
 1
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

Data Transport Standard
National Council of Higher Education Loan Programs

HomePage

This site is a [Wiki]. A "wiki" is a website that is collaboratively edited
by its users, including the ability to change text written by other users.
Yes, that means that everyone, including you, has the ability to modify
every single page on this site.

The Data Transport Standard (DTS) is a Web Services based transport
system that is able to support many business data exchange needs.
Initially designed to support synchronous and asynchronous transport
models, it is possible to support batch, near-time and real-time needs
within this framework. Additionally, current designs in progress include
two different client configurations: both participants have client
software and server software, one participant has client software and
utilizes that software to communicate with a participant's server.

DTS utilizes SOAP, HTTP, SSL, XML, Base64, zLib compression, and
UUID. The protocol uses SOAP over HTTPS to ensure the privacy of the
transmission. XML is used to describe routing information related to a
transmission, allowing data transport systems to be focused on moving
data with little specific knowledge about the information contained
within the transmission. UUID is utilized to generate unique message
tracking numbers to ensure easier identification of specific messages.
Base64 and zLib are used to compress (zlib) and encode (Base64) the
data to be moved. This makes a DTSP system payload insensitive,
capable of moving any type of data between business partners.

The purpose of this group is to recommend a business direction for
“Data Transport” and define the business requirements for that
process that can be used across multiple business sectors supported
by Guarantors, Lenders, Schools, FAMS vendors and FSA.

Data Transport Business Workgroup

Business Requirements

 2
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

upload:Proposed%20Transport%20Standard.doc

 3
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

Stack:

• Application
• Guaranteed Delivery
• Security

 * Authorization
 * Authentication
 * Encryption

• [Core]

 * Coretesters
 * Data Type WSDL: [DTSDataTypes.wsdl]
 * Sample Service (getStatus): [getStatus.wsdl]
 * Endpoint for getStatus: [dts.wsdl]

Guaranteed Delivery

See the TaskList

There is a working group at OASIS that is working on Web Serivces -
Reliable Messaging (WS-RM). The main page for this proposal is at
[http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrm]. The message
archives have a lot of pertinent information.

TaskList

This is the list of tasks (and hopefully dates) that need to be
completed for the Data Transport Standard. If you see a task that
you're interested in, please feel free to add your name as the
responsible person.

• JAD location and date. - by 3/19/04

• Create Core specification documentation

 4
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

o Generate WSDL for a sample core level transport service -
Mark and Tim will provide corrections/suggestions by
3/25/04. Mark will call Tim at 10:30 EST 3/19/04
� Generate the WSDL for CR:C
� Generate instructions for new types of data

o Complete documentation for the core specification - John
Gill will check with Gary and Kim for changes with
modifications done by 3/25/04

o Review and approve the core specification documentation -
EEAT

o Document the best practices for Java with Apache Axis and
.Net with Microsoft SOAP - This will be an end result of the
JAD in April
� Take the best practices to PESC for approval

• Create Security specification documentation
o Complete documentation for the security specification -

Zahida will send to the group by 3/24/04
o Review and approve the security specification

documentation - Group will review on 3/25/04
o Prototype sample service with the security layer - April JAD

� Specify which certificates will be necessary for
sample testing - Tim will verify 3/25/04

o Document the best practices for Java and .Net - April JAD
o Key management and centralized directory - Zahida will

enhance the documentation for review by the groupby
3/24/04
� This will be simililar to the Meteor centralized

registry and we can use much of their documentation
� Who will host the registry
� Need procedures for updating the registry

• Create the Guaranteed Delivery specification documentation -
John and an item for the JAD session

o Complete documentation for the guaranteed delivery layer
o Review and approve the documentation
o Document the best practices for Java and .Net

� How are files managed?
� What is the base functionality that must be exposed?

o Automatic retry
� Number of times to retry, how often?
� What happens when retry fails?
� How does this relate or differentiate for real-time

versus delayed processing

 5
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

• Define large message transport requirements and limitations -
JAD and EEAT the week following the JAD to be completed by
4/15/04

o What are the implications for large file sizes and what
hardware and bandwidth are required for various sized
files

• Implementation
o Documentation for implementing sample service with the

core WSDL. Both subtasks will need rudimentary
documentation to be available before the JAD
� Java documentation - Mark and Tim
� .Net documentation - Nathan and Zahida

o Implement a test-bench representing the sample service -
April JAD

o Create standard sample files of varying sizes - Mark and
Nathan will provide by 3/25/04

• Error handling definition and procedures
o What happens when we receive a file to the incorrect

destination

JAD Tasklist

• Create Core specification documentation
o Document the best practices for Java with Apache Axis and

.Net with Microsoft SOAP - This will be an end result of the
JAD in April

• Create Security specification documentation
o Prototype sample service with the security layer - April JAD
o Document the best practices for Java and .Net - April JAD

• Create the Guaranteed Delivery specification documentation -
John and an item for the JAD session

o Complete documentation for the guaranteed delivery layer
o Review and approve the documentation
o Document the best practices for Java and .Net

� How are files managed?
� What is the base functionality that must be exposed?

o Automatic retry
� Number of times to retry, how often?
� What happens when retry fails?

 6
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

� How does this relate or differentiate for real-time
versus delayed processing

• Define large message transport requirements and limitations -
JAD and EEAT the week following the JAD to be completed by
4/15/04

o What are the implications for large file sizes and what
hardware and bandwidth are required for various sized
files

• Implementation
o Implement a test-bench representing the sample service -

April JAD

Security

We really need to watch [JSR 183] for Web Services Sercurity.
If we're going to use SAML assertions we should watch [JSR 155]
This site has several articles on security topics relating to Web
Services : [http://webservices.xml.com/security]
Some resources on Web Service Security:
Microsoft's [Web Services Security Specifications Index Page] and
IBM's [WS-Security Home Page] which both cover the exact same
specification.
[Web Services Discovery]

Data Transport Core Standard

This is a protocol specification only and must be easily implementable
in Java and .Net.

We are using a layered approach to building the protocol. The core
protocol is a specification for transmitting data from one point to
another. Authentication, authorization and automatic retransmission
are handled in higher level specifications.

The body of the SOAP message will include exactly one element
named "payload" with zero attributes which is a Base 64 encoded, Zlib
compressed CDATA section.

 7
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

Each request and response must contain the following header
elements (
http://www.datatransportstandard.com/uploads/DTSDataTypes.wsdl):

 Sender - Type core:EntityType?
 Recipient - Type core:EntityType?
 TransportUUID? - UUID of type xs:String
 TransmitDateTimeGMT? - Type xs:dateTime

Any implementation of the core protocol must be able to handle
additional unknown header elements.

Any request that is received with any of these header elements
missing will be rejected and a SOAP Fault will be returned.

Every distinct file type will have a standard SOAP method name to use.
The method name will closely correlate to the Email and FTP filenames
currently defined by ESC.

All method names will follow the following naming convention:

• [submit/request] - submit is used when pushing data to the
trading partner. request is used when requesting the trading
partner to return data.

• [File Type] - CRC, CAM, CL. All Upper Case
• [Version] - two digit number with the version of file being

sent/requested
• [File Sub Type] - Camel Case of the current sub type
• {Batch} - If the response is not expected immediately then this

request is to be considered a "Batch Mode" request. If the
response is expected in real-time, then no suffix will be used.

As an example, CRC Version 1 Application Send request expecting a
real-time response will be named submitCRC01AppSend?. A similar
request with an expected response at a later time would be named
submitCRC01AppSendBatch?

There will be a centralized LDAP server to act as a registry for all SOAP
methods supported. This centralized registry will contain each
participating entity. Each entity will contain business and technical
contact information. A list of all supported transaction types and the
public X.509 key of the entity will also be stored.

There are some initial requirements of the Data Transport Standard
that are outside the scope of the core protocol. Since they do not

 8
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

affect every file type send, they will be handled on a case by case
basis in the application layer.

• Requirement: If you receive a change for a wrapper out of order
then reject the first.

 This is an application level requirement. Most transaction types do not need this
requirement.
Stack:

• Application
• Guaranteed Delivery
• Security

 * Authorization
 * Authentication
 * Encryption

• Core

Development

There are many parallel tasks occuring. They are documented on the
CodeDevelopment page.

Here are the basic tools needed to participate in effort. Toolkit

TaskList - The list of tasks that need to be completed.

Reevaluation of HPCP

upload:DTS%20overview.doc

upload:DTS%20core.doc

Current codebase as of 3/11/04: upload:dtsClient.zip
http://www.datatransportstandard.com/cgi/wiki.cgi?TOC

 9
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

Re-evaluation of the Technical Specification
of the High Performance Channel Protocol

Tim Bornholtz, PTI
John Gill, TG

Purpose of High Performance Channel

The purpose of the High Performance Channel Protocol Specification
(HPCP) is to define standard mechanisms to securely transport data
between members of the FFELP industry in real-time or synchronously.
This specification is a usage guide for a set of related technologies. At
its core, an implementation of the HPCP transmits data from one
provider to another. The receiver of the data then responds
appropriately to the sender depending on the request sent. The
request sent may be binary, text as in CommonLine?, XML, or any
other data format. Likewise, the response can be any data format. In
addition to the actual data sent, the HPCP request and response
contains other information necessary to help the receiver determine
the validity of the data, the identity of the sender, and the action or
actions to take with the data. The HPCP Specification also describes
how data is to be encoded during transmission.

Disadvantage of the Current Protocol Specification

The current protocol specification is designed to be a layer on top of
SOAP. We believe that this is a fundamental flaw in the HPCP technical
specification. By looking at the abstract of SOAP we see that the goals
of SOAP are nearly identical to the goals of HPCP.

SOAP Abstract (http://www.w3.org/TR/SOAP)

 SOAP is a lightweight protocol for exchange of information in a
 decentralized, distributed environment. It is an XML based
 protocol that consists of three parts: an envelope that defines a
 framework for describing what is in a message and how to process
 it, a set of encoding rules for expressing instances of
 application-defined datatypes, and a convention for representing
 remote procedure calls and responses.

A better approach would be to remove the cumbersome and
unnecessary layer that exists today, using SOAP as the basis of the
transport, with the HPCP specification to define additional pieces of
information within the SOAP message.

 10
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

By comparing a simple SOAP message with a simple HPCP message
the similarities become obvious.

SOAP Message
 <SOAP-ENV:Envelope/>
 <SOAP-ENV:Header>
 { Any custom header tags necessary such as... }
 <t:Transaction xmlns:t="some-URI" SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 { XML Content Here}
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>
HPCP Message
 <Envelope>
 <Message ID="{uuid}" TimeStamp?="{ccyymmddhhnnssttt}"/>
 <Sender ID="ED.{ED/DOE/NCHELP assigned code}"/>
 <Receipent ID="ED.{ED/DOE/NCHELP assigned code}"/>
 <Transaction Type="{send,resp,ack,err}"/>
 <Package>
 <Special Type="SAMPLEREQUEST" Encoding="NONE" Compression="NONE">
 <![CDATA[{Optional Special Payload data}]]>
 </Special?>
 <Content Type="SAMPLEREQUEST" Encoding="NONE" Compression="NONE">
 <![CDATA[{Content Payload data}]]>
 </Content?>
 </Package?>
 </Envelope?>

As you can easily see from these simple examples, the SOAP format
and the HPCP format are very similar. Both contain an outer Envelope
to enclose the entire message. Both contain information that is helpful
to the processing of the actual body/content. Both send the actual
data, SOAP through the <SOAP-ENV:Body> tag and HPCP through the
<Content> tag. The current protocol specification wraps the content in
an HPCP message structure and then wraps that entire HPCP message
in a SOAP message. This additional wrapping of the content is
redundant and provides no benefit to the data transport not already
provided by SOAP. If the protocol specification is changed to utilize the
SOAP message as the transport layer and define specific <SOAP-
ENV:Header> elements to ensure consistent processing of the request,
there are many benefits to be gained.

1) Speed Any implementation of SOAP must parse the entire request.
This includes the portion of the request that is specific to HPCP. An
implementation of HPCP must also parse and process their entire
request. By merging the HPCP structure into the SOAP message, the
entire contents will only need to be parsed and processed once.

 11
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

2) Extensibility and Standards Conformance Most new XML standards
that we are interested in using are developing with SOAP in mind.
Most toolkits that implement various standards can already interact
with the SOAP message with very little custom development necessary
from an implementation of the HPCP. The current protocol specification
is completely custom and does not follow W3C standards. Because of
this, any additional standards that are to be implemented within a
HPCP implementation require a great deal of development effort to
implement.

3) Tool Integration Many tools in use today can process or create
SOAP message with absolutely no development necessary. Since these
tools understand the core SOAP specification, they can generate the
necessary information with a simple Web Services Description
Language (WSDL) file. Using the current implementation of HPCP, it is
not possible to develop a WSDL file that is of any practical use.

4) Simplicity Because the proposed changes to the HPCP specification
would conform to the SOAP standard and additional toolkits for
securing the transaction are pure standards based, an implementation
should be a simple task. An open source implementation of the
specification can be created by the EEAT and be made available to the
community. Some organizations, however, may wish to create their
own implementation of the specification. These custom
implementations should be simple to create and simple to test for
interoperability with the reference implementation. Securing HPCP
The OSI defines six basic security services to secure communications.
The protocol specification must ensure that these security services are
correct above all else. 1) Authentication 2) Access Control
(Authorization) 3) Data Confidentiality 4) Data Integrity 5) Non-
repudiation 6) Logging and Monitoring

Using a "best practices" approach to secure the protocol, we can be
confident that all implementations of the protocol specification are
indeed secure.

The following technologies can be used in conjunction with each other
to secure the transmission.

Security Assertion Markup Language (SAML) is an XML based
framework for ensuring that transmitted communications are secure.
SAML defines mechanisms to exchange authentication, authorization,
and non-repudiation information.

 12
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

SOAP Security Extensions: Digital Signature (
http://www.w3.org/TR/SOAP-dsig/) is a standard to specify the
syntax and processing rules of a SOAP Header to carry XML Signature
(http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/)
information.

Centralized UDDI or LDAP registry to authorize senders and recipients,
perform key management and maintain URL resources. The
information stored in the registry contains only non-sensitive public
information.

Secure Socket Layer (SSL) encrypts all communication between two
endpoints.

Looking at the six security services, we can see how changes to the
HPCP specification can ensure secure implementations.

1) Authentication SAML Assertion in the SOAP-Env:Header that
contains sender and recipient. The sender's ID will be used to look up
their public key to validate the Body of the message. If the Body
validation fails, the request fails.

2) Access Control (Authorization) Each participant will have the
authorized transaction types stored in a registry. This includes sending
as well as receiving transactions. If a transaction is received for an
entity that is not allowed to make the request, the transaction will fail.

3) Data Confidentiality All communications on the network are secured
with SSL. As implementations of the XML Encryption standard emerge,
they may be allowed to be used in lieu of or in conjunction with SSL.

4) Data Integrity The message body is signed with the signature sent
in the header of the message. If the data has changed in any way
(including whitespace) then the signature validation will fail and the
transaction will fail.

5) Non-repudiation A required element of the SOAP-Env:Header is a
Universally Unique Identifier (UUID). This identifier is guaranteed to be
unique. This identifier can be logged and later be used in conjunction
with the XML Signature to track particular requests.

6) Logging and Monitoring It is the responsibility of each
implementation of the HPCP specification to log the information

 13
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

necessary to track any given request for a fixed amount of time. Each
installation should monitor their own network for suspicious activity.
Specific logging messages and monitoring frameworks are outside of
the scope of the protocol specification. In fact, if a specific monitoring
specification were to be required in the protocol specification, the
security could be greatly compromised.

Conclusion

Rather than build a complete custom protocol specification, we should
leverage the strengths of the underlying SOAP specification. This
would keep the HPCP specification simpler and easier to implement.
Many thousands of hours have gone into the standards process for
SOAP, SAML, XML Signatures and the other standards we wish to
utilize. Rather than implement these standards in our own proprietary
way, we need to join with the rest of the computer industry and
embrace the spirit of Web Services as well as the standards defined
today.

 14
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

Appendix A - WSDL for DTSDataTypes

<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="DataTransportStandardDataTypes"

targetNamespace="http://www.datatransportstandard.com/wsdl/D
TSDataTypes.wsdl" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:coremain="http://schemas.pescxml.org/0002/xsd/Core"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <import location="../Schema/CoreMain.xsd"
namespace="http://www.standardscouncil.org/docs/xml_tran
script/CoreMain.xsd" />

- <types>
- <xsd:schema

targetNamespace="http://www.datatransportstandard.com
/wsdl/DTSDataTypes.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:coremain="http://schemas.pescxml.org/0002/xsd/
Core"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- <xsd:simpleType name="TransmitDateTimeGMT">
- <xsd:annotation>

 <xsd:documentation>Required. This field is the
DateTime in GMT. The value for this field
must be set as the last part of the
transmission process, immediately prior to
transport.</xsd:documentation>

 </xsd:annotation>
 <xsd:restriction base="xsd:dateTime" />

 </xsd:simpleType>
- <xsd:simpleType name="TransportUUID">

- <xsd:annotation>
 <xsd:documentation>Required. Based on the

W3C UUID definition.</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string" />

 </xsd:simpleType>
- <xsd:element name="Sender">

- <xsd:complexType>
- <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1"
name="sender"
type="coremain:EntityType" />

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>
- <xsd:element name="Recipient">

- <xsd:complexType>
- <xsd:sequence>

 15
From www.datatransportstandard.com/uploads/DTSDataTypes.wsdl 2 April 2004

 <xsd:element maxOccurs="1" minOccurs="1"
name="recipient"
type="coremain:EntityType" />

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>
 </xsd:schema>

 </types>
 </definitions>

 16
From www.datatransportstandard.com/uploads/getStatus.wsdl 2 April 2004

Appendix B – WSDL for getStatus

<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="DataTransportStandard"

targetNamespace="http://www.datatransportstandard.com/wsdl/g
etStatus.wsdl" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:dts="http://www.datatransportstandard.com/wsdl/DTSDat
aTypes.wsdl"
xmlns:stat="http://www.datatransportstandard.com/wsdl/getStat
us.wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <import location="../Schema/CoreMain.xsd"
namespace="http://schemas.pescxml.org/0002/xsd/Core" />

 <import location="DTSDataTypes.wsdl"
namespace="http://www.datatransportstandard.com/wsdl/DT
SDataTypes.wsdl" />

- <message name="getStatusRequest">
 <part name="payload" type="xsd:string" />
 <part name="transportUUID" type="dts:TransportUUID" />
 <part name="transmitDateTimeGMT"

type="dts:TransmitDateTimeGMT" />
 <part name="sender" element="dts:Sender" />
 <part name="recipient" element="dts:Recipient" />

 </message>
- <message name="getStatusResponse">

 <part name="payload" type="xsd:string" />
 <part name="transportUUID" type="dts:TransportUUID" />
 <part name="transmitDateTimeGMT"

type="dts:TransmitDateTimeGMT" />
 <part name="sender" element="dts:Sender" />
 <part name="recipient" element="dts:Recipient" />

 </message>
- <portType name="DataTransportStandardPortType">

- <operation name="getStatus">
 <documentation>Required Operation. Response codes are

based on RFC 2616.</documentation>
 <input message="stat:getStatusRequest" />
 <output message="stat:getStatusResponse" />

 </operation>
 </portType>
- <binding name="DataTransportStandardBinding"

type="stat:DataTransportStandardPortType">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
- <operation name="getStatus">

 <soap:operation soapAction="urn:dts:getStatus"
style="document" />

- <input>

 17
From www.datatransportstandard.com/uploads/getStatus.wsdl 2 April 2004

 <soap:body
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" parts="payload" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="recipient" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="sender" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="transportUUID" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="transmitDateTimeGMT" use="encoded" />

 </input>
- <output>

 <soap:body
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" parts="payload" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="recipient" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="sender" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="transportUUID" use="encoded" />

 <soap:header
encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/" message="stat:getStatusRequest"
part="transmitDateTimeGMT" use="encoded" />

 </output>
 </operation>

 </binding>
 </definitions>

 18
From www.datatransportstandard.com/uploads/dts.wsdl 2 April 2004

Appendix C – Endpoint

<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="urn:getStatus"

targetNamespace="http://www.nchelp.org/DataTransportStandard.
wsdl" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:stat="http://www.datatransportstandard.com/wsdl/getStat
us.wsdl">

 <import location="getStatus.wsdl"
namespace="http://www.datatransportstandard.com/wsdl/ge
tStatus.wsdl" />

- <service name="DataTransportStandard">
- <port binding="stat:DataTransportStandardBinding"

name="DataTransportStandardPort">
 <soap:address

location="http://localhost:8000/ccx/DataTransportSt
andard" />

 </port>
 </service>

 </definitions>

	Data Transport Standard, Home Page
	02 Apr 2004 National Council of Higher Education Loan Programs
	[Wiki] HomePage
	Stack:
	Guaranteed Delivery
	TaskList
	Security
	Data Transport Core Standard
	Development
	Re-evaluation of the Technical Specification of the High Performance Channel Protocol
	Purpose of High Performance Channel
	Disadvantage of the Current Protocol Specification
	Conclusion

	Appendix A - WSDL for DTSDataTypes
	Appendix B – WSDL for getStatus
	Appendix C – Endpoint

	
	NCHELP Title Page

