... 159 142

5 Security Considerations ... 160 143
5.1 Use of SSL 3.0 or TLS 1.0 ... 160 144
5.2 Authentication... 160 145
5.3 Message Integrity ... 160 146
5.4 Message Confidentiality ... 160 147

Appendix A. Core XSD ... 161 148
Appendix B. Async Capability XSD .. 169 149
Appendix C. Batch Capability XSD... 171 150
Appendix D. Bulk Capability XSD ... 173 151
Appendix E. Password Capability XSD .. 175 152
Appendix F. Reference Capability XSD.. 177 153
Appendix G. Search Capability XSD .. 179 154
Appendix H. Suspend Capability XSD.. 182 155
Appendix I. Updates Capability XSD .. 184 156

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 6 of 190

Appendix J. Document References .. 187 157
Appendix K. Acknowledgments .. 189 158
Appendix L. Notices .. 190 159

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 7 of 190

1 Introduction 160

1.1 Purpose 161

This specification defines the concepts and operations of Version 2 of the Service Provisioning 162
Markup Language (SPML). SPML is an XML-based provisioning request-and-response protocol. 163

1.2 Organization 164

The body of this specification is organized into three major sections: Concepts, Protocol and 165
Conformance. 166

• The Concepts section introduces the main ideas in SPMLv2. Subsections highlight significant 167
features that later sections will discuss in more detail. 168

• The Protocol section first presents an overview of protocol features and then discusses the 169
purpose and behavior of each protocol operation. The core operations are presented in an 170
order that permits a continuing set of examples. Subsequent sections present optional 171
operations. 172
 173
Each section that describes an operation includes: 174
- The relevant XML Schema 175
- A normative subsection that describes the request for the operation 176
- A normative subsection that describes the response to the operation 177
- A non-normative sub-section that discusses examples of the operation 178

• The Conformance section describes the aspects of this protocol that a requestor or provider 179
must support in order to be considered conformant. 180

• A Security and Privacy Considerations section describes risks that an implementer of this 181
protocol should weigh in deciding how to deploy this protocol in a specific environment. 182

Appendices contain additional information that supports the specification, including references to 183
other documents. 184

1.3 Audience 185

The PSTC intends this specification to meet the needs of several audiences. 186

One group of readers will want to know: "What is SPML?” 187
A reader of this type should pay special attention to the Concepts section. 188

A second group of readers will want to know: "How would I use SPML?" 189
A reader of this type should read the Protocol section 190
(with special attention to the examples). 191

A third group of readers will want to know: "How must I implement SPML?" 192
A reader of this type must read the Protocol section 193
(with special attention to normative request and response sub-sections). 194

A reader who is already familiar with SPML 1.0 will want to know: “What is new in SPMLv2?” 195
A reader of this type should read the Concepts section thoroughly. 196

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 8 of 190

1.4 Notation 197

1.4.1 Normative sections 198

Normative sections of this specification are labeled as such. The title of a normative section will 199
contain the word “normative” in parentheses, as in the following title: “Syntax (normative)”. 200

1.4.2 Normative terms 201

This specification contains schema that conforms to W3C XML Schema and contains normative 202
text that describes the syntax and semantics of XML-encoded policy statements. 203

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 204
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be 205
interpreted as described in IETF RFC 2119 [RFC2119] 206

"they MUST only be used where it is actually required for interoperation or to limit 207
behavior which has potential for causing harm (e.g., limiting retransmissions)" 208

These keywords are capitalized when used to unambiguously specify requirements of the protocol 209
or application features and behavior that affect the interoperability and security of implementations. 210
When these words are not capitalized, they are meant in their natural-language sense. 211

1.4.3 Typographical conventions 212

This specification uses the following typographical conventions in text: 213

Format Description Indicates

xmlName monospace font The name of an XML attribute, element
or type.

“attributeName” monospace font
surrounded by
double quotes

An instance of an XML attribute.

‘attributeValue’ monospace font
surrounded by
double quotes

A literal value (of type string).

“attributeName=’value’” monospace font name
followed by equals
sign and value
surrounded by
single quotes

An instance of an XML attribute value.

Read as “a value of (value) specified for
an instance of the (attributeName)
attribute.”

{XmlTypeName}

 or
{ns:XmlTypeName}

monospace font
surrounded by
curly braces

The name of an XML type.

<xmlElement> or
<ns:xmlElement>

monospace font

surrounded by <>

An instance of an XML element.

Terms in italic boldface are intended to have the meaning defined in the Glossary. 214

Listings of SPML schemas appear like this. 215

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 9 of 190

 216

Example code listings appear like this. 217

1.4.4 Namespaces 218

Conventional XML namespace prefixes are used throughout the listings in this specification to 219
stand for their respective namespaces as follows, whether or not a namespace declaration is 220
present in the example: 221

• The prefix dsml: stands for the Directory Services Markup Language namespace [DSML]. 222

• The prefix xsd: stands for the W3C XML Schema namespace [XSD]. 223

• The prefix spml: stands for the SPMLv2 Core XSD namespace 224

[SPMLv2-CORE]. 225

• The prefix spmlasync: stands for the SPMLv2 Async Capability XSD namespace. 226

[SPMLv2-ASYNC]. 227

• The prefix spmlbatch: stands for the SPMLv2 Batch Capability XSD namespace 228

[SPMLv2-BATCH]. 229

• The prefix spmlbulk: stands for the SPMLv2 Bulk Capability XSD namespace 230

[SPMLv2-BULK]. 231

• The prefix spmlpass: stands for the SPMLv2 Password Capability XSD namespace 232

 [SPMLv2-PASS]. 233

• The prefix spmlref: stands for the SPMLv2 Reference Capability XSD namespace 234

 [SPMLv2-REF]. 235

• The prefix spmlsearch: stands for the SPMLv2 Search Capability XSD namespace 236

 [SPMLv2-SEARCH]. 237

• The prefix spmlsuspend: stands for the SPMLv2 Suspend Capability XSD namespace 238

 [SPMLv2-SUSPEND]. 239

• The prefix spmlupdates: stands for the SPMLv2 Updates Capability XSD namespace 240

 [SPMLv2-UPDATES]. 241

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 10 of 190

2 Concepts 242

SPML Version 2 (SPMLv2) builds on the concepts defined in SPML Version 1. 243

The basic roles of Requesting Authority (RA) and Provisioning Service Provider (PSP) are 244
unchanged. The core protocol continues to define the basis for interoperable management of 245
Provisioning Service Objects (PSO). However, the concept of Provisioning Service Target (PST) 246
takes on new importance in SPMLv2. 247

2.1 Domain Model 248

The following section describes the main conceptual elements of the SPML domain model. The 249
Entity Relationship Diagram (ERD) in Figure 1 shows the basic relationships between these 250
elements. 251

RA PSP

PST

PSO

 252

Figure 1. Domain model elements 253

2.1.1 Requestor 254

A Requesting Authority (RA) or requestor is a software component that issues well-formed SPML 255
requests to a Provisioning Service Provider. Examples of requestors include: 256

• Portal applications that broker the subscription of client requests to system resources 257

• Service subscription interfaces within an Application Service Provider 258

Trust relationship. In an end-to-end integrated provisioning scenario, any component that issues 259
an SPML request is said to be operating as a requestor. This description assumes that the 260

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 11 of 190

requestor and its provider have established a trust relationship between them. The details of 261
establishing and maintaining this trust relationship are beyond the scope of this specification. 262

2.1.2 Provider 263

A Provisioning Service Provider (PSP) or provider is a software component that listens for, 264
processes, and returns the results for well-formed SPML requests from a known requestor. For 265
example, an installation of an Identity Management system could serve as a provider. 266

Trust relationship. In an end-to-end integrated provisioning scenario, any component that 267
receives and processes an SPML request is said to be operating as a provider. This description 268
assumes that the provider and its requestor have established a trust relationship between them. 269
The details of establishing and maintaining this trust relationship are beyond the scope of this 270
specification. 271

2.1.3 Target 272

A Provisioning Service Target (PST) or target represents a destination or endpoint that a provider 273
makes available for provisioning actions. 274

A target is not a provider. A requestor asks a provider to act upon objects that the provider 275
manages. Each target is a container for objects that a provider manages. 276

A target may not be an actual endpoint. A target may represent a traditional user account source 277
(such as a Windows NT domain or a directory service instance), or a target may represent an 278
abstract collection of endpoints. 279

Every provider exposes at least one target. Each target represents a destination or endpoint 280
(e.g., a system, application or service—or a set of systems, applications, and services) to which the 281

provider can provision (e.g., create or modify accounts). 282

A target is a special, top-level object that: 283

• A requestor can discover from the provider 284

• No requestor can add, modify, delete or otherwise act upon 285

• May contain any number of provisioning service objects (PSO) upon which a requestor may act 286

• May contain a schema that defines the XML structure of the provisioning service objects (PSO) 287
that the target may contain 288

• May define which schema entities the target supports 289

• May expose capabilities: 290
- That apply to every supported schema entity 291
- That apply only to specific schema entities 292

The SPMLv2 model does not restrict a provider’s targets other than to specify that: 293

• A provider (PSP) must uniquely identify each target that it exposes. 294

• A provider must uniquely identify each object (PSO) that a target contains. 295

• Exactly one target must contain each object (PSO) that the provider manages. 296

2.1.3.1 Target Schema 297

The schema for each target defines the XML structure of the objects (PSO) that the target may 298
contain. 299

SPMLv2 does not specify a required format for the target schema. For example, a target schema 300
could be XML Schema [XSD] or (a target schema could be) SPML1.0 Schema [SPMLv2-Profile-301
DSML]. 302

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 12 of 190

Each target schema includes a schema namespace. The schema namespace indicates (to any 303
requestor that recognizes the schema namespace) how to interpret the schema. 304

A provider must present any object (to a requestor) as XML that is valid according to the schema of 305
the target that contains the object. A requestor must accept and manipulate, as XML that is valid 306
according to the schema of the target, any object that a target contains. 307

2.1.3.2 Supported Schema Entities 308

A target may declare that it supports only a subset of the entities (e.g., object classes or top-level 309
elements) in its schema. A target that does not declare such a subset is assumed to support every 310

entity in its schema. 311

A provider must implement the basic SPML operations for any object that is an instance of a 312
supported schema entity (i.e., a schema entity that the target containing the object supports). 313

2.1.3.3 Capabilities 314

A target may also support a set of capabilities. Each capability defines optional operations or 315
semantics (in addition to the basic operations that the target must support for each supported 316
schema entity). 317

A capability must be either "standard" or "custom": 318

• The OASIS PSTC defines each standard capability in an SPML namespace. 319

See the section titled “Namespaces”. 320

• Anyone may define a custom capability in another namespace. 321

A target may support a capability for all of its supported schema entities or (a target may support a 322
capability) only for specific subset of its supported schema entities. Each capability may specify 323
any number of supported schema entities to which it applies. A capability that does not specify at 324
least one supported schema entity implicitly declares that the capability applies to every schema 325

entity that the target supports. 326

Capability-defined operations. If a capability defines an operation and if the target supports that 327
capability for a schema entity of which an object is an instance, then the provider must support that 328
optional operation for that object. For example, if a target supports the Password Capability for 329
User objects (but not for Group objects), then a requestor may ask the provider to perform the 330
‘resetPassword’ operation for any User object (but the provider will fail any request to 331
‘resetPassword’ for a Group). 332

If a capability defines more than one operation and a target supports that capability (for any set of 333
schema entities), then the provider must support (for any instance of any of those schema entities 334
on that target) every operation that the capability defines. See the section titled "Conformance". 335

Capability-specific data. A capability may imply that data specific to that capability may be 336
associated with an object. Capability-specific data are not part of the schema-defined data of an 337
object. SPML operations handle capability-specific data separately from schema-defined data. 338
Any capability that implies capability-specific data must define the structure of that data. 339
See the section titled "CapabilityData". 340

Of the capabilities that SPML defines, only one capability actually implies that capability-specific 341
data may be associated with an object. The Reference Capability implies that an object (that is an 342
instance of a schema entity for which the provider supports the Reference Capability) may contain 343
any number of references to other objects. The Reference Capability defines the structure of a 344
reference element. For more information, see the section titled "Reference Capability". 345

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 13 of 190

2.1.4 Provisioning Service Object (PSO) 346

A Provisioning Service Object (PSO), sometimes simply called an object, represents a data entity 347
or an information object on a target. For example, a provider would represent as an object each 348
account that the provider manages. 349

NOTE: Within this document, the term “object” (unless otherwise qualified) refers to a PSO. 350

Every object is contained by exactly one target. Each object has a unique identifier (PSO-ID). 351

2.2 Core Protocol 352

SPMLv2 retains the SPML1.0 concept of a “core protocol”. The SPMLv2 Core XSD defines: 353

• Basic operations (such as add, lookup, modify and delete) 354

• Basic and extensible data types and elements 355

• The means to expose individual targets and optional operations 356

The SPMLv2 Core XSD also defines modal mechanisms that allow a requestor to: 357

• Specify that a requested operation must be executed asynchronously 358
(or to specify that a requested operation must be executed synchronously) 359

• Recognize that a provider has chosen to execute an operation asynchronously 360

• Obtain the status (and any result) of an asynchronous request 361

• Stop execution of an asynchronous request 362

Conformant SPMLv2 implementations must support the core protocol, including: 363

• The new listTargets operation 364

• The basic operations for every schema entity that a target supports 365

• The modal mechanisms for asynchronous operations 366

(For more information, see the section titled “Conformance”). 367

2.3 Profile 368

SPMLv2 defines two “profiles” in which a requestor and provider may exchange SPML protocol: 369

• XML Schema as defined in the “SPMLv2 XSD Profile” [SPMLv2-Profile-XSD]. 370

• DSMLv2 as defined in the “SPMLv2 DSMLv2 Profile” [SPMLv2-Profile-DSML]. 371

A requestor and a provider may exchange SPML protocol in any profile to which they agree. 372

SPML 1.0 defined file bindings and SOAP bindings that assumed the SPML1.0 Schema for DSML 373
[SPML-Bind]. The SPMLv2 DSMLv2 Profile provides a degree of backward compatibility with 374

SPML 1.0. The DSMLv2 profile supports a schema model similar to that of SPML 1.0. 375

The DSMLv2 Profile may be more convenient for applications that access mainly targets that are 376
LDAP or X500 directory services. The XSD Profile may be more convenient for applications that 377
access mainly targets that are web services. 378

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 14 of 190

3 Protocol 379

General Aspects. The general model adopted by this protocol is that a requestor (client) asks a 380
provider (server) to perform operations. In the simplest case, each request for an SPML operation 381
is processed individually and is processed synchronously. The first sub-section, 382
“Request/Response Model”, presents this model and discusses mechanisms that govern 383
asynchronous execution. Sub-sections such as “Identifiers”, “Selection”, “CapabilityData” and 384

“Transactional Semantics” also describe aspects of the protocol that apply to every operation. 385

Core Operations. In order to encourage adoption of this standard, this specification minimizes the 386
set of operations that a provider must implement. The Core Operations section discusses these 387
required operations. 388

Standard Capabilities. This specification also defines optional operations. Some operations are 389
optional (rather than required) because those operations may be more difficult for a provider to 390
implement for certain kinds of targets. Some operations are optional because those operations may 391
apply only to specific types of objects on a target. This specification defines a set of standard 392
capabilities, each of which groups optional operations that are functionally related. The remainder 393
of the Operations section discusses optional operations (such as search) that are associated with 394
SPMLv2’s standard capabilities. 395

Custom Capabilities. The capability mechanism in SPMLv2 is open and allows an individual 396
provider (or any third party) to define additional custom capabilities. See the sub-section titled 397

"Custom Capabilities". 398

3.1 Request/Response Model 399

The general model adopted by this protocol is that a requestor (client) asks a provider (server) to 400
perform an operation. A requestor asks a provider to perform an operation by sending to the 401
provider an SPML request that describes the operation. The provider examines the request and, if 402
the provider determines that the request is valid, the provider does whatever is necessary to 403
implement the requested operation. The provider also returns to the requestor an SPML response 404

that details any status or error that pertains to the request. 405

 <complexType name="ExtensibleType">
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>

 <simpleType name="ExecutionModeType">
 <restriction base="string">
 <enumeration value="synchronous"/>
 <enumeration value="asynchronous"/>
 </restriction>
 </simpleType>

 <complexType name="CapabilityDataType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 15 of 190

 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="RequestType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="requestID" type="xsd:ID" use="optional"/>
 <attribute name="executionMode" type="spml:ExecutionModeType"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="StatusCodeType">
 <restriction base="string">
 <enumeration value="success"/>
 <enumeration value="failure"/>
 <enumeration value="pending"/>
 </restriction>
 </simpleType>

 <simpleType name="ErrorCode">
 <restriction base="string">
 <enumeration value="malformedRequest"/>
 <enumeration value="unsupportedOperation"/>
 <enumeration value="unsupportedIdentifierType"/>
 <enumeration value="noSuchIdentifier"/>
 <enumeration value="customError"/>
 <enumeration value="unsupportedExecutionMode"/>
 <enumeration value="invalidContainment"/>
 <enumeration value="unsupportedSelectionType"/>
 <enumeration value="resultSetTooLarge"/>
 <enumeration value="unsupportedProfile"/>
 <enumeration value="invalidIdentifier"/>
 <enumeration value="alreadyExists"/>
 <enumeration value="containerNotEmpty"/>
 </restriction>
 </simpleType>

 <simpleType name="ReturnDataType">
 <restriction base="string">
 <enumeration value="identifier"/>
 <enumeration value="data"/>
 <enumeration value="everything"/>
 </restriction>
 </simpleType>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 16 of 190

 <complexType name="ResponseType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="errorMessage" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="status" type="spml:StatusCodeType"
use="required"/>
 <attribute name="requestID" type="xsd:ID" use="optional"/>
 <attribute name="error" type="spml:ErrorCode"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

The following subsections describe aspects of this request/response model in more detail: 406

• the exchange of requests and responses between requestor and provider 407

• synchronous and asynchronous execution of operations 408

• individual and batch requests 409

3.1.1 Conversational flow 410

A requestor asks a provider to do something by issuing an SPML request. A provider responds 411
exactly once to each request. Therefore, the simplest conversation (i.e., pattern of exchange) 412
between a requestor and a provider is an orderly alternation of request and response. However, the 413
SPML protocol does not require this. A requestor may issue any number of concurrent requests to 414
a single provider. A requestor may issue any number of concurrent requests to multiple providers. 415

Recommend requestID. Each SPML request should specify a reasonably unique identifier as the 416

value of “requestID”. See the section titled "Request Identifier (normative)”. This allows a 417

requestor to control the identifier for each requested operation and (also allows the requestor) to 418
match each response to the corresponding request without relying on the transport protocol that 419

underlies the SPML protocol exchange. 420

3.1.2 Status and Error codes 421

A provider’s response always specifies a “status”. This value tells the requestor what the 422

provider did with (the operation that was described by) the corresponding request. 423

If a provider’s response specifies “status=’failure’”, then the provider’s response must also 424

specify an “error”. This value tells the requestor what type of problem prevented the provider 425

from executing (the operation that was described by) the corresponding request. 426

The “status” and “error” attributes of a response apply to (the operation that is described by) 427

the corresponding request. This is straightforward for most requests. The status and batch 428
operations present the only subtleties. 429

• A status request asks for the status of another operation that the provider is already executing 430
asynchronously. See the section titled "Synchronous and asynchronous operations” below. A 431
status response has status and error attributes that tell the requestor what happened to the 432
status request itself. However, the response to a successful status operation also contains a 433
nested response that tells what has happened to the operation that the provider is executing 434

asynchronously. 435

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 17 of 190

• A batch request contains nested requests (each of which describes an operation). The 436
response to a batch request contains nested responses (each of which corresponds to a 437
request that was nested in the batch request). See the section titled "Individual and batch 438
requests” below. 439

3.1.2.1 Status (normative) 440

A provider’s response MUST specify “status” as one of the following values: ‘success’, 441

‘failure’ or ‘pending’. 442

• A response that specifies “status=’success’” 443

indicates that the provider has completed the requested operation. 444
In this case, the response contains any result of the operation 445

and the response MUST NOT specify “error” (see below). 446

• A response that specifies “status=’failure’” 447

indicates that the provider could not complete the requested operation. 448

In this case, the response MUST specify an appropriate value of “error” (see below). 449

• A response that specifies “status=’pending’” 450

indicates that the provider will execute the requested operation asynchronously 451
(see “Synchronous and asynchronous operations” below). 452

In this case, the response acknowledges the request and contains the “requestID” value 453

that identifies the asynchronous operation. 454

3.1.2.2 Error (normative) 455

A response that specifies “status=’failure’” MUST specify an appropriate value of “error”. 456

• A response that specifies “error=’malformedRequest’” 457

indicates that the provider could not interpret the request. 458
This includes, but is not limited to, parse errors. 459

• A response that specifies “error=’unsupportedOperation’” 460

indicates that the provider does not support the operation that the request specified. 461

• A response that specifies “error=’unsupportedIdentifierType’” 462

indicates that the provider does not support the type of identifier specified in the request. 463

• A response that specifies “error=’noSuchIdentifier’” 464

indicates that the provider (supports the type of identifier specified in the request, 465
but the provider) cannot find the object to which an identifier refers. 466

• A response that specifies “error=’unsupportedExecutionMode’” 467

indicates that the provider does not support the requested mode of execution. 468

• A response that specifies “error=’invalidContainment’” 469

indicates that the provider cannot add the specified object to the specified container. 470

- The request may have specified as container an object that does not exist. 471

- The request may have specified as container an object that is not a valid container. 472
The target schema implicitly or explicitly declares each supported schema entity. 473
An explicit declaration of a supported schema entity specifies 474
whether an instance of that schema entity may contain other objects. 475

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 18 of 190

- The request may have specified a container that is may not contain the specified object. 476
The target (or a system or application that underlies the target) may restrict the types of 477
objects that the provider can add to the specified container. The target (or a system or 478
application that underlies the target) may restrict the containers to which the provider can 479
add the specified object. 480

• A response that specifies “error=’resultSetTooLarge’” indicates that the provider 481

cannot return (or cannot queue for subsequent iteration—as in the case of an overlarge search 482
result) the entire result of an operation. 483
 484
In this case, the requestor may be able to refine the request so as to produce a smaller result. 485
For example, a requestor might break a single search operation into several search requests, 486
each of which selects a sub-range of the original (overlarge) search result. 487

• A response that specifies “error=’customError’” indicates that the provider has 488

encountered an error that none of the standard error code values describes. 489
In this case, the provider’s response SHOULD provide error information in a format that is 490
available to the requestor. SPMLv2 does not specify the format of a custom error. 491

Several additional values of {ErrorCode} apply only to certain operations. (For example, 492

“error=’unsupportedProfile’” applies only to the listTargets operation. Currently, 493

“error=’invalidIdentifier’” and “error=’alreadyExists’” apply only to the add 494

operation.) The section that discusses each operation also discusses any value of {ErrorCode} 495

that is specific to that operation. 496

3.1.2.3 Error Message (normative) 497

A response MAY contain any number of <errorMessage> elements. The XML content of each 498

<errorMessage> is a string that provides additional information about the status or failure of the 499

requested operation. 500

• A response that specifies “status=’failure’” SHOULD contain at least one 501

<errorMessage> that describes each condition that caused the failure. 502

• A response that specifies “status=’success’” MAY contain any number of 503

<errorMessage> elements that describe warning conditions. 504

• A response that specifies “status=’success’” SHOULD NOT contain an 505

<errorMessage> element that describes an informational message 506

The content of an <errorMessage> is intended for logging or display to a human administrator 507

(rather than for programmatic interpretation). 508

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 19 of 190

3.1.3 Synchronous and asynchronous operations 509

A provider may execute a requested operation either synchronously or asynchronously. 510

• Synchronous: operation before response. If a provider executes a requested operation 511
synchronously, the provider completes the requested operation before the provider returns a 512

response to the requestor. The response will include the status and any error or result. 513

• Asynchronous: response before operation. If a provider executes a requested operation 514
asynchronously, the provider returns to the requestor a response (that indicates that the 515
operation will be executed asynchronously) before the provider executes the requested 516

operation. The response will specify “status=’pending’” and will specify a “requestID” 517

value that the requestor must use in order to cancel the asynchronous operation or (in order to) 518
obtain the status or results of the asynchronous operation. 519

- If a request specifies “requestID”, then the provider’s response to that request will 520

specify the same “requestID” value. 521

 522

- If the request omits “requestID”, then the provider’s response to that request will specify 523

a “requestID” value that is generated by the provider. 524

 525

A requestor may specify the execution mode for an operation in its request or (a requestor may 526
omit the execution mode and thus) allow the provider to decide the execution mode (for the 527
requested operation). If the requestor specifies an execution mode that the provider cannot support 528
for the requested operation, then the provider will fail the request. 529

3.1.3.1 ExecutionMode attribute 530

A requestor uses the optional “executionMode” attribute of an SPML request to specify that the 531

provider must execute the specified operation synchronously or (to specify that the provider must 532

execute the specified operation) asynchronously. If a requestor omits the “executionMode” 533

attribute from an SPML request, the provider decides whether to execute the requested operation 534
synchronously or (to execute the requested operation) asynchronously. 535

3.1.3.2 Async Capability 536

A provider uses the Async Capability that is defined as part of SPMLv2 to tell any requestor that the 537
provider supports asynchronous execution of requested operations on objects contained by that 538
target. A target may further refine this declaration to apply only to specific types of objects (i.e., for a 539

specific subset of supported schema entities) on the target. 540

REQUEST requestID=1

RESPONSE requestID=1
status=”pending”

Requestor Provider

Requestor Provider REQUEST

RESPONSE requestID=9
status=”pending”

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 20 of 190

SPMLv2’s Async Capability also defines two operations that a requestor may use to manage other 541
operations that a provider is executing asynchronously: 542

• A status operation allows a requestor to check the status (and optionally results) of an 543
operation (or of all operations) 544

• A cancel operation asks the provider to stop executing an operation. 545

For more information, see the section titled "Async Capability". 546

3.1.3.3 Determining execution mode 547

By default, a requestor allows a provider to decide whether to execute a requested operation 548
synchronously or asynchronously. A requestor that needs the provider to execute a requested 549
operation in a particular manner must specify this in the request. Each subsection that follows 550
describes one of the four possibilities: 551

• Requestor specifies synchronous execution 552

• Requestor specifies asynchronous execution 553

• Provider chooses synchronous execution 554

• Provider chooses asynchronous execution 555

The following subsections normatively apply to every SPMLv2 operation unless the normative text 556
that describes an operation specifies otherwise. 557

3.1.3.3.1 Requestor specifies synchronous execution (normative) 558

A requestor MAY specify that an operation must execute synchronously. A requestor that wants the 559
provider to execute an operation synchronously MUST specify 560

"executionMode='synchronous'" in the SPML request. 561

If a requestor specifies that an operation must be executed synchronously and the provider cannot 562
execute the requested operation synchronously, then the provider MUST fail the operation. If a 563
provider fails an operation because the provider cannot execute the operation synchronously, then 564

the provider’s response MUST specify “status=’failed’” and (the provider’s response MUST 565

also specify) “error=’unsupportedExecutionMode’”. 566

If a requestor specifies that an operation must be executed synchronously and the provider does 567
not fail the request, then the provider implicitly agrees to execute the requested operation 568
synchronously. The provider MUST acknowledge the request with a response that contains any 569
status and any error or output of the operation. The provider’s response MUST NOT specify 570

“status=’pending’”. The provider’s response MUST specify either “status='success'” or 571

“status=’failed’”. 572

• If the provider’s response specifies “status=’failed’”, then the provider’s response must 573

have an “error” attribute. 574

• If the provider’s response specifies “status='success'”, then the provider’s response MUST 575

contain any additional results (i.e., output) of the completed operation. 576

3.1.3.3.2 Requestor specifies asynchronous execution (normative) 577

A requestor MAY specify that an operation must execute asynchronously. A requestor that wants 578
the provider to execute an operation asynchronously MUST specify 579

"executionMode='asynchronous'" in the SPML request. 580

If a requestor specifies that an operation must be executed asynchronously and the provider cannot 581
execute the requested operation asynchronously, then the provider MUST fail the operation. If the 582

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 21 of 190

provider fails the operation because the provider cannot execute the operation asynchronously, 583

then the provider’s response MUST specify “status=’failed’” and (the provider’s response 584

MUST specify) “error=’unsupportedExecutionMode’”. 585

If a requestor specifies that an operation must be executed asynchronously and the provider does 586
not fail the request, then the provider implicitly agrees to execute the requested operation 587
asynchronously. The provider MUST acknowledge the request with a synchronous response that 588
indicates that the operation will execute asynchronously. The provider’s response MUST specify 589

“status=’pending’” and (the provider’s response MUST specify) “requestID”. 590

• If the request specifies a “requestID” value, then the provider’s response MUST specify the 591

same “requestID” value. 592

• If the request omits “requestID”, then the provider’s response MUST specify a 593

“requestID” value that uniquely identifies the requested operation within the namespace of 594

the provider. 595

If the provider’s response indicates that the requested operation will execute asynchronously, the 596
requestor may continue with other processing. If the requestor wishes to obtain the status and 597
results of the requested operation (or to cancel the requested operation), the requestor MUST use 598

the “requestID” value that is returned in the provider’s response to identify the operation. 599

See also the sections titled “Async Capability” and “Results of asynchronous operations 600
(normative)”. 601

3.1.3.3.3 Provider chooses synchronous execution (normative) 602

A requestor MAY allow the provider to decide whether to execute a requested operation 603
synchronously or asynchronously. A requestor that wants to let the provider decide the type of 604

execution for an operation MUST omit the “executionMode” attribute of the SPML request. 605

If a requestor lets the provider decide the type of execution for an operation and the provider 606
chooses to execute the requested operation synchronously, then the provider’s response MUST 607
indicate that the requested operation was executed synchronously. The provider’s response MUST 608

NOT specify “status=’pending’”. The provider’s response MUST specify either 609

“status='success'” or “status=’failed’”. 610

• If the provider’s response specifies “status=’failed’”, then the provider’s response must 611

have an “error” attribute. 612

• If the provider’s response specifies “status='success'”, then the provider’s response MUST 613

contain any additional results (i.e., output) of the completed operation. 614

3.1.3.3.4 Provider chooses asynchronous execution (normative) 615

A requestor MAY allow a provider to decide whether to execute a requested operation 616
synchronously or asynchronously. A requestor that wants to let the provider decide the type of 617

execution for an operation MUST omit the “executionMode” attribute of the SPML request. 618

If a requestor lets the provider decide the type of execution for an operation and the provider 619
chooses to execute the requested operation asynchronously, then the provider’s response must 620
indicate that the requested operation will execute asynchronously. The provider MUST 621
acknowledge the request with a response that indicates that the operation will execute 622

asynchronously. The provider’s response MUST specify “status=’pending’” and (the provider’s 623

response MUST specify) “requestID”. 624

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 22 of 190

• If the request specifies a “requestID” value, then the provider’s response MUST specify the 625

same “requestID” value. 626

• If the request omits “requestID”, then the provider’s response MUST specify a 627

“requestID” value that uniquely identifies the requested operation within the namespace of 628

the provider. 629

If the provider’s response indicates that the requested operation will execute asynchronously, the 630
requestor may continue with other processing. If the requestor wishes to obtain the status and 631
results of the requested operation (or to cancel the requested operation), the requestor MUST use 632

the “requestID” value that is returned in the provider’s response to identify the operation. 633

See also the sections titled “Async Capability” and “Results of asynchronous operations 634
(normative)”. 635

3.1.3.4 Results of asynchronous operations (normative) 636

A provider that supports asynchronous execution of requested operations MUST maintain the 637
status and results of each asynchronously executed operation during the period of time that the 638
operation is executing and for some reasonable period of time after the operation completes. 639

Maintaining this information allows the provider to respond to status requests. 640

A provider that supports asynchronous execution of requested operations SHOULD publish out-of-641
band (i.e., make available to requestors in a manner that is not specified by this document) any limit 642
on the how long after the completion of an asynchronous operation the provider will keep the status 643
and results of that operation. 644

3.1.4 Individual and batch requests 645

A requestor generally requests each operation individually. SPMLv2 also defines a capability to 646
batch requests. If the provider supports this batch capability, a requestor may group any number of 647
requests (e.g., requests to add, modify or delete) into a single request. 648

Individual. The SPMLv2 core protocol allows a requestor to ask a provider to execute an individual 649
operation. Each request that is part of the SPMLv2 Core XSD asks a provider to perform a single 650
operation. 651

Batch. SPMLv2 defines batch as an optional operation that allows a requestor to combine any 652
number of requests into a single request. See the section titled "Batch Capability". 653

3.2 Identifiers 654

 <complexType name="IdentifierType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="PSOIdentifierType">
 <complexContent>
 <extension base="spml:IdentifierType">
 <sequence>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 23 of 190

 <element name="containerID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

SPMLv2 uses several different types of identifiers. 655

• An instance of {xsd:string} identifies a target. 656

A target identifier must be unique within the (namespace of the) provider. 657

• An instance of {xsd:ID} identifies a request or an operation. 658

• An instance of {PSOIdentifierType} identifies an object on a target. 659

An instance of {PSOIdentifierType} combines a target identifier with an object identifier. 660

The target identifier MUST be unique within the (namespace of the) provider. 661
The object identifier MUST be unique within the (namespace of the) target. 662

3.2.1 Request Identifier (normative) 663

RequestID in a request. A requestor SHOULD specify a reasonably unique value for the 664

“requestID” attribute in each request. A "requestID" value need not be globally unique. A 665

"requestID" value needs only to be sufficiently unique to identify each outstanding request. (That 666

is, a requestor SHOULD specify as the value of “requestID” in each SPML request a value that 667

is sufficiently unique to identify each request for which the requestor has not yet received the 668
corresponding response.) 669

A requestor that uses a transport protocol that is synchronous (such as SOAP/HTTP) MAY omit 670

“requestID”. The synchronous nature of the transport protocol exchange itself ensures that the 671

requestor can match the provider’s response to the request. (The provider’s response will contain 672
any requestID that is necessary—for example, because the provider executes the requested 673
operation asynchronously. See the topic named “RequestID in a response” immediately below.) 674

RequestID in a response. A provider’s response to a request that specifies “requestID” MUST 675

specify the same “requestID” value. 676

A provider’s response to a request that does not specify a value for “requestID” MAY omit the 677

“requestID” attribute UNLESS the provider executes the requested operation asynchronously. 678

If the provider executes asynchronously (the operation that was described by) a request that 679

omitted “requestID”, then the provider MUST generate a value that uniquely identifies the 680

operation to the provider and (the provider MUST) specify this value as the value of the 681

“requestID” attribute in the provider’s response. (This allows the requestor to cancel or to obtain 682

the status of the operation that the provider is executing asynchronously. 683
See the section titled "Async Capability".) 684

3.2.2 Target Identifier (normative) 685

Each of a provider’s targets has a string identifier. Within a provider’s listTargets response, the 686

“targetID” attribute of each <target> element specifies this identifier. 687

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 24 of 190

TargetID is unique within provider. Each <target> in a provider’s <listTargetsResponse> 688

MUST specify a value for “targetID” that uniquely identifies the target within the namespace of 689

the provider. 690

Wherever targetID occurs in a request or in a response, the "targetID" must correspond to 691

one of the provider’s targets. (That is, the value of any “targetID” attribute that a request 692

specifies or (that a request) indirectly contains MUST match the value of the “targetID” attribute 693

that a <target> element in the provider’s <listTargetsResponse> specifies.) 694

If a request contains an invalid "targetID", the provider’s response SHOULD specify 695

“error=’noSuchIdentifier’”. 696

3.2.3 PSO Identifier (normative) 697

PSO Identifier must be unique. A provider MUST ensure that each object’s PSO Identifier is 698

unique (within the namespace of the provider). Since every instance of {PSOIdentifierType} 699

also specifies the target that contains the object (see the next topic immediately below), the value 700
that identifies an object must be unique within the namespace of the target. 701

TargetID. Any instance of {PSOIdentifierType} SHOULD specify “targetID”. 702

• If the provider's <listTargetsResponse> contains only one <target>, 703

then an instance of {PSOIdentifierType} MAY omit "targetID". 704

• If the provider's <listTargetsResponse> contains more than one <target>, 705

then any instance of {PSOIdentifierType} MUST specify "targetID". 706

The value of “targetID” MUST identify a valid target. (That is, the value of “targetID” 707

MUST match the “targetID” of a <target> in the provider’s <listTargetsResponse>. 708

See the section titled “Target Identifier (normative)” above.) 709

containerID. Any instance of {PSOIdentifierType} MAY contain at most one 710

<containerID>. Any <containerID> MUST identify an object that exists on the target. (That 711

is, the content of any <containerID> in an instance of {PSOIdentifierType} MUST match 712

the <psoID> of an object that exists on a target. In addition, the value of any "targetID" 713

attribute in the <containerID> element MUST match the value of the "targetID" attribute of 714

the instance of {PSOIdentifierType} that contains the <containerID>.) 715

ID. Any instance of {PSOIdentifierType} MAY specify “ID”. This depends on the profile that 716

the requestor and provider have agreed to use. 717

• The DSML Profile and the XML Schema Profile both specify that an instance of 718

{PSOIdentifierType} MUST specify “ID”. The value of “ID” MUST uniquely identify an 719

object within the namespace of the target that “targetID” specifies. 720

• Another profile may specify that an instance of {PSOIdentifierType} MAY omit "ID". 721

Content depends on profile. The content of an instance of {PSOIdentifierType} depends on 722

the profile that a requestor and provider agree to use. 723

• Both the DSML profile and the XML Schema Profile specify that an instance of 724

{PSOIdentifierType} MUST have an "ID" attribute (see the topic immediately above). 725

Neither the DSML profile nor the XML Schema Profile specifies XML content for an instance of 726

{PSOIdentifierType}. 727

• A profile MAY specify XML content for an instance of {PSOIdentifierType}. 728

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 25 of 190

Caution: PSO Identifier is mutable. A provider MAY change the PSO Identifier for an object. For 729
example, moving an organizational unit (OU) beneath a new parent within a directory service will 730
change the distinguished name (DN) of the organizational unit. If the provider exposes the 731
organizational unit as an object and (if the provider exposes) the directory service DN as the 732

object’s PSO Identifier, then this move will change the object’s <psoID>. 733

Recommend immutable PSO Identifier. A provider SHOULD expose an immutable value (such 734
as a globally unique identifier or “GUID”) as the PSO Identifier for each object. (An immutable PSO 735
Identifier ensures that a requestor's reference to an object remains valid as long as the object 736
exists.) 737

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 26 of 190

3.3 Selection 738

3.3.1 QueryClauseType 739

SPMLv2 defines a {QueryClauseType} that is used to select objects. Each instance of 740

{QueryClauseType} represents a selection criterion. 741

 <complexType name="QueryClauseType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 </extension>
 </complexContent>
 </complexType>

{QueryClauseType} specifies no element or attribute. This type is a semantic marker. 742

• Any capability may define elements of (types that extend) QueryClauseType. These query 743
clause elements allow a requestor to search for objects based on capability-specific data. 744

(For example, the SPML Reference Capability defines a <hasReference> element 745

that enables a requestor to query for objects that have a specific reference. 746

The SPML Suspend Capability also defines an <isActive> element 747

that enables a requestor to query for objects that are enabled or disabled.) 748

• An instance of {SelectionType}, which extends {QueryClauseType}, may filter a set of 749

objects. {SelectionType} may also be used to specify a particular element or attribute of an 750

object. See the section titled “SelectionType” below. 751

• The SPMLv2 Search Capability defines three logical operators that indicate how a provider 752
should combine selection criteria. Each logical operator is an instance of 753

{LogicalOperatorType}, which extends {QueryClauseType}. 754

See the section titled “Logical Operators” below. 755

3.3.2 Logical Operators 756

The SPMLv2 Search Capability defines three logical operators that indicate how a provider should 757
combine selection criteria. 758

• The logical operator <and> specifies a conjunct 759

(that is, the <and> is true if and only if every selection criterion that the <and> contains is true). 760

• The logical operator <or> specifies a disjunct 761

(that is, the <or> is true if any selection criterion that the <or> contains is true). 762

• The logical operator <not> specifies negation 763

(that is, the <not> is true if and only if the selection criterion that the <not> contains is false.) 764

 <complexType name="LogicalOperatorType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 </extension>
 </complexContent>
 </complexType>

 <element name="and" type="spmlsearch:LogicalOperatorType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 27 of 190

 <element name="or" type="spmlsearch:LogicalOperatorType"/>
 <element name="not" type="spmlsearch:LogicalOperatorType"/>

3.3.3 SelectionType 765

SPMLv2 defines a {SelectionType} that is used in two different ways: 766

• An instance of {SelectionType} may specify an element or attribute of an object. 767

For example, the <component> of a <modification> specifies the part of an object that a 768

modify operation (or a bulkModify operation) will change. 769

• An instance of {SelectionType} may filter a set of objects. 770

For example, a <query> may contain a <select> that restricts, based on the schema-defined 771

XML representation of each object, the set of objects that a search operation returns 772
(or that a bulkModify operation changes or that a bulkDelete operation deletes). 773

 <complexType name="SelectionType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <element name="namespacePrefixMap"
type="spml:NamespacePrefixMappingType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 <attribute name="namespaceURI" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="select" type="spml:SelectionType"/>

SelectionType. An instance of {SelectionType} has a “path” attribute which value is an 774

expression. An instance of {SelectionType} also contains a “namespaceURI” attribute that 775

indicates (to any provider that recognizes the namespace) the language in which the value of the 776

“path” attribute is expressed. 777

Namespace Prefix Mappings. An instance of {SelectionType} may also contain any number 778

of <namespacePrefixMap> elements (see the normative section that follows next). Each 779

<namespacePrefixMap> allows a requestor to specify the URI of an XML namespace that 780

corresponds to a namespace prefix that occurs (or that may occur) within the value of the “path” 781

attribute. 782

3.3.3.1 SelectionType in a Request (normative) 783

namespaceURI. An instance of {SelectionType} MUST have a “namespaceURI” attribute. 784

The value of the “namespaceURI” attribute MUST specify the XML namespace of a query 785

language. (The value of the “path” attribute must be an expression that is valid in this query 786

language—see below.) 787

path. An instance of {SelectionType} MUST have a “path” attribute. The value of the “path” 788

attribute MUST be an expression that is valid in the query language that the “namespaceURI” 789

attribute specifies. The “path” value serves different purposes in different contexts. 790

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 28 of 190

• Within a <modification> element, the value of the “path” attribute MUST specify a target 791

schema entity (i.e., an element or attribute) of the object that the provider is to modify. 792

• Within a <query> element, the value of the “path” attribute MUST specify a filter that selects 793

objects based on: 794
- The presence (or absence) of a specific element or attribute 795
- The presence (or absence) of a specific value in the content of an element 796

or (the presence of absence of a specific value) in the value of an attribute 797

The value of the “path” attribute MUST be expressed in terms of elements or attributes that are 798

valid (according to the schema of the target) for the type of object on which the provider is 799
requested to operate. 800

Namespace prefix mappings. An instance of {SelectionType} MAY contain any number of 801

<namespacePrefixMap> elements. 802

• Each <namespacePrefixMap> MUST have a “prefix” attribute whose value specifies a 803

namespace prefix (that may occur in the filter expression that is the value of the “path” 804

attribute). 805

• Each <namespacePrefixMap> MUST have a “namespace” attribute whose value is the URI 806

for an XML namespace. 807

A requestor SHOULD use these mappings to define any namespace prefix that the (value of the) 808

“path” attribute contains. 809

Depends on profile. The profile on which a requestor and provider agree may further restrict an 810

instance of {SelectionType}. For example, a particular profile may allow a <component> sub-811

element within a modification (or a <select> sub-element within a query) to specify only elements 812

of a schema entity (and not to specify attributes of those elements). 813

Refer to the documentation of each profile for normative specifics. 814

3.3.3.2 SelectionType Processing (normative) 815

A provider MUST evaluate an instance of {SelectionType} in a manner that is appropriate to 816

the context in which the instance of {SelectionType} occurs: 817

• Within a <modification> element, a provider must resolve the value of the “path” attribute 818

to a schema entity (i.e., to an element or attribute) of the object that the provider is to modify. 819

• Within a <query> element, a provider must evaluate the value of the “path” attribute as a 820

filter expression that selects objects based on: 821
- The presence (or absence) of a specific element or attribute 822
- The presence (or absence) of a specific value in the content of an element 823

or (the presence of absence of a specific value) in the value of an attribute 824

Namespace prefix mappings. A provider SHOULD use any instance of 825

<namespacePrefixMap> that an instance of {SelectionType} contains in order to resolve any 826

namespace prefix that the value of the “path” attribute contains. 827

Depends on profile. The profile on which a requestor and provider agree may further restrict (or 828

may further specify the processing of) an instance of {SelectionType}. For example, a 829

particular profile may allow a <component> sub-element within a modification (or a <select> 830

sub-element within a query) to specify only elements of a schema entity (and not to specify 831
attributes of those elements). 832

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 29 of 190

Refer to the documentation of each profile for normative specifics. 833

3.3.3.3 SelectionType Errors (normative) 834

A provider’s response to a request that contains an instance of {SelectionType} 835

MUST specify an error if any of the following is true: 836

• The provider does not recognize the value of the “namespaceURI” attribute as indicating an 837

expression language that the provider supports. 838

• The provider does not recognize the value of the “path” attribute as an expression that is 839

valid in the language that the “namespaceURI” attribute specifies. 840

• The provider does not recognize the value of a “path” attribute as an expression that refers to 841

a schema entity (i.e., element or attribute) that is valid according to the schema of the target. 842

• The provider does not support the expression that “path” attribute specifies. 843

(For example, the expression may be too complex or the expression may contain syntax that 844
the provider does not support.) 845

In all of the cases described above, the provider’s response MUST specify either 846

"error='unsupportedSelectionType'" or “error=’customError’”. 847

• In general, the provider’s response SHOULD specify 848

“error=’unsupportedSelectionType’”. The provider’s response MAY also contain 849

instances of <errorMessage> that describe more specifically the problem with the request. 850

• However, a provider’s response MAY specify “error=’customError’” 851

if the provider's custom error mechanism enables the provider to indicate more specifically 852
(or to describe more specifically) the problem with the request. 853

Depends on profile. The profile on which a requestor and provider agree may further restrict (or 854

may further specify the errors related to) an instance of {SelectionType}. For example, a 855

particular profile may allow a <component> sub-element within a modification (or a <select> 856

sub-element within a query) to specify only elements of a schema entity (and not to specify 857
attributes of those elements). 858

Refer to the documentation of each profile for normative specifics. 859

3.3.4 SearchQueryType 860

SPMLv2 defines a {SearchQueryType} that is used to select objects on a target. 861

 <simpleType name="ScopeType">
 <restriction base="string">
 <enumeration value="pso"/>
 <enumeration value="oneLevel"/>
 <enumeration value="subTree"/>
 </restriction>
 </simpleType>

 <complexType name="SearchQueryType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <annotation>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 30 of 190

 <documentation>Open content is one or more instances of
QueryClauseType (including SelectionType) or
LogicalOperator.</documentation>
 </annotation>
 <element name="basePsoID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="scope" type="spmlsearch:ScopeType"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="query" type="spmlsearch:SearchQueryType"/>

targetID specifies the target on which to search for objects. 862

basePsoID specifies the starting point for a query. Any <basePsoID> MUST identify an existing 863

object to use as a base context or “root” for the search. That is, a <query> that contains 864

<basePsoID> may select only the specified container and objects in that container. 865

Scope indicates whether the query should select the container itself, objects directly contained, or 866
any object directly or indirectly contained. 867

The “scope” attribute restricts the search operation to one of the following: 868

• To the base context itself. 869

• To the base context and its direct children. 870

• To the base context and any of its descendants. 871

3.3.4.1 SearchQueryType in a Request (normative) 872

targetID. An instance of {SearchQueryType} MAY specify “targetID”. 873

• If the provider's <listTargetsResponse> contains only one <target>, 874

then a requestor MAY omit the “targetID” attribute of {SearchQueryType}. 875

• If the provider's <listTargetsResponse> contains more than one <target>, 876

then a requestor MUST specify the “targetID” attribute of {SearchQueryType}. 877

basePsoID. An instance of {SearchQueryType} MAY contain at most one <basePsoID>. 878

• A requestor that wants to search the entire namespace of a target 879

MUST NOT supply <basePsoID>. 880

• A requestor that wants to search beneath a specific object on a target 881

MUST supply <basePsoID>. Any <basePsoID> MUST identify an object that exists on the 882

target. (That is, any <basePsoID> MUST match the <psoID> of an object that already exists 883

on the target.) 884

scope. An instance of {SearchQueryType} MAY have a “scope” attribute. The value of the 885

“scope” attribute specifies the set of objects against which the provider should evaluate the 886

<select> element: 887

• A requestor that wants the provider to search only the object identified by <basePsoID> 888

MUST specify “scope=’pso’”. (NOTE: It is an error to specify “scope='pso'” in An 889

instance of {SearchQueryType} that does not contain <basePsoID>. The target is not an 890

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 31 of 190

object.) 891
See the section titled “SearchQueryType Errors (normative)” below. 892

• A requestor that wants the provider to search only direct descendants of the target or (that 893

wants to search only direct descendants) of the object specified by <basePsoID> MUST 894

specify “scope=’oneLevel’”. 895

• A requestor that wants the provider to search any direct or indirect descendant of the target or 896
(that wants to search any direct or indirect descendant) of the object specified by 897

<basePsoID> MUST specify “scope=’subTree’”. 898

Open content. An instance of {SearchQueryType} MUST contain (as open content) exactly 899

one instance of a type that extends {QueryClauseType}. 900

• Any capability may define elements of (a type that extends) {QueryClauseType}. These 901

elements allow a requestor to select objects based on capability-defined data. 902
See the section titled "QueryClauseType" above. 903

• A <select> element is an instance of {SelectionType}, which extends 904

{QueryClauseType} to filter objects based on schema-defined content. 905

See the section titled “SelectionType in a Request (normative)“. 906

• Logical Operators such as <and>, <or> and <not> combine individual selection criteria. 907

A logical operator MUST contain at least one instance of a type that extends 908

{QueryClauseType} or a (logical operator MUST contain at least one) logical operator. 909

See the section titled "Logical Operators" above. 910

3.3.4.2 SearchQueryType Errors (normative) 911

The response to a request that contains an instance of {SearchQueryType} (e.g., a <query> 912

element) MUST specify an appropriate value of “error” if any of the following is true: 913

• The <query> in a <searchRequest> specifies “scope=’pso’” but does not contain 914

<basePsoID>. (The target itself is not a PSO.) 915

• The "targetID" of the instance of {SearchQueryType} does not specify a valid target. 916

• An instance of {SearchQueryType} specifies "targetID" and (the instance of 917

{SearchQueryType} also) contains <basePsoID>, but the value of "targetID" in the 918

instance of {SearchQueryType} does not match the value of "targetID" in the 919

<basePsoID>. 920

• An instance of {SearchQueryType} contains a <basePsoID> 921

that does not identify an object that exists on a target. 922

(That is, the <basePsoID> does not match the <psoID> of any object that exists on a target.) 923

• The provider cannot evaluate an instance of {QueryClauseType} that the instance of 924

{SearchQueryType} contains. 925

• The open content of the instance of {SearchQueryType} is too complex for the provider to 926

evaluate. 927

• The open content of the instance of {SearchQueryType} contains a syntactic error 928

(such as an invalid structure of logical operators or query clauses). 929

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 32 of 190

• The provider does not recognize an element of open content that the instance of 930

{SearchQueryType} contains. 931

Also see the section titled "SelectionType Errors (normative)". 932

3.4 CapabilityData 933

Any capability may imply that data specific to that capability may be associated with an object. 934
Capability-specific data that is associated with an object is not part of the schema-defined data of 935
an object. SPML operations handle capability-specific data separately from schema-defined data. 936
Any capability that implies capability-specific data should define the structure of that data. Any 937
capability that implies capability-specific data may also specify how the core operations should treat 938
that capability-specific data. See the discussion of "Capability-specific data" within the section titled 939
"Conformance (normative)". 940

However, many capabilities will not imply any capability-specific data (that may be associated with 941
an object). Of the standard capabilities that SPMLv2 defines, only the Reference Capability actually 942
implies that data specific to the Reference Capability may be associated with an object. (The 943

Suspend Capability supports an <isActive> query clause that allows a requestor to select 944

objects based on the enablement state of each object, but the <isActive> element is not stored 945

as <capabilityData> that is associated with an object.) 946

The Reference Capability implies that an object (that is an instance of a schema entity for which the 947
provider supports the Reference Capability) may contain any number of references to other objects. 948
The Reference Capability defines the structure of a reference element. The Reference Capability 949
also specifies how the core operations must treat data specific to the Reference Capability. See the 950
section titled "Reference Capability". 951

3.4.1 CapabilityDataType 952

SPMLv2 defines a {CapabilityDataType} that may occur in a request or in a response. Each 953

instance of {CapabilityDataType} contains all of the data that is associated with a particular 954

object and that is specific to a particular capability. 955

 <complexType name=”CapabilityDataType”>
 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="PSOType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 33 of 190

 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

capabilityURI. An instance of {CapabilityDataType} has a “capabilityURI” attribute that 956

identifies a capability. The value of "capabilityURI" must match the value of the 957

“namespaceURI” attribute of a supported <capability>. 958

mustUnderstand. An instance of {CapabilityDataType} may also specify a Boolean value for 959

"mustUnderstand". This value indicates whether provider must handle the content (of the 960

instance of {CapabilityDataType}) in a manner that the capability specifies. An instance of 961

{CapabilityDataType} specifies "mustUnderstand='false'" indicates that default 962

processing will suffice. (See the next topic below.) 963

The "mustUnderstand" attribute is significant only when a request contains the instance of 964

{CapabilityDataType}. 965

See the section titled "CapabilityData in a Request (normative)" below. 966

Default processing. Each <capabilityData> specifies "capabilityURI" and contains all the 967

data associated with an object that is specific to that capability. 968
See the section below titled "CapabilityData in a Request (normative)". 969

By default, a provider treats the set of data specific to each capability as if it were opaque. That is, 970

a provider processes the content of an instance of {CapabilityDataType} exactly as it is 971

without manipulating that content in any way. 972
See the section titled "CapabilityData Processing (normative)". 973

Capability-specific processing. Any capability that implies capability-specific data may specify 974
how operations should handle the data specific to that capability. Capability-specific handling takes 975
precedence over the default handling. 976
See the section titled "CapabilityData Processing (normative)". 977

3.4.1.1 CapabilityData in a Request (normative) 978

capabilityURI. An instance of {CapabilityDataType} MUST specify a value of 979

“capabilityURI” that identifies a supported capability. That is, the (value of the) 980

"capabilityURI" attribute for an instance of {CapabilityDataType} MUST match the (value 981

of the) “namespaceURI” attribute of a <capability> the provider supports for the target (that 982

contains the object to be manipulated) and (that the provider supports on that target) for the 983
schema entity of which the object to be manipulated is an instance. 984

For normative specifics of supported capabilities, 985
see the section titled "listTargetsResponse (normative)". 986

One capabilityData element per capability. At most one instance of {CapabilityDataType} 987

within a request MAY refer to a specific capability. That is, a request MUST NOT contain two (and 988

MUST NOT contain more than two) instances of {CapabilityDataType} that specify the same 989

value of "capabilityURI". 990

This implies that an instance of {CapabilityDataType} that refers to a certain capability MUST 991

contain all the data within that request that is specific to that capability and that is specific to a 992

particular object. 993

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 34 of 190

mustUnderstand. An instance of {CapabilityDataType} MAY specify "mustUnderstand". 994

The "mustUnderstand" attribute tells the provider what to do if the provider does not know how 995

to handle the content of an instance of {CapabilityDataType} in any special manner that the 996

corresponding capability specifies. 997

• A requestor that wants the request to fail if the provider cannot provide capability-specific 998
handling for the set of data specific to a certain capability MUST specify 999

"mustUnderstand='true'" on the instance of {CapabilityDataType} 1000

that contains the data specific to that capability. 1001

• A requestor that will accept default handling for any data specific to a certain capability MUST 1002

specify "mustUnderstand='false'" on the instance of {CapabilityDataType} that 1003

contains the data specific to that capability or (the requestor MUST) omit the 1004

"mustUnderstand" attribute (from the instance of {CapabilityDataType} 1005

that contains the data specific to that capability). 1006

The section titled "CapabilityData Processing (normative)" describes the default handling for 1007
capability-specific data. Any capability for which the default handling is inappropriate MUST specify 1008
how operations should handle data specific to that capability. The section titled "Reference 1009
CapabilityData Processing (normative)" specifies handling of data specific to the Reference 1010
Capability. 1011

Capability defines structure. Any capability that implies capability-specific data SHOULD specify 1012

the structure of that data. (That is, the capability to which the "capabilityURI" attribute of an 1013

instance of {CapabilityDataType} refers SHOULD specify the structure of data that the 1014

instance of {CapabilityDataType} contains.) Furthermore, any capability that implies 1015

capability-specific data and for which the default processing of capability-specific data is 1016
inappropriate MUST specify the structure of that capability-specific data and MUST specify how 1017
operations handle that capability-specific data. See the discussion of "Capability-specific data" 1018
within the section titled "Conformance". 1019

Of the capabilities that SPMLv2 defines, only the Reference Capability implies that capability-1020
specific data may be associated with an object. The Reference Capability specifies that an 1021

instance of {CapabilityDataType} that refers to the Reference Capability 1022

(e.g., a <capabilityData> element that specifies 1023
"capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'" 1024

MUST contain at least one reference to another object. The Reference Capability defines the 1025

structure of a <reference> element as {ReferenceType}.) The Reference Capability also 1026

specifies that each <reference> must match a supported <referenceDefinition>. 1027

See the section titled "Reference CapabilityData in a Request (normative)". 1028

3.4.1.2 CapabilityData Processing (normative) 1029

capabilityURI. An instance of {CapabilityDataType} MUST specify a value of 1030

“capabilityURI” that identifies a supported capability. That is, the (value of the) 1031

"capabilityURI" attribute for an instance of {CapabilityDataType} MUST match the (value 1032

of the) “namespaceURI” attribute of a <capability> the provider supports for the target (that 1033

contains the object to be manipulated) and (that the provider supports on that target) for the 1034
schema entity of which the object to be manipulated is an instance. 1035

For normative specifics of supported capabilities, 1036
see the section titled "listTargetsResponse (normative)". 1037

mustUnderstand. The "mustUnderstand" attribute tells a provider whether the default 1038

processing of capability-specific data is sufficient for the content of an instance of 1039

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 35 of 190

{CapabilityDataType}. (The next topic within this section describes the default processing of 1040

capability-specific data.) 1041

• If an instance of {CapabilityDataType} specifies "mustUnderstand='true'", then 1042

the provider MUST handle the data (that the instance of {CapabilityDataType} contains) 1043

in the manner that the corresponding capability specifies. 1044
 1045

If the provider cannot handle the data (that the instance of {CapabilityDataType} contains) 1046

in the manner that the corresponding capability specifies, 1047

then the provider's response MUST specify "status='failure'". 1048

See the section titled "CapabilityData Errors (normative)" below. 1049

• If an instance of {CapabilityDataType} specifies "mustUnderstand='false'" 1050

or an instance of {CapabilityDataType} omits "mustUnderstand", 1051

then a provider MAY handle the data (that the instance of {CapabilityDataType} contains) 1052

according to the default processing that is described below. 1053

- If the provider knows that the corresponding capability (e.g., the Reference Capability) 1054
specifies special handling, then the provider SHOULD process the data (that the instance 1055

of {CapabilityDataType} contains) in the manner that the corresponding capability 1056

specifies. 1057

- If the provider knows that the corresponding capability (e.g., the Reference Capability) 1058
specifies special handling but the provider cannot provide the special handling that the 1059
corresponding capability specifies, then the provider MUST handle the data (that the 1060

instance of {CapabilityDataType} contains) according to the default processing 1061

that is described below. 1062

- If the provider does not know whether the corresponding capability specifies special 1063
handling, then the provider MUST handle the data (that the instance of 1064

{CapabilityDataType} contains) according to the default processing 1065

that is described below. 1066

Default processing. By default, a provider treats the set of data specific to each capability as if it 1067
were opaque. That is, a provider processes the content of an instance of 1068

{CapabilityDataType} exactly as it is --without manipulating that content in any way. 1069

(The provider needs to perform capability-specific processing only if the instance of 1070

{CapabilityDataType} specifies "mustUnderstand='true'" or if the instance of 1071

{CapabilityDataType} refers to the Reference Capability. See the topic named 1072

"mustUnderstand" immediately above within this section.). 1073

• If an <addRequest> contains an instance of {CapabilityDataType}, 1074

then the provider MUST associate the instance of {CapabilityDataType} exactly as it is 1075

(i.e., without manipulating its content in any way) with the newly created object. 1076

• If a <modification> contains an instance of {CapabilityDataType}, 1077

then the default handling depends on the "modificationMode" of that <modification> 1078

and also depends on whether an instance of {CapabilityDataType} that specifies the 1079

same "capabilityURI" is already associated with the object to be modified. 1080

- If a <modification> that specifies "modificationMode='add'" 1081

contains an instance of {CapabilityDataType}, 1082

then the provider MUST append the content of the instance of {CapabilityDataType} 1083

that the <modification> contains exactly as it is to (the content of) any instance of 1084

{CapabilityDataType} that is already associated with the object to be modified 1085

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 36 of 190

and that specifies the same "capabilityURI". 1086

 1087

If no instance of {CapabilityDataType} that specifies the same "capabilityURI" 1088

(as the instance of {CapabilityDataType} that the <modification> contains) 1089

is already associated with the object to be modified, 1090

then the provider MUST the associate with the modified object the <capabilityData> 1091

(that the <modification> contains) exactly as it is . 1092

- If a <modification> that specifies "modificationMode='replace'" 1093

contains an instance of {CapabilityDataType}, 1094

then the provider MUST replace entirely any instance of {CapabilityDataType} 1095

that is already associated with the object to be modified 1096

and that specifies the same "capabilityURI" 1097

with the instance of {CapabilityDataType} that the <modification> contains 1098

exactly as it is. 1099
 1100

If no instance of {CapabilityDataType} that specifies the same "capabilityURI" 1101

(as the instance of {CapabilityDataType} that the <modification> contains) 1102

is already associated with the object to be modified, 1103

then the provider MUST the associate with the modified object the <capabilityData> 1104

(that the <modification> contains) exactly as it is . 1105

- If a <modification> that specifies "modificationMode='delete'" 1106

contains an instance of {CapabilityDataType}, 1107

then the provider MUST delete entirely any instance of {CapabilityDataType} 1108

that is already associated with the object to be modified 1109

and that specifies the same "capabilityURI" 1110

 1111

If no instance of {CapabilityDataType} that specifies the same "capabilityURI" 1112

(as the instance of {CapabilityDataType} that the <modification> contains) 1113

is already associated with the object to be modified, then the provider MUST do nothing. 1114

In this case, the provider's response MUST NOT specify "status='failure'" 1115

unless there is some other reason to do so. 1116

Capability-specific handling. Any capability that implies capability-specific data and for which the 1117
default processing of capability-specific data is inappropriate MUST specify how (at least the core) 1118

operations should process that data. (That is, the capability to which the "capabilityURI" 1119

attribute of an instance of {CapabilityDataType} refers MUST specify how operations should 1120

process the data that the instance of {CapabilityDataType} contains if the default processing 1121

for capability-specific data is inappropriate.) 1122
See the discussion of "Capability-specific data" within the section titled "Conformance". 1123

Of the standard capabilities that SPMLv2 defines, only the Reference Capability implies that 1124
capability-specific data may be associated with an object. The Reference Capability specifies how 1125

operations should process the content of an instance of {CapabilityDataType} that specifies 1126

"capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'". 1127

 See the section titled "Reference CapabilityData Processing (normative)". 1128

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 37 of 190

3.4.1.3 CapabilityData Errors (normative) 1129

A provider’s response to a request that contains an instance of {CapabilityDataType} 1130

MUST specify an error if any of the following is true: 1131

• The instance of {CapabilityDataType} specifies "mustUnderstand='true'" 1132

and the provider does not recognize the value of the “capabilityURI” attribute 1133

as identifying a capability that the provider supports for the target that contains the object to be 1134
manipulated and that the provider supports for the schema entity of which the object to be 1135

manipulated is an instance. 1136

• The instance of {CapabilityDataType} specifies "mustUnderstand='true'" 1137

and the capability to which its “capabilityURI” refers does not specify the structure of data 1138

specific to that capability. 1139

• The instance of {CapabilityDataType} specifies "mustUnderstand='true'" and the 1140

capability to which its “capabilityURI” refers does not specify how operations should 1141

process data specific to that capability. 1142

• The request contains two or more instances of {CapabilityDataType} that specify the 1143

same value of “capabilityURI”. 1144

In addition, a provider’s response to a request that contains an instance of 1145

{CapabilityDataType} MAY specify an error if any of the following is true: 1146

• The provider does not recognize the value of the “capabilityURI” (that the instance of 1147

{CapabilityDataType} specifies) as identifying a capability that the provider supports for 1148

the target that contains the object to be manipulated and that the provider supports for the 1149
schema entity of which the object to be manipulated is an instance. 1150
 1151
Alternatively, the provider MAY perform the default handling as described above 1152
in the section titled "CapabilityData Processing (normative)". 1153

A provider's response to a request that contains an instance of {CapabilityDataType} 1154

SHOULD contain an <errorMessage> for each instance of {CapabilityDataType} that the 1155

provider could not process. 1156

Capability-specific errors. Any capability that implies capability-specific data MAY specify 1157

additional errors related to that data. (That is, the capability to which the "capabilityURI" 1158

attribute of an instance of {CapabilityDataType} refers MAY specify additional errors related to 1159

that instance of {CapabilityDataType}.) 1160

Of the capabilities that SPMLv2 defines, only the Reference Capability implies that capability-1161
specific data may be associated with an object. The Reference Capability specifies additional 1162

errors related to any instance of {CapabilityDataType} that refers to the Reference Capability 1163

See the section titled "Reference CapabilityData Errors (normative)". 1164

3.4.1.4 CapabilityData in a Response (normative) 1165

capabilityURI. An instance of {CapabilityDataType} MUST specify a value of 1166

“capabilityURI” that identifies a supported capability. That is, the (value of the) 1167

"capabilityURI" attribute for an instance of {CapabilityDataType} MUST match the (value 1168

of the) “namespaceURI” attribute of a <capability> the provider supports for the target (that 1169

contains the object to be manipulated) and (that the provider supports on that target) for the 1170

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 38 of 190

schema entity of which the object to be manipulated is an instance. 1171

See the section titled "listTargetsResponse (normative)". 1172

One per capability. No more than one instance of {CapabilityDataType} within a response 1173

may refer to a given capability. That is, a response MUST NOT contain two (and a request MUST 1174

NOT contain more than two) instances of {CapabilityDataType} that specify the same value of 1175

"capabilityURI". 1176

This implies that an instance of {CapabilityDataType} that refers to a certain capability MUST 1177

contain all the data within that response that is specific to that capability and that is associated with 1178
a particular object. 1179

mustUnderstand. An instance of {CapabilityDataType} within a response MAY specify 1180

"mustUnderstand". A provider SHOULD preserve any "mustUnderstand" attribute of an 1181

instance of {CapabilityDataType}. See the discussions of the "mustUnderstand" attribute 1182

within the sections titled "CapabilityData in a Request (normative)" and "CapabilityData Processing 1183
(normative)" above. 1184

Capability defines structure. Any capability that implies capability-specific data MUST specify the 1185

structure of that data. (That is, the capability to which the "capabilityURI" attribute of an 1186

instance of {CapabilityDataType} refers MUST specify the structure of data that the instance 1187

of {CapabilityDataType} contains.) See the discussion of "Custom Capabilities" within the 1188

section titled "Conformance". 1189

Of the capabilities that SPMLv2 defines, only the Reference Capability implies that capability-1190
specific data may be associated with an object. The Reference Capability specifies that an 1191

instance of {CapabilityDataType} that refers to the Reference Capability MUST contain at 1192

least one reference to another object. The Reference Capability defines the structure of a 1193

<reference> element as {ReferenceType}.) The Reference Capability also specifies that 1194

each <reference> must match a supported <referenceDefinition>. 1195

See the section titled "Reference CapabilityData in a Response (normative)". 1196

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 39 of 190

3.5 Transactional Semantics 1197

SPMLv2 specifies no transactional semantics. This specification defines no operation that implies 1198
atomicity. That is, no core operation defines (and no operation that is part of one of SPMLv2’s 1199
standard capabilities defines) a logical unit of work that must be committed or rolled back as a unit. 1200

Provisioning operations are notoriously difficult to undo and redo. For security reasons, many 1201
systems and applications will not allow certain identity management operations to be fully reversed 1202
or repeated. (More generally, support for transactional semantics suggests participation in 1203
externally managed transactions. Such participation is beyond the scope of this specification.) 1204

Any transactional semantics should be defined as a capability (or possibly as more than one 1205
capability). See the section titled “Custom Capabilities”. A transactional capability would define 1206
operations that imply atomicity or (would define operations) that allow a requestor to specify 1207
atomicity. 1208

Any provider that is able to support transactional semantics should then declare its support for such 1209
a capability as part of the provider’s response to the listTargets operation (as the provider would 1210
declare its support for any other capability). 1211

3.6 Operations 1212

The first subsection discusses the required Core Operations. 1213

Subsequent subsections discuss any optional operation that is associated with each of the standard 1214
capabilities: 1215

• Async Capability 1216

• Batch Capability 1217

• Bulk Capability 1218

• Password Capability 1219

• Reference Capability 1220

• Search Capability 1221

• Suspend Capability 1222

• Updates Capability 1223

3.6.1 Core Operations 1224

Schema syntax for the SPMLv2 core operations is defined in a schema associated with the 1225

following XML namespace: urn:oasis:names:tc:SPML:2:0 [SPMLv2-CORE]. The Core XSD 1226

is included as Appendix A to this document. 1227

A conformant provider must implement all the operations defined in the Core XSD. For more 1228
information, see the section entititled "Conformance". 1229

The SPMLv2 core operations include: 1230

• a discovery operation (listTargets) on the provider 1231

• several basic operations (add, lookup, modify, delete) that apply to objects on a target 1232

3.6.1.1 listTargets 1233

The listTargets operation enables a requestor to determine the set of targets that a provider makes 1234
available for provisioning and (the listTargets operation also enables a requestor) to determine the 1235
set of capabilities that the provider supports for each target. 1236

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 40 of 190

The subset of the Core XSD that is most relevant to the listTargets operation follows. 1237

 <complexType name="SchemaType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <annotation>
 <documentation>Profile specific schema elements should
be included here</documentation>
 </annotation>
 <element name="supportedSchemaEntity"
type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="ref" type="anyURI" use="optional”/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SchemaEntityRefType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="targetID" type="string" use="optional”/>
 <attribute name="entityName" type="string" use="optional”/>
 <attribute name="isContainer" type="xsd:boolean"
use="optional”/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CapabilityType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="appliesTo" type="spml:SchemaEntityRefType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="namespaceURI" type="anyURI”/>
 <attribute name="location" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CapabilitiesListType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="capability" type="spml:CapabilityType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="TargetType">
 <complexContent>
 <extension base="spml:ExtensibleType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 41 of 190

 <sequence>
 <element name="schema" type="spml:SchemaType"
maxOccurs="unbounded"/>
 <element name="capabilities"
type="spml:CapabilitiesListType" minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="profile" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ListTargetsRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 </extension>
 <attribute name="profile" type="anyURI" use="optional"/>
 </complexContent>
 </complexType>

 <complexType name="ListTargetsResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="target" type="spml:TargetType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="listTargetsRequest"
type="spml:ListTargetsRequestType"/>
 <element name="listTargetsResponse"
type="spml:ListTargetsResponseType"/>

ListTargets must be synchronous. Because the requestor cannot know (at the time the requestor 1238
asks to listTargets) whether the provider supports asynchronous execution, the listTargets 1239
operation must be synchronous. 1240

ListTargets is not batchable. Because the requestor cannot know (at the time the requestor asks 1241
the provider to listTargets) whether the provider supports the batch capability, a requestor must not 1242
nest a listTargets request in a batch request. 1243

3.6.1.1.1 listTargetsRequest (normative) 1244

A requestor MUST send a <listTargetsRequest> to a provider in order to ask the provider to 1245

declare the set of targets that the provider exposes for provisioning operations. 1246

Execution. A <listTargetsRequest> MUST NOT specify 1247

"executionMode='asynchronous'". A <listTargetsRequest> MUST specify 1248

"executionMode='synchronous'" or (a <listTargetsRequest> MUST) omit 1249

"executionMode". 1250

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 42 of 190

This is because a requestor SHOULD examine each target definition to see whether the target 1251
supports the Async Capability before making a request that specifies 1252

"executionMode='asynchronous'" (rather than assuming that the provider supports 1253

asynchronous execution of requested operations). Since a requestor typically must perform the 1254

listTargets operation only once at the beginning of a session, this restriction should not be too 1255

onerous. 1256

For more information, see the section titled “Determining execution mode”. 1257

Profile. a <listTargetsRequest> MAY specify "profile". 1258

Any profile value MUST be a URI (e.g., of an XML namespace) that identifies an SPML profile. 1259

No required content. A <listTargetsRequest> requires no sub-element or XML content. 1260

3.6.1.1.2 listTargetsResponse (normative) 1261

A provider that receives a <listTargetsRequest> from a requestor that it trusts 1262

MUST examine the request and (if the request is valid) return to the requestor a list of the targets 1263
that the provider exposes for provisioning operations. 1264

• If a <listTargetsRequest> does not specify a "profile", 1265

then the <listTargetsResponse> MUST contain every instance of <target> 1266

that the provider exposes for provisioning operations regardless of the profile or profiles 1267

for (which the provider supports) that target. 1268

• If a <listTargetsRequest> specifies a "profile" that the provider supports, 1269

then the <listTargetsResponse> MUST contain only instances of <target> 1270

for which the provider supports the specified profile. 1271

• If a <listTargetsRequest> specifies a "profile" that the provider does not support, 1272

then the <listTargetsResponse> MUST specify "status='failure'". 1273

See the topic named "Error" below within this section. 1274

Execution. A provider MUST execute a listTargets operation synchronously. This is because a 1275
provider must allow the requestor to examine each target definition to see whether the target 1276
supports the Async Capability (and thus whether the provider might choose to execute a requested 1277
operation asynchronously) before the provider chooses to execute a requested operation 1278
asynchronously. Since a requestor typically must perform the listTargets operation only once at the 1279
beginning of a session, this restriction should not be too onerous. 1280

If a requestor specifies "executionMode='asynchronous'", a provider MUST fail the 1281

operation with “error=’unsupportedExecutionMode’”. 1282

For more information, see the section titled “Determining execution mode”. 1283

Status. A <listTargetsResponse> MUST have a “status” attribute that indicates whether 1284

the provider successfully processed the request. See the section titled "Status (normative)”. 1285

Error. If the provider cannot return a list of its targets, then the <listTargetsResponse> MUST 1286

contain an error attribute that characterizes the failure. 1287

See the general section titled "Error (normative)”. 1288

In addition, the <listTargetsResponse> MUST specify an appropriate value of "error" if any 1289

of the following is true: 1290

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 43 of 190

• The <listTargetsRequest> specifies a "profile" and the provider cannot return at least 1291

one <target> that supports the specified profile. In this case, the 1292

<listTargetsResponse> SHOULD specify "error='unsupportedProfile'". 1293

Target. A <listTargetsResponse> that specifies “status='success'” MUST contain at 1294

least one <target> element. Each <target> SHOULD specify “targetID”. 1295

• If the <listTargetsResponse> contains only one <target> 1296

then the <target> MAY omit “targetID”. 1297

• If the <listTargetsResponse> contains more than one <target> 1298

then each <target> MUST specify “targetID”. 1299

Any value of “targetID” MUST identify each target uniquely within the namespace of the 1300

provider. 1301

Target profile. Any <target> MAY specify "profile". Any "profile" value MUST be a URI 1302

(e.g., of an XML namespace) that identifies a specific SPML profile. 1303

If a <target> specifies a "profile", then the provider MUST support for that target 1304

(and for any objects on that target) the behavior that the SPML profile specifies. 1305
Refer to the documentation of each profile for normative specifics. 1306

Schema. A <target> MUST contain at least one <schema> element. Each <schema> element 1307

MUST contain (or each <schema> element MUST refer to) some form of XML Schema that defines 1308

the structure of XML objects on that target. 1309

Schema content. Each <spml:schema> element MAY include any number of <xsd:schema> 1310

elements. 1311

• If an <spml:schema> element contains no <xsd:schema> element, 1312

then that <spml:schema> element MUST have a valid “ref” attribute (see below). 1313

• If an <spml:schema> element contains at least one <xsd:schema> element, 1314

then this takes precedence over the value of any “ref” attribute of that <spml:schema>. 1315

In this case, the requestor SHOULD ignore the value of any “ref” attribute. 1316

Each <xsd:schema> element (that an <spml:schema> element contains) 1317

MUST include the XML namespace of the schema. 1318

Schema ref. Each <spml:schema> MAY have a “ref” attribute. 1319

If an <spml:schema> has a “ref” attribute, then: 1320

• The “ref” value MUST be a URI that uniquely identifies the schema. 1321

• The “ref” value MAY be a location of a schema document 1322

(e.g. the physical URL of an XSD file). 1323

A requestor should ignore any “ref” attribute of an <spml:schema> element that contains an 1324

<xsd:schema>. (See the topic named “Schema content” immediately above.) 1325

Supported Schema Entities. A target MAY declare as part of its <spml:schema> the set of 1326

schema entities for which the target supports the basic SPML operations (i.e., add, lookup, modify 1327

and delete). The target <spml:schema> MAY contain any number of 1328

<supportedSchemaEntity> elements. Each <supportedSchemaEntity> MUST refer to an 1329

entity in the target schema. (See the topics named “SupportedSchemaEntity entityName” and 1330
“SupportedSchemaEntity targetID” below within this section.) 1331

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 44 of 190

A provider that explicitly declares a set of schema entities that a target supports has implicitly 1332
declared that the target supports only those schema entities. If a target schema contains at least 1333

one <supportedSchemaEntity>, then the provider MUST support the basic SPML operations 1334

for (objects on that target that are instances of) any target schema entity to which a 1335

<supportedSchemaEntity> refers. 1336

A provider that does not explicitly declare as part of a target at least one schema entity that the 1337
target supports has implicitly declared that the target supports every schema entity. If a target 1338

schema contains no <supportedSchemaEntity>, then the provider MUST support the basic 1339

SPML operations for (objects on that target that are instances of) any top-level entity in the target 1340

schema. 1341

A provider SHOULD explicitly declare the set of schema entities that each target supports. In 1342
general, the syntactic convenience of omitting the declaration of supported schema entities (and 1343
thereby implicitly declaring that the provider supports all schema entities) does not justify the 1344
burden that this imposes on each requestor. When a provider omits the declaration of supported 1345
schema entities, each requestor must determine the set of schema entities that the target supports. 1346
This process is especially laborious for a requestor that functions without prior knowledge. 1347

SupportedSchemaEntity entityName. Each <supportedSchemaEntity> MUST refer to an 1348

entity in the schema (of the target that contains the <supportedSchemaEntity>): 1349

• In the XSD Profile [SPMLv2-Profile-XSD], each <supportedSchemaEntity> MUST specify 1350

a QName (as the value of its “entityName” attribute). 1351

• In the DSMLv2 Profile [SPMLv2-Profile-DSML], each <supportedSchemaEntity> MUST 1352

specify the name of an objectclass (as the value of its “entityName” attribute). 1353

SupportedSchemaEntity targetID. A <supportedSchemaEntity> SHOULD specify a 1354

“targetID”. 1355

• A provider MAY omit “targetID” in any <supportedSchemaEntity>. 1356

(That is, a provider MAY omit the optional “targetID” attribute of 1357

{SchemaEntityRefType} in a <supportedSchemaEntity> element.) 1358

• Any “targetID” in a <supportedSchemaEntity> MUST refer to the containing target. 1359

(That is, the value of any “targetID” attribute that a <supportedSchemaEntity> specifies 1360

MUST match the value of the “targetID” attribute of the <target> element that contains 1361

the <supportedSchemaEntity> element.) 1362

SupportedSchemaEntity isContainer. A <supportedSchemaEntity> MAY have an 1363

“isContainer” attribute that specifies whether an (object that is an) instance of the supported 1364

schema entity may contain other objects. 1365

• If a <supportedSchemaEntity> specifies “isContainer=’true’”, then a provider 1366

MUST allow a requestor to add an object beneath any instance of the schema entity. 1367

• If a <supportedSchemaEntity> specifies “isContainer=’false’” 1368

(or if a <supportedSchemaEntity> does not specify “isContainer”), then a provider 1369

MUST NOT allow a requestor to add an object beneath any instance of the schema entity. 1370

Capabilities. A target may also declare a set of capabilities that it supports. Each capability defines 1371
optional operations or semantics. For general information, see the subsection titled "Capabilities" 1372
within the "Concepts" section. 1373

A <target> element MAY contain at most one <capabilities> element. A <capabilities> 1374

element MAY contain any number of <capability> elements. 1375

Capability. Each <capability> declares support for exactly one capability: 1376

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 45 of 190

• Each <capability> element MUST specify (as the value of its “namespaceURI” attribute) 1377

an XML namespace that identifies the capability. 1378

• Each <capability> element MAY specify (as the value of its “location” attribute) the URL 1379

of an XML schema that defines any structure that is associated with the capability 1380
(e.g., an SPML request/response pair that defines an operation—see below). 1381

Capability operations. An XML schema document that a capability “location” attribute 1382

specifies MAY define operations. An XML schema document for a capability MUST define any 1383
operation as a paired request and response such that both of the following are true: 1384

• The (XSD type of the) request (directly or indirectly) extends {RequestType} 1385

• The (XSD type of the) response (directly or indirectly) extends {ResponseType} 1386

Capability appliesTo. A target may support a capability for all of the target’s supported schema 1387
entities or only for a specific subset of the target’s supported schema entities. Each capability 1388
element may specify any number of supported schema entities to which it applies. A capability that 1389
does not specify a supported schema entity to which it applies must apply to every supported 1390
schema entity. 1391

A <capability> element MAY contain any number of <appliesTo> elements. 1392

A <capability> element that contains no <appliesTo> element MUST apply to every schema 1393

entity that the target supports. If the XML schema for the capability defines an operation, the 1394
provider MUST support the capability-defined operation for (any object that is instance of) any 1395
schema entity that the target supports. If the capability implies semantic meaning, then the provider 1396
MUST apply that semantic meaning to (every object that is an instance of) any schema entity that 1397
the target supports. 1398

Capability appliesTo entityName. Each <appliesTo> element MUST have an “entityName” 1399

attribute that refers to a supported schema entity of the containing target. (See the topic named 1400
"Supported Schema Entities entityName" earlier in this section.) 1401

• In the XSD Profile, each <appliesTo> element MUST specify a QName 1402

(as the value of its “entityName” attribute). 1403

• In the DSMLv2 Profile [SPMLv2-Profile-DSML], each <appliesTo> element MUST specify 1404

the name of an objectclass (as the value of its “entityName” attribute). 1405

An <appliesTo> element MAY have a “targetID” attribute. 1406

• A provider MAY omit “targetID” in any <appliesTo>. 1407

(That is, a provider MAY omit the optional “targetID” attribute of 1408

{SchemaEntityRefType} in an <appliesTo> element.) 1409

• Any “targetID” MUST refer to the containing target. 1410

(That is, any “targetID” attribute of an <appliesTo> element 1411

MUST contain the same value as the “targetID” attribute 1412

of the <target> element that contains the <appliesTo> element.) 1413

Capability content. SPMLv2 specifies only the optional <appliesTo> element as content for 1414

most capability elements. However, a declaration of support for the reference capability is special. 1415

Reference Capability content. A <capability> element that refers to the Reference Capability 1416

(i.e., any <capability> element that specifies 1417
“namespaceURI=’urn:oasis:names:tc:SPML:2.0:reference’”) 1418

MUST contain (as open content) at least one <referenceDefinition> element. 1419

(For normative specifics, please see the topic named “Reference Definition” immediately below. 1420

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 46 of 190

For background and for general information, please see the section titled "Reference Capability". 1421
For Reference Capability XSD, please see Appendix F.) 1422

ReferenceDefinition. Each <referenceDefinition> element MUST be an instance of 1423

{spmlref:ReferenceDefinitionType}. Each reference definition names a type of reference, 1424

specifies a “from” schema entity and specifies a set of “to” schema entities. Any instance of the 1425
“from” schema entity may refer to any instance of any “to” schema entity using the type of reference 1426
that the reference definition names. 1427

ReferenceDefinition typeOfReference. Each <referenceDefinition> element MUST have a 1428

“typeOfReference” attribute that names the type of reference. 1429

ReferenceDefinition schemaEntity. Each <referenceDefinition> element MUST contain 1430

exactly one <schemaEntity> sub-element that specifies a “from” schema entity for that type of 1431

reference. 1432

• The <schemaEntity> MUST have an “entityName” attribute that refers to a supported 1433

schema entity of the containing target. (See topic named the “Supported Schema Entities” 1434
earlier in this section.) 1435

• The <schemaEntity> MAY have a “targetID” attribute. Any “targetID” that the 1436

<schemaEntity> specifies MUST refer to the containing target. 1437

(That is, any “targetID” value that a <schemaEntity> specifies 1438

MUST match the value of the “targetID” attribute of the <target> element 1439

that contains the <referenceDefinition>.) 1440

ReferenceDefinition canReferTo. Each <referenceDefinition> element MAY contain any 1441

number of <canReferTo> sub-elements, each of which specifies a valid “to” schema entity. A 1442

<referenceDefinition> element that contains no <canReferTo> element implicitly declares 1443

that any instance of any schema entity on any target is a valid “to” schema entity. 1444

• A <canReferTo> element MUST have an “entityName” attribute that refers to a supported 1445

schema entity. The value of the “entityName” attribute MUST be the name of a top-level 1446

entity that is valid in the schema. 1447

• A <canReferTo> element SHOULD have a “targetID” attribute. 1448

- If the <listTargetsResponse> contains only one <target>, 1449

then any <canReferTo> element MAY omit “targetID”. 1450

- If the <listTargetsResponse> contains more than one <target>, 1451

then any <canReferTo> element MUST specify “targetID”. 1452

- If the <canReferTo> element specifies “targetID”, 1453

then the “entityName” attribute (of the <canReferTo> element) 1454

MUST refer to a supported schema entity of the specified target 1455

(i.e., the <target> whose “targetID” value matches 1456

the “targetID” value that the <canReferTo> element specifies). 1457

- If the <canReferTo> element does not specify “targetID”, 1458

then the “entityName” attribute (of the <canReferTo> element) 1459

MUST refer to a supported schema entity of the containing target 1460

(i.e., the <target> that contains the <referenceDefinition>). 1461

ReferenceDefinition referenceDataType. Each <referenceDefinition> element MAY 1462

contain any number of <referenceDataType> sub-elements, each of which specifies a schema 1463

entity that is a valid structure for reference data. A <referenceDefinition> element that 1464

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 47 of 190

contains no <referenceDataType> element implicitly declares that an instance of that type of 1465

reference will never contain reference data. 1466

• A <referenceDataType> element MUST have an “entityName” attribute that refers to a 1467

supported schema entity. The value of the “entityName” attribute MUST be the name of a 1468

top-level entity that is valid in the schema. 1469

• A <referenceDataType> element SHOULD have a “targetID” attribute. 1470

- If the <listTargetsResponse> contains only one <target>, 1471

then any <referenceDataType> element MAY omit “targetID”. 1472

- If the <listTargetsResponse> contains more than one <target>, 1473

then any <referenceDataType> element MUST specify “targetID”. 1474

- If the <referenceDataType> element specifies “targetID”, 1475

then the “entityName” attribute (of the <canReferTo> element) 1476

MUST refer to a supported schema entity of the specified target 1477

(i.e., the <target> whose “targetID” value matches 1478

the “targetID” value that the <referenceDataType> element specifies). 1479

- If the <referenceDataType> element does not specify “targetID”, 1480

then the “entityName” attribute (of the <canReferTo> element) 1481

MUST refer to a supported schema entity of the containing target 1482

(i.e., the <target> that contains the <referenceDefinition>). 1483

3.6.1.1.3 listTargets Examples (non-normative) 1484

In the following example, a requestor asks a provider to list the targets that the provider exposes for 1485
provisioning operations. 1486

<listTargetsRequest/>

The provider returns a <listTargetsResponse>. The “status” attribute of the 1487

<listTargetsResponse> element indicates that the listTargets request was successfully 1488

processed. The <listTargetsResponse> contains two <target> elements. Each <target> 1489

describes an endpoint that is available for provisioning operations. 1490

The requestor did not specify a profile, but both targets specify the XSD profile [SPMLv2-Profile-1491
XSD]. The requestor must observe the conventions that the XSD profile specifies in order to 1492

manipulate an object on either target. 1493

If the requestor had specified the DSML profile, then the response would have contained a different 1494

set of targets (or would have specified "error='unsupportedProfile'"). 1495

<listTargetsResponse status=“success">
 <target targetID=”target1” profile="urn:oasis:names:tc:SPML:2.0:profiles:XSD">
 <schema>
<xsd:schema targetNamespace="urn:example:schema:target1"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">
 <complexType name="Account">
 <sequence>
 <element name="description" type="string" minOccurs="0"/>
 </sequence>
 <attribute name="accountName" type="string" use="required"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 48 of 190

 </complexType>
 <complexType name="Group">
 <sequence>
 <element name="description" type="string" minOccurs="0"/>
 </sequence>
 <attribute name="groupName" type="string" use="required"/>
 </complexType>
</xsd:schema>
 <supportedSchemaEntity entityName=”Account”/>
 <supportedSchemaEntity entityName=”Group”/>
 </schema>
 <capabilities>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>
 <appliesTo entityName=”Account”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>
 <appliesTo entityName=”Account”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <appliesTo entityName=”Account”/>
 <referenceDefinition typeOfReference=”owner”>
 <schemaEntity entityName=”Account”/>
 <canReferTo entityName=”Person” targetID=“target2”/>
 </referenceDefinition>
 <referenceDefinition typeOfReference=”memberOf”>
 <schemaEntity entityName=”Account”/>
 <canReferTo entityName=”Group”/>
 </referenceDefinition>
 </capability>
 </capabilities>
 </target>

 <target targetID=“target2” profile="urn:oasis:names:tc:SPML:2.0:profiles:XSD">
 <schema>
<xsd:schema targetNamespace="urn:example:schema:target2"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">
 <complexType name="Person">
 <sequence>
 <element name="dn" type="string"/>
 <element name="email" type="string" minOccurs="0"/>
 </sequence>
 <attribute name="cn" type="string" use="required"/>
 <attribute name="firstName" type="string" use="required"/>
 <attribute name="lastName" type="string" use="required"/>
 <attribute name="fullName" type="string" use="required"/>
 </complexType>
 <complexType name="Organization">
 <sequence>
 <element name="dn" type="string"/>
 <element name="description" type="string" minOccurs="0"/>
 </sequence>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 49 of 190

 <attribute name="cn" type="string" use="required"/>
 </complexType>
 <complexType name="OrganizationalUnit">
 <sequence>
 <element name="dn" type="string"/>
 <element name="description" type="string" minOccurs="0"/>
 </sequence>
 <attribute name="cn" type="string" use="required"/>
 </complexType>
</xsd:schema>
 <supportedSchemaEntity entityName=”Person”/>
 <supportedSchemaEntity entityName=”Organization” isContainer=”true”/>
 <supportedSchemaEntity entityName=”OrganizationalUnit” isContainer=”true”/>
 </schema>
 <capabilities>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>
 <appliesTo entityName=”Person”/>
 </capability>
 <capability namespaceURI =”urn:oasis:names:tc:SPML:2.0:suspend”>
 <appliesTo entityName=”Person”/>
 </capability>
 <capability namespaceURI =”urn:oasis:names:tc:SPML:2.0:reference”>
 <appliesTo entityName=”Person”/>
 <referenceDefinition typeOfReference=”owns”>
 <schemaEntity entityName=”Person”/>
 <canReferTo entityName=”Account” targetID=“target1”/>
 </referenceDefinition>
 </capability>
 </capabilities>
 </target>
</listTargetsResponse>

This example <listTargetsResponse> contains two instances of <target> that are named 1496

target1 and target2. Each of these targets contains a simple schema. 1497

The schema for target1 defines two entities: Account and Group. The schema for target1 1498

declares each of these entities as a supported schema entity. The provider declares that target1 1499

supports the Bulk capability and Search capability for both Account and Group. The provider also 1500

declares that target1 supports the Password, Suspend, and Reference capabilities for Account. 1501

The schema for target2 defines three entities: Person, Organization and 1502

OrganizationalUnit. The schema for target2 declares each of these entities as a supported 1503

schema entity. The provider declares that target2 supports the Bulk capability and Search 1504

capability for all three schema entities. The provider also declares that target2 supports the 1505

Password, Suspend, and Reference capabilities for instances of Person (but not for instances of 1506

Organization or OrganizationalUnit). 1507

Reference Definitions. Within target1’s declaration of the Reference Capability for Account, 1508

the provider also declares two types of references: owner and memberOf. The provider declares 1509

that an instance of Account on target1 may refer to an instance of Person on target2 as its 1510

owner. An instance of Account on target1 may also use a memberOf type of reference to refer 1511

to an instance of Group on target1. 1512

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 50 of 190

Within target2’s declaration of the Reference Capability for Person, the provider declares that a 1513

Person on target2 may own an Account on target1. (That is, an instance of Person on 1514

target2 may use an "owns" type of reference to refer to an instance of Account on target1.) 1515

Note that the “owns” type of reference may be (but is not necessarily) an inverse of the “owner” 1516

type of reference. For more information, please see the section titled “Reference Capability”. 1517

NOTE: Subsequent examples within this section will build on this example, using the target 1518
definitions returned in this example. Examples will also build upon each other. An object that is 1519
created in the example of the add operation will be modified or deleted in later examples. 1520

3.6.1.2 add 1521

The add operation enables a requestor to create a new object on a target and (optionally) to bind 1522
the object beneath a specified parent object (thus forming a hierarchy of containment). 1523

The subset of the Core XSD that is most relevant to the add operation follows. 1524

 <complexType name=”CapabilityDataType”>
 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="ReturnDataType">
 <restriction base="string">
 <enumeration value="identifier"/>
 <enumeration value="data"/>
 <enumeration value="everything"/>
 </restriction>
 </simpleType>

 <complexType name="PSOType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType" />
 <element name="data" type="spml:ExtensibleType"
minOccurs="0" />
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="AddRequestType">
 <complexContent>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 51 of 190

 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 <element name="containerID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 <element name="data" type="spml:ExtensibleType"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="targetID" type="string" use="optional" />
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="AddResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="addRequest" type="spml:AddRequestType"/>
 <element name="addResponse" type="spml:AddResponseType"/>

3.6.1.2.1 addRequest (normative) 1525

A requestor MUST send an <addRequest> to a provider in order to (ask the provider to) create a 1526

new object. 1527

Execution. A <addRequest> MAY specify “executionMode”. 1528

See the section titled “Determining execution mode”. 1529

TargetID. An <addRequest> SHOULD specify “targetID”. 1530

• If the provider exposes only one target in its <listTargetsResponse>, 1531

then a requestor MAY omit the "targetID" attribute of an <addRequest>. 1532

• If the provider exposes more than one target in its <listTargetsResponse>, 1533

then a requestor MUST specify the "targetID" attribute of an <addRequest>. 1534

Any "targetID" value must specify a valid target. (That is, the value of any "targetID" in 1535

an <addRequest> MUST match the "targetID" of a <target> that is contained in the 1536

provider's <listTargetsResponse>.) 1537

psoID. An <addRequest> MAY contain a <psoID>. (A requestor supplies <psoID> in order to 1538

specify an identifier for the new object. See the section titled “PSO Identifier (normative)”.) 1539

ContainerID. An <addRequest> MAY contain a <containerID>. (A requestor supplies 1540

<containerID> in order to specify an existing object under which the new object should be 1541

bound.) 1542

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 52 of 190

• A requestor that wants to bind a new object in the top-level namespace of a target 1543

MUST NOT supply <containerID>. 1544

• A requestor that wants to bind a new object beneath a specific object on a target 1545

MUST supply <containerID>. Any <containerID> must identify an existing object. 1546

(That is, the content of <containerID> in an <addRequest> must match the <psoID> of an 1547

object that already exists on the target.) 1548

Data. An <addRequest> MUST contain a <data> element that supplies initial content for the new 1549

object. A <data> element MUST contain only elements and attributes defined by the target 1550

schema as valid for the schema entity of which the object to be added is an instance. 1551

CapabilityData. An <addRequest> element MAY contain any number of <capabilityData> 1552

elements. (Each <capabilityData> element contains data specific to a single capability. Each 1553

<capabilityData> element may contain any number of items of capability-specific data. 1554

Capability-specific data need not be defined by the target schema as valid for schema entity of 1555
which the object to be added is an instance. 1556
See the section titled "CapabilityData in a Request (normative)". 1557

ReturnData. An <addRequest> MAY have a “returnData” attribute that tells the provider 1558

which types of data to include in the provider’s response. 1559

• A requestor that wants the provider to return nothing of the added object 1560

MUST specify “returnData=’nothing’”. 1561

• A requestor that wants the provider to return only the identifier of the added object 1562

MUST specify “returnData=’identifier’”. 1563

• A requestor that wants the provider to return the identifier of the added object 1564
plus the XML representation of the object (as defined in the schema of the target) 1565

MUST specify “returnData=’data’”. 1566

• A requestor that wants the provider to return the identifier of the added object 1567
plus the XML representation of the object (as defined in the schema of the target) 1568
plus any capability-specific data that is associated with the object 1569

MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute 1570

(since “returnData=’everything’” is the default). 1571

3.6.1.2.2 addResponse (normative) 1572

A provider that receives an <addRequest> from a requestor that the provider trusts MUST 1573

examine the content of the <addRequest>. If the request is valid, the provider MUST create the 1574

requested object under the specified parent (i.e., target or container object) if it is possible to do so. 1575

PSO Identifier. The provider MUST create the object with any <psoID> that the <addRequest> 1576

supplies. If the provider cannot create the object with the specified <psoID> (e.g., because the 1577

<psoID> is not valid or because an object that already exists has that <psoID>), then the provider 1578

must fail the request. See the topic named "Error" below within this section. 1579

Data. The provider MUST create the object with any XML element or attribute contained by the 1580

<data> element in the <addRequest>. 1581

CapabilityData. The provider SHOULD associate with the created object the content of each 1582

<capabilityData> that the <addRequest> contains. The “mustUnderstand” attribute of 1583

each <capabilityData> indicates whether the provider MUST process the content of the 1584

<capabilityData> as the corresponding capability specifies. See the sections titled 1585

"CapabilityData in a Request (normative)" and "CapabilityData Processing (normative)". 1586

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 53 of 190

Also see the section titled "CapabilityData Errors (normative)". 1587

Execution. If an <addRequest> does not specify a type of execution, a provider MUST choose a 1588

type of execution for the requested operation. 1589
See the section titled “Determining execution mode”. 1590

Response. The provider must return to the requestor an <addResponse>. 1591

Status. The <addResponse> MUST have a “status” attribute that indicates whether the 1592

provider successfully created the requested object. See the section titled “Status (normative)”. 1593

PSO and ReturnData. If the provider successfully created the requested object, the 1594

<addResponse> MUST contain an <pso> element that contains the (XML representation of the) 1595

newly created object. 1596

• A <pso> element MUST contain a <psoID> element. 1597

The <psoID> element MUST contain the identifier of the newly created object. 1598

See the section titled “PSO Identifier (normative)”. 1599

- If the <addRequest> supplies a <psoID>, then <psoID> of the newly created object 1600

MUST match the <psoID> supplied by the <addRequest>. 1601

(See the topic named "PSO Identifier" above within this section.) 1602

- If the <addRequest> does not supply <psoID>, the provider must generate a <psoID> 1603

that uniquely identifies the newly created object. 1604

• A <pso> element MAY contain a <data> element. 1605

- If the <addRequest> specified “returnData=’identifier’” 1606

then the <pso> MUST NOT contain a <data> element. 1607

- Otherwise, if the <addRequest> specified “returnData=’data’” 1608

or (if the <addRequest> specified) “returnData=’everything’” 1609

or (if the <addRequest>) omitted the “returnData” attribute, 1610

then the <pso> MUST contain exactly one <data> element that contains the XML 1611

representation of the object. 1612
This XML must be valid according to the schema of the target for the schema entity of 1613
which the newly created object is an instance. 1614

• A <pso> element MAY contain any number of <capabilityData> elements. Each 1615

<capabilityData> element contains a set of capability-specific data that is associated with 1616

the newly created object (for example, a reference to another object). 1617

See the section titled "CapabilityData in a Response (normative)". 1618

- If the <addRequest> “returnData=’identifier’” 1619

or (if the <addRequest> specified) “returnData=’data’” 1620

then the <addResponse> MUST NOT contain a <capabilityData> element. 1621

- Otherwise, if the <addRequest> specified “returnData=’everything’” 1622

or (if the <addRequest>) omitted the “returnData” attribute 1623

then the <addResponse> MUST contain a <capabilityData> element for each set of 1624

capability-specific data that is associated with the newly created object. 1625

Error. If the provider cannot create the requested object, the <addResponse> MUST contain an 1626

“error” attribute that characterizes the failure. See the general section titled "Error (normative)”. 1627

In addition, the <addResponse> MUST specify an appropriate value of "error" if any of the 1628

following is true: 1629

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 54 of 190

• An <addRequest> specifies "targetID" but the value of “targetID” does not identify a 1630

target that the provider supports. 1631

In this case, the <addResponse> SHOULD specify “error=’noSuchIdentifier’”. 1632

• An <addRequest> specifies "targetID" and (the <addRequest> also) contains 1633

<containerID> but the value of the "targetID" attribute in the <addRequest> does not 1634

match the value of the "targetID" attribute in the <containerID>. 1635

In this case, the <addResponse> SHOULD specify “error=’malformedRequest’”. 1636

• An <addRequest> contains <containerID> but the content of <containerID> does not 1637

identify an object that exists. (That is, <containerID> does not match the <psoID> of an 1638

object that exists.) 1639

In this case, the <addResponse> SHOULD specify “error=’noSuchIdentifier’”. 1640

• An <addRequest> contains <containerID> but the <supportedSchemaEntity> (of 1641

which <containerID> identifies an instance) does not specify “isContainer=’true’” 1642

In this case, the <addResponse> SHOULD specify “error=’invalidContainment’”. 1643

• An <addRequest> contains <containerID> but the target does not allow the specified 1644

parent object to contain the object to be created. 1645

In this case, the <addResponse> SHOULD specify “error=’invalidContainment’”. 1646

• An <addRequest> supplies <psoID> but the <psoID> element is not valid. 1647

In this case, the <addResponse> SHOULD specify “error=’invalidIdentifier’”. 1648

• An <addRequest> supplies <psoID> but an object with that <psoID> already exists. 1649

In this case, the <addResponse> SHOULD specify “error=’alreadyExists’”. 1650

• The <data> element is missing an element or attribute that is required (according to the 1651

schema of the target) for the object to be added. 1652

• A <capabilityData> element specifies “mustUnderstand=’true’” and the provider 1653

cannot associate the content of the <capabilityData> with the object to be created. 1654

The provider MAY return an error if: 1655

• The <data> element contains data that the provider does not recognize as valid according to 1656

the target schema for the type of object to be created. 1657

• The provider does not recognize the content of a <capabilityData> element as specific to 1658

any capability that the target supports (for the schema entity of which the object to be created is 1659
an instance). 1660

Also see the section titled "CapabilityData Errors (normative)". 1661

3.6.1.2.3 add Examples (non-normative) 1662

In the following example, a requestor asks a provider to add a new person. The requestor specifies 1663

the attributes required for the Person schema entity (cn, firstName, lastName and fullName). 1664

The requestor also supplies an optional email address for the person. This example assumes that 1665

a container named “ou=Development, org=Example” already exists. 1666

<addRequest requestID=”127” targetID=“target2”>
 <containerID ID=”ou=Development, org=Example”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 55 of 190

 <email>joebob@example.com</email>
 </Person>
 </data>
</addRequest>

The provider returns an <addResponse> element. The “status” attribute of the 1667

<addResponse> element indicates that the add request was successfully processed. The 1668

<addResponse> contains a <pso>. The <pso> contains a <psoID> that identifies the newly 1669

created object. The <pso> also contains a <data> element that contains the schema-defined XML 1670

representation of the newly created object. 1671

<addResponse requestID=”127” status=“success">
 <pso>
 <psoID ID=”2244” targetID=“target2”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 </pso>
</addResponse>

Next, the requestor asks a provider to add a new account. The requestor specifies a name for the 1672

account. The requestor also specifies references to a Group that resides on target1 and to a 1673

Person (from the first example in this section) that resides on target2. 1674

<addRequest requestID=”128” targetID=”target1”>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=”target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2244" targetID=“target2”/>
 </reference>
 </capabilityData>
</addRequest>

The provider returns an <addResponse> element. The “status” attribute of the 1675

<addResponse> element indicates that the add operation was successfully processed. The 1676

<addResponse> contains a <pso> that contains a <psoID> that identifies the newly created 1677

object. 1678

<addResponse requestID=”128” status=“success">
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 56 of 190

 <reference typeOfReference="owner">
 <toPsoID ID="2244" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</addResponse>

3.6.1.3 lookup 1679

The lookup operation enables a requestor to obtain the XML that represents an object on a target. 1680
The lookup operation also obtains any capability-specific data that is associated with the object. 1681

The subset of the Core XSD that is most relevant to the lookup operation follows. 1682

 <complexType name=”CapabilityDataType”>
 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="ReturnDataType">
 <restriction base="string">
 <enumeration value="identifier"/>
 <enumeration value="data"/>
 <enumeration value="everything"/>
 </restriction>
 </simpleType>

 <complexType name="PSOType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="LookupRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 57 of 190

 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="LookupResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="lookupRequest" type="spml:LookupRequestType"/>
 <element name="lookupResponse" type="spml:LookupResponseType"/>

3.6.1.3.1 lookupRequest (normative) 1683

A requestor MUST send a <lookupRequest> to a provider in order to (ask the provider to) return 1684

(the XML that represents) an existing object. 1685

Execution. A <lookupRequest> MAY specify “executionMode”. 1686

See the section titled "Determining execution mode". 1687

In general, a requestor SHOULD NOT specify "executionMode='asynchronous'". The 1688

reason for this is that the result of a lookup should reflect the current state of a target object. If a 1689
lookup operation is executed asynchronously then other operations are more likely to intervene. 1690

PsoID. A <lookupRequest> MUST contain exactly one <psoID> that identifies the object to 1691

lookup (i.e., the object for which the provider should return the XML representation). The <psoID> 1692

MUST identify an object that exists on a target. 1693

ReturnData. A <lookupRequest> MAY have a “returnData” attribute that tells the provider 1694

which subset of (the XML representation of) a <pso> to include in the provider’s response. 1695

• A requestor that wants the provider to return nothing of a requested object 1696

MUST specify “returnData=’nothing’”. 1697

• A requestor that wants the provider to return only the identifier of a requested object 1698

MUST specify “returnData=’identifier’”. 1699

• A requestor that wants the provider to return the identifier of a requested object 1700
plus the XML representation of the object (as defined in the schema of the target) 1701

MUST specify “returnData=’data’”. 1702

• A requestor that wants the provider to return the identifier of a requested object 1703
plus the XML representation of the object (as defined in the schema of the target) 1704
plus any capability-specific data that is associated with the object 1705

MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute 1706

(since “returnData=’everything’” is the default). 1707

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 58 of 190

3.6.1.3.2 lookupResponse (normative) 1708

A provider that receives a <lookupRequest> from a requestor that the provider trusts MUST 1709

examine the content of the <lookupRequest>. If the request is valid, the provider MUST return 1710

(the XML that represents) the requested object if it is possible to do so. 1711

Execution. If an <lookupRequest> does not specify "executionMode", the provider MUST 1712

choose a type of execution for the requested operation. 1713
See the section titled “Determining execution mode”. 1714

A provider SHOULD execute a lookup operation synchronously if it is possible to do so. The reason 1715
for this is that the result of a lookup should reflect the current state of a target object. If a lookup 1716
operation is executed asynchronously then other operations are more likely to intervene. 1717

Response. The provider must return to the requestor a <lookupResponse>. 1718

Status. The <lookupResponse> must have a “status” that indicates whether the provider 1719

successfully returned each requested object. See the section titled "Status (normative)". 1720

PSO and ReturnData. If the provider successfully returned the requested object, the 1721

<lookupResponse> MUST contain an <pso> element for the requested object. Each <pso> 1722

contains the subset of (the XML representation of) a requested object that the “returnData” 1723

attribute of the <lookupRequest> specified. By default, each <pso> contains the entire (XML 1724

representation of an) object. 1725

• A <pso> element MUST contain a <psoID> element. 1726

The <psoID> element MUST contain the identifier of the requested object. 1727

See the section titled “PSO Identifier (normative)”. 1728

• A <pso> element MAY contain a <data> element. 1729

- If the <lookupRequest> specified “returnData=’identifier’”, 1730

then the <pso> MUST NOT contain a <data> element. 1731

- Otherwise, if the <lookupRequest> specified “returnData=’data’” 1732

or (if the <lookupRequest> specified) “returnData=’everything’” 1733

or (if the <lookupRequest>) omitted the “returnData” attribute 1734

then the <data> element MUST contain the XML representation of the object. 1735

This XML must be valid according to the schema of the target for the schema entity of 1736
which the newly created object is an instance. 1737

• A <pso> element MAY contain any number of <capabilityData> elements. 1738

Each <capabilityData> element MUST contain all the data (that are associated with the 1739

object and) that are specific to the capability that the <capabilityData> specifies as 1740

"capabilityURI". For example, a <capabilityData> that refers to the Reference 1741

Capability (i.e., a <capabilityData> that specifies 1742
"capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'") 1743

must contain at least one reference to another object. 1744

See the section titled "CapabilityData in a Response (normative)". 1745

- If the <lookupRequest> specified “returnData=’identifier’” 1746

or (if the <lookupRequest> specified) “returnData=’data’” 1747

then the <pso> MUST NOT contain a <capabilityData> element. 1748

- Otherwise, if the <lookupRequest> specified “returnData=’everything’” 1749

or (if the <lookupRequest>) omitted the “returnData” attribute, 1750

then the <pso> MUST contain a <capabilityData> element 1751

for each set of capability-specific data that is associated with the requested object 1752

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 59 of 190

(and that is specific to a capability that the target supports for the schema entity 1753
of which the requested object is an instance). 1754

Error. If the provider cannot return the requested object, the <lookupResponse> must have an 1755

“error” attribute that characterizes the failure. See the general section titled "Error (normative)”. 1756

In addition, the <lookupResponse> MUST specify an appropriate value of "error" if any of the 1757

following is true: 1758

• A <lookupRequest> contains no <psoID>. 1759

• A <lookupRequest> contains a <psoID> that does not identify an object that exists on a 1760

target. 1761

The provider MAY return an error if: 1762

• A <psoID> contains data that the provider does not recognize. 1763

3.6.1.3.3 lookup Examples (non-normative) 1764

In the following example, a requestor asks a provider to return the Person object from the add 1765

examples above. The requestor specifies the <psoID> for the Person object. 1766

<lookupRequest requestID=”125”>
 <psoID ID=”2244” targetID=“target2”/>
</lookupRequest>

The provider returns a <lookupResponse> element. The “status” attribute of the 1767

<lookupResponse> element indicates that the lookup request was successfully processed. The 1768

<lookupResponse> contains a <pso> element that contains the requested object. 1769

The <pso> element contains a <psoID> element that contains the PSO Identifier. The <pso> also 1770

contains a <data> element that contains the XML representation of the object (according to the 1771

schema of the target). 1772

<lookupResponse requestID=”125” status=“success">
 <pso>
 <psoID ID=”2244” targetID=“target2”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 </pso>
</lookupResponse>

Next, the requestor asks a provider to return the Account object from the add examples above. 1773

The requestor specifies a <psoID> for the Account object. 1774

<lookupRequest requestID=”126”>
 <psoID ID="1431" targetID=“target1”/>
</lookupRequest>

The provider returns a <lookupResponse> element. The “status” attribute of the 1775

<lookupResponse> element indicates that the lookup request was successfully processed. The 1776

<lookupResponse> contains a <pso> element that contains the requested object. 1777

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 60 of 190

The <pso> element contains a <psoID> element that uniquely identifies the object. The <pso> 1778

also contains a <data> element that contains the XML representation of the object (according to 1779

the schema of the target). 1780

In this example, the <pso> element also contains a <capabilityData> element. The 1781

<capabilityData> element in turn contains two <reference> elements. The lookup operation 1782

automatically includes capability-specific data (such as these two reference elements) if the 1783
schema for the target declares that it supports the reference capability (for the schema entity of 1784
which the requested object is an instance). 1785

<lookupResponse requestID=”126” status=“success">
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2244" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</lookupResponse>

To illustrate the effect of the “returnData” attribute, let’s reissue the previous request and 1786

specify a value of “returnData” other than the default (which is 1787

“returnData=’everything’”). First, assume that the requestor specifies 1788

“returnData=’identifier’”. 1789

<lookupRequest requestID=”129” returnData=”identifier”>
 <psoID ID="1431" targetID=“target1”/>
</lookupRequest>

The response specifies “status=’success’” which indicates that the lookup operation 1790

succeeded and that the requested object exists. Since the request specifies 1791

“return=’identifier’”, the <pso> in the response contains the <psoID> but no <data>. 1792

<lookupResponse requestID=”129” status=“success">
 <pso>
 <psoID ID="1431" targetID=“target1”/>
 </pso>
</lookupResponse>

Next assume that the requestor specifies “returnData=’data’”. 1793

<lookupRequest requestID=”130” returnData=”data”>
 <psoID ID="1431" targetID=“target1”/>
</lookupRequest>

Since the request specifies “return=’data’”, the <pso> in the response contains the <psoID> 1794

and <data> but no <capabilityData> element. Specifying “return=’data’” returns the 1795

XML representation of the object as defined in the schema for the target but suppresses capability-1796
specific data. 1797

Specifying “return=’data’” is advantageous if the requestor is not interested in capability-1798

specific data. Omitting capability-specific data may reduce the amount of work that the provider 1799

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 61 of 190

must do in order to build the <lookupResponse>. Reducing the size of the response should also 1800

reduce the network traffic that is required in order to transmit the response. Omitting capability-1801
specific data may also reduce the amount of XML parsing work that the requestor must perform in 1802
order to process the response. 1803

<lookupResponse requestID=”130” status=“success">
 <pso>
 <psoID ID="1431" targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 </pso>
</lookupResponse>

3.6.1.4 modify 1804

The modify operation enables a requestor to change an object on a target. The modify operation 1805
can change the schema-defined component of an object, any capability-specific data that is 1806
associated with the object, or both. 1807

Modify can change PSO Identifier. One important subtlety is that a modify operation may change 1808
the identifier of the modified object. For example, assume that a provider exposes the 1809
Distinguished Name (DN) as the identifier of each object on a target that represents a directory 1810
service. In this case, modifying the object’s Common Name (CN) or moving the object beneath a 1811
different Organizational Unit (OU) would change the object’s DN and therefore its PSO-ID. 1812

A provider should expose an immutable identifier as the PSO-ID of each object. In the case of a 1813
target that represents a directory service, an immutable identifier could be a Globally Unique 1814
Identifier (GUID) that is managed by the directory service or it could be any form of unique identifier 1815
that is managed by the provider. 1816

For normative specifics, please see the section titled "PSO Identifier (normative)". 1817

Modifying capability-specific data. Any capability may imply capability-specific data (where the 1818
target supports that capability for the schema entity of which the object is an instance). However, 1819
many capabilities do not. Of the standard capabilities that SPMLv2 defines, only the Reference 1820
Capability implies capability-specific data. 1821

The default processing for capability-specific data is to treat the content of each 1822

<capabilityData> as opaque. See the section titled "CapabilityData". 1823

The subset of the Core XSD that is most relevant to the modify operation follows. 1824

 <complexType name="CapabilityDataType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 62 of 190

 <simpleType name="ReturnDataType">
 <restriction base="string">
 <enumeration value="identifier"/>
 <enumeration value="data"/>
 <enumeration value="everything"/>
 </restriction>
 </simpleType>

 <complexType name="PSOType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="ModificationModeType">
 <restriction base="string">
 <enumeration value="add"/>
 <enumeration value="replace"/>
 <enumeration value="delete"/>
 </restriction>
 </simpleType>

 <complexType name="NamespacePrefixMappingType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="prefix" type="string" use="required"/>
 <attribute name="namespace" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="QueryClauseType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SelectionType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <element name="namespacePrefixMap"
type="spml:NamespacePrefixMappingType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 <attribute name="namespaceURI" type="string" use="required"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 63 of 190

 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModificationType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="component" type="spml:SelectionType"
minOccurs="0"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="modificationMode"
type="spml:ModificationModeType" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModifyRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="modification" type="spml:ModificationType"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModifyResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="modifyRequest" type="spml:ModifyRequestType"/>
 <element name="modifyResponse" type="spml:ModifyResponseType"/>

3.6.1.4.1 modifyRequest (normative) 1825

A requestor MUST send a <modifyRequest> to a provider in order to (ask the provider to) modify 1826

an existing object. 1827

Execution. A <modifyRequest> MAY specify “executionMode”. 1828

See the section titled "Determining execution mode". 1829

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 64 of 190

PsoID. A <modifyRequest> MUST contain exactly one <psoID>. A <psoID> MUST identify an 1830

object that exists on a target that is exposed by the provider. 1831

ReturnData. A <modifyRequest> MAY have a “returnData” attribute that tells the provider 1832

which subset of (the XML representation of) each modified <pso> to include in the provider’s 1833

response. 1834

• A requestor that wants the provider to return nothing of the modified object 1835

MUST specify “returnData=’nothing’”. 1836

• A requestor that wants the provider to return only the identifier of the modified object 1837

MUST specify “returnData=’identifier’”. 1838

• A requestor that wants the provider to return the identifier of the modified object 1839
plus the XML representation of the object (as defined in the schema of the target) 1840

MUST specify “returnData=’data’”. 1841

• A requestor that wants the provider to return the identifier of the modified object 1842
plus the XML representation of the object (as defined in the schema of the target) 1843
plus any capability-specific data that is associated with the object 1844

MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute 1845

(since “returnData=’everything’” is the default). 1846

Modification. A <modifyRequest> MUST contain at least one <modification>. A 1847

<modification> describes a set of changes to be applied (to the object that the <psoID> 1848

identifies). A <modification> MUST have a “modificationMode” that specifies the type of 1849

change as one of ‘add’, ‘replace' or ‘delete’. 1850

A requestor MAY specify a change to a schema-defined element or attribute of the object to be 1851
modified. A requestor MAY specify any number of changes to capability-specific data associated 1852
with the object to be modified. 1853

A requestor MUST use a <component> element to specify a schema-defined element or attribute 1854

of the object to be modified. A requestor MUST use a <capabilityData> element to describe 1855

each change to a capability-specific data element that is associated with the object to be modified. 1856

A <modification> element MUST contain a <component> element or (the <modification> 1857

MUST contain) at least one <capabilityData> element. A <modification> element MAY 1858

contain a <component> element as well as one or more <capabilityData> elements. 1859

Modification component. The <component> sub-element of a <modification> specifies a 1860

schema-defined element or attribute of the object that is to be modified. This is an instance of 1861

{SelectionType}, which occurs in several contexts within SPMLv2. 1862

See the section titled “SelectionType in a Request (normative)”. 1863

Modification data. A requestor MUST specify as the content of the <data> sub-element of a 1864

<modification> any content or value that is to be added to, replaced within, or deleted from the 1865

element or attribute that the <component> (sub-element of the <modification>) specifies. 1866

Modification capabilityData. A requestor MAY specify any number of <capabilityData> 1867

elements within a <modification> element. Each <capabilityData> element specifies 1868

capability-specific data (for example, references to other objects) for the object to be modified. 1869

Because the {CapabilityDataType} is an {ExtensibleType}, a <capabilityData> 1870

element may validly contain any XML element or attribute. The <capabilityData> element 1871

SHOULD contain elements that the provider will recognize as specific to a capability that the target 1872
supports (for the schema entity of which the object to be modified is an instance). 1873
See the section titled "CapabilityData in a Request (normative)". 1874

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 65 of 190

3.6.1.4.2 modifyResponse (normative) 1875

A provider that receives a <modifyRequest> from a requestor that the provider trusts MUST 1876

examine the content of the <modifyRequest>. If the request is valid, the provider MUST apply 1877

each requested <modification> (to the object that is identified by the <psoID> of the 1878

<modifyRequest>) if it is possible to do so. 1879

For normative specifics related to processing any <capabilityData> within a 1880

<modification>, please see the section titled "CapabilityData Processing (normative)". 1881

Execution. If a <modifyRequest> does not specify "executionMode", the provider MUST 1882

choose a type of execution for the requested operation. 1883
See the section titled “Determining execution mode”. 1884

Response. The provider must return to the requestor a <modifyResponse>. 1885

Status. The <modifyResponse> must have a “status” attribute that indicates whether the 1886

provider successfully applied the requested modifications to each identified object. 1887
See the section titled “Status (normative)”. 1888

PSO and ReturnData. If the provider successfully modified the requested object, the 1889

<modifyResponse> MUST contain an <pso> element. The <pso> contains the subset of (the 1890

XML representation of) a requested object that the “returnData” attribute of the 1891

<lookupRequest> specified. By default, the <pso> contains the entire (XML representation of 1892

the) modified object. 1893

• A <pso> element MUST contain a <psoID> element. 1894

The <psoID> element MUST contain the identifier of the requested object. 1895

See the section titled “PSO Identifier (normative)”. 1896

• A <pso> element MAY contain a <data> element. 1897

- If the <modifyRequest> specified “returnData=’identifier’”, 1898

then the <pso> MUST NOT contain a <data> element. 1899

- Otherwise, if the <modifyRequest> specified “returnData=’data’” 1900

or (if the <modifyRequest> specified) “returnData=’everything’” 1901

or (if the <modifyRequest>) omitted the “returnData” attribute 1902

then the <data> element MUST contain the XML representation of the object. 1903

This XML must be valid according to the schema of the target for the schema entity of 1904
which the newly created object is an instance. 1905

• A <pso> element MAY contain any number of <capabilityData> elements. Each 1906

<capabilityData> element contains a set of capability-specific data that is associated with 1907

the newly created object (for example, a reference to another object). 1908
See the section titled "CapabilityData in a Response (normative)". 1909

- If the <modifyRequest> specified “returnData=’identifier’” 1910

or (if the <modifyRequest> specified) “returnData=’data’” 1911

then the <modifyResponse> MUST NOT contain a <capabilityData> element. 1912

- Otherwise, if the <modifyRequest> specified “returnData=’everything’” 1913

or (if the <modifyRequest>) omitted the “returnData” attribute, 1914

then the <modifyResponse> MUST contain a <capabilityData> element for each set 1915

of capability-specific data that is associated with the requested object 1916
(and that is specific to a capability that the target supports for the schema entity of which 1917
the requested object is an instance). 1918

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 66 of 190

Error. If the provider cannot modify the requested object, the <modifyResponse> must have an 1919

“error” attribute that characterizes the failure. See the general section titled "Error (normative)”. 1920

In addition, a <modifyResponse> MUST specify an appropriate value of "error" if any of the 1921

following is true: 1922

• The <modifyRequest> contains a <modification> for which there is no corresponding 1923

<psoID>. 1924

• A <modification> contains neither a <component> nor a <capabilityData>. 1925

• A <component> is empty (that is, a <component> element has no content). 1926

• A <component> specifies an element or attribute that is not valid (according to the schema of 1927

the target) for the type of object to be modified. 1928

The provider MAY return an error if: 1929

• A <component> contains data that the provider does not recognize as specifying an XML 1930

element or attribute that is valid according to the target schema for the type of object to be 1931

modified. 1932

• A <capabilityData> element contains data that the provider does not recognize as specific 1933

to the capability that its "capabilityURI" attribute identifies. 1934

In addition, see the section titled “SelectionType Errors (normative)” as well as the section titled 1935
"CapabilityData Errors (normative)". 1936

3.6.1.4.3 modify Examples (non-normative) 1937

In the following example, a requestor asks a provider to modify the email address for an existing 1938

Person object. 1939

<modifyRequest requestID=”123”>
 <psoID ID=”2244” targetID=“target2”/>
 <modification modificationMode=”replace”>
 <component path="/Person/email” namespaceURI="http://www.w3.org/TR/xpath20" />
 <data>
 <email>joebob@example.com</email>
 </data>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 1940

<modifyResponse> element indicates that the modify request was successfully processed. The 1941

<pso> element of the <modifyResponse> contains the XML representation of the modified 1942

object. 1943

<modifyResponse requestID=”123” status=“success">
 <pso>
 <psoID ID=”2244” targetID=“target2”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 </pso>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 67 of 190

</modifyResponse>

In the following example, a requestor asks a provider to modify the same Person object, adding a 1944

reference to an Account that the Person owns. (Since the request is to add capability-specific 1945

data, the <modification> element contains no <component> sub-element.) 1946

<modifyRequest requestID=”124”>
 <psoID ID=”2244” targetID=“target2”/>
 <modification modificationMode=”add”>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="owns" >
 <toPsoID ID="1431" targetID=“target1”/>
 </reference>
 </capabilityData>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 1947

<modifyResponse> element indicates that the modify request was successfully processed. The 1948

<pso> element of the <modifyResponse> shows that the provider has added (the 1949

<capabilityData> that is specific to) the “owns” reference. 1950

<modifyResponse requestID=”124” status=“success">
 <pso>
 <psoID ID=”2244” targetID=“target2”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="owns">
 <toPsoID ID="1431" targetID=“target1”/>
 </reference>
 </capabilityData>
 </pso>
</modifyResponse>

 1951

Modifying capabilityData. Of the standard capabilities defined by SPMLv2, only the Reference 1952
Capability associates capability-specific data with an object. We must therefore imagine a custom 1953
capability "foo" in order to illustrate the default processing of capability data. (We illustrate the 1954

handling of references further below.) 1955

In this example, the requestor wishes to replace any existing data foo-specific data that is 1956

associated with a specific Account with a new <foo> element. The fact that each 1957

<capabilityData> omits the "mustUnderstand" flag indicates that the requestor will accept 1958

the default processing. 1959

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 68 of 190

<modifyRequest requestID=”122”>
 <psoID ID=”1431” targetID=“target1”/>
 <modification modificationMode=”replace”>
 <capabilityData capabilityURI=”urn:oasis:names:tc:SPML:2.0:foo”>
 <foo bar="owner"/>
 </capabilityData>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 1960

<modifyResponse> element indicates that the modify request was successfully processed. The 1961

<pso> element of the <modifyResponse> shows that any capability data that is specific to the 1962

Foo capability has been replaced. 1963

<modifyResponse requestID=”122” status=“success">
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData capabilityURI=”urn:oasis:names:tc:SPML:2.0:foo”>
 <foo bar="owner"/>
 </capabilityData>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2245" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</modifyResponse>

The requestor next adds another <foo> element to the set of foo-specific data that is associated 1964

with the Account. 1965

<modifyRequest requestID=”122”>
 <psoID ID=”1431” targetID=“target1”/>
 <modification modificationMode=”add”>
 <capabilityData capabilityURI=”urn:oasis:names:tc:SPML:2.0:foo”>
 <foo bar="customer"/>
 </capabilityData>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 1966

<modifyResponse> element indicates that the modify request was successfully processed. The 1967

<pso> element of the <modifyResponse> shows that the content of the foo-specific 1968

<capabilityData> in the <modification> has been appended to the previous content of the 1969

foo-specific <capabilityData> in the <pso>. 1970

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 69 of 190

<modifyResponse requestID=”122” status=“success">
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData capabilityURI=”urn:oasis:names:tc:SPML:2.0:foo”>
 <foo bar="owner"/>
 <foo bar="customer"/>
 </capabilityData>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2245" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</modifyResponse>

Finally, our requestor deletes any foo-specific capability data from the Account. The 1971

<capabilityData> element does not need any content. The content of <capabilityData> is 1972

irrelevant in the default processing of "modificationMode='delete'". 1973

<modifyRequest requestID=”122”>
 <psoID ID=”1431” targetID=“target1”/>
 <modification modificationMode=”delete”>
 <capabilityData capabilityURI=”urn:oasis:names:tc:SPML:2.0:foo”/>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 1974

<modifyResponse> element indicates that the modify request was successfully processed. The 1975

<pso> element of the <modifyResponse> shows that the foo-specific <capabilityData> has 1976

been removed. 1977

<modifyResponse requestID=”122” status=“success">
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2245" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</modifyResponse>

 1978

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 70 of 190

Modifying a reference. The previous topic illustrates the default processing of capability data. The 1979
Reference Capability specifies enhanced behavior for the modify operation. 1980
See the section titled "Reference CapabilityData Processing (normative)". 1981

In this example, the requestor wishes to change the owner of an Account from “2244” (which is 1982

the <psoID> of “Person:joebob”) to “2245” (which is the <psoID> of “Person:billybob”). 1983

Since SPMLv2 does not specify any mechanism to define the cardinality of a type of reference, a 1984
requestor should not assume that a provider enforces any specific cardinality for any type of 1985
reference. For a general discussion of the issues surrounding references, see the section titled 1986
“Reference Capability”. 1987

Assume that each account should have at most one owner. If the requestor could trust the provider 1988
to enforce this, and if the requestor could trust that no other requestor has changed the value of 1989
“owner”, the requestor could simply ask the provider to replace the owner value 2244 with 2245. 1990
However, since our requestor is both cautious and general, the requestor instead nests two 1991

<modification> elements within a single <modifyRequest>: 1992

- one <modification> to delete any current values of “owner” and 1993

- one <modification> to add the desired value of “owner”. 1994

The <modification> that specifies "modificationMode='delete'" contains a 1995

<capabilityData> that specifies "mustUnderstand='true'". This means that the provider 1996

must process the content of that <capabilityData> as the Reference Capability specifies. (If 1997

the provider cannot do that, the provider must fail the request.) 1998

The <capabilityData> contains a <reference> that specifies only 1999

"typeOfReference='owner'". The <reference> contains no <toPsoID> and (the 2000

<reference> contains) no <referenceData> element. The Reference Capability specifies that 2001

this incomplete reference acts as a wildcard. In this context, this <reference> that specifies only 2002

"typeOfReference" matches every <reference> that is associated with the object and that 2003

specifies "typeOfReference='owner'". 2004

<modifyRequest requestID=”121”>
 <psoID ID=”1431” targetID=“target1”/>
 <modification modificationMode=”delete”>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="owner”/>
 </capabilityData>
 </modification>
 <modification modificationMode=”add”>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="owner" >
 <toPsoID ID="2245" targetID=“target2”/>
 </reference>
 </capabilityData>
 </modification>
</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the 2005

<modifyResponse> element indicates that the modify request was successfully processed. The 2006

<pso> element of the <modifyResponse> shows that the <reference> that specifies 2007

"typeOfReference='owner'” has been changed. 2008

<modifyResponse requestID=”121” status=“success">
 <pso>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 71 of 190

 <psoID ID=”1431” targetID=“target1”/>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2245" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
</modifyResponse>

3.6.1.5 delete 2009

The delete operation enables a requestor to remove an object from a target. The delete operation 2010
automatically removes any capability-specific data that is associated with the object. 2011

The subset of the Core XSD that is most relevant to the delete operation follows. 2012

 <complexType name="DeleteRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="recursive" type="xsd:boolean" use="optional"
default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="deleteRequest" type="spml:DeleteRequestType"/>
 <element name="deleteResponse" type="spml:ResponseType"/>

3.6.1.5.1 deleteRequest (normative) 2013

A requestor MUST send a <deleteRequest> to a provider in order to (ask the provider to) 2014

remove an existing object. 2015

Execution. A <deleteRequest> MAY specify “executionMode”. 2016

See the section titled "Determining execution mode". 2017

PsoID. A <deleteRequest> MUST contain a <psoID> element that identifies the object to 2018

delete. 2019

Recursive. A <deleteRequest> MAY have a “recursive” attribute that specifies whether the 2020

provider should delete (along with the specified object) any object that the specified object (either 2021
directly or indirectly) contains. 2022

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 72 of 190

• A requestor that wants the provider to delete any object that the specified object contains 2023

(along with the specified object) MUST specify “recursive=’true’”. 2024

• A requestor that wants the provider to delete the specified object only if the specified object 2025

contains no other object MUST NOT specify “recursive=’true’”. Such a requestor MAY 2026

specify “recursive=’false’” or (such a requestor MAY) omit the “recursive” attribute 2027

(since “recursive=’false’” is the default). 2028

3.6.1.5.2 deleteResponse (normative) 2029

A provider that receives a <deleteRequest> from a requestor that the provider trusts MUST 2030

examine the content of the request. If the request is valid, the provider MUST delete the object 2031

(that is specified by the <psoID> sub-element of the <deleteRequest>) if it is possible to do so. 2032

Execution. If an <deleteRequest> does not specify "executionMode", the provider MUST 2033

choose a type of execution for the requested operation. 2034
See the section titled “Determining execution mode”. 2035

Recursive. A provider MUST NOT delete an object that contains another object unless the 2036

<deleteRequest> specifies “recursive=’true’”. If the <deleteRequest> specifies 2037

“recursive=’true’” then the provider MUST delete the specified object along with any object 2038

that the specified object (directly or indirectly) contains. 2039

Response. The provider must return to the requestor a <deleteResponse>. 2040

Status. A <deleteResponse> must contain a “status” attribute that indicates whether the 2041

provider successfully deleted the specified object. See the section titled “Status (normative)”. 2042

Error. If the provider cannot delete the specified object, the <deleteResponse> must contain an 2043

“error” attribute that characterizes the failure. See the general section titled "Error (normative)”. 2044

In addition, the <deleteResponse> MUST specify an appropriate value of "error" if any of the 2045

following is true: 2046

• The <psoID> sub-element of the <deleteRequest> is empty (that is, the identifier 2047

element has no content). In this case, the <deleteResponse> SHOULD specify 2048

“error=’noSuchIdentifier’”. 2049

• The <psoID> sub-element of the <deleteRequest> contains invalid data. In this case the 2050

provider SHOULD return “error=’unsupportedIdentifierType’”. 2051

• The <psoID> sub-element of the <deleteRequest> does not specify an object that exists. 2052

In this case the <deleteResponse> MUST specify “error=’noSuchIdentifier’”. 2053

• The <psoID> sub-element of the <deleteRequest> specifies an object that contains another 2054

object and the <deleteRequest> does not specify “recursive=’true’”. In such a case 2055

the provider should return “error=’containerNotEmpty’”. 2056

3.6.1.5.3 delete Examples (non-normative) 2057

In the following example, a requestor asks a provider to delete an existing Person object. 2058

<deleteRequest requestID=”120”>
 <psoID ID=”2244” targetID=“target2”/>
</deleteRequest>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 73 of 190

The provider returns a <deleteResponse> element. The “status” attribute of the 2059

<deleteResponse> element indicates that the delete request was successfully processed. The 2060

<deleteResponse> contains no other data. 2061

<deleteResponse requestID=”120” status=“success"/>

 2062

 2063

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 74 of 190

 2064

3.6.2 Async Capability 2065

The Async Capability is defined in a schema associated with the following XML namespace: 2066

urn:oasis:names:tc:SPML:2:0:async. The Async Capability XSD is included as Appendix B 2067

to this document. 2068

A provider that supports asynchronous execution of requested operations for a target SHOULD 2069
declare that the target supports the Async Capability. A provider that does not support 2070
asynchronous execution of requested operations for a target MUST NOT declare that the target 2071
supports the Async Capability. 2072

IMPORTANT: The Async Capability does NOT define an operation specific to requesting 2073
asynchronous execution. A provider that supports the Async Capability (for a schema entity of 2074
which each object that the requestor desires to manipulate is an instance): 2075

1) MUST allow a requestor to specify "executionMode='asynchronous'". 2076

The provider MUST NOT fail such a request with 2077

“error=’unsupportedExecutionMode’”. 2078

The provider MUST execute the requested operation asynchronously 2079
(if the provider executes the requested operation at all). 2080
See the section titled “Requestor specifies asynchronous execution (normative)”. 2081

2) MAY choose to execute a requested operation asynchronously 2082

when the request does not specify the "executionMode" attribute. 2083

See the section titled “Provider chooses asynchronous execution (normative)”. 2084

The Async Capability also defines two operations that a requestor may use to manage another 2085
operation that a provider is executing asynchronously: 2086

• A status operation allows a requestor to check the status (and possibly results) of an operation. 2087

• A cancel operation asks the provider to stop executing an operation. 2088

Status. When a provider is executing SPML operations asynchronously, the requestor needs a way 2089
to check the status of requests. The status operation allows a requestor to determine whether an 2090
asynchronous operation has succeeded or has failed or is still pending. The status operation also 2091
allows a requestor to obtain the output of an asynchronous operation. 2092

Cancel. A requestor may also need to cancel an asynchronous operation. The cancel operation 2093

allows a requestor to ask a provider to stop executing an asynchronous operation. 2094

Synchronous. Both the status and cancel operations must be executed synchronously. Because 2095
both cancel and status operate on other operations that a provider is executing asynchronously, it 2096
would be confusing to execute cancel or status asynchronously. For example, what would it mean 2097
to get the status of a status operation? Describing the expected behavior (or interpreting the result) 2098
of canceling a cancel operation would be difficult, and the chain (e.g., canceling a request to cancel 2099
a cancelRequest) could become even longer if status or cancel were supported asynchronously. 2100

Resource considerations. A provider must limit the size and duration of its asynchronous 2101
operation results (or that provider will exhaust available resources). A provider must decide: 2102

• How many resources the provider will devote to storing the results of operations 2103
that are executed asynchronously (so that the requestor may obtain the results). 2104

• For how long a time the provider will store the results of each operation 2105
that is executed asynchronously. 2106

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 75 of 190

These decisions may be governed by the provider’s implementation, by its configuration, or by 2107
runtime computation. 2108

A provider that wishes to never to store the results of operations SHOULD NOT declare that it 2109
supports the Async Capability. (Such a provider may internally execute requested operations 2110
asynchronously, but must respond to each request exactly as if the request had been processed 2111
synchronously.) 2112

A provider that wishes to support the asynchronous execution of requested operations MUST store 2113
the results of an asynchronous operation for a reasonable period of time in order to allow the 2114
requestor to obtain those results. SPMLv2 does not specify a minimum length of time. 2115

As a practical matter, a provider cannot queue the results of asynchronous operations forever. The 2116
provider must eventually release the resources associated with asynchronous operation results. 2117
(Put differently, a provider must eventually discard the results of an operation that the provider 2118
executes asynchronously.) Otherwise, the provider may run out of resources. 2119

Providers should carefully manage the resources associated with operation results. For example: 2120

• A provider may define a timeout interval that specifies the maximum time between status 2121
requests. If a requestor does not request the status of asynchronous operation within this 2122
interval, the provider will release the results of the asynchronous operation. 2123
(Any subsequent request for status on this asynchronous operation will receive a response 2124

that specifies "error='noSuchRequest'".) 2125

• A provider may also define an overall result lifetime that specifies the maximum length of time 2126
to retain the results of an asynchronous operation. After this amount of time has passed, the 2127
provider will release the results of the operation. 2128

• A provider may also wish to enforce an overall limit on the resources available to store the 2129
results of asynchronous operations, and may wish to adjust its behavior (or even to refuse 2130
requests for asynchronous execution) accordingly. 2131

• To prevent denial of service attacks, the provider should not allocate any resource on behalf of 2132
a requestor until that requestor is properly authenticated. 2133

3.6.2.1 cancel 2134

The cancel operation enables a requestor to stop the execution of an asynchronous operation. (The 2135
cancel operation itself must be synchronous.) 2136

The subset of the Async Capability XSD that is most relevant to the cancel operation follows. 2137

 <complexType name="CancelRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <attribute name="asyncRequestID" type="xsd:string"
use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CancelResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="asyncRequestID" type="xsd:string"

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 76 of 190

use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="cancelRequest" type="spmlasync:CancelRequestType"/>
 <element name="cancelResponse" type="spmlasync:CancelResponseType"/>

Cancel must be synchronous. Because cancel operates on another operation that a provider is 2138
executing asynchronously, the cancel operation itself must be synchronous. 2139

Cancel is not batchable. Because the cancel operation must be synchronous, a requestor must 2140
not nest a cancel request in a batch request. 2141

3.6.2.1.1 cancelRequest (normative) 2142

A requestor MUST send a <cancelRequest> to a provider in order to (ask the provider to) cancel 2143

a requested operation that the provider is executing asynchronously. 2144

Execution. A <cancelRequest> MUST NOT specify "executionMode='asynchronous'". 2145

A <cancelRequest> MUST specify "executionMode='synchronous'" 2146

or (a <cancelRequest> MUST) omit the "executionMode" attribute. 2147

See the section titled "Determining execution mode". 2148

AsyncRequestID. A <cancelRequest> MUST have an “asyncRequestID” attribute that 2149

specifies the operation to cancel. 2150

3.6.2.1.2 cancelResponse (normative) 2151

A provider that receives a <cancelRequest> from a requestor that the provider trusts MUST 2152

examine the content of the request. If the request is valid, the provider MUST stop the execution of 2153

the operation (that the “asyncRequestID” attribute of the <cancelRequest> specifies) if it is 2154

possible for the provider to do so. 2155

• If the provider is already executing the specified operation asynchronously, 2156
then the provider MUST terminate execution of the specified operation. 2157

• If the provider plans to execute the specified operation asynchronously 2158
but has not yet begun to execute the specified operation, 2159
then the provider MUST prevent execution of the specified operation. 2160

Execution. The provider MUST execute the cancel operation synchronously (if the provider 2161
executes the cancel operation at all). See the section titled “Determining execution mode”. 2162

Response. The provider must return to the requestor a <cancelResponse>. 2163

Status. A <cancelResponse> must have a “status” attribute that indicates whether the 2164

provider successfully processed the request to cancel the specified operation. 2165
See the section titled "Status (normative)”. 2166

Since the provider must execute a cancel operation synchronously, the <cancelResponse> 2167

MUST NOT specify “status=’pending’”. The <cancelResponse> MUST specify 2168

“status=’success’” or (the <cancelResponse> MUST specify) “status=’failure’”. 2169

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 77 of 190

If the provider successfully canceled the specified operation, the <cancelResponse> MUST 2170

specify “status=’success’”. If the provider failed to cancel the specified operation, the 2171

<cancelResponse> MUST specify “status=’failure’”. 2172

Error. If the provider cannot cancel the specified operation, the <cancelResponse> MUST 2173

contain an “error” attribute that characterizes the failure. 2174

See the general section titled "Error (normative)”. 2175

In addition, the <cancelResponse> MUST specify an appropriate value of "error" if any of the 2176

following is true: 2177

• The “asyncRequestID” attribute of the <cancelRequest> has no value. In this case, the 2178

<cancelResponse> SHOULD specify “error=’invalidIdentifier’”. 2179

• The “asyncRequestID” attribute of the <cancelRequest> does not specify an operation 2180

that exists. In this case the provider SHOULD return “error=’noSuchRequest’”. 2181

3.6.2.1.3 cancel Examples (non-normative) 2182

In order to illustrate the cancel operation, we must first execute an operation asynchronously. In the 2183

following example, a requestor first asks a provider to delete a Person asynchronously. 2184

<deleteRequest >
 <psoID ID=”2244” targetID=“target2”/>
</deleteRequest>

The provider returns a <deleteResponse> element. The “status” attribute of the 2185

<deleteResponse> element indicates that the provider has chosen to execute the delete 2186

operation asynchronously. The <deleteResponse> also returns a “requestID”. 2187

<deleteResponse status=“pending" requestID=”8488”/>

Next, the same requestor asks the provider to cancel the delete operation. The requestor specifies 2188

the value of “requestID” from the <deleteResponse> as the value of “asyncRequestID” in 2189

the <cancelRequest>. 2190

<cancelRequest requestID=”131” asyncRequestID=”8488”/>

The provider returns a <cancelResponse>. The “status” attribute of the <cancelResponse> 2191

indicates that the provider successfully canceled the delete operation. 2192

<cancelResponse requestID=”131” asyncRequestID=”8488” status=”success”/>

3.6.2.2 status 2193

The status operation enables a requestor to determine whether an asynchronous operation has 2194
completed successfully or has failed or is still executing. The status operation also (optionally) 2195
enables a requestor to obtain results of an asynchronous operation. (The status operation itself 2196
must be synchronous.) 2197

The subset of the Async Capability XSD that is most relevant to the status operation is shown 2198
below for the convenience of the reader. 2199

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 78 of 190

 <complexType name="StatusRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <attribute name="asyncRequestID" type="xsd:string"
use="optional"/>
 <attribute name="returnResults" type="xsd:boolean"
use="optional" default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="StatusResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="asyncRequestID" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="statusRequest" type="spmlasync:StatusRequestType"/>
 <element name="statusResponse" type="spmlasync:StatusResponseType"/>

Status must be synchronous. The status operation acts on other operations that a provider is 2200
executing asynchronously. The status operation itself therefore must be synchronous. 2201

Status is not batchable. Because the status operation must be synchronous, a requestor must not 2202

nest a status request in a batch request. 2203

3.6.2.2.1 statusRequest (normative) 2204

A requestor MUST send a <statusRequest> to a provider in order to obtain the status or results 2205

of a requested operation that the provider is executing asynchronously. 2206

Execution. A <statusRequest> MUST NOT specify "executionMode='asynchronous'". A 2207

<statusRequest> MUST specify "executionMode='synchronous'" or (a 2208

<statusRequest> MUST) omit “executionMode”. 2209

See the section titled "Determining execution mode". 2210

AsyncRequestID. A <statusRequest> MAY have an “asyncRequestID” attribute that 2211

specifies one operation for which to return status or results. A <statusRequest> that omits 2212

“asyncRequestID” implicitly requests the status of all operations that the provider has executed 2213

asynchronously on behalf of the requestor (and for which operations the provider still retains status 2214
and results). 2215

returnResults. A <statusRequest> MAY have a “returnResults” attribute that specifies 2216

whether the requestor wants the provider to return any results (or output) of the operation that is 2217

executing asynchronously. If a <statusRequest> does not specify “returnResults”, the 2218

requestor has implicitly asked that the provider return only the “status” of the operation that is 2219

executing asynchronously. 2220

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 79 of 190

3.6.2.2.2 statusResponse (normative) 2221

A provider that receives a <statusRequest> from a requestor that the provider trusts MUST 2222

examine the content of the request. If the request is valid, the provider MUST return the status 2223

(and, if requested, any result) of the operation (that the “asyncRequestID” attribute of the 2224

<statusRequest> specifies) if it is possible for the provider to do so. 2225

Execution. The provider MUST execute the status operation synchronously (if the provider 2226
executes the status operation at all). See the section titled “Determining execution mode”. 2227

ReturnResults. A <statusRequest> MAY have a “returnResults” attribute that indicates 2228

whether the requestor wants the provider to return in each nested response (in addition to status, 2229
which is always returned) any results of (i.e., output or XML content of the response element for) 2230

the operation that is executing asynchronously. 2231

• If a <statusRequest> specifies “returnResults=’true’”, then the provider MUST also 2232

return in the <statusResponse> any results (or output) of each operation. 2233

• If a <statusRequest> specifies “returnResults=’false’”, then the provider MUST 2234

return in the <statusResponse> only the “status” of the each operation. 2235

• If the <statusRequest> does not specify a value for “returnResults”, the provider MUST 2236

assume that the requestor wants only the “status” (and the provider MUST NOT return in 2237

the <statusResponse> any result) of the operation that is executing asynchronously. 2238

Response. The provider must return to the requestor a <statusResponse>. 2239

Status. A <statusResponse> must have a “status” attribute that indicates whether the 2240

provider successfully obtained the status of the specified operation (and obtained any results of the 2241

specified operation if the <statusRequest> specifies “returnResults=’true’”). 2242

See the section titled “Status (normative)”. 2243

Since the provider must execute a status operation synchronously, the <statusResponse> 2244

MUST NOT specify “status=’pending’”. The <statusResponse> MUST specify 2245

“status=’success’” or (the <statusResponse> MUST specify) “status=’failure’”. 2246

• If the provider successfully obtained the status of the specified operation (and successfully 2247

obtained any output of the specified operation if the <statusRequest> specifies 2248

“returnOutput=’true’”), the <statusResponse> MUST specify “status=’success’”. 2249

• If the provider failed to obtain the status of the specified operation (or failed to obtain any output 2250

of the specified operation if the <statusRequest> specifies “returnOutput=’true’”), the 2251

<statusResponse> MUST specify “status=’failure’”. 2252

Nested Responses. A <statusResponse> MAY contain any number of responses. Each 2253

response is an instance of a type that extends {ResponseType}. Each response represents an 2254

operation that the provider is executing asynchronously. 2255

• A <statusResponse> that specifies “status=’failure’” MUST NOT contain an 2256

embedded response. Since the status operation failed, the response should not contain data. 2257

• A <statusResponse> that specifies “status=’success’” MAY contain any number of 2258

responses. 2259

- If the <statusRequest> specifies “asyncRequestID”, 2260

then a successful <statusResponse> MUST contain exactly one nested response 2261

that represents the operation that “asyncRequestID” specifies. 2262

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 80 of 190

- If the <statusRequest> omits “asyncRequestID”, 2263

then a successful <statusResponse> MUST contain a nested response for each 2264

operation that the provider has executed asynchronously as the result of a request from 2265

that requestor (and for which operation the provider still retains status and results). 2266

Nested Response RequestID. Each nested response MUST have a “requestID” attribute that 2267

identifies the corresponding operation (within the namespace of the provider). 2268

Nested Response Status. Each nested response MUST have a “status” attribute that 2269

specifies the current state of the corresponding operation. 2270

• A nested response that represents an operation that failed 2271

MUST specify “status=’failure’”. 2272

• A nested response that represents an operation that succeeded 2273

MUST specify “status=’success’”. 2274

• A nested response that represents an operation that the provider is still executing 2275

MUST specify “status=’pending’”. 2276

Nested Response and ReturnResults. If a <statusRequest> specifies 2277

“returnResults=’true’”, then each response that is nested in the <statusResponse> 2278

MUST contain any output thus far produced by the corresponding operation. 2279

• A nested response that specifies “status=’success’” MUST contain all of the output that 2280

would have been contained in a synchronous response for the operation if the provider had 2281
executed the specified operation synchronously. 2282

• A nested response that specifies “status=’pending’” MUST contain an initial subset of the 2283

output that would have been contained in a synchronous response for the operation if the 2284
provider had executed the specified operation synchronously. 2285

Error. If the provider cannot obtain the status of the specified operation, the <statusResponse> 2286

MUST contain an “error” attribute that characterizes the failure. 2287

See the general section titled "Error (normative)”. 2288

In addition, a <statusResponse> MUST specify an appropriate value of "error" if any of the 2289

following is true: 2290

• The “asyncRequestID” attribute of the <statusRequest> has no value. In this case, the 2291

<statusResponse> SHOULD specify “error=’invalidIdentifier’”. 2292

• The “asyncRequestID” attribute of the <statusRequest> has a value, but does not 2293

identify an operation for which the provider retains status and results. 2294

In this case the provider SHOULD return “error=’noSuchRequest’”. 2295

3.6.2.2.3 status Examples (non-normative) 2296

In order to illustrate the status operation, we must first execute an operation asynchronously. In this 2297

example, a requestor first asks a provider to add a Person asynchronously. 2298

<addRequest targetID=”target2” executionMode=”asynchronous”>
 <containerID ID=”ou=Development, org=Example” />
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>
 <email>joebob@example.com</email>
 </Person>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 81 of 190

 </data>
</addRequest>

The provider returns an <addResponse>. The “status” attribute of the <addResponse> 2299

indicates that provider will execute the delete operation asynchronously. The <addResponse> also 2300

has a “requestID” attribute (even though the original <addRequest> did not specify 2301

“requestID”). 2302

If the original <addRequest> had specified a “requestID”, then the <addResponse> would 2303

specify the same “requestID” value. 2304

<addResponse status=“pending" requestID=”8489”/>

The same requestor then asks the provider to obtain the status of the add operation. The requestor 2305
does not ask the provider to include any output of the add operation. 2306

<statusRequest requestID=”117” asyncRequestID=”8489”/>

The provider returns a <statusResponse>. The “status” attribute of the <statusResponse> 2307

indicates that the provider successfully obtained the status of the add operation. 2308

The <statusResponse> also contains a nested <addResponse> that represents the add 2309

operation. The <addResponse> specifies “status=’pending’”, which indicates that the add 2310

operation has not completed executing. 2311

<statusResponse requestID=”117” status=”success”>
 <addResponse status=”pending” requestID=”8489”/>
</statusResponse>

Next, the same requestor asks the provider to obtain the status of the add operation. This time the 2312
requestor asks the provider to include any results of the add operation. 2313

<statusRequest requestID=”116” asyncRequestID=”8489” returnResults=”true”/>

The provider again returns a <statusResponse>. The “status” attribute of the 2314

<statusResponse> again indicates that the provider successfully obtained the status of the add 2315

operation. 2316

The <statusResponse> again contains a nested <addResponse> that represents the add 2317

operation. The <addResponse> specifies “status=’pending’”, which indicates that the add 2318

operation still has not completed executing. 2319

Because the statusRequest specified “returnOutput=’true’”, the <addResponse> contains 2320

an initial subset of the output that the add operation will eventually produce if the add operation 2321

successfully completes. The <pso> element already contains the Person data that was supplied in 2322

the <addRequest> but the <pso> element does not yet contain the <psoID> element that will be 2323

generated when the add operation is complete. 2324

<statusResponse requestID=”116” status=”success”>
 <addResponse status=”pending” requestID=”8489”>
 <pso>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 </pso>
 </addResponse>
</statusResponse>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 82 of 190

Finally, the same requestor asks the provider to obtain the status of the add operation. The 2325
requestor again asks the provider to include any output of the add operation. 2326

<statusRequest requestID=”115” asyncRequestID=”8489” returnResults=”true”/>

The provider again returns a <statusResponse>. The “status” attribute of the 2327

<statusResponse> again indicates that the provider successfully obtained the status of the add 2328

operation. 2329

The <statusResponse> again contains a nested <addResponse> that represents the add 2330

operation. The <addResponse> specifies “status=’success’”, which indicates that the add 2331

operation completed successfully. 2332

Because the <statusRequest> specified “returnResults=’true’” and because the 2333

<addResponse> specifies “status=’success’”, the <addResponse> now contains all of the 2334

output of the add operation. The <pso> element contains the <Person> data that was supplied in 2335

the <addRequest> and the <pso> element also contains the <psoID> element that was missing 2336

earlier. 2337

<statusResponse requestID=”115” status=”success”>
 <addResponse status=”pending” requestID=”8489”>
 <pso>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 <psoID ID=”2244” targetID=“target2”/>
 </pso>
 </addResponse>
</statusResponse>

 2338

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 83 of 190

 2339

3.6.3 Batch Capability 2340

The Batch Capability is defined in a schema associated with the following XML namespace: 2341

urn:oasis:names:tc:SPML:2:0:batch. The Batch Capability XSD is included as Appendix C 2342

to this document. 2343

A provider that supports batch execution of requested operations for a target SHOULD declare that 2344
the target supports the Batch Capability. A provider that does not support batch execution of 2345
requested operations MUST NOT declare that the target supports the Batch Capability. 2346

The Batch Capability defines one operation: batch. 2347

3.6.3.1 batch 2348

The subset of the Batch Capability XSD that is most relevant to the batch operation follows. 2349

 <simpleType name="ProcessingType">
 <restriction base="string">
 <enumeration value="sequential"/>
 <enumeration value="parallel"/>
 </restriction>
 </simpleType>

 <simpleType name="OnErrorType">
 <restriction base="string">
 <enumeration value="resume"/>
 <enumeration value="exit"/>
 </restriction>
 </simpleType>

 <complexType name="BatchRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <annotation>
 <documentation>Elements that extend spml:RequestType

</documentation>
 </annotation>

 <attribute name="processing" type="spmlbatch:ProcessingType"
use="optional" default="sequential"/>
 <attribute name="onError" type="spmlbatch:OnErrorType"
use="optional" default="exit"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="BatchResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <annotation>
 <documentation>Elements that extend spml:ResponseType

</documentation>
 </annotation>

 </extension>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 84 of 190

 </complexContent>
 </complexType>

 <element name="batchRequest" type="spmlbatch:BatchRequestType"/>
 <element name="batchResponse" type="spmlbatch:BatchResponseType"/>

The batch operation combines any number of individual requests into a single request. 2350

No transactional semantics. Using a batch operation to combine individual requests does not 2351
imply atomicity (i.e., “all-or-nothing” semantics) for the group of batched requests. A requestor must 2352
not assume that the failure of a nested request will undo a nested request that has already 2353
completed. (See the section titled “Transactional Semantics”.) 2354

Note that this does not preclude a batch operation having transactional semantics—this is merely 2355
unspecified. A provider (or some higher-level service) with the ability to undo specific operations 2356
could support rolling back an entire batch if an operation nested within the batch fails. 2357

Nested Requests. The Core XSD defines {RequestType} as the base type for any SPML 2358

request. A requestor may group into a <batchRequest> any number of requests that derive from 2359

{RequestType}. However, there are some exceptions. See the topics named “Batch is not 2360

batchable” and “Some operations are not batchable” immediately below. 2361

Batch is not batchable. A requestor must not nest a batch request within another batch request. 2362
(To support nested batches would impose on each provider a burden of complexity that the benefits 2363
of nested batches do not justify.) 2364

Some operations are not batchable. For various reasons, a requestor must not nest certain 2365
types of requests within a batch request. For example, a request to listTargets must not be batched 2366
(because a requestor cannot know until the requestor examines the response from listTargets 2367
whether the provider supports the batch capability). Requests to search for objects (and requests 2368
to iterate the results of a search) must not be batched for reasons of scale. Batching requests to 2369
cancel and obtain the status of asynchronous operations would introduce timing problems. 2370

Positional correspondence. The provider’s <batchResponse> contains an individual response 2371

for each individual request that the requestor’s <batchRequest> contained. Each individual 2372

response occupies the same position within the <batchResponse> that the corresponding 2373

individual request occupied within the <batchRequest>. 2374

Processing. A requestor can specify whether the provider executes the individual requests one-by-2375

one in the order that they occur within a <batchRequest>. The “processing” attribute of a 2376

<batchRequest> controls this behavior. 2377

• When a <batchRequest> specifies “processing=’sequential’”, the provider must 2378

execute each requested operation one at a time and in the exact order that it occurs within the 2379

<batchRequest>. 2380

• When a <batchRequest> specifies “processing=’parallel’”, the provider may execute 2381

the requested operations within the <batchRequest> in any order. 2382

Individual errors. The “onError” attribute of a <batchRequest> specifies whether the provider 2383

quits at the first error it encounters (in processing individual requests within a <batchRequest>) or 2384

continues despite any number of such errors. 2385

• When a <batchRequest> specifies “onError=’exit’”, the provider stops executing 2386

individual operations within the batch as soon as the provider encounters an error. 2387
Any operation that produces an error is marked as failed. 2388
Any operation that the provider does not execute is also marked as failed. 2389

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 85 of 190

• When a <batchRequest> specifies “onError=’resume’”, the provider handles any error 2390

that occurs in processing an individual operation within that <batchRequest>. 2391

No error that occurs in processing an individual operation prevents execution of any other 2392
individual operation in the batch. 2393
Any operation that produces an error is marked as failed. 2394

(Note that a requestor can guarantee pre-requisite processing in batch operations by specifying 2395

both “processing='sequential'” and “onError='exit'”.) 2396

Overall error. When a requestor issues a <batchRequest> with “onError=’resume’” and one 2397

or more of the requests in that batch fails, then the provider will return a <batchResponse> with 2398

“status=’failure’” (even if some of the requests in that batch succeed). The requestor must 2399

examine every individual response within the overall <batchResponse> to determine which 2400

requests succeeded and which requests failed. 2401

3.6.3.1.1 batchRequest (normative) 2402

A requestor MUST send a <batchRequest> to a provider in order to (ask the provider to) execute 2403

multiple requests as a set. 2404

Nested Requests. A <batchRequest> MUST contain at least one element that extends 2405

{RequestType}. 2406

A <batchRequest> MUST NOT contain as a nested request an element that is of any the 2407

following types: 2408

• {spml:ListTargetsRequestType} 2409

• {spmlbatch:BatchRequestType} 2410

• {spmlsearch:SearchRequestType} 2411

• {spmlsearch:IterateRequestType} 2412

• {spmlsearch:CloseIteratorRequestType} 2413

• {spmlasync:CancelRequestType} 2414

• {spmlasync:StatusRequestType} 2415

• {spmlupdates:UpdatesRequestType} 2416

• {spmlupdates:IterateRequestType} 2417

• {spmlupdates:CloseIteratorRequestType} 2418

Processing. A <batchRequest> MAY specify “processing”. The value of any “processing” 2419

attribute MUST be either ‘sequential’ or ‘parallel’. 2420

• A requestor who wants the provider to process the nested requests concurrently with one 2421

another MUST specify “processing=’parallel’”. 2422

• A requestor who wants the provider to process the nested requests one-by-one and in the 2423

order that they appear MAY specify “processing=’sequential’”. 2424

• A requestor who does not specify “processing” is implicitly asking the provider to process 2425

the nested requests sequentially. 2426

onError. A <batchRequest> MAY specify “onError”. The value of any “onError” attribute 2427

MUST be either ‘exit’ or ‘resume’. 2428

• A requestor who wants the provider to continue processing nested requests whenever 2429
processing one of the nested requests produces in an error MUST specify 2430

“onError=’resume’”. 2431

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 86 of 190

• A requestor who wants the provider to cease processing nested requests as soon as 2432

processing any of the nested requests produces an error MAY specify “onError=’exit’”. 2433

• A requestor who does not specify an “onError” attribute implicitly asks the provider to cease 2434

processing nested requests as soon as processing any of the nested requests produces an 2435
error. 2436

3.6.3.1.2 batchResponse (normative) 2437

The provider must examine the content of the <batchRequest>. If the request is valid, the 2438

provider MUST process each nested request (according to the effective “processing” and 2439

“onError” settings) if the provider possibly can. 2440

processing. If a <batchRequest> specifies “processing=’parallel’”, the provider SHOULD 2441

begin executing each of the nested requests as soon as possible. (Ideally, the provider would begin 2442
executing all of the nested requests immediately and concurrently.) If the provider cannot begin 2443
executing all of the nested requests at the same time, then the provider SHOULD begin executing 2444
as many as possible of the nested requests as soon as possible. 2445

If a <batchRequest> specifies (or defaults to) “processing=’sequential’”, the provider 2446

MUST execute each of the nested requests one-by-one and in the order that each appears within 2447

the <batchRequest>. The provider MUST complete execution of each nested request before the 2448

provider begins to execute the next nested request. 2449

onError. The effect (on the provider’s behavior) of the “onError” attribute of a <batchRequest> 2450

depends on the “processing” attribute of the <batchRequest>. 2451

• If a <batchRequest> specifies (or defaults to) “onError=’exit’” and (the 2452

<batchRequest> specifies or defaults to) “processing=’sequential’” then the provider 2453

MUST NOT execute any (operation that is described by a) nested request that is subsequent to 2454
the first nested request that produces an error. 2455
 2456
If the provider encounters an error in executing (the operation that is described by) a nested 2457
request, the provider MUST report the error in the nested response that corresponds to the 2458

nested request and then (the provider MUST) specify “status=’failure’” in every nested 2459

response that corresponds to a subsequent nested request within the same 2460

<batchRequest>. The provider MUST also specify “status=’failure’” in the overall 2461

<batchResponse>. 2462

• If a <batchRequest> specifies (or defaults to) “onError=’exit’” and (the 2463

<batchRequest> specifies) “processing=’parallel’” then the provider’s behavior once 2464

an error occurs (in processing an operation that is described by a nested request) is not fully 2465
specified. 2466
 2467
If the provider encounters an error in executing (the operation that is described by) a nested 2468
request, the provider MUST report the error in the nested response that corresponds to the 2469

nested request. The provider MUST also specify “status=’failure’” in the overall 2470

<batchResponse>. The provider MUST also specify “status=’failure’” in the nested 2471

response that corresponds to any operation the provider has not yet begun to execute. 2472
However, the provider’s behavior with respect to any operation that has already begun to 2473
execute but that is not yet complete is not fully specified. 2474
 2475
The provider MAY stop executing any (operation that is described by a) nested request that has 2476
not yet completed or (the provider MAY) choose to complete the execution of any (operation 2477

that corresponds to a) nested request (within the same <batchRequest> and) for which the 2478

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 87 of 190

provider has already begun execution. The provider SHOULD NOT begin to execute any 2479

operation (that corresponds to a nested request within the same <batchRequest> and) for 2480

which the provider has not yet begun execution. 2481

• If a <batchRequest> specifies “onError=’resume’” and (the <batchRequest> specifies) 2482

“processing=’parallel’”, then the provider MUST execute every (operation that is 2483

described by a) nested request within the <batchRequest>. If the provider encounters an 2484

error in executing any (operation that is described by a) nested request, the provider MUST 2485
report the error in the nested response that corresponds to the nested request and then (the 2486

provider MUST) specify “status=’failure’” in the overall <batchResponse>. 2487

• If a <batchRequest> specifies “onError=’resume’” and (the <batchRequest> specifies 2488

or defaults to) “processing=’sequential’”, then the provider MUST execute every 2489

(operation that is described by a) nested request within the <batchRequest>. If the provider 2490

encounters an error in executing any (operation that is described by a) nested request, the 2491
provider MUST report the error in the nested response that corresponds to the nested request 2492

and then (the provider MUST) specify “status=’failure’” in the overall 2493

<batchResponse>. 2494

Response. The provider MUST return to the requestor a <batchResponse>. 2495

Status. The <batchResponse> must contain a “status” attribute that indicates whether the 2496

provider successfully processed every nested request. 2497
See the section titled ”Status (normative)”. 2498

• If the provider successfully executed every (operation described by a) nested request, 2499

then the <batchResponse> MUST specify “status=’success’”. 2500

• If the provider encountered an error in processing (the operation described by) any nested 2501

request, the <batchResponse> MUST specify “status=’failure’”. 2502

nested Responses. The <batchResponse> MUST contain a nested response for each nested 2503

request that the <batchRequest> contains. Each nested response within the <batchResponse> 2504

corresponds positionally to a nested request within the <batchRequest>. That is, each nested 2505

response MUST appear in the same position within the <batchResponse> that the nested request 2506

(to which the nested response corresponds) originally appeared within the corresponding 2507

<batchRequest>. 2508

The content of each nested response depends on whether the provider actually executed the 2509
nested operation that corresponds to the nested response. 2510

• Each nested response that corresponds to a nested request that the provider did not process 2511

MUST specify “status=’failed’”. (A provider might not process a nested request, for 2512

example, if the provider encountered an error processing an earlier nested request and the 2513

requestor specified both “processing=’sequential’” and “onError=’exit’”.) 2514

• Each nested response that corresponds to a nested request for an operation that the provider 2515
actually executed MUST contain the same data that the provider would have returned (in the 2516
response for the corresponding operation) if the corresponding operation had been requested 2517
individually (rather than as part of a batch operation). 2518

Error. If something (other than the behavior specified by the “onError” setting with respect to 2519

errors that occur in processing nested requests) prevents the provider from processing one or more 2520

of the (operations described by the) nested requests within a <batchRequest>, then the 2521

<batchResponse> MUST have an “error” attribute that characterizes the failure. 2522

See the general section titled "Error (normative)”. 2523

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 88 of 190

3.6.3.1.3 batch Examples (non-normative) 2524

In the following example, a requestor asks a provider to perform a series of operations. The 2525

requestor asks the provider first to add a Person object to one target and then to add an Account 2526

object to another target. (These are the first two examples of the add operation.) 2527

<batchRequest processing=”sequential” onError=”exit”>
 <addRequest targetID=“target2”>
 <containerID ID=”ou=Development, org=Example”/>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 </addRequest>

 <addRequest targetID=”target1”>
 <data>
 <Account accountName=”joebob”/>
 </data>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2244" targetID=“target2”/>
 </reference>
 </capabilityData>
 </addRequest>
</batchRequest>

The provider returns an <batchResponse> element. The “status” of the <batchResponse> 2528

indicates that all of the nested requests were processed successfully. The <batchResponse> 2529

contains an <addResponse> for each <addRequest> that the <batchRequest> contained. 2530

Each <addResponse> contains the same data that it would have contained if the corresponding 2531

<addRequest> had been requested individually. 2532

<batchResponse status=“success">
 <addResponse status=“success">
 <pso>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 <psoID ID=”2244” targetID=“target2”/>
 </pso>
 </addResponse>

 <addResponse status=“success">
 <pso>
 <data>
 <Account accountName=”joebob”/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 89 of 190

 </data>
 <psoID ID=”1431” targetID=“target1”/>
 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <reference typeOfReference="memberOf">
 <toPsoID ID="group1" targetID=“target1”/>
 </reference>
 <reference typeOfReference="owner">
 <toPsoID ID="2244" targetID=“target2”/>
 </reference>
 </capabilityData>
 </pso>
 </addResponse>
</batchResponse>

 2533

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 90 of 190

 2534

3.6.4 Bulk Capability 2535

The Bulk Capability is defined in a schema associated with the following XML namespace: 2536

urn:oasis:names:tc:SPML:2:0:bulk. This document includes the Bulk Capability XSD as 2537

Appendix D. 2538

The Bulk Capability defines two operations: bulkModify and bulkDelete. 2539

A provider that supports the bulkModify and bulkDelete operations for a target SHOULD declare 2540
that the target supports the Bulk Capability. A provider that does not support both bulkModify and 2541
bulkDelete MUST NOT declare that the target supports the Bulk Capability. 2542

3.6.4.1 bulkModify 2543

The subset of the Bulk Capability XSD that is most relevant to the bulkModify operation follows. 2544

 <complexType name="BulkModifyRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query”/>
 <element name="modification" type="spml:ModificationType"
maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="bulkModifyRequest"
type="spmlbulk:BulkModifyRequestType”/>
 <element name="bulkModifyResponse" type="spml:ResponseType”/>

The bulkModify operation applies a specified modification to every object that matches the specified 2545
query. 2546

• The <modification> is the same type of element that is specified as part of a 2547

<modifyRequest>. 2548

• The <query> is the same type of element that is specified as part of a <searchRequest>. 2549

Does not return modified PSO Identifiers. A bulkModify operation does not return a <psoID> for 2550

each object that it changes, even though a bulkModify operation can change the <psoID> for every 2551

object that it modifies. By contrast, a modify operation does return the <psoID> of any object that it 2552

changes. 2553

The difference is that the requestor of a bulkModify operation specifies a query that selects objects 2554

to be modified. The requestor of a modify operation specifies the <psoID> of the object to be 2555

modified. The modify operation therefore must return the <psoID> to make sure that the requestor 2556

still has the correct <psoID>. 2557

A bulkModify operation does not return a <psoID> for each object that it changes because: 2558

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 91 of 190

• The requestor does not specify a <psoID> as input. (Therefore, a changed <psoID> does not 2559

necessarily interest the requestor). 2560

• Returning PSO Identifiers for modified objects would cause the bulkModify operation to scale 2561
poorly (which would defeat the purpose of the bulkModify operation). 2562

3.6.4.1.1 bulkModifyRequest (normative) 2563

A requestor MUST send a <bulkModifyRequest> to a provider in order to (ask the provider to) 2564

make the same set of modifications to every object that matches specified selection criteria. 2565

Execution. A <bulkModifyRequest> MAY specify “executionMode”. 2566

See the section titled "Determining execution mode". 2567

query. A <bulkModifyRequest> MUST contain exactly one <query> element. 2568

A <query> describes criteria that (the provider must use to) select objects on a target. 2569

See the section titled "SearchQueryType in a Request (normative)". 2570

Modification. A <bulkModifyRequest> MUST contain at least one <modification>. Each 2571

<modification> describes a set of changes to be applied (to every object that matches the 2572

<query>). A requestor MUST specify each <modification> for a <bulkModifyRequest> in 2573

the same way as for a <modifyRequest>. 2574

See the topic named "Modification" within the section titled "modifyRequest (normative)". 2575

3.6.4.1.2 bulkModifyResponse (normative) 2576

A provider that receives a <bulkModifyRequest> from a requestor that the provider trusts MUST 2577

examine the content of the <bulkModifyRequest>. If the request is valid, the provider MUST 2578

apply the (set of changes described by each of the) specified <modification> elements to every 2579

object that matches the specified <query> (if the provider can possibly do so). 2580

The section titled "modifyResponse (normative)" describes how the provider should apply each 2581

<modification> to an object. 2582

Response. The provider MUST return to the requestor a <bulkModifyResponse>. 2583

Status. The <bulkModifyResponse> must contain a “status” attribute that indicates whether 2584

the provider successfully applied every specified modification to every object that matched the 2585
specified query. See the section titled ”Status (normative)”. 2586

• If the provider successfully applied every specified modification to every object that matched 2587

the specified query, then the <bulkModifyResponse> MUST specify “status=’success’”. 2588

• If the provider encountered an error in selecting any object that matched the specified query or 2589
(if the provider encountered an error) in applying any specified modification to any of the 2590

selected objects, then the <bulkModifyResponse> MUST specify “status=’failure’”. 2591

Error. If the provider was unable to apply the specified modification to every object that matched 2592

the specified query, then the <bulkModifyResponse> MUST have an “error” attribute that 2593

characterizes the failure. See the general section titled “Error (normative)”. 2594

In addition, the section titled "SearchQueryType Errors (normative)" describes errors specific to a 2595

request that contains a <query>. 2596

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 92 of 190

3.6.4.1.3 bulkModify Examples (non-normative) 2597

In the following example, a requestor asks a provider to change every Person with an email 2598

address matching ‘jbbriggs@example.com’ to have instead an email address of 2599

‘joebob@example.com’. 2600

<bulkModifyRequest>

 <query scope=”subtree” targetID=”target2”>

 <select path=”/Person/email=’jbbriggs@example.com’”
namespaceURI=”http://www.w3.org/TR/xpath20” />

 </query>

 <modification modificationMode=”replace”>

 <component path="/Person/email” namespaceURI="http://www.w3.org/TR/xpath20" />

 <data>
 <email>joebob@example.com</email>
 </data>

 </modification>

</bulkModifyRequest>

The provider returns a <bulkModifyResponse. The “status” attribute of the 2601

<bulkModifyResponse> indicates that the provider successfully executed the bulkModify 2602

operation. 2603

<bulkModifyResponse status=“success"/>

In the following example, a requestor asks a provider to remove the “owner” of any account that is 2604

currently owned by “joebob”. The requestor uses as a selection criterion the <hasReference> 2605

query clause that the Reference Capability defines. 2606

NOTE: The logic required to modify a reference may depend on the cardinality that is defined for 2607
that type of reference. See the section titled "Reference Capability". Also see the topic named 2608
“Modifying a reference” within the section titled “modify Examples”. 2609

<bulkModifyRequest>

 <query scope=”subtree” targetID=”target2” >

 <hasReference typeOfReference=”owner”>
 <toPsoID ID=”2244” targetID=“target2”/>
 </hasReference>

 </query>

 <modification modificationMode=”delete”>

 <capabilityData mustUnderstand="true"
capabilityURI=”urn:oasis:names:tc:SPML:2.0:reference”>

 <reference typeOfReference="owner”/>

 </capabilityData>

 </modification>

</bulkModifyRequest>

The provider returns a <bulkModifyResponse>. The “status” attribute of the 2610

<bulkModifyResponse> indicates that the provider successfully executed the bulkModify 2611

operation. 2612

<bulkModifyResponse status="success"/>

3.6.4.2 bulkDelete 2613

The subset of the Bulk Capability XSD that is most relevant to the bulkDelete operation follows. 2614

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 93 of 190

 <complexType name="BulkDeleteRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query"/>
 </sequence>
 <attribute name="recursive" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="bulkDeleteRequest"
type="spmlbulk:BulkDeleteRequestType"/>
 <element name="bulkDeleteResponse" type="spml:ResponseType"/>

The bulkDelete operation deletes every object that matches the specified query. 2615

• The <query> is the same element that is specified as part of a <searchRequest>. 2616

3.6.4.2.1 bulkDeleteRequest (normative) 2617

A requestor MUST send a <bulkDeleteRequest> to a provider in order to (ask the provider to) 2618

delete every object that matches specified selection criteria. 2619

Execution. A <bulkDeleteRequest> MAY specify “executionMode”. 2620

See the section titled “Determining execution mode”. 2621

query. A <bulkDeleteRequest> MUST contain exactly one <query> element. 2622

A <query> describes criteria that (the provider must use to) select objects on a target. 2623

See the section titled "SearchQueryType in a Request (normative)". 2624

recursive. A <bulkDeleteRequest> MAY have a “recursive” attribute that indicates 2625

whether the provider should delete the specified object along with any other object it contains. 2626

(Unless the <bulkDeleteRequest> specifies “recursive=’true’”, a provider will not delete 2627

an object that contains other objects.) 2628

3.6.4.2.2 bulkDeleteResponse (normative) 2629

A provider that receives a <bulkDeleteRequest> from a requestor that the provider trusts must 2630

examine the content of the <bulkDeleteRequest>. If the request is valid, the provider MUST 2631

delete every object that matches the specified <query> (if the provider can possibly do so). 2632

recursive. A provider MUST NOT delete any object that contains other objects unless the 2633

<bulkDeleteRequest> specifies “recursive=’true’”. 2634

• If the <bulkDeleteRequest> specifies “recursive=’true’”, 2635

then the provider MUST delete every object that matches the specified query 2636
along with any object that a matching object (directly or indirectly) contains. 2637

• If the <bulkDeleteRequest> specifies “recursive=’false’” 2638

(or if the <bulkDeleteRequest> omits the “recursive” attribute”) 2639

and at least one object that matches the specified query contains another object, 2640
then the provider MUST NOT delete any of the objects that match the specified query. 2641
In this case, the provider’s response must return an error (see below). 2642

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 94 of 190

Response. The provider MUST return to the requestor a <bulkDeleteResponse>. 2643

Status. The <bulkDeleteResponse> must contain a “status” attribute that indicates whether 2644

the provider successfully deleted every object that matched the specified query. 2645
See the section titled “Status (normative)”. 2646

• If the provider successfully deleted every object that matched the specified query, the 2647

<bulkDeleteResponse> MUST specify “status=’success’”. 2648

• If the provider encountered an error in selecting any object that matched the specified query or 2649
(if the provider encountered an error) in deleting any of the selected objects, the 2650

<bulkDeleteResponse> MUST specify “status=’failure’”. 2651

Error. If the provider was unable to delete every object that matched the specified query, then the 2652

<bulkDeleteResponse> MUST have an “error” attribute that characterizes the failure. 2653

See the general section titled “Error (normative)”. 2654

In addition, the section titled "SearchQueryType Errors (normative)" describes errors specific to a 2655

request that contains a <query>. Also see the section titled “SelectionType Errors (normative)”. 2656

If at least one object that matches the specified query contains another object 2657

and the <bulkDeleteRequest> does NOT specify “recursive=’true’”, 2658

then the provider’s response should specify “error=’invalidContainment’”. 2659

3.6.4.2.3 bulkDelete Examples (non-normative) 2660

In the following example, a requestor asks a provider to delete every Person with an email address 2661

matching ‘joebob@example.com’. 2662

<bulkDeleteRequest>

 <query scope=”subtree” targetID=”target2” >

 <select path=”/Person/email=’joebob@example.com’”
namespaceURI=”http://www.w3.org/TR/xpath20” />

 </query>

</bulkDeleteRequest>

The provider returns a <bulkDeleteResponse>. The “status” attribute of the 2663

<bulkDeleteResponse> indicates that the provider successfully executed the bulkDelete 2664

operation. 2665

<bulkDeleteResponse status=“success"/>

In the following example, a requestor asks a provider to delete any Account that is currently 2666

owned by “joebob”. The requestor uses as a selection criterion the <hasReference> query clause 2667

that the Reference Capability defines. 2668

<bulkDeleteRequest>

 <query scope=”subtree” targetID=”target2” >

 <hasReference typeOfReference=”owner”>
 <toPsoID ID=”2244” targetID=“target2”/>
 </hasReference>

 </query>

</bulkDeleteRequest>

The provider returns a <bulkDeleteResponse>. The “status” attribute of the 2669

<bulkDeleteResponse> indicates that the provider successfully executed the bulkDelete 2670

operation. 2671

<bulkDeleteResponse status=“success"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 95 of 190

3.6.5 Password Capability 2672

The Password Capability is defined in a schema that is associated with the following XML 2673

namespace: urn:oasis:names:tc:SPML:2:0:password. This document includes the 2674

Password Capability XSD as Appendix E. 2675

The Password Capability defines four operations: setPassword, expirePassword, resetPassword 2676
and validatePassword. 2677

• The setPassword operation changes to a specified value the password that is associated with a 2678
specified object. The setPassword operation also allows a requestor to supply the current 2679
password (in case the target system or application requires it). 2680

• The expirePassword operation marks as no longer valid the password that is associated with a 2681
specified object. (Most systems or applications will require a user to change an expired 2682
password on the next login.) 2683

• The resetPassword operation changes to an unspecified value the password that is associated 2684

with a specified object. The resetPassword operation returns the new password. 2685

• The validatePassword operation tests whether a specified value would be valid as the 2686
password for a specified object. (The validatePassword operation allows a requestor to test a 2687
password value against the password policy for a system or application.) 2688

A provider that supports the setPassword, expirePassword, resetPassword and validatePassword 2689
operations for a target SHOULD declare that the target supports the Password Capability. A 2690
provider that does not support all of the setPassword, expirePassword, resetPassword and 2691
validatePassword operations MUST NOT declare that the target supports the Password Capability. 2692

3.6.5.1 setPassword 2693

The setPassword operation enables a requestor to specify a new password for an object. 2694

The subset of the Password Capability XSD that is most relevant to the setPassword operation 2695
follows. 2696

 <complexType name="SetPasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType”/>
 <element name="password" type="string"/>
 <element name="currentPassword" type="string"
minOccurs="0”/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="setPasswordRequest"
type="pass:SetPasswordRequestType"/>
 <element name="setPasswordResponse" type="spml:ResponseType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 96 of 190

3.6.5.1.1 setPasswordRequest (normative) 2697

A requestor MUST send a <setPasswordRequest> to a provider in order to (ask the provider to) 2698

change to a specified value the password that is associated an existing object. 2699

Execution. A <setPasswordRequest> MAY specify “executionMode”. 2700

See the section titled "Determining execution mode". 2701

psoID. A <setPasswordRequest> MUST contain exactly one <psoID> element. The <psoID> 2702

MUST identify an object that exists on a target (that is supported by the provider). 2703
See the section titled "PSO Identifier (normative)". 2704

password. A <setPasswordRequest> MUST contain exactly one <password> element. A 2705

<password> element MUST contain a string value. 2706

currentPassword. A <setPasswordRequest> MAY contain at most one <currentPassword> 2707

element. A <currentPassword> element MUST contain a string value. 2708

3.6.5.1.2 setPasswordResponse (normative) 2709

A provider that receives a <setPasswordRequest> from a requestor that the provider trusts 2710

MUST examine the content of the <setPasswordRequest>. If the request is valid and if the 2711

specified object exists, then the provider MUST change (to the value that the <password> element 2712

contains) the password that is associated with the object that is specified by the <psoID>. 2713

Execution. If a <setPasswordRequest> does not specify "executionMode", the provider 2714

MUST choose a type of execution for the requested operation. 2715
See the section titled “Determining execution mode”. 2716

Response. The provider must return to the requestor a <setPasswordResponse>. The 2717

<setPasswordResponse> must have a “status” attribute that indicates whether the provider 2718

successfully changed (to the value that the <password> element contains) the password that is 2719

associated with the specified object. See the section titled “Status (normative)”. 2720

Error. If the provider cannot change (to the value that the <password> element contains) the 2721

password that is associated with the requested object, the <setPasswordResponse> must 2722

contain an “error” attribute that characterizes the failure. 2723

See the general section titled “Error (normative)”. 2724

In addition, a <setPasswordResponse> MUST specify an error if any of the following is true: 2725

• The <setPasswordRequest> contains a <psoID> for an object that does not exist. 2726

• The target system or application will not accept (as the new password) the value that a 2727

<setPasswordRequest> supplies as the content of the <password> element. 2728

• The target system or application requires the current password in order to change the password 2729

and a <setPasswordRequest> supplies no content for <currentPassword>. 2730

• The target system or application requires the current password in order to change the password 2731
and the target system or application will not accept (as the current password) the value that a 2732

<setPasswordRequest> supplies as the content of <currentPassword>. 2733

• The target system or application returns an error (or throws an exception) when the provider 2734

tries to set the password. 2735

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 97 of 190

3.6.5.1.3 setPassword Examples (non-normative) 2736

In the following example, a requestor asks a provider to set the password for a Person object. 2737

<setPasswordRequest requestID=”133”>
 <psoID ID=”2244” targetID=“target2”/>
 <password>y0baby</password>
 <currentPassword>corvette</currentPassword>
</setPasswordRequest>

The provider returns a <setPasswordResponse> element. The “status” of the 2738

<setPasswordResponse> indicates that the provider successfully changed the password. 2739

<setPasswordResponse requestID=”133” status=“success"/>

3.6.5.2 expirePassword 2740

The expirePassword operation marks as invalid the current password for an object. 2741

The subset of the Password Capability XSD that is most relevant to the expirePassword operation 2742
follows. 2743

 <complexType name="ExpirePasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType”/>
 </sequence>
 <attribute name="remainingLogins" type="int" use="optional"
default="1”/>
 </extension>
 </complexContent>
 </complexType>

 <element name="expirePasswordRequest"
type="pass:ExpirePasswordRequestType"/>
 <element name="expirePasswordResponse" type="spml:ResponseType"/>

3.6.5.2.1 expirePasswordRequest (normative) 2744

A requestor MUST send a <expirePasswordRequest> to a provider in order to (ask the provider 2745

to) mark as no longer valid the password that is associated with an existing object. 2746

Execution. A <expirePasswordRequest> MAY specify “executionMode”. 2747

See the section titled "Determining execution mode". 2748

psoID. A <expirePasswordRequest> MUST contain exactly one <psoID> element. The 2749

<psoID> MUST identify an object that exists on a target (that is supported by the provider). 2750

See the section titled "PSO Identifier (normative)". 2751

remainingLogins. A <expirePasswordRequest> MAY have a “remainingLogins” attribute 2752

that specifies a number of grace logins that the target system or application should permit. 2753

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 98 of 190

3.6.5.2.2 expirePasswordResponse (normative) 2754

A provider that receives a <expirePasswordRequest> from a requestor that the provider trusts 2755

MUST examine the content of the <expirePasswordRequest>. If the request is valid and if the 2756

specified object exists, then the provider MUST mark as no longer valid the password that is 2757

associated with the object that the <psoID> specifies. 2758

Execution. If an <expirePasswordRequest> does not specify "executionMode", the provider 2759

MUST choose a type of execution for the requested operation. 2760
See the section titled “Determining execution mode”. 2761

Response. The provider must return to the requestor an <expirePasswordResponse>. The 2762

<expirePasswordResponse> must have a “status” attribute that indicates whether the 2763

provider successfully marked as no longer valid the password that is associated with the specified 2764
object. See the section titled “Status (normative)” for values of this attribute. 2765

Error. If the provider cannot mark as invalid the password that is associated with the requested 2766

object, the <expirePasswordResponse> must contain an “error” attribute that characterizes 2767

the failure. See the general section titled “Error (normative)”. 2768

In addition, an <expirePasswordResponse> MUST specify an error if any of the following is 2769

true: 2770

• The <expirePasswordRequest> contains a <psoID> for an object that does not exist. 2771

• The target system or application will not accept (as the number of grace logins to permit) the 2772

value that a <expirePasswordRequest> specifies for the “remainingLogins” attribute. 2773

• The target system or application returns an error (or throws an exception) when the provider 2774

tries to mark as no longer valid the password that is associated with the specified object. 2775

3.6.5.2.3 expirePassword Examples (non-normative) 2776

In the following example, a requestor asks a provider to expire the password for a Person object. 2777

<expirePasswordRequest requestID=”134”>
 <psoID ID=”2244” targetID=“target2”/>
</expirePasswordRequest>

The provider returns an <expirePasswordResponse> element. The “status” attribute of the 2778

<expirePasswordResponse> element indicates that the provider successfully expired the 2779

password. 2780

<expirePasswordResponse requestID=”134” status=“success”/>

3.6.5.3 resetPassword 2781

The resetPassword operation enables a requestor to change (to an unspecified value) the 2782
password for an object and to obtain that newly generated password value. 2783

The subset of the Password Capability XSD that is most relevant to the resetPassword operation 2784
follows. 2785

 <complexType name="ResetPasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 99 of 190

 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResetPasswordResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <element name="password" type="string" minOccurs="0”/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="resetPasswordRequest"
type="pass:ResetPasswordRequestType"/>
 <element name="resetPasswordResponse"
type="pass:ResetPasswordResponseType"/>

3.6.5.3.1 resetPasswordRequest (normative) 2786

A requestor MUST send a <resetPasswordRequest> to a provider in order to (ask the provider 2787

to) change the password that is associated an existing object and to (ask the provider to) return to 2788
the requestor the new password value. 2789

Execution. A <resetPasswordRequest> MAY specify “executionMode”. 2790

See the section titled "Determining execution mode". 2791

psoID. A <resetPasswordRequest> MUST contain exactly one <psoID> element. The 2792

<psoID> MUST identify an object that exists on a target (that is supported by the provider). 2793

See the section titled "PSO Identifier (normative)". 2794

3.6.5.3.2 resetPasswordResponse (normative) 2795

A provider that receives a <resetPasswordRequest> from a requestor that the provider trusts 2796

MUST examine the content of the <resetPasswordRequest>. If the request is valid and if the 2797

specified object exists, then the provider MUST change the password that is associated with the 2798

object that is specified by the <psoID> and must return to the requestor the new password value. 2799

Execution. If an <resetPasswordRequest> does not specify "executionMode", the provider 2800

MUST choose a type of execution for the requested operation. 2801
See the section titled “Determining execution mode”. 2802

Response. The provider must return to the requestor a <resetPasswordResponse>. The 2803

<resetPasswordResponse> must have a “status” attribute that indicates whether the provider 2804

successfully changed the password that is associated with the specified object and successfully 2805
returned to the requestor the new password value. See the section titled “Status (normative)”. 2806

If the provider knows that the provider will not be able to return to the requestor the new password 2807
value, then the provider MUST NOT change the password that is associated with the specified 2808
object. (To do so would create a state that requires manual administrator intervention, and this 2809
defeats the purpose of the resetPassword operation.) 2810

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 100 of 190

password. The <resetPasswordResponse> MAY contain a <password> element. If the 2811

<resetPasswordResponse> contains a <password> element, the <password> element MUST 2812

contain the newly changed password value that is associated with the specified object. 2813

Error. If the provider cannot change the password that is associated with the specified object, or if 2814
the provider cannot return the new password attribute value to the requestor, then the 2815

<resetPasswordResponse> MUST specify an “error” that characterizes the failure. 2816

See the general section titled “Error (normative)”. 2817

In addition, a <resetPasswordResponse> MUST specify an error if any of the following is true: 2818

• The <resetPasswordRequest> contains a <psoID> for an object that does not exist. 2819

• The target system or application will not allow the provider to return to the requestor the new 2820
password value. (If the provider knows this to be the case, then the provider MUST NOT 2821
change the password that is associated with the specified object. See above.) 2822

• The target system or application returns an error (or throws an exception) when the provider 2823
tries to change the password that is associated with the specified object or (when the provider) 2824
tries to obtain the new password value. 2825

3.6.5.3.3 resetPassword Examples (non-normative) 2826

In the following example, a requestor asks a provider to reset the password for a Person object. 2827

<resetPasswordRequest requestID=”135”>
 <psoID ID=”2244” targetID=“target2”/>
</resetPasswordRequest>

The provider returns an <resetPasswordResponse> element. The “status” attribute of the 2828

<resetPasswordResponse> indicates that the provider successfully reset the password. 2829

<resetPasswordResponse requestID=”135” status=“success”>
 <password>gener8ed</password>
</resetPasswordResponse>

3.6.5.4 validatePassword 2830

The validatePassword operation enables a requestor to determine whether a specified value would 2831
be valid as the password for a specified object. 2832

The subset of the Password Capability XSD that is most relevant to the validatePassword operation 2833
follows. 2834

 <complexType name="ValidatePasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="password" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ValidatePasswordResponseType">
 <complexContent>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 101 of 190

 <extension base="spml:ResponseType">
 <attribute name="valid" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="validatePasswordRequest"
type="pass:ValidatePasswordRequestType"/>
 <element name="validatePasswordResponse"
type="pass:ValidatePasswordResponseType"/>

3.6.5.4.1 validatePasswordRequest (normative) 2835

A requestor MUST send a <validatePasswordRequest> to a provider in order to (ask the 2836

provider to) test whether a specified value would be valid as the password that is associated with 2837
an existing object. 2838

Execution. A <validatePasswordRequest> MAY specify “executionMode”. 2839

See the section titled “Determining execution mode”. 2840

psoID. A <validatePasswordRequest> MUST contain exactly one <psoID> element. The 2841

<psoID> MUST identify an object that exists on a target (that is supported by the provider). 2842

See the section titled "PSO Identifier (normative)". 2843

password. A <validatePasswordRequest> MUST contain exactly one <password> element. 2844

The <password> element MUST contain a string value. 2845

3.6.5.4.2 validatePasswordResponse (normative) 2846

A provider that receives a <validatePasswordRequest> from a requestor that the provider 2847

trusts MUST examine the content of the <validatePasswordRequest>. If the request is valid 2848

and if the specified object exists, then the provider MUST test whether the specified value would be 2849

valid as the password that is associated with the object that the <psoID> identifies. 2850

Execution. If an <validatePasswordRequest> does not specify "executionMode", the 2851

provider MUST choose a type of execution for the requested operation. 2852
See the section titled "Determining execution mode”. 2853

Response. The provider must return to the requestor a <validatePasswordResponse>. The 2854

<validatePasswordResponse> MUST have a “status” attribute that indicates whether the 2855

provider successfully tested whether the supplied value would be valid as the password that is 2856
associated with the specified object. See the section titled “Status (normative)”. 2857

valid. The <validatePasswordResponse> MUST have a “valid” attribute that indicates 2858

whether the <password> (content that was specified in the <validatePasswordRequest>) 2859

would be valid as the password that is associated with the specified object. 2860

Error. If the provider cannot determine whether the specified value would be valid as the password 2861

that is associated with the specified object, then the <validatePasswordResponse> MUST 2862

specify an “error” value that characterizes the failure. 2863

See the general section titled “Error (normative)”. 2864

In addition, a <validatePasswordResponse> MUST specify an appropriate value of "error" if 2865

any of the following is true: 2866

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 102 of 190

• The <validatePasswordRequest> contains a <psoID> for an object that does not exist. 2867

• The target system or application returns an error (or throws an exception) when the provider 2868
tries to determine whether the specified value would be valid as the password that is 2869
associated with the specified object. 2870

3.6.5.4.3 validatePassword Examples (non-normative) 2871

In the following example, a requestor asks a provider to validate a value as a password for a 2872

Person object. 2873

<validatePasswordRequest requestID=”136”>
 <psoID ID=”2244” targetID=“target2”/>
 <password>y0baby</password>
</validatePasswordRequest>

The provider returns an <validatePasswordResponse> element. The “status” attribute of 2874

the <validatePasswordResponse> indicates that the provider successfully tested whether the 2875

<password> value specified in the request would be valid as the password that is associated with 2876

the specified object. The <validatePasswordResponse> specifies “valid=’true’”, which 2877

indicates that the specified value would be valid as the password that is associated with the 2878

specified object. 2879

<validatePasswordResponse requestID=”136” status=“success” valid=”true”/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 103 of 190

 2880

3.6.6 Reference Capability 2881

The Reference Capability is defined in a schema that is associated with the following XML 2882

namespace: urn:oasis:names:tc:SPML:2:0:reference. This document includes the 2883

Reference Capability XSD as Appendix F. 2884

 <complexType name="ReferenceType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="toPsoID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 <element name="referenceData" type="spml:ExtensibleType"
minOccurs="0"/>
 </sequence>
 <attribute name="typeOfReference" type="string"
use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ReferenceDefinitionType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="schemaEntity"
type="spml:SchemaEntityRefType"/>
 <element name="canReferTo" type="spml:SchemaEntityRefType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="referenceDataType"
type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="typeOfReference" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="HasReferenceType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <element name="toPsoID" type="spml:PSOIdentifierType"
minOccurs="0" />
 <element name="referenceData" type="spml:ExtensibleType"
minOccurs="0" />
 </sequence>
 <attribute name="typeOfReference" type="string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="hasReference" type="spmlref:HasReferenceType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 104 of 190

 <element name="reference" type="spmlref:ReferenceType"/>
 <element name="referenceDefinition"
type="spmlref:ReferenceDefinitionType"/>

The Reference Capability defines no operation. Instead, the Reference Capability allows a provider 2885
to declare, as part of each target, which types of objects support references to which other types of 2886
objects. The XML representations of references flow through the core operations as capability-2887
specific data. 2888

• In order to create an object with references, a requestor specifies capability-specific data to the 2889

add operation. 2890

• In order to add, remove or replace references to an object, a requestor specifies capability-2891

specific data to the modify operation. 2892

• In order to obtain references for an object, a requestor examines capability-specific data 2893

returned as output by the add, lookup and search operations. 2894

Motivation. Defining a standard capability for references is important for several reasons. 2895

• Managing references to other objects can be an important part of managing objects. 2896

• Object references to other objects present a scalability problem. 2897

• Object references to other objects present an integrity problem. 2898

Provisioning systems must often list, create, and delete connections between objects 2899
in order to manage the objects themselves. In some cases, a provisioning system 2900
must manage data that is part a specific connection (e.g., in order to specify 2901
the expiration of a user’s membership in a group) – see the topic named “Reference Data” below. 2902
Because connections to other objects can be very important, it is important to be able to represent 2903
such connections generically (rather than as something specific to each target schema). 2904

The reference capability enables a requestor to manage an object’s references independent of the 2905
object’s schema. This is particularly important in the cases where a provider allows references to 2906
span targets. For example, a provisioning system must often maintain knowledge about which 2907

people own which accounts. In such cases, an Account object (that is contained by one target) 2908

may refer to a Person object (that is contained by another target) as its owner. 2909

Scale is another significant aspect of references. The number of connections between objects may 2910
be an order of magnitude greater than the number of objects themselves. Unconditionally including 2911
reference information in the XML representation of each object could greatly increase the size of 2912

each object’s XML representation. Imagine, for example, that each Account may refer to multiple 2913

Groups (or that a Group might refer to each of its members). 2914

Defining reference as an optional capability (and allowing references to be omitted from each 2915
object’s schema) does two things. First, this allows a requestor to exclude an object’s references 2916
from the XML representation of each object (since a requestor can control which capability-specific 2917
data are included). Second, this allows providers to manage references separately from schema-2918
defined attributes (which may help a provider cope with the scale of connections). 2919

The ability to manage references separately from schema-defined data may also help providers to 2920
maintain the integrity of references. In the systems and applications that underlie many 2921
provisioning target, deleting an object A may not delete another object B’s reference to object A. 2922
Allowing a provider to manage references separately allows the provider to control such behavior 2923
(and perhaps even to prevent the deletion of object A when another object B still refers to object A). 2924

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 105 of 190

3.6.6.1 Reference Definitions 2925

Reference Definitions. A provider declares each type of reference that a particular target supports 2926
(or declares each type of reference that a particular supported schema entity on a target supports) 2927

as an instance of {ReferenceDefinitionType}. 2928

A provider’s <listTargetsResponse> contains a list of targets that the provider exposes for 2929

provisioning operations. Part of each target declaration is the set of capabilities that the target 2930

supports. Each capability refers (by means of its “namespaceURI” attribute) to a specific 2931

capability. Any <capability> element that refers to the Reference Capability may contain (as 2932

open content) any number of <referenceDefinition> elements. 2933

Each reference definition names a specific type of reference and also specifies the following: 2934

• which schema entity (on the <target> that contains the <capability> that contains the 2935

<referenceDefinition>) can refer… 2936

• …to which schema entity or schema entities (on which targets). 2937

For normative specifics, see the topic named “Reference Capability content” within the section titled 2938
"listTargetsResponse (normative)". 2939

Overlap. Any number of reference definitions may declare different “from- and to-” entity pairs for 2940

the same type of reference. For example, a reference definition may declare that an Account may 2941

refer to a Person as its “owner”. Another reference definition may declare that an 2942

OrganizationalUnit may refer to a Person as its “owner”. SPMLv2 specifies the mechanism-2943

-but does not define the semantics--of reference. 2944

Direction. Each reference definition specifies the direction of reference. A reference is always 2945

from an object (that is an instance of the schema entity that <schemaEntity> specifies) to 2946

another object (that is an instance of a schema entity that <canReferTo> specifies). 2947

No Inverse. A standard SPMLv2 reference definition specifies nothing about an inverse 2948

relationship. For example, a reference definition that says an Account may refer to a Person as 2949

its “owner” does NOT imply that a Person may refer to Account. 2950

Nothing prevents a provider from declaring (by means of a reference definition) that Person may 2951

refer to Account in a type of reference called “owns”, but nothing (at the level of this specification) 2952

associates these two types of references to say that “owns” is the inverse of “owner”. 2953

No Cardinality. A reference definition specifies no restrictions on the number of objects to which an 2954

object may refer (by means of that defined type of reference). Thus, for example, an Account may 2955

refer to multiple instances of Person as its “owner”. This may be logically incorrect, or this may 2956

not be the desired behavior, but SPMLv2 does not require a provider to support restrictions on the 2957
cardinality of a particular type of reference. 2958

In general, a requestor must assume that each defined type of reference is optional and many-to-2959
many. This is particularly relevant when a requestor wishes to modify references. A requestor 2960
SHOULD NOT assume that a reference that the requestor wishes to modify is the object’s only 2961
reference of that type. A requestor also SHOULD NOT assume that a reference from one object to 2962
another object that the requestor wishes to modify is the only reference between the two objects. 2963
The only restriction that SPMLv2 imposes is that an object A may have no more than one reference 2964
of the same type to another object B. See the topic named “No duplicates” in the section titled 2965
“References”. 2966

ReferenceDataType. A reference definition may be complex, which means that an instance of that 2967
type of reference may have reference data associated with it. 2968
See the section titled “Complex References” below. 2969

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 106 of 190

The definition of a type of reference that is complex must contain a <referenceDataType> for 2970

each possible structure of reference data. Each <referenceDataType> element refers to a 2971

specific entity in a target schema. A <referenceData> element (within any instance of that type 2972

of reference) may contain one element of any of these types (to which a <referenceDataType> 2973

refers). 2974

A reference definition that contains no <referenceDataType> sub-element indicates that the 2975

type of reference it defines does not support reference data. 2976

For a normative description, see the topic named “ReferenceDefinition referenceDataType” within 2977
the section titled "listTargetsResponse (normative)". 2978

3.6.6.2 References 2979

Must contain toPsoID. Any <reference> MUST specify its “toObject”. That is, any instance of 2980

{ReferenceType} MUST contain a valid <toPsoID>. The only exception is a <reference> 2981

that is used as a wildcard within a <modification> that specifies 2982

“modificationMode=’delete’”. In this case (and only in this case), the <reference> MUST 2983

specify a valid “typeOfReference” but (the <reference>) MAY omit <toPsoID>. 2984

See the section titled “Reference CapabilityData Processing (normative)”. 2985

No duplicates. Within the set of references that is associated with an object, at most one 2986

<reference> of a specific "typeOfReference" may refer to a particular object. That is, an 2987

instance of {CapabilityDataType} MUST NOT contain two (and MUST NOT contain more than 2988

two) instances of <reference> that specify the same value of "typeOfReference" and that 2989

contain <toPsoID> elements that identify the same object. See the section titled “Reference 2990

CapabilityData in a Request (normative)”. 2991

Reference Data. SPMLv2 allows each reference (i.e., each instance of {ReferenceType}) to 2992

contain additional reference data. Most references between objects require no additional data, but 2993
allowing references to contain additional data supports cases in which a reference from one object 2994
to another may carry additional information “on the arrow” of the relationship. For example, a 2995
RACF user’s membership in a particular RACF group carries with it the additional information of 2996
whether that user has the ADMINISTRATOR or SPECIAL privilege within that group. Several other 2997
forms of group membership carry with them additional information about the member’s expiration. 2998
See the section titled “Complex References” below. 2999

Search. A requestor can search for objects based on reference values using the 3000

<hasReference> query clause. The {HasReferenceType} extends {QueryClauseType}, 3001

which indicates that an instance of {HasReferenceType} can be used to select objects. A 3002

<hasReference> clause matches an object if and only if the object has a reference that matches 3003

every specified component (i.e., element or attribute) of the <hasReference> element. 3004

See the section titled “search Examples”. 3005

3.6.6.3 Complex References 3006

The vast majority of reference types are simple: that is, one object’s reference to another object 3007
carries no additional information. However certain types of references may support additional 3008
information that is specific to a particular reference. For example, when a user is assigned to one 3009
or more Entrust GetAccess Roles, each role assignment has a start date and an end date. We 3010
describe a reference that contains additional data (where that data is specific to the reference) as a 3011

“complex” reference. 3012

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 107 of 190

Example: RACF Group Membership is another example of a complex type of reference. Each 3013
RACF group membership carries with it additional data about whether the user has the SPECIAL, 3014
AUDITOR, or OPERATIONS privileges in that group. 3015

• Group-SPECIAL gives a group administrator control over all profiles within the group 3016

• Group-AUDITOR allows a user to monitor the use of the group's resources 3017

• Group-OPERATIONS allows a user to perform maintenance operations 3018
on the group's resources 3019

For purposes of this example, let us represent these three group-specific privileges as attributes of 3020
an XML type called “RacfGroupMembershipType”. Suppose that the XML Schema for such a type 3021
looks like the following: 3022

 <complexType name="RacfGroupMembershipType">
 <complexContent>
 <attribute name="special" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="auditor" type="xsd:boolean" use="optional" default="false"/>
 <attribute name="operations" type="xsd:boolean" use="optional" default="false"/>
 </complexContent>
 </complexType>

 <element name="racfGroupMembership" type="RacfGroupMembershipType"/>

 3023

The following subsections describe several different ways to model RACF Group Membership. The 3024

fictional <xsd:schema> is the same in all of the examples. In each subsection, however, the 3025

provider’s <target> definition varies with the approach. 3026

3.6.6.3.1 Using Reference Data 3027

The simplest way to model a complex reference such as RACF Group membership is to represent 3028

the additional information as arbitrary reference data. The <referenceData> element within a 3029

<reference> may contain any data. 3030

The following example shows how a provider’s listTargetsResponse might reflect this approach. 3031
The sample schema for the “RACF” target is very simple (for the sake of brevity). The provider 3032

defines a type of reference called “memberOfGroup”. Within a <reference> of this type, the 3033

<referenceData> element must contain exactly one <racfGroupMembership> element (and 3034

should contain nothing else). 3035

<listTargetsResponse status=“success">
 <target targetID=”RacfGroupMembership-ReferenceData”>
 <schema>
<xsd:schema targetNamespace="urn:example:schema:RACF"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">
 <complexType name="RacfUserProfileType">
 <attribute name="userid" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupProfileType">
 <attribute name="groupName" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupMembershipType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 108 of 190

 <attribute name="special" type="boolean" use="optional" default=”false”/>
 <attribute name="auditor" type="boolean" use="optional" default=”false”/>
 <attribute name="operations" type="boolean" use="optional" default=”false”/>
 </complexType>
 <element name=”racfUserProfile” type=”RacfUserProfileType” />
 <element name=”racfGroupProfile” type=”RacfGroupProfileType” />
 <element name=”racfGroupMembership” type=”RacfGroupMembershipType” />
</xsd:schema>
 <supportedSchemaEntity entityName=”racfUserProfile”/>
 <supportedSchemaEntity entityName=”racfGroupProfile”/>
 </schema>
 <capabilities>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>
 <appliesTo entityName=”racfUserProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>
 <appliesTo entityName=”racfUserProfile”/>
 <appliesTo entityName=”racfGroupProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <appliesTo entityName=”racfUserProfile”/>
 <referenceDefinition typeOfReference=”memberOfGroup”>
 <schemaEntity entityName=”racfUserProfile”/>
 <canReferTo entityName=”racfGroupProfile”/>
 <referenceDataType entityName=”racfGroupMembership”/>
 <annotation>
 <documentation> ReferenceData for a “memberOfGroup” reference
must contain exactly one racfGroupMembership element.</documentation>
 </annotation>
 </referenceDefinition>
 </capability>
 </capabilities>
 </target>
</listTargetsResponse>

Manipulating Reference Data. The only way to manipulate the reference data associated with a 3036
complex reference is by using the modify operation that is part of the Core XSD. A requestor may 3037
add, replace or delete any capability-specific data that is associated with an object. 3038

Capabilities Do Not Apply. SPML specifies no way to apply a capability-specific operation to a 3039
reference. Thus, for example, one can neither suspend nor resume a reference. This is because a 3040
reference is not a provisioning service object. A reference is instead capability-specific data that is 3041
associated with an object. 3042

You can think of an object's references (or any set of capability-specific data that is associated with 3043
an object) as an “extra” attribute (or as an “extra” sub-element) of the object. The provider supports 3044
each “extra” (attribute or sub-element) data independent of the schema of the target that contains 3045

the object. The provider keeps all <capabilityData> separate from the regular schema-defined 3046

<data> within each <pso>. 3047

3.6.6.3.2 Relationship Objects 3048

The fact that capabilities cannot apply to references does not prevent a provider from offering this 3049
kind of rich function. There is an elegant way to represent a complex relationship that allows a 3050

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 109 of 190

requestor to operate directly on the relationship itself. A provider may model a complex relationship 3051
between two objects as a third object that refers to each of the first two objects. 3052

This approach is analogous to a “linking record” in relational database design. In the “linking 3053
record” approach, the designer “normalizes” reference relationships into a separate table. Each 3054
row in a third table connects a row from one table to a row in another table. This approach allows 3055
each relationship to carry additional information that is specific to that relationship. Data specific to 3056
each reference are stored in the columns of the third table. Even when relationships do not need to 3057
carry additional information, database designers often use this approach when two objects may be 3058
connected by more than one instance of the same type of relationship, or when relationships are 3059
frequently added or deleted and referential integrity must be maintained. 3060

Rather than have an object A refer to an object B directly, a third object C refers to both object A 3061
and object B. Since object C represents the relationship itself, object C refers to object A as its 3062
“fromObject” and object C refers to object B as its “toObject”. 3063

A provider that wants to treat each instance of a (specific type of) relationship as an object does so 3064
by defining in the schema for a target a schema entity to contain the additional information (that is 3065
specific to that type of relationship). The provider then declares two types of references that apply 3066
to that schema entity: a “fromObject” type of reference and a “toObject” type of reference. The 3067
provider may also declare that certain capabilities apply to that schema entity. This model allows a 3068
requestor to operate conveniently on each instance of a complex relationship. 3069

For example, suppose that a provider models as a schema entity a type of relationship that has an 3070
effective date and has an expiration date. As a convenience to requestors, the provider might 3071
declare that this schema entity (that is, the “linking” entity) supports the Suspend Capability. The 3072
‘suspend’ and ‘resume’ operations could manipulate the expiration date and the effective date 3073
without the requestor having to understand the structure of that schema entity. This convenience 3074
could be very valuable where the attribute values or element content that are manipulated have 3075
complex syntax, special semantics or implicit relationships with other elements or attributes. 3076

The following example shows how a provider’s listTargetsResponse might reflect this approach. 3077
The sample schema for the “RACF” target is again simple (for the sake of brevity). 3078

<listTargetsResponse status=“success">
 <target targetID=”RacfGroupMembership-IndependentRelationshipObject”>
 <schema>
<xsd:schema targetNamespace="urn:example:schema:RACF"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">
 <complexType name="RacfUserProfileType">
 <attribute name="userid" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupProfileType">
 <attribute name="groupName" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupMembershipType">
 <attribute name="special" type="boolean" use="optional" default=”false”/>
 <attribute name="auditor" type="boolean" use="optional" default=”false”/>
 <attribute name="operations" type="boolean" use="optional" default=”false”/>
 </complexType>
 <element name=”racfUserProfile” type=”RacfUserProfileType” />
 <element name=”racfGroupProfile” type=”RacfGroupProfileType” />
 <element name=”racfGroupMembership” type=”RacfGroupMembershipType” />
</xsd:schema>
 <supportedSchemaEntity entityName=”racfUserProfile”/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 110 of 190

 <supportedSchemaEntity entityName=”racfGroupProfile”/>
 <supportedSchemaEntity entityName=”racfGroupMembership”>
 <annotation>
 <documentation> Each instance of racfGroupMembership refers to one
racfUserProfile and refers to one racfGroupProfile.</documentation>
 </annotation>
 </supportedSchemaEntity>
 </schema>
 <capabilities>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>
 <appliesTo entityName=”RacfUserProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>
 <appliesTo entityName=”racfUserProfile”/>
 <appliesTo entityName=”racfGroupProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <appliesTo entityName=”racfGroupMembership”/>
 <referenceDefinition typeOfReference=”fromUser”>
 <schemaEntity entityName=”racfGroupMembership”/>
 <canReferTo entityName=”racfUserProfile”/>
 </referenceDefinition>
 <referenceDefinition typeOfReference=”toGroup”>
 <schemaEntity entityName=”racfGroupMembership”/>
 <canReferTo entityName=”racfGroupProfile”/>
 </referenceDefinition>
 </capability>
 </capabilities>
 </target>
</listTargetsResponse>

Variations. Naturally, many variations of this approach are possible. For example, an instance of 3079
RacfUserProfile could refer to an instance of RacfGroupMembership (rather than having an 3080
instance of RacfGroupMembership refer to both RacfUserProfile and an instance of 3081
RacfGroupProfile). However, such a variation would not permit an instance of RacfUserProfile to 3082
refer to more than one group (and could result in an orphaned relationship objects unless the 3083
provider carefully guards against this). 3084

3.6.6.3.3 Bound Relationship Objects 3085

One particularly robust variation of independent relationship objects is to bind each relationship 3086
object beneath one of the objects it connects. For example, one could bind each instance of 3087
RacfGroupMembership beneath the instance of RacfUserProfile that would otherwise be the 3088
“fromUser”. That way, deleting an instance of RacfUserProfile also deletes all of its 3089
RacfGroupMemberships. This modeling approach makes clear that the relationship belongs with 3090
the “fromObject” and helps to prevent orphaned relationship objects. 3091

The next example illustrates bound relationship objects. 3092

<listTargetsResponse status=“success">
 <target targetID=”RacfGroupMembership-BoundRelationshipObject”>
 <schema>
<schema targetNamespace="urn:example:schema:RACF"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 111 of 190

 <complexType name="RacfUserProfileType">
 <attribute name="userid" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupProfileType">
 <attribute name="groupName" type="string" use="required"/>
 </complexType>
 <complexType name="RacfGroupMembershipType">
 <attribute name="special" type="boolean" use="optional" default=”false”/>
 <attribute name="auditor" type="boolean" use="optional" default=”false”/>
 <attribute name="operations" type="boolean" use="optional" default=”false”/>
 </complexType>
 <element name=”racfUserProfile” type=”RacfUserProfileType” />
 <element name=”racfGroupProfile” type=”RacfGroupProfileType” />
 <element name=”racfGroupMembership” type=”RacfGroupMembershipType” />
 </schema>
 <supportedSchemaEntity entityName=”racfUserProfile” isContainer=”true”>
 <annotation>
 <documentation> Any number of racfGroupMembership objects may be
bound beneath a racfUserProfile object.</documentation>
 </annotation>
 </supportedSchemaEntity>
 <supportedSchemaEntity entityName=”racfGroupProfile”/>
 <supportedSchemaEntity entityName=”racfGroupMembership”>
 <annotation>
 <documentation> Each racfGroupMembership is bound beneath a
racfUserProfile and refers to one racfGroupProfile.</documentation>
 </annotation>
 </supportedSchemaEntity>
 </schema>
 <capabilities>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>
 <appliesTo entityName=”racfUserProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>
 <appliesTo entityName=”racfUserProfile”/>
 <appliesTo entityName=”racfGroupProfile”/>
 </capability>
 <capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>
 <appliesTo entityName=”racfGroupMembership”/>
 <referenceDefinition typeOfReference=”toGroup”>
 <schemaEntity entityName=”racfGroupMembership”/>
 <canReferTo entityName=”racfGroupProfile”/>
 </referenceDefinition>
 </capability>
 </capabilities>
 </target>
</listTargetsResponse>

3.6.6.4 Reference CapabilityData in a Request (normative) 3093

The general rules that govern an instance of {CapabilityDataType} in a request also apply to 3094

an instance of {CapabilityDataType} that refers to the Reference Capability. 3095

See the section titled "CapabilityData in a Request (normative)". 3096

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 112 of 190

capabilityURI. An instance of {CapabilityDataType} 3097

that contains data that are specific to the Reference Capability MUST specify 3098

"capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'". 3099

mustUnderstand. An instance of {CapabilityDataType} that refers to the Reference 3100

Capability SHOULD specify "mustUnderstand='true'". 3101

Capability defines structure. An instance of {CapabilityDataType} that refers to the 3102

Reference Capability MUST contain at least one <reference> element. An instance of 3103

{CapabilityDataType} that refers to the Reference Capability SHOULD NOT contain any 3104

element that is not a <reference> element. 3105

No duplicates. Within the set of references that is associated with an object, at most one 3106

<reference> of a specific "typeOfReference" may refer to a specific object. That is, an 3107

instance of {CapabilityDataType} MUST NOT contain two (and MUST NOT contain more than 3108

two) instances of <reference> that specify the same value of "typeOfReference" and that 3109

contain <toPsoID> elements that identify the same object. 3110

Validate each reference. Any <reference> that an instance of {CapabilityDataType} 3111

contains must be an instance of {spmlref:ReferenceType}. In addition, a provider MUST 3112

examine the following aspects of each <reference>: 3113

- The "from" object. (The object that contains--or that is intended to contain--the reference.) 3114

- The "to" object. (The object that the <toPsoID> of the reference identifies.) 3115

- The "from" schema entity. (The schema entity of which the "from" object is an instance.) 3116
- The "to" schema entity (The schema entity of which the "to" object is an instance.) 3117
- The typeOfReference 3118
- Any referenceData 3119

The standard aspects of SPML that specify supported schema entities and capabilities imply the 3120
following: 3121

- The "to" object MUST exist (on a target that the provider exposes). 3122

- The target that contains the "from" object MUST support the "from" schema entity. 3123

- The target that contains the "to" object MUST support the "to" schema entity. 3124

- The target that contains the "from" object MUST support the Reference Capability. 3125

- The target that contains the "from" object MUST declare that 3126
the Reference Capability applies to the "from" schema entity. 3127

See the section titled "listTargetsResponse (normative)". 3128

Check Reference Definition. In addition, a provider must validate the "typeOfReference" that 3129

each <reference> specifies (as well as the "from" schema entity and the "to" schema entity) 3130

against the set of valid reference definitions.. 3131

The <capability> that declares that the target (that contains the "from" object) 3132

supports the Reference Capability for the "from" schema entity 3133

MUST contain a <referenceDefinition> for which all of the following are true: 3134

- The <referenceDefinition> specifies the same "typeOfReference" 3135

that the <reference> specifies 3136

- The <referenceDefinition> contains a <schemaEntity> element 3137

that specifies the "from" schema entity 3138

- The <referenceDefinition> contains a <canReferTo> element 3139

that specifies the "to" schema entity. 3140

See the section titled "Reference Definitions" above. 3141

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 113 of 190

3.6.6.5 Reference CapabilityData Processing (normative) 3142

The general rules that govern processing of an instance of {CapabilityDataType} in a request 3143

also apply to an instance of {CapabilityDataType} that refers to the Reference Capability. See 3144

the section titled "CapabilityData Processing (normative)". 3145

capabilityURI. An instance of {CapabilityDataType} that refers to the Reference Capability 3146

MUST specify “capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'”. The 3147

target (that contains the object to be manipulated) MUST support the Reference Capability for the 3148
schema entity of which the object to be manipulated is an instance. 3149

mustUnderstand. An instance of {CapabilityDataType} that refers to the Reference 3150

Capability SHOULD specify "mustUnderstand='true'". A provider that supports the Reference 3151

Capability MUST handle the content as this capability specifies (regardless of the value of 3152

"mustUnderstand"). See the topic named "mustUnderstand" within the section titled 3153

"CapabilityData Processing (normative)". 3154

Open content. An instance of {CapabilityDataType} that refers to the Reference Capability 3155

MUST contain at least one <reference>. An instance of {CapabilityDataType} that refers to 3156

the Reference Capability SHOULD NOT contain any element that is not a <reference>. 3157

Validation. A provider MUST examine the content of any instance of {CapabilityDataType} 3158

that refers to the Reference Capability (regardless of the type of request that contains the instance 3159

of {CapabilityDataType}) and ensure that it contains only valid instances of <reference>. 3160

See the section titled "Reference CapabilityData in a Request (normative)". 3161

If the content (of the instance of {CapabilityDataType} that refers to the Reference Capability) 3162

is not valid, then the provider's response MUST specify "status='failure'". 3163

See the section titled "Request CapabilityData Errors (normative)". 3164

Process individual references. In addition to the validation described above, the content of an 3165

instance of {CapabilityDataType} that refers to the Reference Capability is not treated as 3166

opaque, but instead as a set of individual references. The handling of each <reference> 3167

depends on the type of element that contains the instance of {CapabilityDataType}). 3168

• If an <addRequest> contains an instance of {CapabilityDataType} that refers to the 3169

Reference Capability, then the provider MUST associate the instance of 3170

{CapabilityDataType} (and each <reference> that it contains) 3171

with the newly created object. 3172

• If a <modification> contains an instance of {CapabilityDataType} that refers to the 3173

Reference Capability, then the handling of each <reference> (that the instance of 3174

{CapabilityDataType} contains) depends on the "modificationMode" of that 3175

<modification> and also depends on whether a matching <reference> is already 3176

associated with the object to be modified. 3177

- If the <modification> specifies "modificationMode='add'", 3178

then the provider MUST add each new reference for which no matching <reference> is 3179

already associated with the object. 3180

That is, the provider MUST associate with the object to be modified each <reference> 3181

(that the instance of {CapabilityDataType} within the <modification> contains) 3182

for which no <reference> that is already associated with the object 3183

specifies the same value for "typeOfReference" (that the <reference> from the 3184

<modification> specifies) and contains a <toPsoID> that identifies the same object 3185

(that the <toPsoID> of the <reference> from the <modification> identifies). 3186

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 114 of 190

 3187
The provider MUST replace each matching reference that is already associated with the 3188

object with the <reference> from the <modification>. 3189

That is, if a <reference> that is already associated with the object specifies the same 3190

value for "typeOfReference" (that the <reference> from the <modification> 3191

specifies) and if the <reference> that is already associated with the object contains a 3192

<toPsoID> that identifies the same object (that the <toPsoID> of the <reference> from 3193

the <modification> identifies), then the provider MUST remove the <reference> that 3194

is already associated with the object and (the provider MUST) add the <reference> from 3195

the <modification>. 3196

This has the net effect of replacing any optional <referenceData> (as well as replacing 3197

any open content) of the matching <reference>. 3198

- If the <modification> specifies "modificationMode='replace'", 3199

then the provider MUST add each new reference for which no matching <reference> is 3200

already associated with the object. 3201

That is, the provider MUST associate with the object to be modified each <reference> 3202

(that the instance of {CapabilityDataType} within the <modification> contains) 3203

for which no <reference> that is already associated with the object 3204

specifies the same value for "typeOfReference" (that the <reference> from the 3205

<modification> specifies) and contains a <toPsoID> that identifies the same object 3206

(that the <toPsoID> of the <reference> from the <modification> identifies). 3207

 3208
The provider MUST replace each matching reference that is already associated with the 3209

object with the <reference> from the <modification>. 3210

That is, if a <reference> that is already associated with the object specifies the same 3211

value for "typeOfReference" (that the <reference> from the <modification> 3212

specifies) and if the <reference> that is already associated with the object contains a 3213

<toPsoID> that identifies the same object (that the <toPsoID> of the <reference> from 3214

the <modification> identifies), then the provider MUST remove the <reference> that 3215

is already associated with the object and (the provider MUST) add the <reference> from 3216

the <modification>. 3217

This has the net effect of replacing any optional <referenceData> (as well as replacing 3218

any open content) of the matching <reference>. 3219

- If the <modification> specifies "modificationMode='delete'", 3220

then the provider MUST remove each matching reference. 3221

A reference that omits <toPsoID> is treated as a wildcard. 3222

 3223

If the <reference> from the <modification> contains a <toPsoID> element, 3224

then the provider MUST remove (from the set of references that are associated with the 3225

object) any <reference> that specifies the same value for "typeOfReference" (that 3226

the <reference> from the <modification> specifies) and that contains a <toPsoID> 3227

that identifies the same object (that the <toPsoID> of the <reference> from the 3228

<modification> identifies). 3229

 3230

If the <reference> from the <modification> contains no <toPsoID> element, 3231

then the provider MUST remove (from the set of references that are associated with the 3232

object) any <reference> that specifies the same value for "typeOfReference" (that 3233

the <reference> from the <modification> specifies). 3234

 3235

If no instance of <reference> that is associated with the object to be modified matches 3236

the <reference> from the <modification>, then the provider MUST do nothing for that 3237

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 115 of 190

<reference>. In this case, the provider's response MUST NOT specify 3238

"status='failure'" unless there is some other reason to do so. 3239

3.6.6.6 Reference CapabilityData Errors (normative) 3240

The general rules that govern errors related to an instance of {CapabilityDataType} in a 3241

request also apply to an instance of {CapabilityDataType} that refers to the Reference 3242

Capability. See the section titled "CapabilityData Errors (normative)". 3243

A provider’s response to a request that contains an instance of {CapabilityDataType} that 3244

refers to the Reference Capability (e.g., a <capabilityData> element that specifies 3245

"capabilityURI='urn:oasis:names:tc:SPML:2.0:reference'") 3246

MUST specify an error if any of the following is true: 3247

• The instance of {CapabilityDataType} that refers to the Reference Capability 3248

does not contain at least one <reference> element. 3249

• The instance of {CapabilityDataType} that refers to the Reference Capability 3250

contains a <reference> element that is not a valid instance of {ReferenceType}. 3251

• The instance of {CapabilityDataType} that refers to the Reference Capability 3252

contains a <reference> element for which no instance of Reference Definition declares that 3253

(an instance of) the "from" schema entity may refer to (an instance of) the "to" schema entity 3254
with the typeOfReference that the <reference> specifies. 3255
See the section titled "Reference Definitions" above. 3256

A provider’s response to a request that contains an instance of {CapabilityDataType} that 3257

refers to the Reference Capability MAY specify an error if any of the following is true: 3258

• The instance of {CapabilityDataType} that refers to the Reference Capability 3259

 contains data other than valid <reference> elements. 3260

A provider's response (to a request that contains an instance of {CapabilityDataType} that 3261

refers to the Reference Capability) SHOULD contain an <errorMessage> for each <reference> 3262

element that was not valid. 3263

3.6.6.7 Reference CapabilityData in a Response (normative) 3264

The general rules that govern an instance of {CapabilityDataType} in a response also apply to 3265

an instance of {CapabilityDataType} that refers to the Reference Capability. 3266

See the section titled "CapabilityData in a Response (normative)". 3267

The specific rules that apply to an instance of {CapabilityDataType} that refers to the 3268

Reference Capability in a response also apply to an instance of {CapabilityDataType} (that 3269

refers to the Reference Capability) in a request. (However, if the provider has applied the rules in 3270
processing each request, the provider should not need to apply those rules again in formatting a 3271
response.) See the section titled "Reference CapabilityData in a Request (normative)". 3272

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 116 of 190

3.6.7 Search Capability 3273

The Search Capability is defined in a schema associated with the following XML namespace: 3274

urn:oasis:names:tc:SPML:2:0:search. This document includes the Search Capability XSD 3275

as Appendix G. 3276

The Search Capability defines three operations: search, iterate and closeIterator. The search and 3277
iterate operations together allow a requestor to obtain in a scalable manner the XML representation 3278
of every object that matches specified selection criteria. The search operation returns in its 3279
response a first set of matching objects. Each subsequent iterate operation returns more matching 3280
objects. The closeIterator operation allows a requestor to tell a provider that it does not intend to 3281
finish iterating a search result (and that the provider may therefore release the associated 3282
resources). 3283

A provider that supports the search and iterate operations for a target SHOULD declare that the 3284
target supports the Search Capability. A provider that does not support both search and iterate 3285
MUST NOT declare that the target supports the Search Capability. 3286

Resource considerations. A provider must limit the size and duration of its search results (or that 3287
provider will exhaust available resources). A provider must decide: 3288

• How large of a search result the provider will select on behalf of a requestor. 3289

• How large of a search result the provider will queue on behalf of a requestor 3290
(so that the requestor may iterate the search results). 3291

• For how long a time the provider will queue a search result on behalf of a requestor. 3292

These decisions may be governed by the provider’s implementation, by its configuration, or by 3293
runtime computation. 3294

A provider that wishes to never to queue search results may return every matching object (up to the 3295
provider’s limit and up to any limit specified by the requestor) in the search response. Such a 3296
provider would never return an iterator, and would not need to support the iterate operation. The 3297
disadvantage is that, without an iterate operation, a provider’s search capability either is limited to 3298
small results or produces large search responses. 3299

A provider that wishes to support the iterate operation must store (or somehow queue) the objects 3300
selected by a search operation until the requestor has a chance to iterate those results. (That is, a 3301
provider must somehow queue the objects that matched the criteria of a search operation and that 3302
were not returned in the search response.) 3303

If all goes well, the requestor will continue to iterate the search result until the provider has sent all 3304
of the objects to the requestor. The requestor may also use the closeIterator operation to tell the 3305
provider that the requestor is no longer interested in the search result. In either case, the provider 3306
may free any resource that is still associated with the search result. However, it is possible that the 3307
requestor may not iterate the search result in a timely manner--or that the requestor may never 3308
iterate the search result completely. Such a requestor may also neglect to close the iterator. 3309

A provider cannot queue search results indefinitely. The provider must eventually release the 3310
resources that are associated with a search result. (Put differently, any iterator that a provider 3311
returns to a requestor must eventually expire.) Otherwise, the provider may run out of resources. 3312

Providers should carefully manage the resources associated with search results. For example: 3313

• A provider may define a timeout interval that specifies the maximum time between iterate 3314
requests. If a requestor does not request an iterate operation within this interval, the provider 3315

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 117 of 190

will release the resources associated with the search result. This invalidates any iterator that 3316
represents this search result. 3317

• A provider may also define an overall result lifetime that specifies the maximum length of time 3318
to retain a search result. After this amount of time has passed, the provider will release the 3319
search result. 3320

• A provider may also wish to enforce an overall limit on the resources available to queue search 3321
results, and may wish to adjust its behavior (or even to refuse search requests) accordingly. 3322

• To prevent denial of service attacks, the provider should not allocate any resource on behalf of 3323
a requestor until that requestor is properly authenticated. 3324
See the section titled “Security and Privacy Considerations”. 3325

3.6.7.1 search 3326

The search operation obtains every object that matches a specified query. 3327

The subset of the Search Capability XSD that is most relevant to the search operation follows. 3328

 <simpleType name="ScopeType">
 <restriction base="string">
 <enumeration value="pso"/>
 <enumeration value="oneLevel"/>
 <enumeration value="subTree"/>
 </restriction>
 </simpleType>

 <complexType name="SearchQueryType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <annotation>
 <documentation>Open content is one or more instances of
QueryClauseType (including SelectionType) or
LogicalOperator.</documentation>
 </annotation>
 <element name="basePsoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="scope" type="spmlsearch:ScopeType"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SearchRequestType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 118 of 190

 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="query" type="spmlsearch:SearchQueryType"
minOccurs="0"/>
 <element name="includeDataForCapability" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 <attribute name="maxSelect" type="xsd:int" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SearchResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="query" type="spmlsearch:SearchQueryType"/>
 <element name="searchRequest" type="spmlsearch:SearchRequestType"/>
 <element name="searchResponse" type="spmlsearch:SearchResponseType"/>

The <query> is the same type of element that is specified as part of a <bulkModifyRequest> or 3329

a <bulkDeleteRequest>. See the section titled "SearchQueryType". 3330

If the search operation is successful but selects no matching object, the <searchResponse> will 3331

not contain a <pso>. 3332

If the search operation is successful and selects at least one matching object, the 3333

<searchResponse> will contain any number of <pso> elements, each of which represents a 3334

matching object. If the search operation selects more matching objects than the 3335

<searchResponse> contains, the <searchResponse> will also contain an <iterator> that the 3336

requestor can use to retrieve more matching objects. (See the iterate operation below.) 3337

If a search operation would select more objects than the provider can queue for subsequent 3338

iteration by the requestor, the provider's <searchResponse> will specify 3339

"error='resultSetTooLarge'". 3340

Search is not batchable. For reasons of scale, neither a search request nor an iterate request 3341
should be nested in a batch request. When a search query matches more objects than the provider 3342
can place directly in the response, the provider must temporarily store the remaining objects. 3343
Storing the remaining objects allows the requestor to iterate the remaining objects, but also requires 3344
the provider to commit resources. 3345
See the topic named “Resource Considerations” earlier in this section. 3346

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 119 of 190

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 3347
results of asynchronous batch operations imposes on providers a resource burden similar to that of 3348
storing search results. Allowing a requestor to nest a search request within a batch request would 3349
aggravate the resource problem, requiring a provider to store more information in larger chunks for 3350
a longer amount of time. 3351

3.6.7.1.1 searchRequest (normative) 3352

A requestor MUST send a <searchRequest> to a provider in order to (ask the provider to) obtain 3353

every object that matches specified selection criteria. 3354

Execution. A <searchRequest> MAY specify “executionMode”. 3355

See the section titled “Determining execution mode”. 3356

query. A <query> describes criteria that (the provider must use to) select objects on a target. 3357

A <searchRequest> MAY contain at most one <query> element. 3358

• If the provider's <listTargetsResponse> contains only a single <target>, 3359

then a <searchRequest> may omit the <query> element. 3360

• If the provider's <listTargetsResponse> contains more than one <target>, 3361

then a <searchRequest> MUST contain exactly one <query> element 3362

and that <query> must specify "targetID". 3363

See the section titled "SearchQueryType in a Request (normative)". 3364

ReturnData. A <searchRequest> MAY have a “returnData” attribute that tells the provider 3365

which types of data to include in each selected object. 3366

• A requestor that wants the provider to return nothing of the added object 3367

MUST specify “returnData=’nothing’”. 3368

• A requestor that wants the provider to return only the identifier of the added object 3369

MUST specify “returnData=’identifier’”. 3370

• A requestor that wants the provider to return the identifier of the added object 3371
plus the XML representation of the object (as defined in the schema of the target) 3372

MUST specify “returnData=’data’”. 3373

• A requestor that wants the provider to return the identifier of the added object 3374
plus the XML representation of the object (as defined in the schema of the target) 3375
plus any capability-specific data that is associated with the object 3376

MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute 3377

(since “returnData=’everything’” is the default). 3378

maxSelect. A <searchRequest> MAY have a “maxSelect” attribute. The value of the 3379

“maxSelect” attribute specifies the maximum number of objects the provider should select. 3380

IncludeDataForCapability. A <searchRequest> MAY contain any number of 3381

<includeDataForCapability> elements. Each <includeDataForCapability> element 3382

specifies a capability for which the provider should return capability-specific data (unless the 3383
“returnData” attribute specifies that the provider should return no capability-specific data at all). 3384

• A requestor that wants the provider to return (as part of each object) capability-specific data for 3385
only a certain set of capabilities MUST enumerate that set of capabilities (by including an 3386

<includeDataForCapability> element that specifies each such capability) in the 3387

<searchRequest>. 3388

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 120 of 190

• A requestor that wants the provider to return (as part of each object) capability-specific data for 3389

all capabilities MUST NOT include an <includeDataForCapability> element in the 3390

<searchRequest>. 3391

• A requestor that wants the provider to return no capability-specific data MUST specify an 3392
appropriate value for the “returnData” attribute. 3393
See the topic named “ReturnData” immediately previous. 3394

3.6.7.1.2 searchResponse (normative) 3395

A provider that receives a <searchRequest> from a requestor that the provider trusts must 3396

examine the content of the <searchRequest>. If the request is valid, the provider MUST return 3397

(the XML that represents) every object that matches the specified <query> (if the provider can 3398

possibly do so). However, the number of objects selected (for immediate return or for eventual 3399

iteration) MUST NOT exceed any limit specified as “maxSelect” in the <searchRequest>. 3400

Execution. If an <searchRequest> does not specify "executionMode", the provider MUST 3401

choose a type of execution for the requested operation. 3402
See the section titled “Determining execution mode”. 3403

A provider SHOULD execute a search operation synchronously if it is possible to do so. (The 3404
reason for this is that the result of a search should reflect the current state of each matching object. 3405
Other operations are more likely to intervene if a search operation is executed asynchronously.) 3406

Response. The provider MUST return to the requestor a <searchResponse>. 3407

Status. The <searchResponse> must contain a “status” attribute that indicates whether the 3408

provider successfully selected every object that matched the specified query. 3409
See the section titled "“Status (normative)”. 3410

• If the provider successfully returned (the XML that represents) every object that matched the 3411

specified <query> up to any limit specified by the value of the “maxSelect” attribute, then the 3412

<searchResponse> MUST specify “status=’success’”. 3413

• If the provider encountered an error in selecting any object that matched the specified <query> 3414

or (if the provider encountered an error) in returning (the XML that represents) any of the 3415

selected objects, then the <searchResponse> MUST specify “status=’failure’”. 3416

PSO. The <searchResponse> MAY contain any number of <pso> elements. 3417

• If the <searchResponse> specifies “status=’success’” and at least one object matched 3418

the specified <query>, then the <searchResponse> MUST contain at least one <pso> 3419

element that contains (the XML representation of) a matching object. 3420

• If the <searchResponse> specifies “status=’success’” and no object matched the 3421

specified <query>, then the <searchResponse> MUST NOT contain a <pso> element. 3422

• If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> 3423

MUST NOT contain a <pso> element. 3424

PSO and ReturnData. Each <pso> contains the subset of (the XML representation of) a requested 3425

object that the “returnData” attribute of the <searchRequest> specified. By default, each 3426

<pso> contains the entire (XML representation of an) object. 3427

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 121 of 190

• A <pso> element MUST contain a <psoID> element. 3428

The <psoID> element MUST contain the identifier of the requested object. 3429

See the section titled “PSO Identifier (normative)”. 3430

• A <pso> element MAY contain a <data> element. 3431

- If the <searchRequest> specified “returnData=’identifier’”, 3432

then the <pso> MUST NOT contain a <data> element. 3433

- Otherwise, if the <searchRequest> specified “returnData=’data’” 3434

or (if the <searchRequest> specified) “returnData=’everything’” 3435

or (if the <searchRequest>) omitted the “returnData” attribute 3436

then the <data> element MUST contain the XML representation of the object. 3437

This XML must be valid according to the schema of the target for the schema entity of 3438
which the newly created object is an instance. 3439

• A <pso> element MAY contain any number of <capabilityData> elements. Each 3440

<capabilityData> element contains a set of capability-specific data that is associated with 3441

the newly created object (for example, a reference to another object). 3442

- If the <searchRequest> specified “returnData=’identifier’” 3443

or (if the <searchRequest> specified) “returnData=’data’” 3444

then the <pso> MUST NOT contain a <capabilityData> element. 3445

- Otherwise, if the <searchRequest> specified “returnData=’everything’” 3446

or (if the <searchRequest>) omitted the “returnData” attribute, 3447

then the <pso> MUST contain a <capabilityData> element for each set of capability-3448

specific data that is associated with the requested object 3449
(and that is specific to a capability that the target supports for the schema entity of which 3450
the requested object is an instance). 3451

PSO capabilityData and IncludeDataForCapability. A <searchResponse> MUST include (as 3452

<capabilityData> sub-elements of each <pso>) any set of capability-specific data that is 3453

associated with a matching object and for which all of the following are true: 3454

• The <searchRequest> specifies “returnData=’everything’” or (the 3455

<searchRequest>) omits the “returnData” attribute. 3456

• The schema for the target declares that the target supports the capability (for the schema entity 3457

of which each matching object is an instance). 3458

• The <searchRequest> contains an <includeDataForCapability> element that contains 3459

(as its string content) the URI of the capability to which the data are specific or the 3460

<searchRequest> contains no <includeDataForCapability> element. 3461

A <searchResponse> SHOULD NOT include (as a <capabilityData> sub-element of each 3462

<pso>) any set of capability-specific data for which any of the above is not true. 3463

iterator. A <searchResponse> MAY contain at most one <iterator> element. 3464

• If the <searchResponse> specifies “status=’success’” and the search response contains 3465

all of the objects that matched the specified <query>, then the <searchResponse> MUST 3466

NOT contain an <iterator>. 3467

• If the <searchResponse> specifies “status=’success’” and the search response contains 3468

some but not all of the objects that matched the specified <query>, then the 3469

<searchResponse> MUST contain exactly one <iterator>. 3470

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 122 of 190

• If the <searchResponse> specifies “status=’success’” and no object matched the 3471

specified <query>, then the <searchResponse> MUST NOT contain an <iterator>. 3472

• If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> 3473

MUST NOT contain an <iterator>. 3474

iterator ID. An <iterator> MUST have an “ID” attribute. 3475

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the 3476

provider. The “ID” attribute allows the provider to map each <iterator> token to the result set of 3477

the requestor’s <query> and (also allows the provider to map each <iterator> token) to any 3478

state that records the requestor’s position within that result set. 3479

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot lookup an 3480

<iterator>. An <iterator> is not a PSO. 3481

Error. If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> 3482

MUST have an “error” attribute that characterizes the failure. 3483

See the general section titled "“Error (normative)”. 3484

The section titled "SearchQueryType Errors (normative)" describes errors specific to a request that 3485

contains a <query>. Also see the section titled “SelectionType Errors (normative)”. 3486

In addition, a <searchResponse> MUST specify an appropriate value of "error" if any of the 3487

following is true: 3488

• If the number of objects that matched the <query> that was specified in a <searchRequest> 3489

exceeds any limit on the part of the provider (but does not exceed any value of “maxSelect” 3490

that the requestor specified as part of the <query>). In this case, the provider's 3491

<searchResponse> SHOULD specify "error='resultSetTooLarge'". 3492

3.6.7.1.3 search Examples (non-normative) 3493

In the following example, a requestor asks a provider to search for every Person with an email 3494

address matching ‘joebob@example.com’. 3495

<searchRequest requestID=”137” >
 <query scope=”subTree” targetID=”target2” >
 <select path=’/Person/email=”joebob@example.com”’
namespaceURI=”http://www.w3.org/TR/xpath20” />
 </query>
</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> 3496

indicates that the provider successfully executed the search operation. 3497

<searchResponse requestID=”137” status=“success" >
 <pso>
 <data>
 <Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 <psoID ID=”2244” targetID=“target2”/>
 </pso>
 <iterator ID=”1826”/>
</searchResponse>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 123 of 190

In the following example, a requestor asks a provider to search for every account that is currently 3498

owned by “joebob”. The requestor uses the “returnData” attribute to specify that the provider 3499

should return only the identifier for each matching object. 3500

<searchRequest requestID=”138” returnData=”identifier”>

 <query scope=”subtree” targetID=”target2” >

 <hasReference typeOfReference=”owner”>
 <toPsoID ID=”2244” targetID=“target2”/>
 </hasReference>

 </query>

</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> 3501

indicates that the provider successfully executed the search operation. 3502

<searchResponse requestID=”138” status=“success" >
 <pso>
 <psoID ID=”1431” targetID=“target1”/>
 </pso>
</searchResponse>

3.6.7.2 iterate 3503

The iterate operation obtains the next set of objects from the result set that the provider selected for 3504
a search operation. (See the description of the search operation above.) 3505

The subset of the Search Capability XSD that is most relevant to the iterate operation follows. 3506

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SearchResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="IterateRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType"/>
 </sequence>
 </extension>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 124 of 190

 </complexContent>
 </complexType>

 <element name="iterateRequest" type="spmlsearch:IterateRequestType"/>
 <element name="iterateResponse" type="spmlsearch:SearchResponseType"/>

An iterateRequest receives an iterateResponse. A requestor supplies as input to an 3507

<iterateRequest> the <iterator> that was part of the original <searchResponse> or the 3508

<iterator> that was part of a subsequent <iterateResponse>, whichever is most recent. A 3509

provider returns an <iterateResponse> in response to each <iterateRequest>. An 3510

<iterateResponse> has the same structure as a <searchResponse>. 3511

The <iterateResponse> will contain at least one <pso> element that represents a matching 3512

object. If more matching objects are available to return, then the <iterateResponse> will also 3513

contain an <iterator>. The requestor can use this <iterator> in another 3514

<iterateRequest> to retrieve more of the matching objects. 3515

Iterate is not batchable. For reasons of scale, neither a search request nor an iterate request 3516
should be nested in a batch request. When a search query matches more objects than the provider 3517
can place directly in the response, the provider must temporarily store the remaining objects. 3518
Storing the remaining objects allows the requestor to iterate the remaining objects, but also requires 3519
the provider to commit resources. 3520
See the topic named “Resource Considerations” earlier in this section. 3521

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 3522
results of asynchronous batch operations imposes on providers a resource burden similar to that of 3523
search results. Allowing a requestor to nest a search request or an iterate request within a batch 3524
request would aggravate the resource problem, requiring a provider to store more information in 3525
larger chunks for a longer amount of time. 3526

The iterate operation must be executed synchronously. The provider is already queuing the 3527
result set (every object beyond those returned in the first search response), so it is unreasonable 3528
for a requestor to ask the provider to queue the results of a request for the next item in the result 3529
set. 3530

Furthermore, asynchronous iteration would complicate the provider’s maintenance of the result set. 3531
Since a provider could never know that the requestor had processed the results of an 3532
asynchronous iteration, the provider would not know when to increment its position in the result set. 3533
In order to support asynchronous iteration both correctly and generally, a provider would have to 3534
maintain a version of every result set for each iteration of that result set. This would impose an 3535

unreasonable burden on the provider. 3536

3.6.7.2.1 iterateRequest (normative) 3537

A requestor MUST send an <iterateRequest> to a provider in order to obtain any additional 3538

objects that matched a previous <searchRequest> but that the provider has not yet returned to 3539

the requestor. (That is, matching objects that were not contained in the response to that 3540

<searchRequest> and that have not yet been contained in any response to an 3541

<iterateRequest> associated with that <searchRequest>.) 3542

Execution. An <iterateRequest> MUST NOT specify "executionMode='asynchronous'". 3543

An <iterateRequest> MUST specify "executionMode='synchronous'" 3544

or (an <iterateRequest> MUST) omit “executionMode”. 3545

See the section titled "Determining execution mode". 3546

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 125 of 190

iterator. An <iterateRequest> MUST contain exactly one <iterator> element. A requestor 3547

MUST supply as input to an <iterateRequest> the <iterator> from the original 3548

<searchResponse> or (the requestor MUST supply as input to the <iterateRequest>) the 3549

<iterator> from a subsequent <iterateResponse>. A requestor SHOULD supply as input 3550

to an <iterateRequest> the most recent <iterator> that represents the search result set. 3551

3.6.7.2.2 iterateResponse (normative) 3552

A provider that receives a <iterateRequest> from a requestor that the provider trusts must 3553

examine the content of the <iterateRequest>. If the request is valid, the provider MUST return 3554

(the XML that represents) the next set of objects from the result set that the <iterator> 3555

represents. 3556

Execution. The provider MUST execute the iterate operation synchronously (if the provider 3557
executes the iterate operation at all). See the section titled “Determining execution mode”. 3558

Response. The provider MUST return to the requestor an <iterateResponse>. 3559

Status. The <iterateResponse> must contain a “status” attribute that indicates whether the 3560

provider successfully returned the next set of objects from the result set that the <iterator> 3561

represents. See the section titled "“Status (normative)”. 3562

• If the provider successfully returned (the XML that represents) the next set of objects from the 3563

result set that the <iterator> represents, then the <iterateResponse> MUST specify 3564

“status=’success’”. 3565

• If the provider encountered an error in returning (the XML that represents) the next set of 3566

objects from the result set that the <iterator> represents, then the <iterateResponse> 3567

MUST specify “status=’failure’”. 3568

PSO. The <iterateResponse> MAY contain any number of <pso> elements. 3569

• If the <iterateResponse> specifies “status=’success’” and at least one object remained 3570

to iterate (in the result set that the <iterator> represents), 3571

then the <iterateResponse> MUST contain at least one <pso> element 3572

that contains the (XML representation of the) next matching object. 3573

• If the <iterateResponse> specifies “status=’success’” and no object remained to 3574

iterate (in the result set that the <iterator> represents), 3575

then the <iterateResponse> MUST NOT contain a <pso> element. 3576

• If the <iterateResponse> specifies “status=’failure’”, 3577

then the <iterateResponse> MUST NOT contain a <pso> element. 3578

PSO and ReturnData. Each <pso> contains the subset of (the XML representation of) a requested 3579

object that the “returnData” attribute of the original <searchRequest> specified. By default, 3580

each <pso> contains the entire (XML representation of an) object. 3581

• A <pso> element MUST contain a <psoID> element. 3582

The <psoID> element MUST contain the identifier of the requested object. 3583

See the section titled “PSO Identifier (normative)”. 3584

• A <pso> element MAY contain a <data> element. 3585

- If the <searchRequest> specified “returnData=’identifier’”, 3586

then the <pso> MUST NOT contain a <data> element. 3587

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 126 of 190

- Otherwise, if the <searchRequest> specified “returnData=’data’” 3588

or (if the <searchRequest> specified) “returnData=’everything’” 3589

or (if the <searchRequest>) omitted the “returnData” attribute 3590

then the <data> element MUST contain the XML representation of the object. 3591

This XML must be valid according to the schema of the target for the schema entity of 3592
which the newly created object is an instance. 3593

• A <pso> element MAY contain any number of <capabilityData> elements. Each 3594

<capabilityData> element contains a set of capability-specific data that is associated with 3595

the newly created object (for example, a reference to another object). 3596

- If the <searchRequest> specified “returnData=’identifier’” 3597

or (if the <searchRequest> specified) “returnData=’data’” 3598

then the <pso> MUST NOT contain a <capabilityData> element. 3599

- Otherwise, if the <searchRequest> specified “returnData=’everything’” 3600

or (if the <searchRequest>) omitted the “returnData” attribute, 3601

then the <pso> MUST contain a <capabilityData> element for each set of capability-3602

specific data that is associated with the requested object 3603
(and that is specific to a capability that the target supports for the schema entity of which 3604
the requested object is an instance). 3605

PSO capabilityData and IncludeDataForCapability. An <iterateResponse> MUST include (as 3606

<capabilityData> sub-elements of each <pso>) any capability-specific data that is associated 3607

with each matching object and for which all of the following are true: 3608

• The original <searchRequest> specified “returnData=’everything’” 3609

or (the original <searchRequest>) omitted the “returnData” attribute. 3610

• The schema for the target declares that the target supports the capability 3611

(for the schema entity of which each matching object is an instance). 3612

• The original <searchRequest> contained an <includeDataForCapability> element 3613

that specified the capability to which the data are specific 3614

or the original <searchRequest> contained no <includeDataForCapability> element. 3615

An <iterateResponse> SHOULD NOT include (as <capabilityData> sub-elements of each 3616

<pso>) any capability-specific data for which any of the above is not true. 3617

iterator. A <iterateResponse> MAY contain at most one <iterator> element. 3618

• If the <iterateResponse> specifies “status=’success’” and the search response 3619

contains the last of the objects that matched the <query> that was specified in the original 3620

<searchRequest>, then the <iterateResponse> MUST NOT contain an <iterator>. 3621

• If the <iterateResponse> specifies “status=’success’” and the provider still has more 3622

matching objects that have not yet been returned to the requestor, then the 3623

<iterateResponse> MUST contain exactly one <iterator>. 3624

• If the <iterateResponse> specifies “status=’failure’”, then the <iterateResponse> 3625

MUST NOT contain an <iterator>. 3626

iterator ID. An <iterator> MUST have an “ID” attribute. 3627

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the 3628

provider. The “ID” attribute allows the provider to map each <iterator> token to the result set of 3629

the requestor’s <query> and to any state that records the requestor’s position within that result set. 3630

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 127 of 190

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot lookup an 3631

<iterator>. An <iterator> is not a PSO. 3632

Error. If the <iterateResponse> specifies “status=’failure’”, then the 3633

<iterateResponse> MUST have an “error” attribute that characterizes the failure. 3634

See the general section titled "“Error (normative)” . 3635

In addition, the <iterateResponse> MUST specify an appropriate value of “error” if any of the 3636

following is true: 3637

• If the provider does not recognize the <iterator> in an <iterateRequest> as representing 3638

a result set. 3639

• If the provider does not recognize the <iterator> in an <iterateRequest> as representing 3640

any result set that the provider currently maintains. 3641

The <iterateResponse> MAY specify an appropriate value of “error” if any of the following is 3642

true: 3643

• If an <iterateRequest> contains an <iterator> that is not the most recent version of the 3644

<iterator>. If the provider has returned to the requestor a more recent <iterator> that 3645

represents the same search result set, then the provider MAY reject the older <iterator>. 3646

(A provider that changes the ID—for example, to encode the state of iteration within a search 3647
result set—may be sensitive to this.) 3648

3.6.7.2.3 iterate Examples (non-normative) 3649

In order to illustrate the iterate operation, we first need a search operation that returns more than 3650

one object. In the following example, a requestor asks a provider to search for every Person with 3651

an email address that starts with the letter “j”. 3652

<searchRequest requestID=”147” >

 <query scope=”subTree” targetID=”target2” >

 <select path=’/Person/email=”j*”’ namespaceURI=”http://www.w3.org/TR/xpath20” />

 </query>

</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> 3653

indicates that the provider successfully executed the search operation. The <searchResponse> 3654

contains two <pso> elements that represent the first matching objects. 3655

<searchResponse requestID=”147” status=“success” >

 <pso>

 <data>

 <Person cn=”jeff” firstName=”Jeff” lastName=”Beck” fullName=”Jeff Beck”>

 <email>jeffbeck@example.com</email>

 </Person>

 </data>

 <psoID ID=”0001” targetID=“target2”/>

 </pso>

 <pso>
 <data>
 <Person cn=”jimi” firstName=”Jimi” lastName=”Hendrix” fullName=”Jimi Hendrix”>
 <email>jimi@example.com</email>
 </Person>
 </data>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 128 of 190

 <psoID ID=”0002” targetID=“target2”/>
 </pso>

 <iterator ID=”1900”/>

</searchResponse>

The requestor asks the provider to return the next matching objects (in the result set for the 3656

search). The requestor supplies the <iterator> from the <searchResponse> as input to the 3657

<iterateRequest>. 3658

<iterateRequest requestID=”148” >

 <iterator ID=”1900”/>

</iterateRequest>

The provider returns an <iterateResponse> in response to the <iterateRequest>. The 3659

“status” attribute of the <iterateResponse> indicates that the provider successfully executed 3660

the iterate operation. The <iterateResponse> contains two <pso> elements that represent the 3661

next matching objects. 3662

<iterateResponse requestID=”148” status=“success" >
 <pso>
 <data>
 <Person cn=”jt” firstName=”James” lastName=”Taylor” fullName=”James Taylor”>
 <email>jt@example.com</email>
 </Person>
 </data>
 <psoID ID=”0003” targetID=“target2”/>
 </pso>
 <pso>
 <data>
 <Person cn=”jakob” firstName=”Jakob” lastName=”Dylan” fullName=”Jakob Dylan”>
 <email>jakobdylan@example.com</email>
 </Person>
 </data>
 <psoID ID=”0004” targetID=“target2”/>
 </pso>
 <iterator ID=”1901”/>
</iterateResponse>

The <iterateResponse> also contains another <iterator> element. The “ID” of this 3663

<iterator> differs from the “ID” of the <iterator> in the original <searchResponse>. The 3664

“ID” could remain constant (for each iteration of the result set that the <iterator> represents) if 3665

the provider so chooses, but the “ID” value could change (e.g., if the provider uses “ID” to 3666

encode the state of the result set). 3667

To get the final matching object, the requestor again supplies the <iterator> from the 3668

<iterateResponse> as input to the <iterateRequest>. 3669

<iterateRequest requestID=”149”>

 <iterator ID=”1901”/>

</iterateRequest>

The provider again returns an <iterateResponse> in response to the <iterateRequest>. The 3670

“status” attribute of the <iterateResponse> indicates that the provider successfully executed 3671

the iterate operation. The <iterateResponse> contains a <pso> element that represents the 3672

final matching object. Since all of the matching objects have now been returned to the requestor, 3673

this <iterateResponse> contains no <iterator>. 3674

<iterateResponse requestID=”149” status=“success">
 <pso>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 129 of 190

 <data>
 <Person cn=”joebob” firstName=”JoeBob” lastName=”Briggs” fullName=”JoeBob
Briggs”>
 <email>joebob@example.com</email>
 </Person>
 </data>
 <psoID ID=”2244” targetID=“target2”/>
 </pso>
</iterateResponse>

3.6.7.3 closeIterator 3675

The closeIterator operation tells the provider that the requestor has no further need for the search 3676

result that a specific <iterator> represents. (See the description of the search operation above.) 3677

A requestor should send a <closeIteratorRequest> to the provider when the requestor no 3678

longer intends to iterate a search result. (A provider will eventually free an inactive search result --3679

even if the provider never receives a <closeIteratorRequest> from the requestor-- but this 3680

behavior is unspecified.) For more information, see the topic named "Resource Considerations" 3681
topic earlier within this section. 3682

The subset of the Search Capability XSD that is most relevant to the iterate operation follows. 3683

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CloseIteratorRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="closeIteratorRequest"
type="spmlsearch:CloseIteratorRequestType"/>
 <element name="closeIteratorResponse" type="spml:ResponseType"/>

A closeIteratorRequest receives a closeIteratorResponse. A requestor supplies as input to a 3684

<closeIteratorRequest> the <iterator> that was part of the original <searchResponse> 3685

or the <iterator> that was part of a subsequent <iterateResponse>, whichever is most 3686

recent. A provider returns a <closeIteratorResponse> in response to each 3687

<closeIteratorRequest>. A <closeIteratorResponse> has the same structure as an 3688

<spml:response>. 3689

closeIterator is not batchable. For reasons of scale, neither of a search request nor an iterate 3690
request nor a closeIterator request should be nested in a batch request. When a search query 3691

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 130 of 190

matches more objects than the provider can place directly in the response, the provider must 3692
temporarily store the remaining objects. Storing the remaining objects allows the requestor to 3693
iterate the remaining objects, but also requires the provider to commit resources. 3694
See the topic named “Resource Considerations” earlier in this section. 3695

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 3696
results of asynchronous batch operations imposes on providers a resource burden similar to that of 3697
search results. Allowing a requestor to nest a search request or an iterate request or a closeIterator 3698
request within a batch request would aggravate the resource problem, requiring a provider to store 3699
more information in larger chunks for a longer amount of time. 3700

The closeIterator operation must be executed synchronously. The provider is already queuing 3701
the result set (every object beyond those returned in the first search response), so a request to 3702
close the iterator (and thus to free the system resources associated with the result set) should be 3703
executed as soon as possible. It is unreasonable for a requestor to ask the provider to queue the 3704
results of a request to close an iterator (especially since the close iterator response contains little or 3705
no information beyond success or failure). 3706

3.6.7.3.1 closeIteratorRequest (normative) 3707

A requestor SHOULD send a <closeIteratorRequest> to a provider when the requestor no 3708

longer intends to iterate a search result. (This allows the provider to free any system resources 3709
associated with the search result.). 3710

Execution. A <closeIteratorRequest> MUST NOT specify 3711

"executionMode='asynchronous'". 3712

A <closeIteratorRequest> MUST specify "executionMode='synchronous'" 3713

or (a <closeIteratorRequest> MUST) omit “executionMode”. 3714

See the section titled "Determining execution mode". 3715

iterator. A <closeIteratorRequest> MUST contain exactly one <iterator> element. A 3716

requestor MUST supply as input to a <closeIteratorRequest> the <iterator> from the 3717

original <searchResponse> or (a requestor MUST supply the <iterator> from a subsequent 3718

<iterateResponse>). A requestor SHOULD supply as input to a 3719

<closeIteratorRequest> the most recent <iterator> that represents the search result set. 3720

iterator ID. An <iterator> that is part of a <closeIteratorRequest> MUST have an "ID" 3721

attribute. (The value of the "ID" attribute uniquely identifies the <iterator> within the 3722

namespace of the provider. The "ID" attribute allows the provider to map each <iterator> 3723

token to the result set of the requestor’s <query> and also (allows the provider to map each 3724

<iterator> token) to any state that records the requestor's iteration within that result set.) 3725

3.6.7.3.2 closeIteratorResponse (normative) 3726

A provider that receives a <closeIteratorRequest> from a requestor that the provider trusts 3727

must examine the content of the <closeIteratorRequest>. If the request is valid, the provider 3728

MUST release any search result set that the <iterator> represents. Any subsequent request to 3729

iterate that same search result set MUST fail. 3730

Execution. The provider MUST execute the closeIterator operation synchronously (if the provider 3731
executes the closeIterator operation at all). See the section titled “Determining execution mode”. 3732

Response. The provider MUST return to the requestor a <closeIteratorResponse>. 3733

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 131 of 190

Status. The <closeIteratorResponse> must contain a “status” attribute that indicates 3734

whether the provider successfully released the search result set that the <iterator> represents. 3735

See the section titled “Status (normative)”. 3736

• If the provider successfully released the search result set that the <iterator> represents, 3737

then the <closeIteratorResponse> MUST specify “status=’success’”. 3738

• If the provider encountered an error in releasing the search result set that the <iterator> 3739

represents, then the <closeIteratorResponse> MUST specify “status=’failure’”. 3740

Error. If the <closeIteratorResponse> specifies “status=’failure’”, then the 3741

<closeIteratorResponse> MUST have an “error” attribute that characterizes the failure. 3742

See the general section titled “Error (normative)”. 3743

In addition, the <closeIteratorResponse> MUST specify an appropriate value of “error” if 3744

any of the following is true: 3745

• If the provider does not recognize the <iterator> in a <closeIteratorRequest> as 3746

representing a search result set. 3747

• If the provider does not recognize the <iterator> in a <closeIteratorRequest> as 3748

representing any search result set that the provider currently maintains. 3749

• If the provider recognized the <iterator> in a <closeIteratorRequest> as representing 3750

a search result set that the provider currently maintains but cannot release the resources 3751
associated with that search result set. 3752

The <closeIteratorResponse> MAY specify an appropriate value of “error” if any of the 3753

following is true: 3754

• If a <closeIteratorRequest> contains an <iterator> that is not the most recent version 3755

of the <iterator>. If the provider has returned to the requestor a more recent <iterator> 3756

that represents the same search result set, then the provider MAY reject the older 3757

<iterator>. 3758

(A provider that changes the ID—for example, to encode the state of iteration within a search 3759
result set—may be sensitive to this.) 3760

3.6.7.3.3 closeIterator Examples (non-normative) 3761

In order to illustrate the closeIterator operation, we first need a search operation that returns more 3762

than one object. In the following example, a requestor asks a provider to search for every Person 3763

with an email address that starts with the letter “j”. 3764

<searchRequest requestID=”150”>

 <query scope=”subTree” targetID=”target2” >

 <select path=’/Person/email=”j*”’ namespaceURI=”http://www.w3.org/TR/xpath20”/>

 </query>

</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> 3765

indicates that the provider successfully executed the search operation. The <searchResponse> 3766

contains two <pso> elements that represent the first matching objects. 3767

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 132 of 190

<searchResponse request=”150” status=“success”>

 <pso>

 <data>

 <Person cn=”jeff” firstName=”Jeff” lastName=”Beck” fullName=”Jeff Beck”>

 <email>jeffbeck@example.com</email>

 </Person>

 </data>

 <psoID ID=”0001” targetID=“target2”/>

 </pso>

 <pso>
 <data>
 <Person cn=”jimi” firstName=”Jimi” lastName=”Hendrix” fullName=”Jimi Hendrix”>
 <email>jimi@example.com</email>
 </Person>
 </data>
 <psoID ID=”0002” targetID=“target2”/>
 </pso>

 <iterator ID=”1900”/>

</searchResponse>

The requestor decides that the two objects in the initial <searchResponse> will suffice, and does 3768

not intend to retrieve any more matching objects (in the result set for the search). The requestor 3769

supplies the <iterator> from the <searchResponse> as input to the 3770

<closeIteratorRequest>. 3771

<closeIteratorRequest requestID=”151”>

 <iterator ID=”1900”/>

</closeIteratorRequest>

The provider returns a <closeIteratorResponse> in response to the 3772

<closeIteratorRequest>. The “status” attribute of the <closeIteratorResponse> 3773

indicates that the provider successfully released the result set. 3774

<closeIteratorResponse requestID=”151” status=“success"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 133 of 190

3.6.8 Suspend Capability 3775

The Suspend Capability is defined in a schema associated with the following XML namespace: 3776

urn:oasis:names:tc:SPML:2:0:suspend. This document includes the Suspend Capability 3777

XSD as Appendix H. 3778

The Suspend Capability defines three operations: suspend, resume and active. 3779

• The suspend operation disables an object (immediately or on a specified date). 3780

• The resume operation re-enables an object (immediately or on a specified date). 3781

• The active operation tests whether an object is currently suspended. 3782

The suspend operation disables an object persistently (rather than transiently). The suspend 3783
operation is intended to revoke the privileges of an account, for example, while the authorized user 3784
of the account is on vacation. 3785

The resume operation re-enables an object persistently. One might use the resume operation to 3786
restore privileges for an account, for example, when the authorized user of the account returns from 3787
vacation. 3788

A provider that supports the suspend, resume and active operations for a target SHOULD declare 3789
that the target supports the Suspend Capability. A provider that does not support all of suspend, 3790
resume and active MUST NOT declare that the target supports the Suspend Capability. 3791

Idempotent. The suspend operation and the resume operation are both idempotent. Any requestor 3792
should be able to suspend (or to resume) the same object multiple times without error. 3793

Search. A requestor can search for objects based on enabled state using the <isActive> query 3794

clause. The {IsActiveType} extends {QueryClauseType}, which indicates that an instance 3795

of {IsActiveType} can be used to select objects. An <isActive> clause matches an object if 3796

and only if the object is currently enabled. In order to select disabled objects, a requestor would 3797

combine this clause with the logical operator <not>. See the section titled “Selection”. 3798

3.6.8.1 suspend 3799

The suspend operation enables a requestor to disable an object. 3800

The subset of the Suspend Capability XSD that is most relevant to the suspend operation follows. 3801

 <complexType name="SuspendRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="effectiveDate" type="dateTime"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="suspendRequest" type="spmlsuspend:SuspendRequestType"/>
 <element name="suspendResponse" type="spml:ResponseType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 134 of 190

3.6.8.1.1 suspendRequest (normative) 3802

A requestor MUST send a <suspendRequest> to a provider in order to (ask the provider to) 3803

disable an existing object. 3804

Execution. A <suspendRequest> MAY specify “executionMode”. 3805

See the section titled "Determining execution mode. 3806

psoID. A <suspendRequest> MUST contain exactly one <psoID> element. A <psoID> element 3807

MUST identify an object that exists on a target that is exposed by the provider. 3808
See the section titled "PSO Identifier (normative)". 3809

EffectiveDate. A <suspendRequest> MAY specify an “effectiveDate”. Any 3810

“effectiveDate” value MUST be expressed in UTC form, with no time zone component. 3811

A requestor or a provider SHOULD NOT rely on time resolution finer than milliseconds. 3812
A requestor MUST NOT generate time instants that specify leap seconds. 3813

3.6.8.1.2 suspendResponse (normative) 3814

A provider that receives a <suspendRequest> from a requestor that the provider trusts MUST 3815

examine the content of the <suspendRequest>. If the request is valid and if the specified object 3816

exists, then the provider MUST disable the object that the <psoID> specifies. 3817

If the <suspendRequest> specifies an “effectiveDate”, the provider MUST enable the 3818

specified object as of that date. 3819

• If the “effectiveDate” of the <suspendRequest> is in the past, then 3820

the provider MUST do one of the following: 3821

- The provider MAY disable the specified object immediately. 3822

- The provider MAY return an error. (The provider’s response SHOULD indicate that the 3823
request failed because the effective date is past.) 3824

• If the “effectiveDate” of the <suspendRequest> is in the future, then 3825

- The provider MUST NOT disable the specified object until that future date and time. 3826

- The provider MUST disable the specified object at that future date and time 3827
(unless a subsequent request countermands this request). 3828

Execution. If an <suspendRequest> does not specify "executionMode", 3829

the provider MUST choose a type of execution for the requested operation. 3830
See the section titled “Determining execution mode”. 3831

Response. The provider must return to the requestor a <suspendResponse>. The 3832

<suspendResponse> must have a “status” attribute that indicates whether the provider 3833

successfully disabled the specified object. See the section titled “Status (normative)”. 3834

Error. If the provider cannot create the requested object, the <suspendResponse> must contain 3835

an error attribute that characterizes the failure. See the general section titled “Error (normative)”. 3836

In addition, the <suspendResponse> MUST specify an appropriate value of "error" if any of the 3837

following is true: 3838

• The <suspendRequest> contains a <psoID> for an object that does not exist. 3839

• The <suspendRequest> specifies an “effectiveDate” that is not valid. 3840

The provider MAY return an error if any of the following is true: 3841

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 135 of 190

• The <suspendRequest> specifies an “effectiveDate” that is in the past. 3842

The provider MUST NOT return an error when (the operation would otherwise succeed and) the 3843

object is already disabled. In this case, the <suspendResponse> MUST specify 3844

“status=’success’”. 3845

3.6.8.1.3 suspend Examples (non-normative) 3846

In the following example, a requestor asks a provider to suspend an existing Person object. 3847

<suspendRequest requestID=”139”>
 <psoID ID=”2244” targetID=“target2”/>
</suspendRequest>

The provider returns an <suspendResponse> element. The “status” attribute of the 3848

<suspendResponse> indicates that the provider successfully disabled the specified object. 3849

<suspendResponse requestID=”139” status=“success" />

In the following example, a requestor asks a provider to suspend an existing account. 3850

<suspendRequest requestID=”140” >
 <psoID ID=”1431” targetID=“target1”/>
</suspendRequest>

The provider returns a <suspendResponse>. The “status” attribute of the 3851

<suspendResponse> indicates that the provider successfully disabled the specified account. 3852

<suspendResponse requestID=”140” status=“success"/>

3.6.8.2 resume 3853

The resume operation enables a requestor to re-enable an object that has been suspended. (See 3854
the description of the suspend operation above.) 3855

The subset of the Suspend Capability XSD that is most relevant to the resume operation follows. 3856

 <complexType name="ResumeRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="effectiveDate" type="dateTime"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="ResumeRequest" type="spmlsuspend:ResumeRequestType"/>
 <element name="ResumeResponse" type="spml:ResponseType"/>

3.6.8.2.1 resumeRequest (normative) 3857

A requestor MUST send a <resumeRequest> to a provider in order to (ask the provider to) re-3858

enable an existing object. 3859

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 136 of 190

Execution. A <resumeRequest> MAY specify “executionMode”. 3860

See the section titled "Determining execution mode". 3861

psoID. A <resumeRequest> MUST contain exactly one <psoID> element. A <psoID> element 3862

MUST identify an object that exists on a target (that is supported by the provider). 3863
See the section titled "PSO Identifier (normative)". 3864

EffectiveDate. A <resumeRequest> MAY specify an “effectiveDate”. Any 3865

“effectiveDate” value MUST be expressed in UTC form, with no time zone component. 3866

A requestor or a provider SHOULD NOT rely on time resolution finer than milliseconds. 3867
A requestor MUST NOT generate time instants that specify leap seconds. 3868

3.6.8.2.2 resumeResponse (normative) 3869

A provider that receives a <resumeRequest> from a requestor that the provider trusts MUST 3870

examine the content of the <resumeRequest>. If the request is valid and if the specified object 3871

exists, then the provider MUST enable the object that is specified by the <psoID>. 3872

If the <resumeRequest> specifies an “effectiveDate”, the provider MUST enable the 3873

specified object as of that date. 3874

• If the “effectiveDate” of the <resumeRequest> is in the past, then 3875

the provider MUST do one of the following: 3876

- The provider MAY enable the specified object immediately. 3877

- The provider MAY return an error. (The provider’s response SHOULD indicate that the 3878
request failed because the effective date is past.) 3879

• If the “effectiveDate” of the <resumeRequest> is in the future, then 3880

- The provider MUST NOT enable the specified object until that future date and time. 3881

- The provider MUST enable the specified object at that future date and time 3882
(unless a subsequent request countermands this request). 3883

Execution. If an <resumeRequest> does not specify "executionMode", 3884

the provider MUST choose a type of execution for the requested operation. 3885
See the section titled “Determining execution mode”. 3886

Response. The provider must return to the requestor a <resumeResponse>. The 3887

<resumeResponse> must have a “status” attribute that indicates whether the provider 3888

successfully enabled the specified object. See the section titled “Status (normative)”. 3889

Error. If the provider cannot enable the requested object, the <resumeResponse> must contain 3890

an error attribute that characterizes the failure. See the general section titled “Error (normative)”. 3891

In addition, the <resumeResponse> MUST specify an appropriate value of "error" if any of the 3892

following is true: 3893

• The <resumeRequest> contains a <psoID> for an object that does not exist. 3894

• The <resumeRequest> specifies an “effectiveDate” that is not valid. 3895

The provider MAY return an error if any of the following is true: 3896

• The <resumeRequest> specifies an “effectiveDate” that is in the past. 3897

The provider MUST NOT return an error when (the operation would otherwise succeed and) the 3898

object is already enabled. In this case, the response should specify “status=’success’”. 3899

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 137 of 190

3.6.8.2.3 resume Examples (non-normative) 3900

In the following example, a requestor asks a provider to resume an existing Person object. 3901

<resumeRequest requestID=”141”>
 <psoID ID=”2244” targetID=“target2”/>
</resumeRequest>

The provider returns a <resumeResponse> element. The “status” attribute of the 3902

<resumeResponse> element indicates that the provider successfully disabled the specified object. 3903

<resumeResponse requestID=”141” status=“success"/>

In the following example, a requestor asks a provider to resume an existing account. 3904

<resumeRequest requestID=”142”>
 <psoID ID=”1431” targetID=“target1”/>
</resumeRequest>

The provider returns a <resumeResponse>. The “status” attribute of the 3905

<resumeResponse> indicates that the provider successfully enabled the specified account. 3906

<resumeResponse requestID=”142” status=“success"/>

3.6.8.3 active 3907

The active operation enables a requestor to determine whether a specified object has been 3908
suspended. (See the description of the suspend operation above.) 3909

The subset of the Suspend Capability XSD that is most relevant to the active operation follows. 3910

 <complexType name="ActiveRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ActiveResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="active" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="ActiveRequest" type="spmlsuspend:ActiveRequestType"/>
 <element name="ActiveResponse" type="spmlsuspend:ActiveResponseType"/>

3.6.8.3.1 activeRequest (normative) 3911

A requestor MUST send an <activeRequest> to a provider in order to (ask the provider to) 3912

determine whether the specified object is enabled (active) or disabled. 3913

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 138 of 190

Execution. An <activeRequest> MAY specify “executionMode”. 3914

See the section titled "Determining execution mode. 3915

psoID. A <activeRequest> MUST contain exactly one <psoID> element. A <psoID> element 3916

MUST identify an object that exists on a target that is exposed by the provider. 3917
See the section titled "PSO Identifier (normative)". 3918

3.6.8.3.2 activeResponse (normative) 3919

A provider that receives a <activeRequest> from a requestor that the provider trusts MUST 3920

examine the content of the <activeRequest>. If the request is valid and if the specified object 3921

exists, then the provider MUST disable the object that is specified by the <psoID>. 3922

Execution. If an <activeRequest> does not specify "executionMode", the provider MUST 3923

choose a type of execution for the requested operation. 3924
See the section titled “Determining execution mode”. 3925

Response. The provider must return to the requestor an <activeResponse>. The 3926

<activeResponse> must have a “status” attribute that indicates whether the provider 3927

successfully determined whether the specified object is enabled (i.e. active). 3928
See the section titled “Status (normative)”. 3929

active. An <activeResponse> MAY have an “active” attribute that indicates whether the 3930

specified object is suspended. An <activeResponse> that specifies “status=’success’” 3931

MUST have an “active” attribute. 3932

• If the specified object is suspended, the <activeResponse> MUST specify 3933

“active=’false’”. 3934

• If the specified object is not suspended, the <activeResponse> MUST specify 3935

“active=’true’”. 3936

Error. If the provider cannot determine whether the requested object is suspended, the 3937

<activeResponse> must contain an “error” attribute that characterizes the failure. 3938

See the general section titled “Error (normative)”. 3939

In addition, the <activeResponse> MUST specify an appropriate value of "error" if any of the 3940

following is true: 3941

• The <activeRequest> contains a <psoID> that specifies an object that does not exist. 3942

3.6.8.3.3 active Examples (non-normative) 3943

In the following example, a requestor asks a provider whether a Person object is active. 3944

<activeRequest requestID=”143”>
 <psoID ID=”2244” targetID=“target2”/>
</activeRequest>

The provider returns an <activeResponse> element. The “status” attribute of the 3945

<activeResponse> element indicates that the provider successfully completed the requested 3946

operation. The “active” attribute of the <activeResponse> indicates that the specified object is 3947

active. 3948

<activeResponse requestID=”143” status=“success" active=”true”/>

In the following example, a requestor asks a provider whether an account is active. 3949

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 139 of 190

<activeRequest requestID=”144”>
 <psoID ID=”1431” targetID=“target1”/>
</activeRequest>

The provider returns an <activeResponse>. The “status” attribute of the 3950

<activeResponse> indicates that the provider successfully completed the requested operation. 3951

The “active” attribute of the <activeResponse> indicates that the specified object is active. 3952

<activeResponse requestID=”144” status=“success" active=”true”/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 140 of 190

3.6.9 Updates Capability 3953

The Updates Capability is defined in a schema associated with the following XML namespace: 3954

urn:oasis:names:tc:SPML:2:0:updates. This document includes the Updates Capability 3955

XSD as Appendix I. 3956

The Updates Capability defines three operations: updates, iterate and closeIterator. The updates 3957
and iterate operations together allow a requestor to obtain in a scalable manner every recorded 3958
update (i.e., modification to an object) that matches specified selection criteria. The updates 3959
operation returns in its response a first set of matching updates. Each subsequent iterate operation 3960
returns more matching updates. The closeIterator operation allows a requestor to tell a provider that 3961
it does not intend to finish iterating a result set and that the provider may therefore release the 3962
associated resources). 3963

A provider that supports the updates and iterate operations for a target SHOULD declare that the 3964
target supports the Updates Capability. A provider that does not support both updates and iterate 3965
MUST NOT declare that the target supports the Updates Capability. 3966

Resource considerations. A provider must limit the size and duration of its updates result sets (or 3967
that provider will exhaust available resources). A provider must decide: 3968

• How large of an updates result set the provider will select on behalf of a requestor. 3969

• How large of an updates result set the provider will queue on behalf of a requestor 3970
(so that the requestor may iterate the updates result set). 3971

• For how long a time the provider will queue an updates result set on behalf of a requestor. 3972

These decisions may be governed by the provider’s implementation, by its configuration, or by 3973
runtime computation. 3974

A provider that wishes to never to queue updates result sets may return every matching object (up 3975
to the provider’s limit and up to any limit that the request specifies) in the updates response. Such 3976
a provider would never return an iterator, and would not need to support the iterate operation. The 3977
disadvantage is that, without an iterate operation, a provider’s updates capability either is limited to 3978
small results or produces large updates responses. 3979

A provider that wishes to support the iterate operation must store (or somehow queue) the updates 3980
selected by an updates operation until the requestor has a chance to iterate those results. (That is, 3981
a provider must somehow queue the updates that matched the criteria of an updates operation and 3982
that were not returned in the updates response.) 3983

If all goes well, the requestor will continue to iterate the updates result set until the provider has 3984
sent all of the updates to the requestor. The requestor may also use the closeIterator operation to 3985
tell the provider that the requestor is no longer interested in the search result. Once all of the 3986
updates have been sent to the requestor, the provider may free any resource that is still associated 3987
with the updates result set. However, it is possible that the requestor may not iterate the updates 3988
result set in a timely manner--or that the requestor may never iterate the updates result set 3989
completely. Such a requestor may also neglect to close the iterator. 3990

A provider cannot queue updates result sets indefinitely. The provider must eventually release the 3991
resources associated with an updates result set. (Put differently, any iterator that a provider returns 3992
to a requestor must eventually expire.) Otherwise, the provider may run out of resources. 3993

Providers should carefully manage the resources associated with updates result sets. For example: 3994

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 141 of 190

• A provider may define a timeout interval that specifies the maximum time between iterate 3995
requests. If a requestor does not request an iterate operation within this interval, the provider 3996
will release the resources associated with the result set. This invalidates any iterator that 3997
represents this result set. 3998

• A provider may also define an overall result lifetime that specifies the maximum length of time 3999
to retain a result set. After this amount of time has passed, the provider will release the result 4000
set. 4001

• A provider may also wish to enforce an overall limit on the resources available to queue result 4002
sets, and may wish to adjust its behavior (or even to refuse updates requests) accordingly. 4003

• To prevent denial of service attacks, the provider should not allocate any resource on behalf of 4004
a requestor until that requestor is properly authenticated. 4005
See the section titled “Security and Privacy Considerations”. 4006

3.6.9.1 updates 4007

The updates operation obtains records of changes to objects. A requestor may select change 4008
records based on changed-related criteria and (may also select change records) based on the set 4009
of objects. 4010

The subset of the Updates Capability XSD that is most relevant to the updates operation follows. 4011

 <complexType name="UpdatesRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query" minOccurs="0"/>
 <element name="updatedByCapability" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="updatedSince" type="xsd:dateTime"
use="optional"/>
 <attribute name="token" type="xsd:string" use="optional"/>
 <attribute name="maxSelect" type="xsd:int" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="UpdateKindType">
 <restriction base="string">
 <enumeration value="add"/>
 <enumeration value="modify"/>
 <enumeration value="delete"/>
 <enumeration value="capability"/>
 </restriction>
 </simpleType>

 <complexType name="UpdateType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType" />
 </sequence>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 142 of 190

 <attribute name="timestamp" type="xsd:dateTime"
use="required"/>
 <attribute name="updateKind"
type="spmlupdates:UpdateKindType" use="required"/>
 <attribute name="wasUpdatedByCapability" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="UpdatesResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="update" type="spmlupdates:UpdateType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 <attribute name="token" type="xsd:string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="updatesRequest" type="spmlupdates:UpdatesRequestType"/>
 <element name="updatesResponse"
type="spmlupdates:UpdatesResponseType"/>

The <query> is the same type of element that is specified as part of a <bulkModifyRequest> or 4012

a <bulkDeleteRequest> or a <searchRequest>. This <query> selects the objects for which 4013

the provider will return recorded updates. See the section titled "SearchQueryType". 4014

The "updatedSince" attribute allows the requestor to select only updates that occurred since a 4015

specific date and time. 4016

If the updates operation is successful but selects no matching update, the <updatesResponse> 4017

will not contain an <update>. 4018

If the updates operation is successful and selects at least one matching update, the 4019

<updatesResponse> will contain any number of <update> elements, each of which represents a 4020

matching update. If the updates operation selects more matching updates than the 4021

<updatesResponse> contains, the <updatesResponse> will also contain an <iterator> that 4022

the requestor can use to retrieve more matching updates. (See the description of the iterate 4023
operation below.) 4024

If an updates operation would select more updates than the provider can queue for subsequent 4025

iteration by the requestor, the provider's <updatesResponse> will specify 4026

"error='resultSetTooLarge'". 4027

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 143 of 190

Updates is not batchable. For reasons of scale, neither an updates request nor an iterate request 4028
should be nested in a batch request. When an updates query matches more updates than the 4029
provider can place directly in the response, the provider must temporarily store the remaining 4030
updates. Storing the remaining updates allows the requestor to iterate the remaining updates, but 4031
also requires the provider to commit resources. 4032
See the topic named “Resource Considerations” earlier in this section. 4033

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 4034
results of asynchronous batch operations imposes on providers a resource burden similar to that of 4035
updates result sets. Allowing a requestor to nest an updates request within a batch request would 4036
aggravate the resource problem, requiring a provider to store more information in larger chunks for 4037
a longer amount of time. 4038

3.6.9.1.1 updatesRequest (normative) 4039

A requestor MUST send an <updatesRequest> to a provider in order to (ask the provider to) 4040

obtain every update that matches specified selection criteria. 4041

Execution. An <updatesRequest> MAY specify “executionMode”. 4042

See the section titled “Determining execution mode”. 4043

query. A <query> describes criteria that (the provider must use to) select objects on a target. 4044

The provider will return only updates that affect objects that match these criteria. 4045

An <updatesRequest> MAY contain at most one <query> element. 4046

• If the provider's <listTargetsResponse> contains only a single <target>, 4047

then an <updatesRequest> may omit the <query> element. 4048

• If the provider's <listTargetsResponse> contains more than one <target>, 4049

then an <updatesRequest> MUST contain exactly one <query> element 4050

and that <query> must specify "targetID". 4051

See the section titled "SearchQueryType in a Request (normative)". 4052

updatedByCapability. An <updatesRequest> MAY contain any number of 4053

<updatedByCapability> elements. Each <updatedByCapability> element contains the 4054

URN of an XML namespace that uniquely identifies a capability. Each <updatedByCapability> 4055

element must identify a capability that the target supports. 4056

• A requestor that wants the provider to return no update that reflects a change to capability-4057

specific data associated with an object MUST NOT place an <updatedByCapability> 4058

element in its <updatesRequest>. 4059

• A requestor that wants the provider to return updates that reflect changes to capability-specific 4060
data associated with one or more objects MUST specify each capability (for which the provider 4061

should return updates) as an <updatedByCapability> element in its <updatesRequest>. 4062

updatedSince. A <updatesRequest> MAY have an "updatedSince" attribute. (The provider 4063

will return only updates with a timestamp greater than this value.) 4064

Any “updatedSince” value MUST be expressed in UTC form, with no time zone component. 4065

A requestor or a provider SHOULD NOT rely on time resolution finer than milliseconds. 4066
A requestor MUST NOT generate time instants that specify leap seconds. 4067

maxSelect. An <updatesRequest> MAY have a “maxSelect” attribute. The value of the 4068

“maxSelect” attribute specifies the maximum number of updates the provider should select. 4069

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 144 of 190

token. An <updatesRequest> MAY have a “token” attribute. Any “token” value MUST 4070

match a value that the provider returned to the requestor as the value of the “token” attribute in a 4071

previous <updatesResponse> for the same target. Any “token” value SHOULD match the 4072

(value of the “token” attribute in the) provider's most recent <updatesResponse> for the same 4073

target. 4074

3.6.9.1.2 updatesResponse (normative) 4075

A provider that receives an <updatesRequest> from a requestor that the provider trusts must 4076

examine the content of the <updatesRequest>. If the request is valid, the provider MUST return 4077

updates that represent every change (that occurred since any time specified as "updatedSince") 4078

to every object that matches the specified <query> (if the provider can possibly do so). However, 4079

the number of updates selected (for immediate return or for eventual iteration) MUST NOT exceed 4080

any limit specified as “maxSelect” in the <updatesRequest>. 4081

Execution. If an <updatesRequest> does not specify "executionMode", 4082

the provider MUST choose a type of execution for the requested operation. 4083
See the section titled “Determining execution mode”. 4084

A provider SHOULD execute an updates operation synchronously if it is possible to do so. (The 4085
reason for this is that the result of an updates should reflect the set of changes currently recorded 4086
for each matching object. Other operations are more likely to intervene if an updates operation is 4087
executed asynchronously.) 4088

Response. The provider MUST return to the requestor a <updatesResponse>. 4089

Status. The <updatesResponse> must contain a “status” attribute that indicates whether the 4090

provider successfully selected every object that matched the specified query. 4091
See the section titled “Status (normative)” for values of this attribute. 4092

• If the provider successfully returned every update that occurred (since any time specified by 4093

"updatedSince") to every object that matched the specified <query> 4094

up to any limit specified by the value of the “maxSelect” attribute, 4095

then the <updatesResponse> MUST specify “status=’success’”. 4096

• If the provider encountered an error in selecting any object that matched the specified <query> 4097

or (if the provider encountered an error) in returning any of the selected updates, then the 4098

<updatesResponse> MUST specify “status=’failure’”. 4099

Update. The <updatesResponse> MAY contain any number of <update> elements. 4100

• If the <updatesResponse> specifies “status=’success’” and at least one update matched 4101

the specified criteria, then the <updatesResponse> MUST contain at least one <update> 4102

element that describes a change to a matching object. 4103

• If the <updatesResponse> specifies “status=’success’” and no object matched the 4104

specified criteria, then the <updatesResponse> MUST NOT contain an <update> element. 4105

• If the <updatesResponse> specifies “status=’failure’”, then the <updatesResponse> 4106

MUST NOT contain an <update> element. 4107

Update PsoID. Each <update> MUST contain exactly one <psoID> element. Each <psoID> 4108

element uniquely identifies the object that was changed. 4109

Update timestamp. Each <update> must have a "timestamp" attribute that specifies when the 4110

object was changed. 4111

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 145 of 190

Any “timestamp” value MUST be expressed in UTC form, with no time zone component. 4112

A requestor or a provider SHOULD NOT rely on time resolution finer than milliseconds. 4113

Update updateKind. Each <update> must have an "updateKind" attribute that describes how 4114

the object was changed. 4115

• If the <update> specifies “updateKind=’add’", then the object was added. 4116

• If the <update> specifies “updateKind=’modify’", 4117

then the (schema-defined XML data that represents the) object was modified. 4118

• If the <update> specifies “updateKind=’delete’", then the object was deleted. 4119

• If the <update> specifies “updateKind=’capability’", 4120

then a set of capability-specific data that is (or was) associated with the object was modified. 4121

Update wasUpdatedByCapability. Each <update> MAY have a "wasUpdatedByCapability" 4122

attribute that identifies the capability for which data (specific to that capability and associated with 4123
the object) was changed. 4124

• An <update> that specifies “updateKind=’capability’" 4125

MUST have a "wasUpdatedByCapability" attribute. 4126

• An <update> that specifies “updateKind=’add’" or (that specifies) 4127

“updateKind=’modify’" or (that specifies) “updateKind=’delete’" 4128

MUST NOT have a "wasUpdatedByCapability" attribute. 4129

• The value of each "wasUpdatedByCapability" MUST be the URN of an XML namespace 4130

that uniquely identifies a capability. Each "wasUpdatedByCapability" attribute MUST 4131

identify a capability that the target supports. 4132

iterator. A <updatesResponse> MAY contain at most one <iterator> element. 4133

• If the <updatesResponse> specifies “status=’success’” and the updates response 4134

contains all of the objects that matched the specified <query>, then the 4135

<updatesResponse> MUST NOT contain an <iterator>. 4136

• If the <updatesResponse> specifies “status=’success’” and the updates response 4137

contains some but not all of the objects that matched the specified <query>, then the 4138

<updatesResponse> MUST contain exactly one <iterator>. 4139

• If the <updatesResponse> specifies “status=’success’” and no object matched the 4140

specified <query>, then the <updatesResponse> MUST NOT contain an <iterator>. 4141

• If the <updatesResponse> specifies “status=’failure’”, then the <updatesResponse> 4142

MUST NOT contain an <iterator>. 4143

iterator ID. An <iterator> MUST have an “ID” attribute. 4144

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the 4145

provider. The “ID” attribute allows the provider to map each <iterator> token to the result set of 4146

the requestor’s <query> and to any state that records the requestor’s position within that result set. 4147

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot lookup an 4148

<iterator>. An <iterator> is not a PSO. 4149

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 146 of 190

token. An <updatesResponse> MAY have a "token" attribute. (The requestor may pass this 4150

"token" value in the next <updatesRequest> for the same target. See the topic named "token" 4151

within the section titled "UpdatesRequest" above.) 4152

Error. If the <updatesResponse> specifies “status=’failure’”, then the 4153

<updatesResponse> MUST have an “error” attribute that characterizes the failure. 4154

See the general section titled “Error (normative)”. 4155

The section titled "SearchQueryType Errors (normative)" describes errors specific to a request that 4156

contains a <query>. Also see the section titled “SelectionType Errors (normative)”. 4157

In addition, the <updatesResponse> MUST specify an appropriate value of "error" if any of the 4158

following is true: 4159

• If the number of updates that matched the criteria that were specified in an 4160

<updatesRequest> exceeds any limit on the part of the provider. (but does not exceed any 4161

value of “maxSelect” that the requestor specified as part of the <query>). 4162

In this case, the provider's <updatesResponse> SHOULD specify 4163

"error='resultSetTooLarge'". 4164

3.6.9.1.3 updates Examples (non-normative) 4165

In the following example, a requestor asks a provider to updates for every Person with an email 4166

address matching “joebob@example.com”. The requestor includes no <updatedByCapability> 4167

element, which indicates that only updates to the schema-defined data for each matching object 4168
interest the requestor. 4169

<updatesRequest requestID=”145”>
 <query scope=”subTree” targetID=”target2” >
 <select path=’/Person/email=”joebob@example.com”’
namespaceURI=”http://www.w3.org/TR/xpath20” />
 </query>
</updatesRequest>

The provider returns a <updatesResponse>. The “status” attribute of the 4170

<updatesResponse> indicates that the provider successfully executed the updates operation. 4171

<updatesResponse requestID=”145” status=“success">
 <update timestamp="20050704115900" updateKind="modify">
 <psoID ID=”2244” targetID=“target2”/>
 </update>
</updatesResponse>

The requestor next asks the provider to include capability-specific updates (i.e., recorded changes 4172
to capability-specific data items that are associated with each matching object). The requestor 4173
indicates interest in updates specific to the reference capability and (indicates interest in updates 4174
specific to the) the Suspend Capability. 4175

<updatesRequest requestID=”146”>
 <query scope=”subTree” targetID=”target2” >
 <select path=’/Person/email=”joebob@example.com”’
namespaceURI=”http://www.w3.org/TR/xpath20” />
 </query>
 <updatedByCapability>urn:oasis:names:tc:SPML:2.0:reference</updatedByCapability>
 <updatedByCapability>urn:oasis:names:tc:SPML:2.0:suspend</updatedByCapability>
</updatesRequest>

The provider returns a <updatesResponse>. The “status” attribute of the 4176

<updatesResponse> indicates that the provider successfully executed the updates operation. 4177

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 147 of 190

<updatesResponse requestID=”146” status=“success">
 <update timestamp="20050704115911" updateKind="modify">
 <psoID ID=”2244” targetID=“target2”/>
 </update>
 <update timestamp="20050704115923" updateKind="capability"
wasUpdatedByCapability="urn:oasis:names:tc:SPML:2.0:reference">
 <psoID ID=”2244” targetID=“target2”/>
 </update>
</updatesResponse>

This time the provider's response contains two updates: the "modify" update from the original 4178
response plus a second "capability" update that is specific to the Reference Capability. 4179

3.6.9.2 iterate 4180

The iterate operation obtains the next set of objects from the result set that the provider selected for 4181
a updates operation. (See the description of the updates operation above.) 4182

The subset of the Updates Capability XSD that is most relevant to the iterate operation follows. 4183

 <simpleType name="UpdateKindType">
 <restriction base="string">
 <enumeration value="add"/>
 <enumeration value="modify"/>
 <enumeration value="delete"/>
 <enumeration value="capability"/>
 </restriction>
 </simpleType>

 <complexType name="UpdateType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType" />
 </sequence>
 <attribute name="timestamp" type="xsd:dateTime"
use="required"/>
 <attribute name="updateKind"
type="spmlupdates:UpdateKindType" use="required"/>
 <attribute name="wasUpdatedByCapability" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="UpdatesResponseType">
 <complexContent>
 <extension base="spml:ResponseType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 148 of 190

 <sequence>
 <element name="update" type="spmlupdates:UpdateType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 <attribute name="token" type="xsd:string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="IterateRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="iterateRequest" type="spmlupdates:IterateRequestType"/>
 <element name="iterateResponse"
type="spmlupdates:UpdatesResponseType"/>

An iterateRequest receives an iterateResponse. A requestor supplies as input to an 4184

<iterateRequest> the <iterator> that was part of the original <updatesResponse> or the 4185

<iterator> that was part of a subsequent <iterateResponse>, whichever is most recent. A 4186

provider returns an <iterateResponse> in response to each <iterateRequest>. An 4187

<iterateResponse> has the same structure as a <updatesResponse>. 4188

The <iterateResponse> will contain at least one <update> element that records a change to 4189

an object. If more matching updates are available to return, then the <iterateResponse> will 4190

also contain an <iterator>. The requestor can use this <iterator> in another 4191

<iterateRequest> to retrieve more of the matching objects. 4192

Iterate is not batchable. For reasons of scale, neither an updates request nor an iterate request 4193
should be nested in a batch request. When an updates query matches more updates than the 4194
provider can place directly in the response, the provider must temporarily store the remaining 4195
updates. Storing the remaining updates allows the requestor to iterate the remaining updates, but 4196
also requires the provider to commit resources. 4197
See the topic named “Resource Considerations” earlier in this Updates Capability section. 4198

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 4199
results of asynchronous batch operations imposes on providers a resource burden similar to that of 4200
updates result sets. Allowing a requestor to nest a updates request or an iterate request within a 4201
batch request would aggravate the resource problem, requiring a provider to store more information 4202
in larger chunks for a longer amount of time. 4203

The iterate operation must be executed synchronously. The provider is already queuing the 4204
result set (every update beyond those returned in the first updates response), so it is unreasonable 4205
for a requestor to ask the provider to queue the results of a request for the next item in the result 4206
set. 4207

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 149 of 190

Furthermore, asynchronous iteration would complicate the provider’s maintenance of the result set. 4208
Since a provider could never know that the requestor had processed the results of an 4209
asynchronous iteration, the provider would not know when to increment its position in the result set. 4210
In order to support asynchronous iteration both correctly and generally, a provider would have to 4211
maintain a version of every result set for each iteration of that result set. This would impose an 4212
unreasonable burden on the provider. 4213

3.6.9.2.1 iterateRequest (normative) 4214

A requestor MUST send an <iterateRequest> to a provider in order to obtain any additional 4215

objects that matched a previous <updatesRequest> but that the provider has not yet returned to 4216

the requestor. (That is, matching objects that were not contained in the response to that 4217

<updatesRequest> and that have not yet been contained in any response to an 4218

<iterateRequest> associated with that <updatesRequest>.) 4219

Execution. An <iterateRequest> MUST NOT specify "executionMode='asynchronous'". 4220

An <iterateRequest> MUST specify "executionMode='synchronous'" or (an 4221

<iterateRequest> MUST) omit “executionMode”. 4222

See the section titled "Determining execution mode". 4223

iterator. An <iterateRequest> MUST contain exactly one <iterator> element. A requestor 4224

MUST supply as input to an <iterateRequest> the <iterator> from the original 4225

<searchResponse> or (the requestor MUST supply as input to the <iterateRequest>) the 4226

<iterator> from a subsequent <iterateResponse>. A requestor SHOULD supply as input 4227

to an <iterateRequest> the most recent <iterator> that represents the updates result set. 4228

3.6.9.2.2 iterateResponse (normative) 4229

A provider that receives a <iterateRequest> from a requestor that the provider trusts must 4230

examine the content of the <iterateRequest>. If the request is valid, the provider MUST return 4231

(the XML that represents) the next object in the result set that the <iterator> represents. 4232

Execution. The provider MUST execute the iterate operation synchronously (if the provider 4233
executes the iterate operation at all). See the section titled “Determining execution mode”. 4234

Response. The provider MUST return to the requestor an <iterateResponse>. 4235

Status. The <iterateResponse> must contain a “status” attribute that indicates whether the 4236

provider successfully returned the next update from the result set that the <iterator> represents. 4237

See the section titled “Status (normative)”. 4238

• If the provider successfully returned (the XML that represents) the next update from the result 4239

set that the <iterator> represents, then the <iterateResponse> MUST specify 4240

“status=’success’”. 4241

• If the provider encountered an error in returning (the XML that represents) the next update from 4242

the result set that the <iterator> represents, then the <iterateResponse> MUST specify 4243

“status=’failure’”. 4244

Update. The <iterateResponse> MAY contain any number of <update> elements. 4245

• If the <iterateResponse> specifies “status=’success’” and at least one update 4246

remained to iterate (in the updates result set that the <iterator> represents), then the 4247

<iterateResponse> MUST contain at least one <update> element that records a change to 4248

an object. 4249

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 150 of 190

• If the <iterateResponse> specifies “status=’success’” and no update remained to 4250

iterate (in the updates result set that the <iterator> represents), then the 4251

<iterateResponse> MUST NOT contain an <update> element. 4252

• If the <iterateResponse> specifies “status=’failure’”, then the <iterateResponse> 4253

MUST NOT contain an <update> element. 4254

iterator. A <iterateResponse> to an <iterateRequest> MAY contain at most one 4255

<iterator> element. 4256

• If the <iterateResponse> specifies “status=’success’” and the <iterateResponse> 4257

contains the last of the updates that matched the criteria that the original <updatesRequest> 4258

specified, then the <updatesResponse> MUST NOT contain an <iterator>. 4259

• If the <iterateResponse> specifies “status=’success’” and the provider still has more 4260

matching updates that have not yet been returned to the requestor, then the 4261

<iterateResponse> MUST contain exactly one <iterator>. 4262

• If the <iterateResponse> specifies “status=’failure’”, then the <iterateResponse> 4263

MUST NOT contain an <iterator>. 4264

iterator ID. An <iterator> MUST have an “ID” attribute. 4265

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the 4266

provider. The “ID” attribute allows the provider to map each <iterator> token to the result set of 4267

the requestor’s <query> and to any state that records the requestor’s position within that result set. 4268

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot lookup an 4269

<iterator>. An <iterator> is not a PSO. 4270

Error. If the <iterateResponse> specifies “status=’failure’”, then the 4271

<iterateResponse> MUST have an “error” attribute that characterizes the failure. 4272

See the general section titled "“Error (normative)”. 4273

In addition, the <iterateResponse> MUST specify an appropriate value of “error” if any of the 4274

following is true: 4275

• The provider does not recognize the <iterator> in an <iterateRequest> as representing 4276

an updates result set. 4277

• The provider does not recognize the <iterator> in an <iterateRequest> as representing 4278

any updates result set that the provider currently maintains. 4279

The <iterateResponse> MAY specify an appropriate value of “error” if any of the following is 4280

true: 4281

• An <iterateRequest> contains an <iterator> that is not the most recent version of the 4282

<iterator>. If the provider has returned to the requestor a more recent <iterator> that 4283

represents the same updates result set, then the provider MAY reject the older <iterator>. 4284

(A provider that changes the ID—for example, to encode the state of iteration within an updates 4285
result set—may be sensitive to this.) 4286

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 151 of 190

3.6.9.2.3 iterate Examples (non-normative) 4287

In order to illustrate the iterate operation, we first need an updates operation that returns more than 4288
one update. In the following example, a requestor asks a provider to return updates for every 4289

Person with an email address that starts with the letter “j”. 4290

<updatesRequest requestID=”152”>

 <query scope=”subTree” targetID=”target2” >

 <select path=’/Person/email=”j*”’ namespaceURI=”http://www.w3.org/TR/xpath20” />

 </query>

</updatesRequest>

The provider returns a <updatesResponse>. The “status” attribute of the 4291

<updatesResponse> indicates that the provider successfully executed the updates operation. 4292

The <updatesResponse> contains two <update> elements that represent the first matching 4293

updates. 4294

<updatesResponse requestID=”152” status=“success">
 <update timestamp="1944062400000000" updateKind="add">
 <psoID ID=”0001” targetID=“target2”/>
 </update>
 <update timestamp="1942092700000000" updateKind="add">
 <psoID ID=”0002” targetID=“target2”/>
 </update>
 <update timestamp="1970091800000000" updateKind="delete">
 <psoID ID=”0002” targetID=“target2”/>
 </update>

 <iterator ID=”1970”/>

</updatesResponse>

The requestor asks the provider to return the next set of matching updates (from the original result 4295

set). The requestor supplies the <iterator> from the <updatesResponse> as input to the 4296

<iterateRequest>. 4297

<iterateRequest requestID=”153”>

 <iterator ID=”1970”/>

</iterateRequest>

The provider returns an <iterateResponse> in response to the <iterateRequest>. The 4298

“status” attribute of the <iterateResponse> indicates that the provider successfully executed 4299

the iterate operation. The <iterateResponse> contains two <update> elements that represent 4300

the next matching updates. 4301

<iterateResponse requestID=”153” status=“success">
 <update timestamp="1948031200000000" updateKind="add">
 <psoID ID=”0003” targetID=“target2”/>
 </update>
 <update timestamp="1969120900000000" updateKind="add">
 <psoID ID=”0004” targetID=“target2”/>
 </update>
 <iterator ID=”1971”/>
</iterateResponse>

The <iterateResponse> also contains another <iterator> element. The “ID” of this 4302

<iterator> differs from the “ID” of the <iterator> in the original <updatesResponse>. The 4303

“ID” could remain constant (for each iteration of the result set that the <iterator> represents) if 4304

the provider so chooses, but the “ID” value could change (e.g., if the provider uses “ID” to 4305

encode the state of the result set). 4306

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 152 of 190

To get the next set of matching updates, the requestor again supplies the <iterator> from the 4307

<iterateResponse> as input to an <iterateRequest>. 4308

<iterateRequest requestID=”154”>

 <iterator ID=”1971”/>

</iterateRequest>

The provider again returns an <iterateResponse> in response to the <iterateRequest>. The 4309

“status” attribute of the <iterateResponse> indicates that the provider successfully executed 4310

the iterate operation. The <iterateResponse> contains an <update> element that represents 4311

the final matching object. Since all of the matching objects have now been returned to the 4312

requestor, this <iterateResponse> contains no <iterator>. 4313

<iterateResponse requestID=”154” status=“success">
 <update timestamp="20050704115900" updateKind="modify">
 <psoID ID=”2244” targetID=“target2”/>
 </update>
</iterateResponse>

 4314

3.6.9.3 closeIterator 4315

The closeIterator operation tells the provider that the requestor has no further need for the updates 4316

result set that a specific <iterator> represents. (See the description of the updates operation 4317

above.) 4318

A requestor should send a <closeIteratorRequest> to the provider when the requestor no 4319

longer intends to iterate an updates result set. (A provider will eventually free an inactive updates 4320

result set--even if the provider never receives a <closeIteratorRequest> from the requestor-- 4321

but this behavior is unspecified.) For more information, see the topic named "Resource 4322
Considerations" topic earlier within this section. 4323

The subset of the Search Capability XSD that is most relevant to the iterate operation follows. 4324

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 153 of 190

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CloseIteratorRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="closeIteratorRequest"
type="spmlupdates:CloseIteratorRequestType"/>
 <element name="closeIteratorResponse" type="spml:ResponseType"/>

A closeIteratorRequest receives a closeIteratorResponse. A requestor supplies as input to a 4325

<closeIteratorRequest> the <iterator> that was part of the original <updatesResponse> 4326

or the <iterator> that was part of a subsequent <iterateResponse>, whichever is most 4327

recent. A provider returns a <closeIteratorResponse> in response to each 4328

<closeIteratorRequest>. A <closeIteratorResponse> has the same structure as an 4329

<spml:response>. 4330

closeIterator is not batchable. For reasons of scale, neither an updates request nor an iterate 4331
request nor a closeIterator request should be nested in a batch request. When an updates query 4332
matches more updates than the provider can place directly in the response, the provider must 4333
temporarily store the remaining updates. Storing the remaining updates allows the requestor to 4334
iterate the remaining updates, but also requires the provider to commit resources. 4335
See the topic named “Resource Considerations” earlier in this section. 4336

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the 4337
results of asynchronous batch operations imposes on providers a resource burden similar to that of 4338
search results. Allowing a requestor to nest an updates request or an iterate request or a 4339
closeIterator request within a batch request would aggravate the resource problem, requiring a 4340
provider to store more information in larger chunks for a longer amount of time. 4341

The closeIterator operation must be executed synchronously. The provider is already queuing 4342
the result set (every update beyond those returned in the first updates response), so a request to 4343
close the iterator (and thus to free the system resources associated with the result set) should be 4344
executed as soon as possible. It is unreasonable for a requestor to ask the provider to queue the 4345
results of a request to close an iterator (especially since the close iterator response contains little or 4346
no information beyond success or failure). 4347

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 154 of 190

3.6.9.3.1 closeIteratorRequest (normative) 4348

A requestor SHOULD send a <closeIteratorRequest> to a provider when the requestor no 4349

longer intends to iterate an updates result set. (This allows the provider to free any system 4350
resources associated with the updates result set.). 4351

Execution. A <closeIteratorRequest> MUST NOT specify 4352

"executionMode='asynchronous'". 4353

A <closeIteratorRequest> MUST specify "executionMode='synchronous'" 4354

or (a <closeIteratorRequest> MUST) omit “executionMode”. 4355

See the section titled "Determining execution mode". 4356

iterator. A <closeIteratorRequest> MUST contain exactly one <iterator> element. A 4357

requestor MUST supply as input to a <closeIteratorRequest> the <iterator> from the 4358

original <updatesResponse> or (a requestor MUST supply the <iterator>) from a subsequent 4359

<iterateResponse>. A requestor SHOULD supply as input to a 4360

<closeIteratorRequest> the most recent <iterator> that represents the updates result set. 4361

iterator ID. An <iterator> that is part of a <closeIteratorRequest> MUST have an "ID" 4362

attribute. (The value of the "ID" attribute uniquely identifies the <iterator> within the 4363

namespace of the provider. The "ID" attribute allows the provider to map each <iterator> 4364

token to the result set of the requestor’s <query> and also (allows the provider to map each 4365

<iterator> token) to any state that records the requestor's iteration within that result set.) 4366

3.6.9.3.2 closeIteratorResponse (normative) 4367

A provider that receives a <closeIteratorRequest> from a requestor that the provider trusts 4368

must examine the content of the <closeIteratorRequest>. If the request is valid, the provider 4369

MUST release any updates result set that the <iterator> represents. Any subsequent request to 4370

iterate that same updates result set MUST fail. 4371

Execution. The provider MUST execute the closeIterator operation synchronously (if the provider 4372
executes the closeIterator operation at all). See the section titled “Determining execution mode”. 4373

Response. The provider MUST return to the requestor a <closeIteratorResponse>. 4374

Status. The <closeIteratorResponse> must contain a “status” attribute that indicates 4375

whether the provider successfully released the updates result set that the <iterator> represents. 4376

See the section titled “Status (normative)”. 4377

• If the provider successfully released the updates result set that the <iterator> represents, 4378

then the <closeIteratorResponse> MUST specify “status=’success’”. 4379

• If the provider encountered an error in releasing the updates result set that the <iterator> 4380

represents, then the <closeIteratorResponse> MUST specify “status=’failure’”. 4381

Error. If the <closeIteratorResponse> specifies “status=’failure’”, then the 4382

<closeIteratorResponse> MUST have an “error” attribute that characterizes the failure. 4383

See the general section titled “Error (normative)”. 4384

In addition, the <closeIteratorResponse> MUST specify an appropriate value of “error” if 4385

any of the following is true: 4386

• If the provider does not recognize the <iterator> in a <closeIteratorRequest> as 4387

representing an updates result set. 4388

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 155 of 190

• If the provider does not recognize the <iterator> in a <closeIteratorRequest> as 4389

representing any updates result set that the provider currently maintains. 4390

• If the provider recognized the <iterator> in a <closeIteratorRequest> as representing 4391

a updates result set that the provider currently maintains but cannot release the resources 4392
associated with that updates result set. 4393

The <closeIteratorResponse> MAY specify an appropriate value of “error” if any of the 4394

following is true: 4395

• If a <closeIteratorRequest> contains an <iterator> that is not the most recent version 4396

of the <iterator>. If the provider has returned to the requestor a more recent <iterator> 4397

that represents the same updates result set, then the provider MAY reject the older 4398

<iterator>. 4399

(A provider that changes the ID—for example, to encode the state of iteration within a updates 4400
result set—may be sensitive to this.) 4401

3.6.9.3.3 closeIterator Examples (non-normative) 4402

In order to illustrate the iterate operation, we first need an updates operation that returns more than 4403
one update. In the following example, a requestor asks a provider to return updates for every 4404

Person with an email address that starts with the letter “j”. 4405

<updatesRequest requestID=”152”>

 <query scope=”subTree” targetID=”target2” >

 <select path=’/Person/email=”j*”’ namespaceURI=”http://www.w3.org/TR/xpath20” />

 </query>

</updatesRequest>

The provider returns a <updatesResponse>. The “status” attribute of the 4406

<updatesResponse> indicates that the provider successfully executed the updates operation. 4407

The <updatesResponse> contains two <update> elements that represent the first matching 4408

updates. 4409

<updatesResponse requestID=”152” status=“success">
 <update timestamp="1944062400000000" updateKind="add">
 <psoID ID=”0001” targetID=“target2”/>
 </update>
 <update timestamp="1942092700000000" updateKind="add">
 <psoID ID=”0002” targetID=“target2”/>
 </update>
 <update timestamp="1970091800000000" updateKind="delete">
 <psoID ID=”0002” targetID=“target2”/>
 </update>

 <iterator ID=”1970”/>

</updatesResponse>

The requestor decides that the two objects in the initial <searchResponse> will suffice, and does 4410

not intend to retrieve any more matching objects (in the result set for the search). The requestor 4411

supplies the <iterator> from the <updatesResponse> as input to the 4412

<closeIteratorRequest>. 4413

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 156 of 190

<closeIteratorRequest requestID=”153”>

 <iterator ID=”1900”/>

</closeIteratorRequest>

The provider returns a <closeIteratorResponse> in response to the 4414

<closeIteratorRequest>. The “status” attribute of the <closeIteratorResponse> 4415

indicates that the provider successfully released the result set. 4416

<closeIteratorResponse requestID=”153” status=“success"/>

 4417

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 157 of 190

3.7 Custom Capabilities 4418

The features of SPMLv2 that allow the PSTC to define optional operations as part of standard 4419
capabilities are open mechanisms that will work for anyone. An individual provider (or any third 4420
party) can define a custom capability that integrates with SPMLv2. Whoever controls the 4421
namespace of the capability controls the extent to which it can be shared. Each provider 4422
determines which capabilities are supported for which types of objects on which types of targets. 4423

The SPMLv2 capability mechanism is extensible. Any party may define additional capabilities. A 4424
provider declares its support for a custom capability in exactly the same way that it declares support 4425

for a standard capability: as a target <capability> element. 4426

The standard capabilities that SPMLv2 defines will not address all needs. Contributors may define 4427
additional custom capabilities. 4428

Since the schema for each capability is defined in a separate namespace, a custom capability will 4429
not ordinarily conflict with a standard capability that is defined as part of SPMLv2, nor will a custom 4430
capability ordinarily conflict with another custom capability. In order for a custom capability B to 4431
conflict with another capability A, capability B would have to import the namespace of capability A 4432
and re-declare a schema element from capability A. Such a conflict is clearly intentional and a 4433
provider can easily avoid such a conflict by not declaring support for capability B. 4434

Also see the section titled “Conformance”. 4435

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 158 of 190

4 Conformance (normative) 4436

4.1 Core operations and schema are mandatory 4437

A conformant provider MUST support the elements, attributes, and types defined in the SPMLv2 4438
Core XSD. This includes all the core operations and protocol behavior. 4439

Schema syntax for the SPMLv2 core operations is defined in a schema that is associated with the 4440

following XML namespace: urn:oasis:names:tc:SPML:2:0. This document includes the Core 4441

XSD as Appendix A. 4442

4.2 Standard capabilities are optional 4443

A conformant provider SHOULD support the XML schema and operations defined by each standard 4444
capability of SPMLv2. 4445

4.3 Custom capabilities must not conflict 4446

A conformant provider MUST use the custom capability mechanism of SPMLv2 to expose any 4447
operation beyond those specified by the core and standard capabilities of SPMLv2. 4448

A conformant provider MAY support any custom capability that conforms to SPMLv2. 4449

Must conform to standard schema. Any operation that a custom capability defines MUST be 4450

defined as a request-response pair such that all of the following are true: 4451

• The request type (directly or indirectly) extends {RequestType} 4452

• The response type is {ResponseType} or (the response type directly or indirectly) extends 4453

{ResponseType}. 4454

Must not conflict with another capability. Since each custom capability is defined in its own 4455
namespace, an element or attribute in the XML schema that is associated with a custom capability 4456
SHOULD NOT conflict with (i.e., SHOULD NOT redefine and SHOULD NOT otherwise change the 4457

definition of) any element or attribute in any other namespace: 4458

• A custom capability MUST NOT conflict with the Core XSD of SPMLv2. 4459

• A custom capability MUST NOT conflict with any standard capability of SPMLv2. 4460

• A custom capability SHOULD NOT conflict with another custom capability. 4461

Must not bypass standard capability. A conformant provider MUST NOT expose an operation 4462
that competes with (i.e., whose functions overlap those of) an operation defined by a standard 4463
capability of SPMLv2) UNLESS all of the following are true: 4464

• The provider MUST define the competing operation in a custom capability. 4465

• Every target (and every schema entity on a target) that supports the provider’s custom 4466
capability MUST also support the standard capability. 4467

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 159 of 190

4.4 Capability Support is all-or-nothing 4468

A provider that claims to support a particular capability for (a set of schema entities on) a target 4469
MUST support (for every instance of those schema entities on the target) every operation that the 4470
capability defines. 4471

4.5 Capability-specific data 4472

A capability MAY imply capability-specific data. That is, a capability MAY specify that data specific 4473
to that capability may be associated with one or more objects. (For example, the Reference 4474
Capability implies that each object may contain a set of references to other objects.) 4475

Any capability that implies capability-specific data MAY rely on the default processing that SPMLv2 4476
specifies for capability-specific data (see the section titled “CapabilityData Processing (normative)”). 4477
However, any capability that implies capability-specific data SHOULD specify the structure of that 4478
data. (For example, the Reference Capability specifies that its capability-specific data must contain 4479

at least one <reference> and should contain only <reference> elements.) 4480

Furthermore, any capability that implies capability-specific data and for which the default processing 4481
of capability-specific data is inappropriate (i.e., any capability for which an instance of 4482

{CapabilityDataType} that refers to the capability would specify “mustUnderstand=’true’”) 4483

• MUST specify the structure of that capability-specific data. 4484

• MUST specify how core operations should handle that capabilityData. 4485
(For example, the Reference Capability specifies how each reference must be validated and 4486
processed. See the section titled “Reference CapabilityData Processing (normative).) 4487

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 160 of 190

5 Security Considerations 4488

5.1 Use of SSL 3.0 or TLS 1.0 4489

When using Simple Object Access Protocol (SOAP) [SOAP] as the protocol for the requestor 4490
(client) to make SPMLv2 requests to a provider (server), Secure Sockets Layer (SSL 3.0) or 4491
Transport Layer Security (TLS 1.0) [RFC 2246] SHOULD be used. 4492

The TLS implementation SHOULD implement the TLS_RSA_WITH_3DES_EDE_CBC_SHA or the 4493
TLS_RSA_WITH_AES_128_CBC_SHA [AES] cipher suite. 4494

5.2 Authentication 4495

When using Secure Sockets Layer (SSL 3.0) or Transport Layer Security (TLS 1.0) [RFC 2246] as 4496
the SOAP [SOAP] transport protocol, the provider (server) SHOULD be authenticated to the 4497
requestor (client) using X.509 v3 [X509] service certificates. The requestor (client) SHOULD be 4498

authenticated to the provider (server) using X.509 v3 service certificates. 4499

For SOAP requests that are not made over SSL 3.0 or TLS 1.0, or for SOAP requests that require 4500
intermediaries, Web Services Security [WSS] SHOULD be used for authentication. 4501

5.3 Message Integrity 4502

When using Secure Sockets Layer (SSL 3.0) or Transport Layer Security (TLS 1.0) [RFC 2246] as 4503
the SOAP [SOAP] transport protocol, message integrity is reasonably assured for point-to-point 4504

message exchanges. 4505

For SOAP requests that are not made over SSL 3.0 or TLS 1.0, or for SOAP requests that require 4506
intermediaries, Web Services Security [WSS] SHOULD be used to ensure message integrity. 4507

5.4 Message Confidentiality 4508

When using Secure Sockets Layer (SSL 3.0) or Transport Layer Security (TLS 1.0) [RFC 2246] as 4509
the SOAP [SOAP] transport protocol, message confidentiality is reasonably assured for point-to-4510
point message exchanges, and for the entire message. 4511

For SOAP requests that are not made over SSL 3.0 or TLS 1.0, or for SOAP requests that require 4512
intermediaries, Web Services Security [WSS] SHOULD be used to ensure confidentiality for the 4513

sensitive portions of the message. 4514

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 161 of 190

Appendix A. Core XSD 4515

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_core_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 core capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

 <complexType name="ExtensibleType">
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>

 <simpleType name="ExecutionModeType">
 <restriction base="string">
 <enumeration value="synchronous"/>
 <enumeration value="asynchronous"/>
 </restriction>
 </simpleType>

 <complexType name="CapabilityDataType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <annotation>
 <documentation>Contains elements specific to a
capability.</documentation>
 </annotation>
 <attribute name="mustUnderstand" type="boolean"
use="optional"/>
 <attribute name="capabilityURI" type="anyURI"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="RequestType">
 <complexContent>
 <extension base="spml:ExtensibleType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 162 of 190

 <attribute name="requestID" type="xsd:ID" use="optional"/>
 <attribute name="executionMode" type="spml:ExecutionModeType"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="StatusCodeType">
 <restriction base="string">
 <enumeration value="success"/>
 <enumeration value="failure"/>
 <enumeration value="pending"/>
 </restriction>
 </simpleType>

 <simpleType name="ErrorCode">
 <restriction base="string">
 <enumeration value="malformedRequest"/>
 <enumeration value="unsupportedOperation"/>
 <enumeration value="unsupportedIdentifierType"/>
 <enumeration value="noSuchIdentifier"/>
 <enumeration value="customError"/>
 <enumeration value="unsupportedExecutionMode"/>
 <enumeration value="invalidContainment"/>
 <enumeration value="noSuchRequest"/>
 <enumeration value="unsupportedSelectionType"/>
 <enumeration value="resultSetTooLarge"/>
 <enumeration value="unsupportedProfile"/>
 <enumeration value="invalidIdentifier"/>
 <enumeration value="alreadyExists"/>
 <enumeration value="containerNotEmpty"/>
 </restriction>
 </simpleType>

 <simpleType name="ReturnDataType">
 <restriction base="string">
 <enumeration value="identifier"/>
 <enumeration value="data"/>
 <enumeration value="everything"/>
 </restriction>
 </simpleType>

 <complexType name="ResponseType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="errorMessage" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="status" type="spml:StatusCodeType"
use="required"/>
 <attribute name="requestID" type="xsd:ID" use="optional"/>
 <attribute name="error" type="spml:ErrorCode"
use="optional"/>
 </extension>
 </complexContent>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 163 of 190

 </complexType>

 <complexType name="IdentifierType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="PSOIdentifierType">
 <complexContent>
 <extension base="spml:IdentifierType">
 <sequence>
 <element name="containerID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="PSOType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="AddRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"
minOccurs="0" />
 <element name="containerID" type="spml:PSOIdentifierType"
minOccurs="0" />
 <element name="data" type="spml:ExtensibleType"/>
 <element name="capabilityData"
type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="AddResponseType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 164 of 190

 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="ModificationModeType">
 <restriction base="string">
 <enumeration value="add"/>
 <enumeration value="replace"/>
 <enumeration value="delete"/>
 </restriction>
 </simpleType>

 <complexType name="NamespacePrefixMappingType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="prefix" type="string" use="required"/>
 <attribute name="namespace" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="QueryClauseType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SelectionType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <element name="namespacePrefixMap"
type="spml:NamespacePrefixMappingType" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="path" type="string" use="required"/>
 <attribute name="namespaceURI" type="string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModificationType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="component" type="spml:SelectionType"
minOccurs="0"/>
 <element name="data" type="spml:ExtensibleType"
minOccurs="0"/>
 <element name="capabilityData"

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 165 of 190

type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="modificationMode"
type="spml:ModificationModeType" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModifyRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="modification" type="spml:ModificationType"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ModifyResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="DeleteRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="recursive" type="xsd:boolean" use="optional"
default="false"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="LookupRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 </extension>
 </complexContent>
 </complexType>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 166 of 190

 <complexType name="LookupResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0" />
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SchemaType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <annotation>
 <documentation>Profile specific schema elements should
be included here</documentation>
 </annotation>
 <element name="supportedSchemaEntity"
type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="ref" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SchemaEntityRefType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="entityName" type="string" use="optional"/>
 <attribute name="isContainer" type="xsd:boolean"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CapabilityType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="appliesTo" type="spml:SchemaEntityRefType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="namespaceURI" type="anyURI"/>
 <attribute name="location" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CapabilitiesListType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="capability" type="spml:CapabilityType"
minOccurs="0" maxOccurs="unbounded"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 167 of 190

 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="TargetType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="schema" type="spml:SchemaType"
maxOccurs="unbounded"/>
 <element name="capabilities"
type="spml:CapabilitiesListType" minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="profile" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ListTargetsRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 </extension>
 <attribute name="profile" type="anyURI" use="optional"/>
 </complexContent>
 </complexType>

 <complexType name="ListTargetsResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="target" type="spml:TargetType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="select" type="spml:SelectionType"/>
 <element name="addRequest" type="spml:AddRequestType"/>
 <element name="addResponse" type="spml:AddResponseType"/>
 <element name="modifyRequest" type="spml:ModifyRequestType"/>
 <element name="modifyResponse" type="spml:ModifyResponseType"/>
 <element name="deleteRequest" type="spml:DeleteRequestType"/>
 <element name="deleteResponse" type="spml:ResponseType"/>
 <element name="lookupRequest" type="spml:LookupRequestType"/>
 <element name="lookupResponse" type="spml:LookupResponseType"/>
 <element name="listTargetsRequest"
type="spml:ListTargetsRequestType"/>
 <element name="listTargetsResponse"
type="spml:ListTargetsResponseType"/>

</schema>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 168 of 190

 4516

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 169 of 190

Appendix B. Async Capability XSD 4517

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_aync_27.xsd -->
<!-- Draft schema for SPML v2.0 asynchronous capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:async"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns:spmlasync ="urn:oasis:names:tc:SPML:2:0:async"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <import namespace="urn:oasis:names:tc:SPML:2:0"
 schemaLocation="draft_pstc_SPMLv2_core_27.xsd"/>

 <complexType name="CancelRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <attribute name="asyncRequestID" type="xsd:string"
use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CancelResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="asyncRequestID" type="xsd:string"
use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="StatusRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <attribute name="returnResults" type="xsd:boolean"
use="optional" default="false"/>
 <attribute name="asyncRequestID" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="StatusResponseType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 170 of 190

 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="asyncRequestID" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="cancelRequest" type="spmlasync:CancelRequestType"/>
 <element name="cancelResponse" type="spmlasync:CancelResponseType"/>
 <element name="statusRequest" type="spmlasync:StatusRequestType"/>
 <element name="statusResponse" type="spmlasync:StatusResponseType"/>

</schema>

 4518

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 171 of 190

Appendix C. Batch Capability XSD 4519

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_batch_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 batch request capability. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:batch"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns:spmlbatch="urn:oasis:names:tc:SPML:2:0:batch"
 elementFormDefault="qualified">

 <import namespace='urn:oasis:names:tc:SPML:2:0'
 schemaLocation='draft_pstc_SPMLv2_core_27.xsd' />

 <simpleType name="ProcessingType">
 <restriction base="string">
 <enumeration value="sequential"/>
 <enumeration value="parallel"/>
 </restriction>
 </simpleType>

 <simpleType name="OnErrorType">
 <restriction base="string">
 <enumeration value="resume"/>
 <enumeration value="exit"/>
 </restriction>
 </simpleType>

 <complexType name="BatchRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <annotation>
 <documentation>Elements that extend spml:RequestType
</documentation>
 </annotation>
 <attribute name="processing" type="spmlbatch:ProcessingType"
use="optional" default="sequential"/>
 <attribute name="onError" type="spmlbatch:OnErrorType"
use="optional" default="exit"/>
 </extension>
 </complexContent>
 </complexType>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 172 of 190

 <complexType name="BatchResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <annotation>
 <documentation>Elements that extend spml:ResponseType
</documentation>
 </annotation>
 </extension>
 </complexContent>
 </complexType>

 <element name="batchRequest" type="spmlbatch:BatchRequestType"/>
 <element name="batchResponse" type="spmlbatch:BatchResponseType"/>

</schema>

 4520

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 173 of 190

Appendix D. Bulk Capability XSD 4521

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_bulk_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 bulk operation capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:bulk"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns:spmlsearch="urn:oasis:names:tc:SPML:2:0:search"
 xmlns:spmlbulk="urn:oasis:names:tc:SPML:2:0:bulk"
 elementFormDefault="qualified">

 <import namespace='urn:oasis:names:tc:SPML:2:0'
 schemaLocation='draft_pstc_SPMLv2_core_27.xsd' />

 <import namespace='urn:oasis:names:tc:SPML:2:0:search'
 schemaLocation='draft_pstc_SPMLv2_search_27.xsd' />

 <complexType name="BulkModifyRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query"/>
 <element name="modification" type="spml:ModificationType"
maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="BulkDeleteRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query"/>
 </sequence>
 <attribute name="recursive" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="bulkModifyRequest"
type="spmlbulk:BulkModifyRequestType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 174 of 190

 <element name="bulkModifyResponse" type="spml:ResponseType"/>

 <element name="bulkDeleteRequest"
type="spmlbulk:BulkDeleteRequestType"/>
 <element name="bulkDeleteResponse" type="spml:ResponseType"/>

</schema>

 4522

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 175 of 190

Appendix E. Password Capability XSD 4523

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_password_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 password capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:password"
 xmlns:pass="urn:oasis:names:tc:SPML:2:0:password"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <import namespace="urn:oasis:names:tc:SPML:2:0"
 schemaLocation="draft_pstc_SPMLv2_core_27.xsd"/>

 <complexType name="SetPasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="password" type="string"/>
 <element name="currentPassword" type="string"
minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ExpirePasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="remainingLogins" type="int" use="optional"
default="1"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResetPasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 176 of 190

 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResetPasswordResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="password" type="string" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ValidatePasswordRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 <element name="password" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ValidatePasswordResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="valid" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="setPasswordRequest"
type="pass:SetPasswordRequestType"/>
 <element name="setPasswordResponse" type="spml:ResponseType"/>
 <element name="expirePasswordRequest"
type="pass:ExpirePasswordRequestType"/>
 <element name="expirePasswordResponse" type="spml:ResponseType"/>
 <element name="resetPasswordRequest"
type="pass:ResetPasswordRequestType"/>
 <element name="resetPasswordResponse"
type="pass:ResetPasswordResponseType"/>
 <element name="validatePasswordRequest"
type="pass:ValidatePasswordRequestType"/>
 <element name="validatePasswordResponse"
type="pass:ValidatePasswordResponseType"/>

</schema>

 4524

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 177 of 190

Appendix F. Reference Capability XSD 4525

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_reference_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 reference capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:reference"
 xmlns:ref="urn:oasis:names:tc:SPML:2:0:reference"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <import namespace="urn:oasis:names:tc:SPML:2:0"
 schemaLocation="draft_pstc_SPMLv2_core_27.xsd"/>

 <complexType name="ReferenceType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="toPsoID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 <element name="referenceData" type="spml:ExtensibleType"
minOccurs="0"/>
 </sequence>
 <attribute name="typeOfReference" type="string"
use="required"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ReferenceDefinitionType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="schemaEntity"
type="spml:SchemaEntityRefType"/>
 <element name="canReferTo" type="spml:SchemaEntityRefType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="referenceDataType"
type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="typeOfReference" type="string"
use="required"/>
 </extension>
 </complexContent>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 178 of 190

 </complexType>

 <complexType name="HasReferenceType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <element name="toPsoID" type="spml:PSOIdentifierType"
minOccurs="0" />
 <element name="referenceData" type="spml:ExtensibleType"
minOccurs="0" />
 </sequence>
 <attribute name="typeOfReference" type="string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <element name="hasReference" type="spmlref:HasReferenceType"/>
 <element name="reference" type="spmlref:ReferenceType"/>
 <element name="referenceDefinition"
type="spmlref:ReferenceDefinitionType"/>

</schema>

 4526

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 179 of 190

Appendix G. Search Capability XSD 4527

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_search_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 search capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:search"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns:spmlsearch="urn:oasis:names:tc:SPML:2:0:search"
 elementFormDefault="qualified">

 <import namespace='urn:oasis:names:tc:SPML:2:0'
 schemaLocation='draft_pstc_SPMLv2_core_27.xsd' />

 <simpleType name="ScopeType">
 <restriction base="string">
 <enumeration value="pso"/>
 <enumeration value="oneLevel"/>
 <enumeration value="subTree"/>
 </restriction>
 </simpleType>

 <complexType name="SearchQueryType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 <sequence>
 <annotation>
 <documentation>Open content is one or more instances of
QueryClauseType (including SelectionType) or
LogicalOperator.</documentation>
 </annotation>
 <element name="basePsoID" type="spml:PSOIdentifierType"
minOccurs="0"/>
 </sequence>
 <attribute name="targetID" type="string" use="optional"/>
 <attribute name="scope" type="spmlsearch:ScopeType"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResultsIteratorType">
 <complexContent>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 180 of 190

 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SearchRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="query" type="spmlsearch:SearchQueryType"
minOccurs="0”/>
 <element name="includeDataForCapability" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="returnData" type="spml:ReturnDataType"
use="optional" default="everything"/>
 <attribute name="maxSelect" type="xsd:int" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="SearchResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="pso" type="spml:PSOType" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="IterateRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CloseIteratorRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlsearch:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 181 of 190

 <complexType name="LogicalOperatorType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 </extension>
 </complexContent>
 </complexType>

 <element name="query" type="spmlsearch:SearchQueryType"/>
 <element name="and" type="spmlsearch:LogicalOperatorType"/>
 <element name="or" type="spmlsearch:LogicalOperatorType"/>
 <element name="not" type="spmlsearch:LogicalOperatorType"/>
 <element name="searchRequest" type="spmlsearch:SearchRequestType"/>
 <element name="searchResponse" type="spmlsearch:SearchResponseType"/>
 <element name="iterateRequest" type="spmlsearch:IterateRequestType"/>
 <element name="iterateResponse" type="spmlsearch:SearchResponseType"/>
 <element name="closeIterateRequest"
type="spmlsearch:CloseIteratorRequestType"/>
 <element name="closeIteratorResponse" type="spml:ResponseType"/>

</schema>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 182 of 190

Appendix H. Suspend Capability XSD 4528

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_SPMLv2_suspend_27.xsd -->
<!-- -->
<!-- Draft schema for SPML v2.0 suspend capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:suspend"
 xmlns:spmlsuspend="urn:oasis:names:tc:SPML:2:0:suspend"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <import namespace="urn:oasis:names:tc:SPML:2:0"
schemaLocation="draft_pstc_SPMLv2_core_27.xsd"/>

 <complexType name="SuspendRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="effectiveDate" type="dateTime" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResumeRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 <attribute name="effectiveDate" type="dateTime"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ActiveRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType"/>
 </sequence>
 </extension>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 183 of 190

 </complexContent>
 </complexType>

 <complexType name="ActiveResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <attribute name="active" type="boolean" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="IsActiveType">
 <complexContent>
 <extension base="spml:QueryClauseType">
 </extension>
 </complexContent>
 </complexType>

 <element name="isActive" type="spmlsuspend:IsActiveType"/>
 <element name="suspendRequest" type="spmlsuspend:SuspendRequestType"/>
 <element name="suspendResponse" type="spml:ResponseType"/>
 <element name="resumeRequest" type="spmlsuspend:ResumeRequestType"/>
 <element name="resumeResponse" type="spml:ResponseType"/>
 <element name="activeRequest" type="spmlsuspend:ActiveRequestType"/>
 <element name="activeResponse" type="spmlsuspend:ActiveResponseType"/>

</schema>

 4529

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 184 of 190

Appendix I. Updates Capability XSD 4530

<?xml version="1.0" encoding="UTF-8"?>
<!--**-->
<!-- draft_pstc_spmlv2_updates_27.xsd -->
<!-- Draft schema for SPML v2.0 updates capabilities. -->
<!-- -->
<!-- Editors: -->
<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->
<!-- -->
<!-- -->
<!-- Copyright (C) The Organization for the Advancement of -->
<!-- Structured Information Standards [OASIS] 2005. All Rights -->
<!-- Reserved. -->
<!--**-->
<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:updates"
 xmlns:spml="urn:oasis:names:tc:SPML:2:0"
 xmlns:spmlupdates ="urn:oasis:names:tc:SPML:2:0:updates"
 xmlns:spmlsearch="urn:oasis:names:tc:SPML:2:0:search"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <import namespace="urn:oasis:names:tc:SPML:2:0"
schemaLocation="draft_pstc_spmlv2_core_27.xsd"/>

 <import namespace="urn:oasis:names:tc:SPML:2:0:search"
schemaLocation="draft_pstc_spmlv2_search_27.xsd"/>

 <complexType name="UpdatesRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element ref="spmlsearch:query" minOccurs="0"/>
 <element name="updatedByCapability" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="updatedSince" type="xsd:dateTime"
use="optional"/>
 <attribute name="token" type="xsd:string" use="optional"/>
 <attribute name="maxSelect" type="xsd:int" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="UpdateKindType">
 <restriction base="string">
 <enumeration value="add"/>
 <enumeration value="modify"/>
 <enumeration value="delete"/>
 <enumeration value="capability"/>
 </restriction>
 </simpleType>

 <complexType name="UpdateType">

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 185 of 190

 <complexContent>
 <extension base="spml:ExtensibleType">
 <sequence>
 <element name="psoID" type="spml:PSOIdentifierType" />
 </sequence>
 <attribute name="timestamp" type="xsd:dateTime"
use="required"/>
 <attribute name="updateKind"
type="spmlupdates:UpdateKindType" use="required"/>
 <attribute name="wasUpdatedByCapability" type="xsd:string"
use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="ResultsIteratorType">
 <complexContent>
 <extension base="spml:ExtensibleType">
 <attribute name="ID" type="xsd:ID"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="UpdatesResponseType">
 <complexContent>
 <extension base="spml:ResponseType">
 <sequence>
 <element name="update" type="spmlupdates:UpdateType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType" minOccurs="0"/>
 </sequence>
 <attribute name="token" type="xsd:string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="IterateRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="CloseIteratorRequestType">
 <complexContent>
 <extension base="spml:RequestType">
 <sequence>
 <element name="iterator"
type="spmlupdates:ResultsIteratorType"/>
 </sequence>
 </extension>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 186 of 190

 </complexContent>
 </complexType>

 <element name="updatesRequest" type="spmlupdates:UpdatesRequestType"/>
 <element name="updatesResponse"
type="spmlupdates:UpdatesResponseType"/>
 <element name="iterateRequest" type="spmlupdates:IterateRequestType"/>
 <element name="iterateResponse"
type="spmlupdates:UpdatesResponseType"/>
 <element name="closeIteratorRequest"
type="spmlupdates:CloseIteratatorRequestType"/>
 <element name="closeIteratorResponse" type="spml:ResponseType"/>

</schema>

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 187 of 190

Appendix J. Document References 4531

[AES] National Institute of Standards and Technology (NIST), FIPS-197: 4532
Advanced Encryption Standard, 4533
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 4534

National Institute of Standards and Technology (NIST) 4535

[ARCHIVE-1] OASIS Provisioning Services Technical Committee, email archive, 4536
http://www.oasis-4537
open.org/apps/org/workgroup/provision/email/archives/index.4538
html, OASIS PS-TC 4539

[DS] IETF/W3C, W3C XML Signatures, http://www.w3.org/Signature/, 4540
W3C/IETF 4541

[DSML] OASIS Directory Services Markup Standard, DSML V2.0 4542
Specification, http://www.oasis-4543
open.org/specs/index.php#dsmlv2, OASIS DSML Standard 4544

[GLOSSARY] OASIS Provisioning Services TC, Glossary of Terms, 4545
http://www.oasis-4546
open.org/apps/org/workgroup/provision/download.php, OASIS 4547

PS-TC 4548

[RFC 2119] S. Bradner., Key words for use in RFCs to Indicate Requirement 4549
Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF 4550

[RFC 2246] T. Dierks and C. Allen, The TLS Protocol, 4551
http://www.ietf.org/rfc/rfc2246.txt, IETF 4552

[SAML] OASIS Security Services TC, http://www.oasis-4553
open.org/committees/tc_home.php?wg_abbrev=security, 4554

OASIS SS-TC 4555

[SOAP] W3C XML Protocol Working Group, 4556
http://www.w3.org/2000/xp/Group/ 4557

[SPML-Bind] OASIS Provisioning Services TC, SPML V1.0 Protocol Bindings, 4558
http://www.oasis-4559
open.org/apps/org/workgroup/provision/download.php/1816/d4560
raft-pstc-bindings-03.doc, OASIS PS-TC 4561

[SPML-REQ] OASIS Provisioning Services Technical Committee, Requirements, 4562
http://www.oasis-4563
open.org/apps/org/workgroup/provision/download.php/2277/d4564
raft-pstc-requirements-01.doc, OASIS PS-TC 4565

[SPML-UC] OASIS Provisioning Services Technical Committee, SPML V1.0 4566
Use Cases, http://www.oasis-4567
open.org/apps/org/workgroup/provision/download.php/988/drf4568
at-spml-use-cases-05.doc, OASIS PS-TC 4569

[SPMLv2-Profile-DSML] OASIS Provisioning Services Technical Committee, SPMLv2 4570

DSMLv2 Profile, OASIS PS-TC 4571

[SPMLv2-Profile-XSD] OASIS Provisioning Services Technical Committee, SPML V2 XSD 4572
Profile, OASIS PS-TC 4573

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 188 of 190

[SPMLv2-REQ] OASIS Provisioning Services Technical Committee, Requirements, 4574
OASIS PS-TC 4575

[SPMLv2-ASYNC] OASIS Provisioning Services Technical Committee, XML Schema 4576
Definitions for Async Capability of SPMLv2, OASIS PS-TC 4577

[SPMLv2-BATCH] OASIS Provisioning Services Technical Committee, XML Schema 4578
Definitions for Batch Capability of SPMLv2, OASIS PS-TC 4579

[SPMLv2-BULK] OASIS Provisioning Services Technical Committee, XML Schema 4580
Definitions for Bulk Capability of SPMLv2, OASIS PS-TC 4581

[SPMLv2-CORE] OASIS Provisioning Services Technical Committee, XML Schema 4582
Definitions for Core Operations of SPMLv2, OASIS PS-TC 4583

[SPMLv2-PASS] OASIS Provisioning Services Technical Committee, XML Schema 4584
Definitions for Password Capability of SPMLv2, OASIS PS-TC 4585

[SPMLv2-REF] OASIS Provisioning Services Technical Committee, XML Schema 4586
Definitions for Reference Capability of SPMLv2, OASIS PS-TC 4587

[SPMLv2-SEARCH] OASIS Provisioning Services Technical Committee, XML Schema 4588
Definitions for Search Capability of SPMLv2, OASIS PS-TC 4589

[SPMLv2-SUSPEND] OASIS Provisioning Services Technical Committee, XML Schema 4590
Definitions for Suspend Capability of SPMLv2, OASIS PS-TC 4591

[SPMLv2-UPDATES] OASIS Provisioning Services Technical Committee, XML Schema 4592
Definitions for Updates Capability of SPMLv2, OASIS PS-TC 4593

[SPMLv2-UC] OASIS Provisioning Services Technical Committee., SPML V2.0 4594
Use Cases, OASIS PS-TC 4595

[WSS] OASIS Web Services Security (WSS) TC, http://www.oasis-4596
open.org/committees/tc_home.php?wg_abbrev=wss, OASIS 4597

SS-TC 4598

[X509] RFC 2459 - Internet X.509 Public Key Infrastructure Certificate and 4599
CRL Profile, http://www.ietf.org/rfc/rfc2459.txt 4600

[XSD] W3C Schema WG ., W3C XML Schema, 4601
http://www.w3.org/TR/xmlschema-1/ W3C 4602

 4603

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 189 of 190

Appendix K. Acknowledgments 4604

The following individuals were voting members of the Provisioning Services committee at the time 4605
that this version of the specification was issued: 4606

Jeff Bohren, BMC 4607
Robert Boucher, CA 4608
Gary Cole, Sun Microsystems 4609
Rami Elron, BMC 4610
Marco Fanti, Thor Technologies 4611
James Hu, HP 4612
Martin Raepple, SAP 4613
Gavenraj Sodhi, CA 4614
Kent Spaulding, Sun Microsystems 4615

 4616

pstc-spml2-os.doc 4/1/2006

Copyright © OASIS Open 2006. All Rights Reserved. Page 190 of 190

Appendix L. Notices 4617

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 4618
that might be claimed to pertain to the implementation or use of the technology described in this 4619
document or the extent to which any license under such rights might or might not be available; 4620
neither does it represent that it has made any effort to identify any such rights. Information on 4621
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 4622
website. Copies of claims of rights made available for publication and any assurances of licenses to 4623
be made available, or the result of an attempt made to obtain a general license or permission for 4624
the use of such proprietary rights by implementers or users of this specification, can be obtained 4625
from the OASIS Executive Director. 4626

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 4627
applications, or other proprietary rights which may cover technology that may be required to 4628
implement this specification. Please address the information to the OASIS Executive Director. 4629

Copyright © OASIS Open 2006. All Rights Reserved. 4630

This document and translations of it may be copied and furnished to others, and derivative works 4631
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 4632
published and distributed, in whole or in part, without restriction of any kind, provided that the above 4633
copyright notice and this paragraph are included on all such copies and derivative works. However, 4634
this document itself may not be modified in any way, such as by removing the copyright notice or 4635
references to OASIS, except as needed for the purpose of developing OASIS specifications, in 4636
which case the procedures for copyrights defined in the OASIS Intellectual Property Rights 4637
document must be followed, or as required to translate it into languages other than English. 4638

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 4639
successors or assigns. 4640

This document and the information contained herein is provided on an “AS IS” basis and OASIS 4641
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 4642
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 4643
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 4644
PARTICULAR PURPOSE 4645

 4646

	OASIS Service Provisioning Markup Language (SPML) Version 2
	1 Apr 2006 Gary Cole, Sun Microsystems for OASIS
	Table of contents
	1 Introduction
	2 Concept
	3 Protocol
	4 Conformance (normative)
	5 Security Considerations
	Appendix A. Core XSD
	Appendix B. Async Capability XSD
	Appendix C. Batch Capability XSD
	Appendix D. Bulk Capability XSD
	Appendix E. Password Capability XSD
	Appendix F. Reference Capability XSD
	Appendix G. Search Capability XSD
	Appendix H. Suspend Capability XSD
	Appendix I. Update Capability XSD
	Appendix J. Document Reference
	Appendix K. Acknowledgment
	Appendix L. Notices

	
	OASIS Title Page

