
Copyright © ebXML 2000 & 2001. All Rights Reserved.

1
2
3
4

5

6

7

8

9

Messaging Service Specification10

11

ebXML Transport, Routing & Packaging12

13
14

Version 0.21d15

16
17

 16 October 200018
19
20
21
22
23
24

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 2 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

1 Status of this Document25

26
This document specifies an ebXML DRAFT for the eBusiness community.27

28
Distribution of this document is unlimited.29

30
The document formatting is based on the Internet Society’s Standard RFC format converted to31
Microsoft Word 2000 format.32

33
This version:34

http://www.ebxml.org/working/project_teams/…35
36

Latest version:37
http://www.ebxml.org/…38

39
Previous version:40

http://www.ebxml.org/…..41
42
43

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 3 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML participants44

The authors wish to acknowledge the support of the members of the Transport, Routing and45
Packaging Project Team who contributed ideas to this specification by the group’s discussion e-46
mail list, on conference calls and during face-to-face meetings.47

48
Ralph Berwanger – bTrade.com49
Jonathan Borden - Author of XMTP50
Jon Bosak – Sun Microsystems51
Marc Breissinger - webMethods52
Dick Brooks – Group 876053
Doug Bunting - Ariba54
David Burdett - Commerce One55
Len Callaway – Drummond Group, Inc.56
David Craft – VerticalNet57
Philippe De Smedt - Viquity58
Lawrence Ding - WorldSpan59
Rik Drummond - Drummond Group, Inc. (Representing XML Solutions)60
Christopher Ferris – Sun Microsystems61
Maryann Hondo - IBM62
Jim Hughes - Fujitsu63
John Ibbotson - IBM64
Ian Jones – British Telecommunications65
Ravi Kacker – Kraft Foods66
Nick Kassem – Sun Microsystems67
Henry Lowe - OMG68
Jim McCarthy - webXI69
Bob Miller - GSX70
Dale Moberg - Sterling Commerce71
Joel Munter – Intel72
Farrukh Najmi – Sun Microsystems73
Akira Ochi – Fujitsu74
Masayoshi Shimamura – Fujitsu75
Kathy Spector – Extricity76
Nikola Stojanovic - Columbine JDS Systems77
Gordon Van Huizen – Process Software78
Martha Warfelt - DaimlerChrysler79
Prasad Yendluri – Vitria80

81
82
83
84
85
86
87

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 4 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Table of Contents88

1 Status of this Document ... 289
2 ebXML participants .. 390
3 Table of Contents... 491
4 Introduction .. 692

4.1 Summary of Contents of Document.. 693
4.2 Audience.. 694
4.3 Related Documents.. 695

5 Design Objectives .. 796
5.1 Goals/Objectives/Requirements/Problem Description ... 797
5.2 Caveats and Assumptions.. 898

6 System Overview ... 899
6.1 What ebXML Messaging Services does.. 8100
6.2 Where ebXML Messaging Services May Be Implemented.. 8101

7 Definition and Scope .. 8102
7.1 Packaging Specification ... 8103

7.1.1 ebXML Message Structure... 8104
7.1.2 ebXML Header Envelope and Payload Envelope ... 9105
7.1.3 MIME usage Conventions.. 9106

7.2 ebXML Message Envelope..10107
7.2.1 Content-Type..10108
7.2.2 Content-Length...10109
7.2.3 ebXML Message Envelope Example...11110

7.3 ebXML Header Container..11111
7.3.1 Content-ID..11112
7.3.2 Content-Length...11113
7.3.3 Content-Type..11114
7.3.4 ebXML Header Envelope Example ...12115

7.4 ebXML Payload Container ..12116
7.4.1 Content-ID..13117
7.4.2 Content-Length...13118
7.4.3 Content-Type..13119
7.4.4 Example of an ebXML MIME Payload Container ...13120

7.5 ebXML Header Document...13121
7.6 XML Prolog...14122
7.7 ebXMLHeader Element...14123

7.7.1 ebXMLHeader attributes ...14124
7.7.2 ebXMLHeader elements ...15125
7.7.3 ebXMLHeader sample ..15126

7.8 XML Manifest..15127
7.8.1 XML DocumentReference...15128
7.8.2 Manifest sample ...16129

7.9 XML Header..16130
7.9.1 From and To...16131
7.9.2 TPAInfo ..17132
7.9.3 MessageData ...17133
7.9.4 ReliableMessagingInfo..18134
7.9.5 XML Header sample ...18135

7.10 XML Routing Header ..19136
7.11 Reliable Messaging Flow ..19137
7.12 Reliable Messaging Recovery Procedures ..21138

7.12.1 Messaging Service Parameters ..21139
7.12.2 Recovery Sequence for Lost Messages ..22140

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 5 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.12.3 Maximum Number of Retries and Retry Interval ..22141
7.13 ebXML Error Reporting ...24142

7.13.1 Definitions...24143
7.13.2 Types of Errors ...24144
7.13.3 When to generate Error Messages..24145
7.13.4 Identifying the Error Reporting Location ..24146
7.13.5 ebXML Error Message ..25147

7.14 Security ..29148
8 References ...29149

8.1 Normative References...29150
8.2 Non-Normative References...30151

9 Disclaimer ...30152
10 Contact Information...31153
Appendix A Schemas and DTD Definitions ..33154

A.1 XML Header DTD ...33155
A.2 XML Header Schema Definition ..34156

Appendix B Examples ...36157
B.1 Complete Example of an ebXML Message Envelope using multipart/related Content-158
Type sent via HTTP POST ..36159
B.2 Complete Example of an ebXML Message Envelope using multipart/related Content-160
Type sent via SMTP ..38161

Appendix C Candidate Packaging Technologies and Selection Process...................................40162
C.1 Selection Process ...40163
C.2 MIME..40164
C.3 XML..41165
C.4 Conclusion..41166

Appendix D MIME Type discussion..42167
Appendix E Communication Protocol Interfaces...43168

E.1 HTTP [RFC 2068] ...43169
E.2 SMTP [RFC 821]...44170
E.3 FTP [RFC 959]..45171
E.4 Communication Protocol Errors during Reliable Messaging...45172

Appendix F Detailed list of the Messaging Services Requirement Phases................................47173
Copyright Statement..48174

175

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 6 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

4 Introduction176

4.1 Summary of Contents of Document177

This specification defines the ebXML Messaging Service protocol which enables the secure and178
reliable exchange of messages between two parties. It includes descriptions of:179

180
• the ebXML Message structure used to package ebXML Messages for transport between181

parties, and182
183

• the behavior of the messaging service that sends or receives those messages.184
185

No assumption or dependency is made relative to communication protocol or type of payload.186
The specifications contained here are both payload and communication protocol neutral.187

188
Terms in Italics are defined in the ebXML Glossary of Terms [Glossary]. Terms listed in Bold189
Italics represent the element and/or attribute content of the XML ebXML Message Header.190
Terms listed in Courier font relate to MIME components.191

192
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,193
RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be194
interpreted as described in RFC 2119 [Bra97].195

196
Note that the force of these words is modified by the requirement level of the document in which197
they are used.198

199
MUST: This word, or the terms “REQUIRED” or “SHALL”, means that the definition is an200
absolute requirement of the specification.201

202
MUST NOT: This phrase, or the phrase “SHALL NOT”, means that the definition is an203
absolute prohibition of the specification.204

205
SHOULD: This word, or the adjective “RECOMMENDED”, means that there may exist206
valid reasons in particular circumstances to ignore a particular item, but the full207
implications must be understood and carefully weighed before choosing a different208
course.209

210
SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED”, means that there211
may exist valid reasons in particular circumstances when the particular behavior is212
acceptable or even useful, but the full implications should be understood and the case213
carefully weighed before implementing any behavior described with this label.214

215

4.2 Audience216

The target audience for this specification is the community of software developers who will217
implement the ebXML Messaging Service.218

4.3 Related Documents219

The following set of related specifications will be delivered in phases:220

• ebXML Messaging Service Specification (this document) - defines the structure of the221
messages and the behavior of messaging services software. This will include:222

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 7 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

- definitions of the messages223

- behavior of the messaging service software224

- reliable messaging225

- message security226

- extensibility and versioning227
• ebXML Trading Partner Specification (under development) - defines how one party can228

discover and/or agree upon the information that party needs to know about another party229
prior to sending them a message that complies with this specification230

• ebXML Messaging Service Interface Specification (to be developed) - defines an231
interface that may be used by software to interact with an ebXML Messaging Service232

• ebXML Messaging Services Security Specification (under development) – defines the233
security mechanisms necessary to negate anticipated, selected threats234

• ebXML Messaging Services Requirements Specification – defines the requirements235
of the Messaging Services236

5 Design Objectives237

5.1 Goals/Objectives/Requirements/Problem Description238

The design objectives and goals are to define a Messaging Service (MS) to support XML based239
electronic business between small, medium and large enterprises. This specification is intended240
to enable a low cost solution, while preserving a vendor's ability to add unique value through241
added robustness and superior performance. It is the intention of the Transport, Routing and242
Packaging Project Team to keep this specification as simple and succinct as possible. Every item243
in this specification is being prototyped by the ebXML Proof of Concept Team in order to ensure244
the clarity and succinctness of this specification. This specification is organized around the245
following topics:246

• Packaging Specification - A description of how to package an ebXML Message and247
associated parts. This section includes specifications for the various structures and248
containers. The Packaging Specification is a standard MIME multipart/related structure249
with two parts: XML Message Headers and Payload. The payload may be any type of250
data that MIME RFC 2045 and related IETF MIME extensions may support. The XML251
based Message Header elements and their structure were chosen after reviewing several252
current transports, both proprietary and non-proprietary, to ensure that the appropriate253
header elements were included in the specification254

• Message Headers - A specification of the structure and composition of the information255
necessary for an ebXML Messaging Service to successfully generate or process an256
ebXML compliant message.257

• Reliable Messaging - The Reliable Messaging function defines an interoperable protocol258
such that any two Messaging Service implementations can “reliably” exchange messages259
that are sent using “reliable messaging” semantics. Please see Section 7.11.260

• Error Handling - This section describes how one ebXML Messaging Service reports261
errors it detects to another ebXML Messaging Service.262

• Security - This version of the specification supports limited security services that is those263
security services that can be supported within the payload. The multipart/related264
payload may be encrypted using cryptographic techniques suitable for the payload type.265

266
Appendices to this specification cover the following:267

268

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 8 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Appendix A Schemas and DTD Definitions269

• Appendix B Examples270

• Appendix C Candidate Packaging Technologies and Selection Process271

• Appendix D MIME Type discussion272

• Appendix E Communication Protocol Envelope Mappings273

• Appendix F Detailed list of the Messaging Services Requirement Phases274

5.2 Caveats and Assumptions275

The specification is the first in a series of phased deliverables. This version of the specification276
does not address complete message security, extensibility, service interface, reliability, and277
versioning. These are being developed as separate documents and will be included in later278
versions of this document or as additional service specifications to the ebXML Message Services279
Specification.280

281
It is assumed that the reader has an understanding of transports, MIME and XML.282

6 System Overview283

This document defines the enveloping and ebXML Message header structure used to transfer284
ebXML Messages over a data communication mechanism. This document provides sufficient285
detail to develop software for the packaging, exchange and processing of ebXML Messages.286

6.1 What ebXML Messaging Services does287

ebXML Messaging Services (MS) defines, robust yet basic functionality necessary to transfer288
messages between two ebXML Message Services using various existing communication289
protocols. The ebXML Messaging Service will perform in a manner which will allow for reliability,290
persistence of messages, security, and extensibility.291

6.2 Where ebXML Messaging Services May Be Implemented292

The ebXML Messaging Services is expected to be implemented in environments requiring a293
robust, low cost solution to enable electronic business.294

7 Definition and Scope295

7.1 Packaging Specification296

7.1.1 ebXML Message Structure297
An ebXML Message consists of:298

• an outer Communication Protocol Envelope, such as HTTP or SMTP,299

• an inner communication “protocol independent” ebXML Message Envelope, specified300
using MIME multipart/related, that contains the two main parts of the Message:301

- an ebXML Header Container that is used to envelope one ebXML Header Document, and302

- an optional, single ebXML Payload Container that MUST be used to envelope the actual303
payload (transferred data) of the Message304

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 9 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Communication Protocol Envelope (SMTP, HTTP, etc)

ebXML Message Envelope (MIME
multipart/related)

ebXML Header Envelope (MIME)

ebXML Header Document (XML)

Manifest

Header

ebXML Payload Envelope (MIME)

Payload Document(s)

ebXML
Header

Container

ebXML
Payload

Container

Routing Header

305
Note: The Courier font is used to represent MIME components. Items shown in bold306
italics represent XML items.307

308

Figure 7-1 ebXML Message Structure309

310

7.1.2 ebXML Header Envelope and Payload Envelope311
An ebXML Header Envelope and an ebXML Payload Envelope are constructed of standard,312
MIME components.313

314
An ebXML Header (or Payload) Document is the content of the standard MIME part and is:315

• an XML document in an ebXML Header, or316

• an XML or some other document for the ebXML Payload317
318

Any special considerations for the usage the ebXML Message Envelope in TCP/IP, HTTP and319
SMTP transports are described in Appendix E.320

321

7.1.3 MIME usage Conventions322
Values associated with MIME header attributes are valid in both quoted and unquoted form. For323
example, the forms type="ebxml" and type=ebxml are both valid.324

325

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 10 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.2 ebXML Message Envelope326

The MIME structured ebXML Message Envelope is used to identify the message as an ebXML327
compliant structure and encapsulates the header and payload in MIME body parts. It MUST328
conform to [RFC2045] and MUST contain two MIME headers:329

• Content-Type330

• Content-Length331

332

7.2.1 Content-Type333
The MIME Content-Type MUST be set to multipart/related for all ebXML Message334
Envelopes. See Appendix C for selection rationale. For example:335

Content-Type: multipart/related;336

337
The MIME Content-Type header contains three attributes:338

• type339

• boundary340

• version341

7.2.1.1 type Attribute342

The MIME type attribute is used to identify the ebXML Message Envelope as an ebXML343
compliant structure. It conforms to a MIME XML Media Type [XMLMedia] and MUST be set to344
"application/vnd.eb+xml". For example:345

type="application/vnd.eb+xml"346

7.2.1.2 boundary Attribute347

The MIME boundary attribute is used to identify the body part separator used to identify the start348
and end points of each body part contained in the message. The MIME boundary SHOULD be349
chosen carefully in order to ensure that it does not occur within the content area of a body part350
see [RFC 2045] for guidance on how to do this. For example:351

boundary:="-------8760"352

7.2.1.3 version Attribute353

The MIME version attribute is used to identify the particular version of ebXML Message354
Envelope being used. All message headers SHOULD USE "1.0". For example:355

version="1.0"356

7.2.2 Content-Length357
The MIME Content-Length header is a decimal value used to identify the total number of358
OCTETS contained in all constituent message body parts, including body part boundaries.359

360
The value of the Content-Length MIME header is computed by counting the total number of361
OCTETS starting with the first OCTET after the CRLF following the first MIME header and ending362
with the OCTET immediately before the MIME object’s last boundary string.363

364
Example:365

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 11 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Content-Length: 9841366

7.2.3 ebXML Message Envelope Example367
An example of a compliant ebXML Message Envelope header appears as follows:368

Content-Type: multipart/related; type="application/vnd.eb+xml" "boundary:="-------8760"369
charset="iso-8859-1" Content-Length: 9841370

7.3 ebXML Header Container371

The ebXML Header Container is a MIME body part that MUST consist of:372

• one XML based ebXML Header Envelope, and373

• one XML ebXML Header Document (described in section 8 of this document)374
375

The following rules apply:376

• the ebXML Header Container MUST be the first MIME body part in the ebXML Message.377

• there MUST be one and only one XML ebXML Header Document in each ebXML378
Message. However, an ebXML Payload Container may be a completely encapsulated379
ebXML Message.380

381
The MIME based ebXML Header Envelope conforms to [RFC 2045] and MUST consist of three382
MIME headers:383

• Content-ID384

• Content-Length385

• Content-Type386
387

The ebXML Header Document within the content portion of the MIME container MAY be388
enhanced during transport, provided it has not been digitally signed. Any change in the size of the389
ebXML Header Document MUST be reflected in Content-Length attribute of the ebXML390
Message Envelope and ebXML Header Envelope.391

7.3.1 Content-ID392
The Content-ID MIME header identifies this instance of an ebXML Message header body part.393
The value for Content-ID SHOULD be a unique identifier, in accordance with RFC 2045. For394
example:395

Content-ID: <2000-0722-161201-123456789@ebxmlhost.realm>396

7.3.2 Content-Length397
The MIME Content-Length header is a decimal value used to identify the total number of398
OCTETS contained in the ebXML Header Container MIME body part. For example:399

Content-Length: 4208400

7.3.3 Content-Type401
The MIME Content-Type for an ebXML header is identified with the value402
“application/vnd.eb+xml". Content-Type MUST contain two attributes:403

• version, and404

• charset405

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 12 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.3.3.1 version Attribute406

• The MIME version attribute indicates the version of the ebXML Messaging Service407
Specification to which the ebXML Header Document conforms. For example:408

version="1.0";409

7.3.3.2 charset Attribute410

The MIME charset attribute identifies the character set used to create the ebXML Header411
Document. The list of valid values can be found at http://www.iana.org/.412

413
The MIME charset attribute SHALL be equivalent to the encoding attribute of the ebXML414
Header Document (see section 7.6). For maximum interoperability it is RECOMMENDED that415
[UTF-8] be used. Note: this is not the default for MIME. For example:416

417
charset="UTF-8"418

7.3.4 ebXML Header Envelope Example419
The following represents an example of an ebXML Header Envelope and ebXML Header420
Document:421

Content-ID: ebxmlheader-123@ebxmlhost.realm --| |422
Content-Length: 2048 | MIME ebXML |423
Content-Type: application/vnd.eb+xml; | Header Envelope |424
 version=”1.0”; charset=”UTF-8” --| | ebXML425

 | Header426
<ebXMLHeader> -------------| | Container427

<Manifest>........ | XML ebXML Header |428
</Manifest> | Document |429
<Header>........ | |430
</Header> | |431

 <Routing Header>........ | |432
</Routing Header> | |433

</ebXMLHeader> -------------| |434

A complete example of an ebXML Header Container is presented in Appendix B.435

7.4 ebXML Payload Container436

If the ebXML Message contains a payload, then a single ebXML Payload Container MUST be437
used to envelop it.438

439
If there is no payload within the ebXML Message then the ebXML Payload Container MUST not440
be present.441

442
The contents of the ebXML Payload Container MUST be identified by the Message Manifest443
element within the ebXML Header Document (see section 7.8).444

445
If the Message Manifest is an empty XML element, the ebXML Payload Container MUST NOT be446
present in the ebXML Message.447

448
If an ebXML Payload Container is present, it MUST conform to MIME [RFC2045] and MUST449
consist of:450

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 13 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• a MIME header portion - the ebXML Payload Envelope, and451

• a content portion - the payload itself which may be of any valid MIME type.452
453

The ebXML MIME Payload Envelope, MUST consist of three MIME headers:454

• Content-ID455

• Content-Length456

• Content-Type457
458

The ebXML Messaging Service Specification makes no provision, nor limits in any way the459
structure or content of payloads. Payloads MAY be a simple-plain-text-object or complex nested460
multipart objects. This is the implementer’s decision.461

7.4.1 Content-ID462
The Content-ID MIME Header is used to uniquely identify an instance of an ebXML Message463
payload body part. The value for Content-ID SHOULD be a unique identifier, in accordance464
with MIME [RFC 2045]. For example:465

Content-ID: <2000-0722-161201-123456789@ebxmlhost.realm>466

7.4.2 Content-Length467
The MIME Content-Length header is a decimal value used to identify the total number of468
OCTETS contained in the content portion of the ebXML Payload Container. For example:469

Content-Length: 5012470

7.4.3 Content-Type471
The MIME Content-Type for an ebXML payload is determined by the implementer and is used472
to identify the type of data contained in the content portion of the ebXML Payload Container. The473
MIME Content-Type must conform to [RFC2045]. For example:474

Content-Type: application/xml475

7.4.4 Example of an ebXML MIME Payload Container476
The following represents an example of an ebXML MIME Payload Envelope and a payload:477

Content-ID: ebxmlpayload-123@ebxmlhost.realm --| |478
Content-Length: 4096 | ebXML MIME |479
Content-Type: application/xml -------------| Payload Envelope | ebXML480
 | Payload481
<Invoice> -------------| | Container482

<Invoicedata>........ | Payload |483
</Invoicedata> | |484

</Invoice> -------------| |485

486
A complete example of the ebXML Payload Container is presented in Appendix B.487

488
489

7.5 ebXML Header Document490

The ebXML Header Document is a single [XML] document with a number of principal header-491
elements. In general, separate principal-header elements are used where:492

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 14 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• different software is likely to be used to generate that header-element,493

• the structure of the header element might vary independently of the other header-494
elements, or495

• the data contained in the header-element MAY need to be digitally signed separately496
from the other header-elements.497

498

7.6 XML Prolog499

500
The XML prolog for the ebXML Header Document SHALL contain the encoding attribute which501
SHALL be equivalent to the charset attribute of the MIME Content-Type of the ebXML502
Message Header Container (see section 7.3.3.2). It is RECOMMENDED that UTF-8 be used503
explicitly although this is one of the default values assumed if none is specified.504

505
NOTE: The encoding attribute is OPTIONAL in the XML version 1.0 specification [XML], however,506
it is mandatory for the ebXML message header to ensure no conflicts occur with the charset507
attribute of the MIME Content-Type of the container and to ensure maximum interoperability. For508
example:509

510
<?xml version="1.0" encoding="UTF-8"?>511

7.7 ebXMLHeader Element512

The root element of the XML ebXML Header Document is named ebXMLHeader. It is comprised513
of three XML attributes and two subordinate elements.514

515

7.7.1 ebXMLHeader attributes516
517

There are three attributes associated with the ebXMLHeader, which are:518
• Namespace (xmlns)519
• Version520
• MessageType521

522

7.7.1.1 Namespace523
The namespace declaration (xmlns) (see [XML Namespace]) has a REQUIRED value of524
"http://www.ebxml.org/namespaces/messageHeader".525

526

7.7.1.2 Version527
The Version attribute is required. Its purpose is to provide for future versioning capabilities. It has528
a default value of '1.0'.529

530

7.7.1.3 MessageType531
The purpose of the MessageType attribute is to enable ebXML-aware software to distinguish532
between normal and communication protocol-specific messages, such as acknowledgment and533
error messages. The MessageType is an enumeration consisting of three possible values:534

• Normal – the ebXML Payload Container contains data that has been provided to the535
ebXML Messaging Service by the software that called it536

• Acknowledgment – a ebXML Messaging Service-specific acknowledgment message.537

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 15 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Error – an ebXML Messaging Service-specific error message.538
539

7.7.2 ebXMLHeader elements540
The ebXMLHeader element MUST contain the following two elements:541

• Manifest542
• Header543

544

7.7.2.1 Manifest545

The Manifest is a REQUIRED element that contains a list of references to he other parts of the546
Message. This includes references to the documents, which comprise the Payload of the547
Message.548

7.7.2.2 Header549

The Header is a REQUIRED element that contains the information REQUIRED by the recipient to550
process the message. The message originator creates this information to which additional551
information MAY be added.552

553

7.7.3 ebXMLHeader sample554
The following is a sample ebXMLHeader document fragment demonstrating the overall structure:555

<?xml version="1.0" encoding="UTF-8"?>556
<ebXMLHeader xmlns="http://www.ebxml.org/namespaces/messageHeader"557

Version="1.0" MessageType="Normal">558
<Manifest>...</Manifest>559
<Header>...</Header>560

</ebXMLHeader>561

7.8 XML Manifest562

The required Manifest element is a composite element consisting of zero or more563
DocumentReference elements. Each DocumentReference element identifies data associated564
with the message, whether included as part of the message, or remote resources accessible via a565
URL. The Manifest SHALL be the first subordinate element in the ebXMLHeader. It identifies566
the payload document(s) contained in the ebXML Message Container. The purpose of the567
Manifest is to make it easier to directly extract a particular document associated with the568
Message.569

7.8.1 XML DocumentReference570
The DocumentReference element is a composite element consisting of three subordinate571
elements as follows:572

• DocumentDescription573
• DocumentLabel574
• DocumentId575

576

7.8.1.1 DocumentDescription577
The DocumentDescription is an OPTIONAL textual description of the document/resource.578

579

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 16 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.8.1.2 DocumentLabel580
The DocumentLabel is a code that enables the purpose of the referenced document to be581
determined without retrieving the referenced document.582

583

7.8.1.3 DocumentId584

The DocumentId is the URL of the Content-ID of a MIME body part, as defined in [RFC2392],585
representing payload data, or a remote URL to some external resource.586

587

7.8.2 Manifest sample588
The following fragment demonstrates a typical Manifest for a message with a single payload589
MIME body part:590

<Manifest>591
<DocumentReference>592

<DocumentLabel>PurchaseOrder</DocumentLabel>593
<DocumentId>cid:0987654321</DocumentId>594

</DocumentReference>595
</Manifest>596

7.9 XML Header597

The Header element immediately follows the Manifest element. It is required in all598
ebXMLHeader documents. The Header element is a composite element comprised of the599
following required subordinate elements:600

• From601

• To602

• TPAInfo603

• MessageData604

• ReliableMessagingInfo605

606

7.9.1 From and To607
The From element identifies the Party which originated the message. It is a logical identifier,608
which MAY take the form of a URN. An example of this would be a DUNS number. The From609
element consists of a PartyId element.610

611
The To element identifies the intended recipient of the message. As with From, it is a logical612
identifier which is comprised of a PartyId element.613

614
The PartyId element has a single attribute; context and a text value. The purpose of the context615
attribute is to provide a context for the text value of the PartyId element. The following fragment616
demonstrates usage of the From and To elements of the ebXMLHeader.617

<From>618
<PartyId context="DUNS">1234567890123</PartyId>619

</From>620
<To>621

<PartyId context="DUNS">3210987654321</PartyId>622

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 17 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

</To>623

7.9.2 TPAInfo624
The TPAInfo element follows the From and To elements in the Header element structure. The625
TPAInfo element is a composite set of information that relates to the Trading Partner Agreement626
under which the message is governed. The TPAInfo element has four subordinate elements as627
follows:628

• TPAId629
• ConversationId630
• ServiceInterface631
• Action632

7.9.2.1 TPAId633
The TPAId is a URI which identifies the Trading Partner Agreement which governs the634
processing of the message.635

7.9.2.2 ConversationId636
The ConversationId is a URI which identifies the set of related messages that make up a637
conversation between two Parties.638

7.9.2.3 ServiceInterface639
The ServiceInterface identifies the Service Interface that SHOULD act on the payload in the640
message. It is unique within the domain of the Party to which the message is being sent. UNR’s641
MAY be considered suitable for the element content.642

7.9.2.4 Action643
The Action identifies a process within a Service Interface, which processes the Message.644
Action SHALL be unique within the Service Interface in which it is defined.645

7.9.2.5 TPAInfo sample646
The following example fragment demonstrates the usage of the TPAInfo element.647

<TPAInfo>648
<TPAId context = "tpadb">12345678</TPAId>649
<ConversationId>987654321</ConversationId>650
<ServiceInterface>QuoteToCollect</ServiceInterface>651
<Action>NewPurchaseOrder</Action>652

</TPAInfo>653

7.9.3 MessageData654
The required MessageData element follows the TPAInfo element. The purpose of the655
MessageData element is to provide a means of identifying an ebXML Message. It is a composite656
element that contains the following three elements:657

• MessageID658
• TimeStamp659
• RefToMessageID660

7.9.3.1 MessageId661
The MessageId is a unique identifier for the message conforming to [RFC2392]. The "local part"662
of the identifier is implementation dependent.663

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 18 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.9.3.2 TimeStamp664
The TimeStamp is a value representing the time that the message header was created665
conforming to [ISO-8601]. The format of CCYYMMDDTHHMMSS.SSSZ is used. This time666
format is Coordinated Universal Time (UTC).667

7.9.3.3 RefToMessageId668
For Normal and Error Messages, the RefToMessageId is an optional reference to an earlier669
ebXML Message. If there is no earlier message, the element MUST be empty. If element is not670
empty then it MUST contain the value of the MessageId of the earlier related ebXML Message.671

672
For Acknowledgment Messages, the RefToMessageId reference is mandatory, and its value673
MUST be the MessageId of the ebXML Message being acknowledged.674

7.9.3.4 MessageId sample675
The following example demonstrates the usage of the MessageData element.676

<MessageData>677
<MessageId>UUID-2</MessageId>678
<TimeStamp>20000725T121905.000Z</TimeStamp>679
<RefToMessageId>UUID-1</RefToMessageId>680

</MessageData>681

7.9.4 ReliableMessagingInfo682
683

The last element of the ebXMLHeader is the ReliableMessagingInfo element. This element684
identifies the degree of reliability with which the message will be delivered. This element has a685
single attribute, DeliverySemantics. This attribute is an enumeration, which may have one of the686
following values:687

• "OnceAndOnlyOnce" – reliable messaging semantics: the receiving Service Interface688
handler will receive a given message no more than once, the sending Messaging Service689
will execute retry procedures in the event of failure and the sending Service Interface690
handler will be notified in the event of failure.691

• "BestEffort" – reliable delivery semantics are not specified: the Sending Service Interface692
handler is not notified of failure to deliver the message, duplicate messages might be693
delivered and persistent storages are not required.694

<ReliableMessagingInfo DeliverySemantics=”OnceAndOnlyOnce”695
</ReliableMessagingInfo>696

697

7.9.5 XML Header sample698
699

The following fragment demonstrates the structure of the Header element of the ebXMLHeader700
document:701

<Header>702
<From>...</From>703
<To>...</To>704
<TPAInfo>...</TPAInfo>705
<MessageData>...</MessageData>706
<ReliableMessagingInfo>...</ReliableMessagingInfo>707

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 19 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

</Header>708

7.10 XML Routing Header709

One RoutingHeader element immediately follows the Header element. It is required in all710
ebXMLHeader documents. The RoutingHeader element is a composite element comprised of at711
least the following four required subordinate elements:712

• SenderURI – the Sender’s Messaging Service Handler URI.713

• ReceiverURI – the Receiver’s Messaging Service Handler URI.714

• ErrorURI – URI designated by the Sender for reporting errors.715

• Timestamp – timestamp of the RoutingHeader creation, in the same format used for716
Timestamp in the XML Header MessageData element.717

718
When the RoutingHeader is used for a message sent with Reliable Messaging functions719
(DeliverySemantics is set to “OnceAndOnlyOnce” in the XML Header ReliableMessagingInfo720
element), the Sender SHALL add one additional RoutingHeader element to the RoutingHeader:721

• SequenceNumber – Integer value that is incremented (e.g. 1, 2, 3, 4...) for each Sender-722
prepared message sent to the Receiver. The Sequence Number consists of ASCII723
numerals in the range 1-999,999,999. In following cases, the Sequence Number takes724
the value “1”:725

- First message from the Sender to a particular Receiver726

- First message after wraparound (next value after 999,999,999)727

- First message after removing Sequence Number information in the Sender (Sender MAY728
remove Sequence Number information when it has no messages which were sent to729
the Receiver for long time).730

731
The following fragment demonstrates the structure of the RoutingHeader element of the732
ebXMLHeader document when Reliable Messaging is used:733

<RoutingHeader>734
<SenderURI>...</SenderURI>735
<ReceiverURI>...</ReceiverURI>736
<ErrorURI>...</ErrorURI>737
<Timestamp>...</Timestamp>738
<SequenceNumber>...</SequenceNumber>739

</RoutingHeader>740

7.11 Reliable Messaging Flow741

The Reliable Messaging function defines an interoperable protocol such that any two Messaging742
Service implementations can “reliably” exchange messages that are sent using “reliable743
messaging” semantics.744

745
Reliably exchanging messages means that, with respect to Sending and Receiving Message746
Service implementations:747
• For any given message provided to the Sending Messaging Service, the Receiving748

Messaging Service will deliver at most one copy of the message to the Receiver.749

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 20 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• A positive acknowledgement will be sent from the Receiving Messaging Service to the750
Sending Messaging Service to indicate receipt and storage in persistent storage, and if this751
acknowledgement is not received the Sending Messaging Service will notify the original752
Sending Party753

• Both the Sending and Receiving Messaging Services will use persistent storage for recovery754
755

Reliable Messaging is defined only for direct connections between Messaging Service756
implementations. At a later time, networks consisting of intermediate Messaging Service757
implementations will be supported.758

759
All ebXML Messaging Service implementations SHALL support the Reliable Messaging function.760
With respect to a particular Sender and Receiver pair, transmission of one reliable message761
SHALL be completed before another reliable message may be sent.762

763
The following figure shows the reliable messaging flow:764

Sender Receiver

If reply is an Acknowledgment Message, Sender may
remove the transmitted message from persistent
storage; otherwise, an error handler is invoked

Message

Receive and store the
message in persistent
storage

Check
reply

Send a message with Sequence
Number and MessageID

Acknowledgment Message

Message
Normal Message with

”OnceAndOnlyOnce” Semantics

Place one
message into

persistent storage

Receiver’s persistent
storage

5

1

2
3

4

765
Figure 7-2: Reliable Message Transfer Sequence766

Reliable Messaging processing is shown in the following sequence:767
768

(1) Message preparation769
770

Sender initially stores messages passed from the ebXML “From-Party” in persistent storage,771
and then prepare the stored message for message transfer.772

773
(2) Sending message774

775
A Reliable Message has DeliverySemantics = “OnceAndOnlyOnce”, and receipt of a776
message with this value notifies the Receiver of Reliable Messaging semantics.777

778
(3) Receiving, checking and storing message779

780
The Receiver receives the reliable message and, if the message is not a duplicate message,781
stores the message in persistent storage and processes the message appropriately.782

783
 (4) Acknowledgment by Receiver784

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 21 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

785
The Receiver returns an Acknowledgment Message to the Sender for every received reliable786
message, even if it is a duplicate message.787

788
(5) Sender checks the acknowledgement and removes transferred message789

790
Sender checks the Acknowledgement Message from the Receiver. If the reply is an791
appropriate Acknowledgement Message for the transferred message, Sender may remove792
the transferred message from Sender’s persistent storage if the message is no longer793
needed for some other Messaging Service function or later failure recovery.794

795
The Receiver’s Messaging Service sends an Acknowledgement Message to the Sender’s796
Messaging Service for every Normal Reliable Messaging message received. There is no reply to797
the Acknowledgement message from the Sender’s Messaging.798

799
In the Acknowledgement Message:800
• The MessageType SHALL be “Acknowledgement”801
• There is no Payload and no business level response information.802
• From SHALL be the ReceiverURI as shown in the Routing Header Document803
• To SHALL be the SenderURI as shown in the Routing Header Document804
• TPAId and ConversationID as shown in the Header Document805
• ServiceInterface and Action SHALL be empty806
• RefToMessageId SHALL be the MessageId of the reliable message807
• DeliverySemantics SHALL be "BestEffort"808

7.12 Reliable Messaging Recovery Procedures809

7.12.1 Messaging Service Parameters810
811

In Reliable Messaging, the sending messaging service uses the following Messaging Service812
parameters during recovery procedures.813

814
This information may be determined in a number of ways, such as the TPA or some other815
method.816

Table 7-2 Messaging Service Parameters used in Recovery817

Argument Outline Description
Timeout Wait time for any response from the Receiver.

• Integer value specifying a number of seconds
• After sending a Normal Message, the Sender SHALL wait

for any response (MS Acknowledgement or Error Message)
for the specified time before start of retry

Retries Maximum number of retries.
• Integer value specifying the number of retries
• The Sender SHALL repeat retries the specified number of

times until the Sender receives an MS Acknowledgement
Message

• If the Sender does not receive an MS Acknowledgement
Message after the maximum number of retries, the Sender
SHALL notify the incident to the higher level (application
and/or system admin)

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 22 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

RetryInterval Wait time between retries, if an Acknowledgement Message is
not received
• Integer value specifying a number of seconds
• After a retry, the Sender SHALL wait for a response (MS

Acknowledgement or Error Message) for specified time
before start of the next retry

7.12.2 Recovery Sequence for Lost Messages818
819

When the Sender detects a timeout while waiting for an Acknowledgement Message from the last820
sent message, the appropriate recovery handler in the Sender executes a Messaging Service821
recovery sequence.822

823
The timeout value period is defined as Timeout. The recovery sequence SHALL re-send the final824
message to the Receiver and SHALL use a retry interval, RetryInterval, between attempts The825
retry sequence SHALL be attempted a Retries number of times.826

827
The content of the re-sent message is exactly the same as the original message. In the recovery828
sequence or after the recovery sequence,829

830
• If the Sender does not receive any error message or Acknowledgment Message in the831

retry interval, the recovery handler repeats the recovery sequence the Retries number832
of times.833

834
• If the Sender detects or receives another Error Message, the recovery handler executes835

the appropriate recovery sequence for the error.836
837

• If the Sender receives an Acknowledgment Message during the recovery sequence, the838
message transmission is completed.839

 Sender

Re-send the last
message

Detect timeout

Sequence Number = 5

Retry Interval

Receiver

Repeat the recovery
sequence when
same error occurs

Sequence Number = 6

Sequence Number = 6

840
Figure 7-3 Recovery Sequence for Timeout841

7.12.3 Maximum Number of Retries and Retry Interval842
843

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 23 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The retry interval is defined as RetryInterval. When the total number of retries in a reliable844
message transmission reaches a maximum number, defined as Retries, and the last error is still845
not resolved, the recovery handler will:846

847
(1) Suspend sending messages to the Receiver848

849
(2) Report this incident to a higher-level so that a system administrator can resolve this incident850

851
When the system administrator resolves the incident, the recovery handler will reset the retry852
counter to zero and then re-start message transfer sequence from the uncompleted reliable853
message transmission.854
 Sender Receiver

Sequence Number = 6

Sequence Number = 6

Retry Interval

Sequence Number = 6

Detect timeout

First retry
(for Communication

Protocol Errors)

Second retry
(for Communication

Protocol Errors)

Third retry
(for Timeout)

No reply in Retry Interval

Suspend and Report this incident

System administrator resolves this incident

Sequence Number = 6
Reset retry counter to 0,

and then restart
message transfer from

the uncompleted
message transmission

Retry Interval

Sequence Number = 6

Sequence Number = 7

Sequence Number = 5

Detect transport protocol level error that is
unrecoverable at the transport protocol level

Detect transport protocol level error that is
unrecoverable at the transport protocol level

855

Figure 7-4 Repeat of Recovery Sequence (maximum number of retries specified is 3)856

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 24 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

857

7.13 ebXML Error Reporting858

This section describes how one ebXML Messaging Service reports errors it detects to another859
ebXML Messaging Service.860

7.13.1 Definitions861
For clarity two phrases are defined which are used in this section:862

• message in error. A message which contains or causes an error of some kind863

• message reporting the error. A message that contains an ebXML Error Document that864
describes the error(s) found in a message in error.865

7.13.2 Types of Errors866
One ebXML Messaging Service needs to report to another ebXML Messaging Service errors in867
message in error that are associated with:868

• the structure or content of the Message Envelope (e.g. MIME),869

• the ebXML Message Header document,870

• security, or871

• reliable messaging failures.872
873

Unless specified to the contrary, all references to "an error" in the remainder of this specification874
imply any of the types of errors described above.875

876
Errors associated with Data Communication protocols are detected and managed in an877
implementation specific way and are not part of this error reporting mechanism878

7.13.3 When to generate Error Messages879
When an ebXML Messaging Service detects an error in a message in error, a message reporting880
the error MUST be generated and delivered to the ebXML Messaging Service which sent the881
message in error for a normal ebXML message if:882

• the Error Reporting Location (see section 7.13.4) to which the message reporting the883
error should be sent can be determined, and884

• the message in error does not have a MessageType of Error.885

886
If the Error Reporting Location cannot be found or the message in error has a MessageType of887
Error, it is recommended that:888

• the error is logged,889

• the problem is resolved by other means, and890

• no further action is taken.891

7.13.4 Identifying the Error Reporting Location892
The Error Reporting Location is a URI that is specified by the sender of the message in error that893
indicates where to send a message reporting the error. This may be specified:894

• by reference, for example by using the TPAId to identify the Party Agreement which895
contains the Error Reporting Location, or896

• by value, for example by using the ErrorURI contained within the Routing Header897
element.898

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 25 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If a message contains both an ErrorURI and other means of identifying the Error Reporting899
Location then the ErrorURI MUST be used.900

901
If an ErrorURI is not used then the method used to determine the Error Reporting Location is902
outside of the scope of this version of the specification.903

904
Even if the message in error cannot be successfully analyzed or parsed, ebXML Messaging905
Service implementers SHOULD try to determine the Error Reporting Location by other means.906
How this is done is an implementation decision.907

7.13.5 ebXML Error Message908
This section defines the structure and content of an ebXML Error Message that is contained909
within a message reporting an error.910

7.13.5.1 Message Structure911

An ebXML Error Message is created using the rules for creating an ebXML Message contained912
within this specification. In addition:913

• the MessageType in the ebXML header is set to Error914

• the payload consists of a single ebXML Error Document915

7.13.5.2 ebXML Error Document916

An ebXML Error Document has a root element that consists of:917

• an ErrorHeader element that identifies the nature and severity of the error, and918

• zero or more ErrorLocation elements, that identify the part(s) of the message(s) that are919
in error.920

The structure of an ebXML Error Document is illustrated below.921
922

<?xml version="1.0"?>923
<ebXMLError xmlns="http://www.ebxml.org/namespaces/error"924

Version="1.0">925
<ErrorHeader>...</ErrorHeader>926
<ErrorLocation>...</ErrorLocation>927
<ErrorLocation>...</ErrorLocation>928
...929

</ebXMLError>930
Later versions of this specification may define how to report more than one error within an ebXML931
Error Document.932

7.13.5.3 Error Header Element933
The ErrorHeader element identifies the nature and severity of the error. It consists of the934
following attributes/elements.935

7.13.5.3.1 ID attribute936
The optional ID attribute uniquely identifies the ErrorHeader Element within the document.937

7.13.5.3.2 ErrorCode element938
The required ErrorCode element indicates the nature of the error in the message in error. Valid939
values for the ErrorCode are given in section 7.13.5.8.940

7.13.5.3.3 Severity element941
The required Severity element indicates the severity of the error. Valid values are:942

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 26 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• Warning - This indicates that although there is a message in error other messages in the943
conversation will still be generated in the normal way.944

• Error - This indicates that there is an unrecoverable error in the message in error and no945
further messages will be generated as part of the conversation.946

7.13.5.3.4 Description element947
The optional Description element provides a narrative description of the error in the language948
defined by the xml:lang attribute on the Description element. The content of this attribute is949
defined by the vendor/developer of the software, which generated the ebXML Error Document.950
xml:lang must comply with the rules for identifying languages specified in [XML].951

7.13.5.3.5 SoftwareDetails element952
The optional SoftwareDetails element contains a value that is set by the vendor/developer of the953
software, which generated the ebXML Error Document. It SHOULD contain data that enables the954
vendor/developer to identify the precise location in their software and the set of circumstances955
that caused the software to generate a message reporting the error. It is RECOMMENDED that956
this element include plain text to identify:957

• the name of the software vendor;958

• the name, version and release number of the software that generated the ebXML Error959
Document960

• the part of the software that caused the error to be generated which can be used by the961
Software Vendor to identify the circumstances that caused the error962

7.13.5.4 Examples963
Two examples of an ErrorHeader element are given below.964

965
<ErrorHeader ID='ab184832' >966
 <ErrorCode>UnableToParse</ErrorCode>967
 <Severity>Error</Severity>968
 <Description xml:lang='en-uk'>The "MessageManifest" element is not well formed.</Description>969
 <SoftwareDetails>Software Development Corp.; ebXML Connector!!; v2.7, build 2.7313; Ref970
HA</SoftwareDetails>971
</ErrorHeader>972

973

<ErrorHeader ID='sdj2309823' >974
 <ErrorCode>NotSupported</ErrorCode>975
 <Severity>Error</Severity>976
 <Description>xml:lang='en-us'>Delivery Semantics of "OnceAndOnlyOnce" are not977
supported.</Description>978
 <SoftwareDetails>Unreliable Software Development Corp.; ebXML Message Handler !!; v23.5, build 5751;979
Ref: xapowekxd</SoftwareDetails>980
</ErrorHeader>981

7.13.5.5 Error Location Element982
The ErrorLocation Element identifies the location of an error either within a message or983
elsewhere.984

985
Frequently a single ErrorLocation element will be all that is required within an ebXML Error986
document. For example, an ErrorCode of ValueNotRecognized is likely to reference an element987
or attribute and no other ErrorLocation element will be needed.988

989

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 27 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Sometimes though, multiple ErrorLocation elements will be required to define where the990
problem is. For example, an error code with a value of Inconsistent would frequently have two or991
more ErrorLocation elements that point to the various items that are inconsistent.992
The number of ErrorLocation elements included in an ebXML Error document is an993
implementation decision.994

995
An ErrorLocation element consists of the following attributes/elements:996

• ID attribute997

• RefToMessageId element998

• Href element999

7.13.5.5.1 ID Attribute1000
The optional ID attribute uniquely identifies the ErrorLocation element within the ebXML Error1001
document.1002

7.13.5.5.2 RefToMessageId element1003
The optional RefToMessageId element contains the MessageId from the ebXML Header1004
Document of the message in error. This must be present if a MessageId can be identified within1005
the message in error.1006

7.13.5.5.3 Href element1007
The Href URI identifies either some other location within the message in error, or elsewhere, that1008
helps identify the location of the error.1009

7.13.5.6 Examples1010
Two examples of an ErrorLocation element are given below. The first example is indicating that1011
the referenced message is inconsistent with a previously agreed Party Agreement.1012

1013
<ErrorLocation ID='4982hw'>1014
 <RefToMessageId>ab131982387123</RefToMessageId>1015
 <Href>url:example.com/tpa/471839<Href>1016
</ErrorLocation>1017

The second example is pointing to an error in an ebXML Header Document.1018
1019

<ErrorLocation ID='120938uqwe'>1020
 <RefToMessageId>ac198327123098</RefToMessageId>1021
 <Href>cid:--------8760<Href>1022
</ErrorLocation>1023

7.13.5.7 ebXML Error Document Type Definition1024

The following is the DTD for the ebXML Error Document.1025

<?xml version ="1.0"?>1026
<schema xmlns = "http://www.w3.org/1999/XMLSchema">1027
<!ELEMENT ebXMLError (ErrorHeader, ErrorLocation*) >1028
<!ELEMENT ErrorHeader (ErrorCode, Severity, Description?, SoftwareDetails>1029
<!ATTLIST ErrorHeader1030
 ID NMTOKEN #IMPLIED1031
<!ELEMENT ErrorCode (#PCDATA) > <-- string max 20 char -->1032
<!ELEMENT Severity (#PCDATA) > <-- Either 'Warning' or 'Error' -->1033
<!ELEMENT Description (#PCDATA) > <-- string max 1024 (?) char -->1034
<!ATTLIST Description1035
 xml:lang NMTOKEN #REQUIRED >1036
<!ELEMENT SoftwareDetails(#PCDATA) > <-- string max 16k (?) chars -->1037

1038
<!ELEMENT ErrorLocation (RefToMessageId?, Href) >1039

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 28 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ATTLIST ErrorLocation1040
 ID NMTOKEN #IMPLIED >1041
<!ELEMENT RefToMessageId (#PCDATA) >1042
<!ELEMENT Href (#PCDATA) >1043

7.13.5.8 Error Codes1044
This section describes the ErrorCodes (see section 7.13.5.3.2) that are used in a message1045
reporting an error. They are described as a list of bullet points. The following describes how to1046
interpret this list:1047

• the first word is the actual ErrorCode, e.g. UnableToParse1048

• the single sentence that immediately follows the error code is a "narrative" that describes1049
the ErrorCode, for example "XML not well formed or invalid".1050

• the sentence(s) that follow the narrative, are the explanation of the meaning of the error1051
and provide guidance on when the particular ErrorCode should be used.1052

• It is RECOMMENDED that implementers:1053

- use both the ErrorCode and the "narrative" to explain an error to, for example, a user1054

- translate the "narrative" into the preferred language of the recipient of the message in1055
error if this is known1056

7.13.5.9 Reporting Errors in the ebXML Header Document1057

The following list contains error codes that can be associated with XML documents, for example1058
the ebXML Header Document:1059

• UnableToParse - XML not well formed or invalid. The XML document is not well formed1060
or not valid and cannot be successfully parsed. See [XML] for the meaning of "well1061
formed" and "not valid".1062

• ValueNotRecognized - Element content or attribute value not recognized. Although the1063
document is well formed and valid, the element/attribute contains a value which could not1064
recognized and therefore could not be used by the ebXML Messaging Service1065

• NotSupported - Element or attribute not supported. Although the document is well1066
formed and valid, an element or attribute is present that:1067

- is consistent with the rules and constraints contained in this specification, but1068

- is not supported by the ebXML Messaging Service that is processing the message.1069

• Inconsistent - Element content or attribute value inconsistent with other elements or1070
attributes. Although the document is well formed and valid, according to the rules and1071
constraints contained in this specification the content of an element or attribute is1072
inconsistent with the content of other elements or their attributes.1073

• OtherXml - Other error in an element content or attribute value. Although the document1074
is well formed and valid, the element content or attribute value contains values which do1075
not conform to the rules and constraints contained in this specification and is not covered1076
by other error codes. The Description element should be used to indicate the nature of1077
the problem.1078

7.13.5.10 Non-XML Document Errors1079

The following are error codes that identify errors that are not associated with an XML Document:1080

• MessageTooLarge - Message too large. The message is too large to be processed by1081
the ebXML Messaging Service.1082

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 29 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

• MimeProblem - A MIME error has occurred. An error has been detected in the structure1083
or format of a MIME part of the message. For example:1084

- Missing MIME Part. Although the MIME message is correctly structured, a MIME part is1085
missing that should have been present if the rules and constraints contained in this1086
specification are followed1087

- Unexpected MIME Part. Unexpected MIME part. Although the MIME message is correctly1088
structured, a MIME part is present that is not expected in the particular context1089
according to the rules and constraints contained in this specification1090

• Unknown - Unknown Error. Indicates that an error has occurred that is not covered1091
explicitly by any of the other errors. The Description element should be used to indicate1092
the nature of the problem.1093

Note this list will be expanded in future versions of this specification, for example to report errors1094
on security.1095

1096

7.14 Security1097
1098
1099

This version of the specification supports limited security services, that is those security services1100
that can be supported within the payload. The multipart/related payload may be1101
encrypted using cryptographic techniques suitable for the payload type. Expanded definition of1102
security will be addressed in the Phase 2.1103

8 References1104

8.1 Normative References1105

[Glossary] ebXML Glossary, see ebXML Project Team Home Page1106

[ISO 8601] International Standards Organization Ref. ISO 8601 Second Edition, Published 19971107

[RFC 2392] IETF Request For Comments 2392. Content-ID and Message-ID Uniform Resource1108
Locators. E. Levinson, Published August 19981109

[RFC2045] IETF RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of1110
Internet Message Bodies, N Freed & N Borenstein, Published November 19961111

[TRPREQ] ebXML Transport, Routing and Packaging: Overview and Requirements, Version1112
0.96, Published 25 May 20001113

[UTF-8] UTF-8 is an encoding that conforms to ISO/IEC 10646. See [XML] for usage1114
conventions.1115

[XML Namespace] Recommendation for Namespaces in XML, World Wide Web Consortium, 141116
January 1999, http://www.w3.org/TR/REC-xml-names1117

[XMLMedia]IETF Internet Draft on XML Media Types. See http://www.imc.org/draft-murata-xml1118
Note. It is anticipated that this Internet Draft will soon become a RFC. Final versions1119
of this specification will refer to the equivalent RFC.1120

[XML] Extensible Mark Up Language. A W3C recommendation. See1121
http://www.w3.org/TR/1998/REC-xml-19980210 for the 10 February 1998 version.1122

1123

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 30 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2 Non-Normative References1124

[XMTP] XMTP - Extensible Mail Transport Protocol1125
http://www.openhealth.org/documents/xmtp.htm1126

1127

9 Disclaimer1128

The views and specification expressed in this document are those of the authors and are not1129
necessarily those of their employers. The authors and their employers specifically disclaim1130
responsibility for any problems arising from correct or incorrect implementation or use of this1131
design.1132

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 31 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10 Contact Information1133

1134
Team Leader1135
 Name Rik Drummond1136
 Company Drummond Group, Inc.1137
 Street 5008 Bentwood Crt.1138
 City, State, Postal Code Fort Worth, Texas 761321139
 Country USA1140
 Phone: (817) 294-73391141
 EMail: rik@drummondgroup.com1142

1143
Vice Team Leader1144
 Name Chris Ferris1145
 Company Sun Microsystems1146
 Street One Network Drive1147
 City, State, Postal Code Burlington, MA 01803-09031148
 Country USA1149
 Phone: (781) 442-30631150
 EMail: chris.ferris@sun.com1151

1152
Team Editor1153
 Name David Burnett1154
 Company CommerceOne1155
 Street 4400 Rosewood Drive 3rd Fl, Bldg 41156
 City, State, Postal Code Pleasanton, CA 945881157
 Country USA1158
 Phone: (925) 520-4422 or (650) 623-28881159
 EMail: david.burdett@commerceone.com1160

1161
Authors1162
 Name Dick Brooks1163
 Company Group 87601164
 Street 110 12th Street North, Suite F1031165
 City, State, Postal Code Birmingham, Alabama 352031166
 Phone: (205) 250-80531167
 E-mail: dick@8760.com1168

1169
 Name David Burdett1170
 Company CommerceOne1171
 Street 4400 Rosewood Drive 3rd Fl, Bldg 41172
 City, State, Postal Code Pleasanton, CA 945881173
 Country USA1174
 Phone: (925) 520-4422 or (650) 623-28881175
 EMail: david.burdett@commerceone.com1176

1177
 Name Chris Ferris1178
 Company Sun Microsystems1179
 Street One Network Drive1180
 City, State, Postal Code Burlington, MA 01803-09031181
 Country USA1182
 Phone: (781) 442-30631183
 EMail: chris.ferris@east.sun.com1184

1185

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 32 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 Name John Ibbotson1186
 Company IBM UK Ltd1187
 Street Hursley Park1188
 City, State, Postal Code Winchester SO21 2JN1189
 Country United Kingdom1190
 Phone: +44 (1962) 8151881191
 Email: john_ibbotson@uk.ibm.com1192

1193
 Name Nicholas Kassem1194
 Company Java Software, Sun Microsystems1195
 Street 901 San Antonio Road, MS CUP02-2011196
 City, State, Postal Code Palo Alto, CA 94303-49001197
 Phone: (408) 863-35351198
 E-mail: Nick.Kassem@eng.sun.com1199

1200
 Name Masayoshi Shimamura1201
 Company Fujitsu Limited1202
 Street Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome1203
 City, State, Postal Code Kohoku-ku, Yokohama 222-0033, Japan1204
 Phone: +81-45-476-45901205
 E-mail: shima@rp.open.cs.fujitsu.co.jp1206

1207
Document Editing Team1208
 Name Ralph Berwanger1209
 Company bTrade.com1210
 Street 2324 Gateway Drive1211
 City, State, Postal Code Irving, TX 750631212
 Country USA1213
 Phone: (972) 580-29001214
 EMail: rberwanger@btrade.com1215

1216
 Name Ian Jones1217
 Company British Telecommunications1218
 Street Enterprise House, 84-85 Adam Street1219
 City, State, Postal Code Cardiff, CF241XF1220
 Country UK1221
 Phone: +44 29 2072 40631222
 EMail: ian.c.jones@bt.com1223

1224
 Name Martha Warfelt1225
 Company DaimlerChrysler Corporation1226
 Street 800 Chrysler Drive1227
 City, State, Postal Code Auburn Hills, MI1228
 Country USA1229
 Phone: (248) 944-54811230
 EMail: maw2@daimlerchrysler.com1231

1232
1233
1234

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 33 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix A Schemas and DTD Definitions1235

The following are definitions for validation of the ebXML Message header structure.1236

A.1 XML Header DTD1237
<?xml version ="1.0"?>1238
<schema xmlns = "http://www.w3.org/1999/XMLSchema">1239

1240
<!ELEMENT ebXMLHeader (Manifest , Header)>1241
<!ATTLIST ebXMLHeader Version CDATA #FIXED '1.0'1242
 MessageType CDATA #FIXED 'Normal' >1243
<!ELEMENT Manifest (DocumentReference)+>1244
<!ELEMENT DocumentReference (Document Description?, DocumentLabel , DocumentId)>1245
<!ELEMENT DocumentDescription (#PCDATA)>1246
<!ATTLIST DocumentDescription e-dtype NMTOKEN #FIXED 'string' >1247
<!ELEMENT DocumentLabel (#PCDATA)>1248
<!ATTLIST DocumentLabel e-dtype NMTOKEN #FIXED 'string' >1249
<!ELEMENT DocumentId (#PCDATA)>1250
<!ATTLIST DocumentId e-dtype NMTOKEN #FIXED 'uri' >1251
<!ELEMENT Header (From , To , TPAInfo , MessageData , ReliableMessagingInfo)>1252
<!ELEMENT TPAInfo (TPAId , ConversationId , ServiceInterface , Action)>1253
<!ELEMENT ServiceInterface (#PCDATA)>1254
<!ATTLIST ServiceInterface e-dtype NMTOKEN #FIXED 'string' >1255
<!ELEMENT Action (#PCDATA)>1256
<!ATTLIST Action e-dtype NMTOKEN #FIXED 'string' >1257
<!ELEMENT TPAId (#PCDATA)>1258
<!ATTLIST TPAId context CDATA 'Undefined'1259
 e-dtype NMTOKEN #FIXED 'uri' >1260
<!ELEMENT ConversationId (#PCDATA)>1261
<!ATTLIST ConversationId context CDATA 'Undefined'1262
 e-dtype NMTOKEN #FIXED 'uri' >1263
<!ELEMENT MessageData (MessageId , TimeStamp , RefToMessageId)>1264
<!ELEMENT RefToMessageId (#PCDATA)>1265
<!ATTLIST RefToMessageId e-dtype NMTOKEN #FIXED 'uuid' >1266
<!ELEMENT MessageId (#PCDATA)>1267
<!ATTLIST MessageId e-dtype NMTOKEN #FIXED 'uuid' >1268
<!ELEMENT From (PartyId)>1269
<!ELEMENT To (PartyId)>1270
<!ELEMENT PartyId (#PCDATA)>1271
<!ATTLIST PartyId context CDATA 'Undefined'1272
 e-dtype NMTOKEN #FIXED 'uri' >1273
<!ELEMENT ReliableMessagingInfo EMPTY>1274
<!ATTLIST ReliableMessagingInfo DeliverySemantics (OnceAndOnlyOnce | BestEffort) #FIXED 'BestEffort' >1275
<!ELEMENT RoutingHeader (SenderURI , ReceiverURI , ErrorURI, Timestamp,1276

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 34 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 SequenceNumber)>1277
<!ELEMENT SenderURI (#PCDATA)>1278
<!ATTLIST SenderURI e-dtype NMTOKEN #FIXED 'uri' >1279
<!ELEMENT ReceiverURI (#PCDATA)>1280
<!ATTLIST ReceiverURI e-dtype NMTOKEN #FIXED 'uri' >1281
<!ELEMENT ErrorURI (#PCDATA)>1282
<!ATTLIST ErrorURI e-dtype NMTOKEN #FIXED 'uri' >1283
<!ELEMENT TimeStamp (#PCDATA)>1284
<!ATTLIST TimeStamp e-dtype NMTOKEN #FIXED 'dateTime' >1285
<!ELEMENT SequenceNumber (#PCDATA)>1286

1287

A.2 XML Header Schema Definition1288
<?xml version ="1.0"?>1289
<schema xmlns = "http://www.w3.org/1999/XMLSchema">1290

<element name = "ebXMLHeader">1291
<complexType content = "elementOnly">1292

<sequence>1293
<element ref = "Manifest"/>1294
<element ref = "Header"/>1295

</sequence>1296
<attribute name="Version" use="fixed" value="1.0" type="string"/>1297
<attribute name="MessageType" use="fixed" value="Normal" type = "string"/>1298

</complexType>1299
</element>1300
<element name = "Manifest">1301

<complexType content = "elementOnly">1302
<sequence minOccurs = "0" maxOccurs = "unbounded">1303

<element ref = "DocumentReference"/>1304
</sequence>1305

</complexType>1306
</element>1307
<element name = "DocumentReference">1308

<complexType content = "elementOnly">1309
<sequence minOccurs = "1" maxOccurs = "unbounded">1310

<element ref = "DocumentDescription" />1311
<element ref = "DocumentLabel"/>1312
<element ref = "DocumentId"/>1313

</sequence>1314
</complexType>1315

</element>1316
<element name = "DocumentLabel" type = "string">1317
</element>1318
<element name = "DocumentId" type = "uri">1319
</element>1320
<element name = "Header">1321

<complexType content = "elementOnly">1322
<sequence>1323

<element ref = "From"/>1324
<element ref = "To"/>1325
<element ref = "TPAInfo"/>1326
<element ref = "MessageData"/>1327
<element ref = "ReliableMessagingInfo"/>1328

</sequence>1329
</complexType>1330

</element>1331
<element name = "BusinessServiceInterface" type = "string">1332
</element>1333
<element name = "Action" type = "string"/>1334
<element name = "TPAId">1335

<complexType base = "uri" content = "textOnly">1336

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 35 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<attribute name="context" use="default" value="Undefined" type = "string"/>1337
</complexType>1338

</element>1339
<element name = "ConversationId">1340

<complexType base = "uri" content = "textOnly">1341
<attribute name = "context" use = "default" value = "Undefined" type = "string"/>1342

</complexType>1343
</element>1344
<element name = "MessageData">1345

<complexType content = "elementOnly">1346
<sequence>1347

<element ref = "MessageId"/>1348
<element ref = "TimeStamp"/>1349
<element ref = "RefToMessageId"/>1350

</sequence>1351
</complexType>1352

</element>1353
<element name = "RefToMessageId" type = "uuid">1354
</element>1355
<element name = "TimeStamp" type = "dateTime">1356
</element>1357
<element name = "MessageId" type = "uuid">1358
</element>1359
<element name = "From">1360

<complexType content = "elementOnly">1361
<sequence>1362

<element ref = "PartyId"/>1363
</sequence>1364

</complexType>1365
</element>1366
<element name = "To">1367

<complexType content = "elementOnly">1368
<sequence>1369

<element ref = "PartyId"/>1370
</sequence>1371

</complexType>1372
</element>1373
<element name = "PartyId">1374

<complexType base = "uri" content = "textOnly">1375
<attribute name = "context" use = "default" value = "Undefined" type = "string"/>1376

</complexType>1377
</element>1378
<element name = "ReliableMessagingInfo">1379

<complexType content = "empty">1380
<attribute name = "DeliverySemantics" use = "fixed" value = "Unspecified">1381

<simpleType base = "ENUMERATION">1382
<enumeration value = "OnceAndOnlyOnce"/>1383
<enumeration value = "BestEffort"/>1384

</simpleType>1385
</attribute>1386

</complexType>1387
</element>1388
<element name = "TPAInfo">1389

<complexType content = "elementOnly">1390
<sequence>1391

<element ref = "TPAId"/>1392
<element ref = "ConversationId"/>1393
<element ref = "BusinessServiceInterface"/>1394
<element ref = "Action"/>1395

</sequence>1396
</complexType>1397

</element>1398
</schema>1399

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 36 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix B Examples1400

The following are complete examples of ebXML Messages showing the structure as defined in1401
this specification.1402

B.1 Complete Example of an ebXML Message Envelope using1403
multipart/related Content-Type sent via HTTP POST1404

POST http://127.0.0.1:9090/servlet/AS2Appl HTTP/1.01405
Connection: Keep-Alive1406
User-Agent: Group 8760 Java MultiPost1407
Content-type: multipart/related; type="application/vnd.eb+xml"; version=”0.21”; boundary=-----------------------8760567890----1408
Content-Length: 27171409

1410
-------------------------8760567890----1411
Content-ID: ebxmlheader-8760-9015437391412
Content-Length: 13571413
Content-type: application/vnd.eb+xml; version=”1.0”; charset=”UTF-8”1414

1415
<?xml version ="1.0" encoding="UTF-8"?>1416
<!DOCTYPE ebXMLHeader SYSTEM "level1-10122000.dtd">1417
<ebXMLHeader1418

xmlns = "http://www.ebxml.org/namespaces/messageHeader"1419
Version = "1.0"1420
MessageType = "Normal">1421

 <Manifest>1422
 <DocumentReference>1423
 <DocumentLabel>Purchase Order Request Action</DocumentLabel>1424
 <DocumentId>cid:8760.com901543736</DocumentId>1425
 <DocumentDescription xml:lang="en-us">GCI Purchase Order</DocumentDescription>1426
 </DocumentReference>1427
 </Manifest>1428
 <Header>1429
 <From>1430
 <PartyId context = "DUNS">2059397184</PartyId>1431
 </From>1432
 <To>1433
 <PartyId context = "DUNS">943561654</PartyId>1434
 </To>1435
 <TPAInfo>1436
 <TPAId>/2059397184/943561654GCIPO-20000202</TPAId>1437
 <ConversationId>8760.com901543737</ConversationId>1438
 <ServiceInterface>OrderProcessing</ServiceInterface>1439
 <Action>ProcessNewOrder</Action>1440
 </TPAInfo>1441

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 37 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 <MessageData>1442
 <MessageId>8760.com901543738</MessageId>1443
 <Timestamp>20001014175625510.000Z</Timestamp>1444
 <RefToMessageId>Not Applicable</RefToMessageId>1445
 </MessageData>1446
 <ReliableMessagingInfo DeliverySemantics ="OnceAndOnlyOnce"/>1447
 </Header>1448
 <RoutingHeader>1449
 <RouteInfo>1450
 <SenderURI>ford.com/ebXMLHandler</SenderURI>1451
 <ReceiverURI>gm.com/ebXMLHandler</ReceiverURI>1452
 <ErrorURI>mailto:ebxmlerrors@ford.com</ErrorURI>1453
 <Timestamp>20001014175625510.000Z</Timestamp>1454
 <SequenceNumber>00001</SequenceNumber>1455
 </RouteInfo>1456
 </RoutingHeader>1457
</ebXMLHeader>1458
-------------------------8760567890----1459
Content-Length: 10431460
Content-ID: 8760.com9015437361461
Content-type: application/xml1462

1463
<?xml version="1.0" encoding="UTF-8"?>1464
<!DOCTYPE Order SYSTEM "OrderV0.1072400.dtd">1465
<Order actionRequestStatusIndicator="Create">1466

<Document id="" status="COPY" type="" language="EN">1467
<creationDate date="2000-02-02"/>1468

</Document>1469
<buyer>1470

<PartyIdentification>1471
<GlobalLocationNumber>4325335000003</GlobalLocationNumber>1472

</PartyIdentification>1473
<BuyerAlignmentIdentification>Buyer</BuyerAlignmentIdentification>1474

</buyer>1475
<seller>1476

<PartyIdentification>1477
<GlobalLocationNumber/>1478

</PartyIdentification>1479
<SellerAlignmentIdentification/>1480

</seller>1481
<shipTo>1482

<PartyIdentification>1483
<GlobalLocationNumber/>1484

</PartyIdentification>1485
<ShipToAlignmentIdentification/>1486

</shipTo>1487

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 38 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<requestedMovementType movement="requestedDeliveryDate">1488
<movementDate date="2000-03-03"/>1489

</requestedMovementType>1490
<lineItem lineItemNumber="1">1491

<itemId>1492
<GlobalTradeItemNumber/>1493

</itemId>1494
<requestedQuantity value="100"/>1495
<price netPrice="1000.00" currencyOfNetPrice=""/>1496

</lineItem>1497
</Order>1498

1499
-------------------------8760567890------1500

B.2 Complete Example of an ebXML Message Envelope using1501
multipart/related Content-Type sent via SMTP1502

The default Content-transfer-encoding type of 7BIT is being used in this message.1503
1504

From dick@8760.com Sun May 7 17:01:14 20001505
Received: from granger.mail.mindspring.net by alpha2000.tech-comm.com; (8.8.5/1.1.8.2/05Jun95-1217PM)1506

id RAA32702; Sun, 7 May 2000 17:01:13 -0500 (CDT)1507
Received: from gamma (user-33qt10l.dialup.mindspring.com [199.174.132.21])1508

by granger.mail.mindspring.net (8.9.3/8.8.5) with SMTP id SAA119421509
for <ebxmlhandler@8760.com>; Sun, 7 May 2000 18:11:14 -0400 (EDT)1510

From: "Dick Brooks (E)" <dick@8760.com>1511
To: <ebxmlhandler@8760.com>1512
Subject: OTA Commission Event1513
Date: Sun, 7 May 2000 17:07:38 -05001514
Message-ID: <NDBBIOBLMLCDOHCHIKMGKEEIDAAA.dick@8760.com>1515
MIME-Version: 1.01516
X-Priority: 3 (Normal)1517
X-MSMail-Priority: Normal1518
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)1519
Importance: Normal1520
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.13001521
Content-Length: 80811522
Content-Type: multipart/related; type="application/vnd.eb+xml"; version="0.21"; boundary="---1523
=_NextPart_000_0005_01BFB846.BF7FABA0"1524

1525
------=_NextPart_000_0005_01BFB846.BF7FABA01526
Content-Type: application/vnd.eb+xml; charset=”UTF-8”1527
Content-ID: ebxmlheader-90001528
Content-Length: 2721529

1530
<?xml version="1.0" encoding="UTF-8"?>1531

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 39 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<ebXMLHeader xmlns = “http://www.ebxml.org/namespaces/messageHeader"1532
 Version = "1.0"1533
 MessageType = "Normal">1534
 <Manifest>1535
 <DocumentReference>1536
 <DocumentLabel>Purchase Order Request Action</DocumentLabel>1537
 <DocumentId>1538
 cid:uid@originator-domain [C-ID of the payload MIME part]1539
 </DocumentId>1540
 </DocumentReference>1541
 </Manifest>1542
 <Header>1543
 <From>1544
 <PartyId context = "DUNS">requester-DUNS-number</PartyId>1545
 </From>1546
 <To>1547
 <PartyId context = "DUNS">responder-DUNS-number</PartyId>1548
 </To>1549
 <TPAInfo>1550
 <TPAId context = "tpadb">1551
 /requester-DUNS-number/responder-DUNS-number/PIP3A4/1.11552
 </TPAId>1553
 <ConversationId context = “CreatePurchaseOrder">1554
 uid@requester-domain1555
 </ConversationId>1556
 <BusinessServiceInterface>1557
 Seller Service1558
 </BusinessServiceInterface>1559
 <Action version=”1.1”>Purchase Order Request Action</Action>1560
 </TPAInfo>1561
 <MessageData>1562
 <MessageId>uid@requester-domain</MessageId>1563
 <TimeStamp>CCYYMMDDThhmmss.sssZ</TimeStamp>1564
 <RefToMessageId>Not Applicable</RefToMessageId>1565
 </MessageData>1566
 <ReliableMessagingInfo DeliverySemantics = "Unspecified"/>1567
 </Header>1568
</ebXMLHeader>1569
------=_NextPart_000_0005_01BFB846.BF7FABA01570
Content-Type: text/xml1571
Content-ID: ebxmlpayload-90001572
Content-Length: 75151573

1574
<?xml version="1.0" encoding="UTF-8"?>1575
<HITISMessage xmlns="" Version="1.0">1576

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">1577

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 40 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<FromURI>http://www.pms.com/HITISInterface</FromURI>1578
<ToURI>http://www.crs.com/HITISInterface</ToURI>1579
<ReplyToURI>http://www.pms.com/HITISInterface</ReplyToURI>1580
<MessageID>1234567890</MessageID>1581
<OriginalMessageID>1234567890</OriginalMessageID>1582
<TimeStamp>1999-11-10T10:23:44</TimeStamp>1583
<Token>1234-567-8901</Token>1584

</Header>1585
<Body>1586

<HITISOperation OperationName="CommissionEventsUpdate">1587
<BodyPartstuffgoeshere/>1588

</HITISOperation>1589
</Body>1590

</HITISMessage>1591
------=_NextPart_000_0005_01BFB846.BF7FABA0--1592

Appendix C Candidate Packaging Technologies and1593

Selection Process1594

The packaging sub-group began its investigation of packaging technologies by identifying the1595
technologies currently used for business-to-business message exchange or were being1596
developed for this purpose. The following packaging technologies were identified:1597

• MIME - currently in use by companies exchanging business transactions using E-mail1598
and HTTP1599

• XML - currently used by RosettaNet and Microsoft (BizTalk and SOAP) and others1600

C.1 Selection Process1601

Each candidate technology was evaluated based on its ability to meet the requirements listed in1602
the section titled "Packaging and other Requirements" in this document. When necessary,1603
specific parties were contacted to provide details describing how a technology was being used to1604
meet specific requirements. The following parties were contacted to provide expert insight:1605

• Microsoft - David Turner, regarding use of XML packaging in BizTalk1606

• Develop Mentor - Don Box, regarding use of XML packaging in SOAP1607

• Vitria - Prasad Yendluri, regarding use of XML packaging in RosettaNet1608

• Jonathan Borden - author of [XMTP], an XML to MIME transformation tool1609
1610

The packaging sub-group considered the inputs of people from the ebXML Transport mailing list1611
as well as the parties listed above, before making a selection.1612

C.2 MIME1613

Multipurpose Internet Mail Extensions (MIME) is an international standard created by the Internet1614
Engineering Task Force. It has been implemented by numerous software vendors across the1615
globe and has been used to exchange mixed type payloads, including XML, for several years.1616
MIME was designed purely as a packaging (enveloping) solution to allow the transport of mixed1617

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 41 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

payloads using Internet E-mail (SMTP). MIME is also being used by other transport technologies1618
as a packaging technology, most notably HTTP.1619

C.3 XML1620

eXtensible Markup Language (XML) version 1.0 is a technical specification holding a1621
RECOMMENDED status created by the World Wide Web Consortium. It has been implemented1622
by numerous software vendors across the globe and has been used to describe a broad1623
spectrum of document structures from very simple to very complex. XML is a very flexible1624
markup language that can be used to represent virtually any type of document. XML can be used1625
solely for packaging (enveloping) documents of any type, providing the data can be "transformed"1626
into "legal" XML.1627

1628
In some cases, XML documents MUST be placed into transport specific "envelopes" before being1629
transported. For example, XML data MUST be placed in a MIME envelope when being1630
transported via SMTP or HTTP.1631

C.4 Conclusion1632

The packaging sub-group examined the capabilities of both XML and MIME relative to the list of1633
packaging requirements above. It's important to note that neither technology met all of the ebXML1634
requirements and in the end it was the packaging sub-groups assessment of which technology1635
came closest to meeting ALL of the ebXML requirements that determined which technology1636
SHOULD be used.1637

1638
MIME was chosen to serve as the ebXML packaging technology, over XML, based on the1639
information contained in the following table:1640

Reason Requirement(s) Satisfied
There is no formal packaging recommendation within
IETF or W3C, based on XML. If ebXML were to choose
XML as a packaging technology it would be required to
define an XML packaging specification and submit this
to IETF or W3C for adoption as a formal standard.

to not reinvent the wheel - re-use
where possible [TRPREQ]

XML requires that binary and other types of payload
data including XML documents be base64 encoded in
order to be encapsulated within a XML root document.
Base64 encoding ensures that no illegal XML
characters exist within a document and recursive XML
documents are "hidden". Base64 encoding imposes a
significant processing overhead and results in larger
messages, which affect both transmission and
processing times. Base64 encoding of binary data is
required of MIME content when being transported by
SMTP, but this is a transport level requirement, not a
requirement imposed by MIME. Binary data can be
packaged and transported without alteration when
using MIME over HTTP

Minimize intrusion to payload (special
encoding or alteration)
Low processing overhead

At the time of defining this specification there is no
industry standard way to package an encrypted
message, or portion of a message, using XML.

All or part of the documents in a
message MAY be encrypted prior to
sending [TRPREQ]

MIME could be used in conformance within existing
IETF recommendations, no additions or changes are

to not reinvent the wheel - re-use
where possible [TRPREQ]

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 42 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

initially required to produce a functional envelope.

Appendix D MIME Type discussion1641

Three MIME media types were considered to serve as Content-Type for the ebXML Message1642
Envelope:1643

• Multipart/related1644

• Multipart/Mixed1645

• Multipart/form-data1646

• 1647
The group selected the multipart/related media type to serve as the preferred message1648
envelope Content-Type.1649

1650
Note:1651
There was some discussion over the similarities of multipart/related and multipart/mixed, both of1652
which appear to offer similar capabilities and both could meet stated requirements. However, the1653
group converged on multipart/related, believing it to be more semantically appropriate for ebXML.1654
There was significant discussion over whether to support multipart/form-data as an alternate1655
Content-Type for message-envelope, due to the large installed base of web browsers that1656
support this Content-Type.1657

1658
It was determined that multipart/related was a more generic Content-Type than multipart/form-1659
data and the multipart/related Content-Type is the preferred Content-Type for ebXML Message1660
Envelopes. Multipart/form-data Content-Type is typically associated with HTTP/HTML web forms,1661
whereas multipart/related can be associated with any type of data.1662

1663
Additionally, due to limitations in their handling of multipart ebXML payloads it was determined1664
that existing web browsers are unable to support the full breadth of functions needed to package1665
complex ebXML Messages containing multipart payloads. Therefore browser vendors are1666
encouraged to add support for the ebXML enveloping standard as specified in this document.1667

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 43 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix E Communication Protocol Interfaces1668

The ebXML Messaging Service messages are carried by Transport Protocols as shown in the1669
following sections.1670

E.1 HTTP [RFC 2068]1671

All ebXML Messaging Service messages are carried by an HTTP Request Message (POST1672
method). The HTTP Response Message to an HTTP Request Message has no entity body.1673
The following Figure E.1 shows how a Normal Message and its corresponding Acknowledgement1674
Message (when Reliable Messaging is used) are carried using HTTP:1675

1676
 Receiver

MSH
HTTP Handler

Sender
MSH
HTTP Handler

Sending
Party

Receiving
Party

Business Process Request

Request Message (POST)
Normal Message

Acknowledgement Message

Response Message

Request Message (POST)

Response Message

1677

Figure E.1 HTTP Flow1678

1679

Table E.1 Relationship with HTTP1680

ebXML Messaging Service message HTTP

Normal Message Request Message (POST method) from Sender
to Receiver

Response Message to the Request Message
has no entity body

Acknowledgement Message Request Message (POST method) from
Receiver to Sender

Response Message to the Request Message
has no entity body

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 44 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Error Message Request Message (POST method) from
Receiver to Sender

Response Message to the Request Message
has no entity body

E.2 SMTP [RFC 821]1681

All ebXML Messaging Service messages are carried as mail in an SMTP Mail Transaction as1682
shown in the following Figures.1683

1684
 Sender Receiver

MSH MSH
Sending

Party
Receiving

Party

SMTP Handler SMTP Handler

Business Process Request

Mail Transaction

Normal Message

Mail Transaction

Acknowledgement Message

1685

Figure E.2 SMTP Flow1686

1687
The Mail Transaction follows RFC 821, “SIMPLE MAIL TRANSFER PROTOCOL”, as shown in1688
the following Figure:1689

1690

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 45 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 sender-SMTP receiver-SMTP

MAIL FROM : <xxxx@company1.org>

250 OK

RCPT TO : <yyyy@company2.org>

250 OK

DATA

354 Start mail input ;
end with <CR/LF> . <CR/LF>

one line of message

one line of message

...

CR/LF CR/LF

250 OK

1691

Figure E.3 SMTP Sequence1692

1693

Table E.2 Relationship with SMTP1694

ebXML Messaging Service message SMTP

Normal Message Mail Transaction from Sender to Receiver

Acknowledgement Message Mail Transaction from Receiver to Sender

Error Message Mail Transaction from Receiver to Sender

E.3 FTP [RFC 959]1695

This section to be added.1696

E.4 Communication Protocol Errors during Reliable Messaging1697

When the Sender or the Receiver detects a transport protocol level error (such as an HTTP,1698
SMTP or FTP error), the appropriate transport recovery handler will execute a recovery1699
sequence. No Reliable Messaging functions are involved in this recovery sequence, since it1700
happens at a lower level.1701

1702
However, if the Sender detects a transport protocol level error that is unrecoverable at the1703
transport protocol level, the appropriate recovery handler in the Sender will execute a Messaging1704

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 46 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Service recovery sequence. This recovery sequence SHALL use a retry interval and SHALL re-1705
send the last message to the Receiver. The format of the re-sent message is exactly the same as1706
the original message. In the recovery sequence or after the recovery sequence:1707

- If the Sender detects a transport protocol level error again, which is unrecoverable at the1708
transport protocol level, the recovery handler repeats the recovery sequence for an1709
implementation-defined number of times.1710

- If the Sender detects or receives another error, the recovery handler executes an1711
appropriate recovery sequence for the error.1712

- If the Sender receives an Acknowledgment Message, the message transmission is1713
completed.1714

Sender Receiver

Sequence Number = 5

Sequence Number = 6

Repeat the recovery
sequence when
same error occurs

Retry Interval

Sequence Number = 6Re-send the last
message

Detect transport protocol level error that is
unrecoverable at the transport protocol level

1715
Figure E.4 Recovery Sequence for Communication Protocol Errors1716

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 47 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix F Detailed list of the Messaging Services1717

Requirement Phases1718

1719
(This section to be added.)1720

ebXML Transport, Routing and Packaging October 2000

Message Service Specification v0.21d Page 48 of 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement1721

Copyright © ebXML 2000. All Rights Reserved.1722
1723

This document and translations of it may be copied and furnished to others, and derivative works1724
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,1725
published and distributed, in whole or in part, without restriction of any kind, provided that the1726
above copyright notice and this paragraph are included on all such copies and derivative works.1727
However, this document itself may not be modified in any way, such as by removing the copyright1728
notice or references to the Internet Society or other Internet organizations, except as needed for1729
the purpose of developing Internet standards in which case the procedures for copyrights defined1730
in the Internet Standards process must be followed, or as required to translate it into languages1731
other than English.1732

1733
The limited permissions granted above are perpetual and will not be revoked by ebXML or its1734
successors or assigns.1735

1736
This document and the information contained herein is provided on an1737
"AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,1738
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION1739
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF1740
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.1741

	Message Service Specification
	October 16, 2000, Version 0.21d
	1 Status of this Document
	2 ebXML participants
	3 Table of Contents
	4 Introduction
	4.1 Summary of Contents of Document
	4.2 Audience
	4.3 Related Documents

	5 Design Objectives
	5.1 Goals/Objectives/Requirements/Problem Description
	5.2 Caveats and Assumptions

	6 System Overview
	6.1 What ebXML Messaging Services does
	6.2 Where ebXML Messaging Services May Be Implemented

	7 Definition and Scope
	7.1 Packaging Specification
	7.1.1 ebXML Message Structure
	7.1.2 ebXML Header Envelope and Payload Envelope
	7.1.3 MIME usage Conventions

	7.2 ebXML Message Envelope
	7.2.1 Content-Type
	7.2.1.1 type Attribute
	7.2.1.2 boundary Attribute
	7.2.1.3 version Attribute

	7.2.2 Content-Length
	7.2.3 ebXML Message Envelope Example

	7.3 ebXML Header Container
	7.3.1 Content-ID
	7.3.2 Content-Length
	7.3.3 Content-Type
	7.3.3.1 version Attribute
	7.3.3.2 charset Attribute

	7.3.4 ebXML Header Envelope Example

	7.4 ebXML Payload Container
	7.4.1 Content-ID
	7.4.2 Content-Length
	7.4.3 Content-Type
	7.4.4 Example of an ebXML MIME Payload Container

	7.5 ebXML Header Document
	7.6 XML Prolog
	7.7 ebXMLHeader Element
	7.7.1 ebXMLHeader attributes
	7.7.1.1 Namespace
	7.7.1.2 Version
	7.7.1.3 MessageType

	7.7.2 ebXMLHeader elements
	7.7.2.1 Manifest
	7.7.2.2 Header

	7.7.3 ebXMLHeader sample

	7.8 XML Manifest
	7.8.1 XML DocumentReference
	7.8.1.1 DocumentDescription
	7.8.1.2 DocumentLabel
	7.8.1.3 DocumentId

	7.8.2 Manifest sample

	7.9 XML Header
	7.9.1 From and To
	7.9.2 TPAInfo
	7.9.2.1 TPAId
	7.9.2.2 ConversationId
	7.9.2.3 ServiceInterface
	7.9.2.4 Action
	7.9.2.5 TPAInfo sample

	7.9.3 MessageData
	7.9.3.1 MessageId
	7.9.3.2 TimeStamp
	7.9.3.3 RefToMessageId
	7.9.3.4 MessageId sample

	7.9.4 ReliableMessagingInfo
	7.9.5 XML Header sample

	7.10 XML Routing Header
	7.11 Reliable Messaging Flow
	7.12 Reliable Messaging Recovery Procedures
	7.12.1 Messaging Service Parameters
	7.12.2 Recovery Sequence for Lost Messages
	7.12.3 Maximum Number of Retries and Retry Interval

	7.13 ebXML Error Reporting
	7.13.1 Definitions
	7.13.2 Types of Errors
	7.13.3 When to generate Error Messages
	7.13.4 Identifying the Error Reporting Location
	7.13.5 ebXML Error Message
	7.13.5.1 Message Structure
	7.13.5.2 ebXML Error Document
	7.13.5.3 Error Header Element
	7.13.5.3.1 ID attribute
	7.13.5.3.2 ErrorCode element
	7.13.5.3.3 Severity element
	7.13.5.3.4 Description element
	7.13.5.3.5 SoftwareDetails element

	7.13.5.4 Examples
	7.13.5.5 Error Location Element
	7.13.5.5.1 ID Attribute
	7.13.5.5.2 RefToMessageId element
	7.13.5.5.3 Href element

	7.13.5.6 Examples
	7.13.5.7 ebXML Error Document Type Definition
	7.13.5.8 Error Codes
	7.13.5.9 Reporting Errors in the ebXML Header Document
	7.13.5.10 Non-XML Document Errors

	7.14 Security

	8 References
	8.1 Normative References
	8.2 Non-Normative References

	9 Disclaimer
	10 Contact Information
	A Schemas and DTD Definitions
	A.1 XML Header DTD
	A.2 XML Header Schema Definition

	B Examples
	B.1 Complete Example of an ebXML Message Envelope using multipart/ related Content- Type sent via HTTP POST
	B.2 Complete Example of an ebXML Message Envelope using multipart/ related Content- Type sent via SMTP

	C Candidate Packaging Technologies and Selection Process
	C.1 Selection Process
	C.2 MIME
	C.3 XML
	C.4 Conclusion

	D MIME Type discussion
	E Communication Protocol Interfaces
	E.1 HTTP [RFC 2068]
	Figure E.1 HTTP Flow
	Table E.1 Relationship with HTTP

	E.2 SMTP [RFC 821]
	Figure E.2 SMTP Flow
	Figure E.3 SMTP Sequence
	Table E.2 Relationship with SMTP

	E.3 FTP [RFC 959]
	E.4 Communication Protocol Errors during Reliable Messaging
	Figure E.4 Recovery Sequence for Communication Protocol Errors

	F Detailed list of the Messaging Services Requirement Phases
	Copyright Statement

	
	Oasis Title Page

