¢ HIBERNATE

Hibernate EntityManager

User guide

Version: 3.1 beta 5

Table of Contents

INtroduCiNg EJB3 PEISISIENCEeeeiiiiiiiieeiiieie ettt ettt e e st e e et e e e e anbn e e e e s nnnneee s iv
N ok g1 = ox PRSP PPRSRR 1
I B T 1oL o] PP PR RPP 1

1.2. EJB CONtaiNEr @NVIFONIMENTueiiiiiiiee e ettt ee e e e e e ettt ee e e e e e e s st eeeeeeaeeesaaannnteeeeeeeeeseannnneees 1
1.2.1. Container-managed entity MaNAJENc..ueeeiieeiiiiiiiiiee e e e e s s e e e e e e s s r e e e e e 1

1.2.2. Application-managed entity MaNAJENcoccurreeiiiirieeriiereeeariree e e e e 2

1.2.3. PErsistence CONEXE SCOPEuvviiiiiieeei ittt e e e e e e ettt e e e e e e e s s st e e e e e e e s e s e satarnreeaaaeeaan 2

1.2.4. Persistence Context ProPagationc.eeeeeiiueeeeeniiieeeessiieeeeasireeessireeeessseeeeessnneeas 2

1.3, J2SE ENVITONIMENTSeiiieieiiiitiieiee e e ettt e e e e e e e ettt ee e e e e e e s sanaee e e e eaeeeeaaansntenneaaaeeseannneeees 3

2. Setup and CONFIGUIALIONcoiiiiiiiee e e e e e e e e e e e e e e e st e e e e e e e e s aantrraeeeeeas 4
2 S (U o SRR 4

2.2. Configuration and DOOLSIFAPPING ...vveeeeeeeiiiiiiiieee e e e e s e et e e e e e s e e e e e e e s s sean e e e eae e s e enaneeees 4

2.3 EVENL LISIBNEIS oo eiiieiiie et e ettt e e e e e e et e e e e e e e s ettt a e e e e e e e s e annrraneaaaeeeeannrrres 7

2.4. Obtaining an EntityManager in aJ2SE environmentccoooeee, 8

R - 4 o 11 SRR 8

3. WOrKing WIith ODJECESeeeeiiiiieeei it e e e e e et e e e e e e e e e e e e e e e e e e ennneeees 9
I 0 Y = L= TSRO PPRRRRR 9

3.2. MaKING ODJECES PEISISIENTeiiiiiiiie ettt e e e e e e e nnbrneeean 9
3.3.L0adiNg @nN ODJECL ...t a e e aaeaaaaa 9

3.4, QUENYING ODJECLSeieiieiiiieee ettt ettt e e ettt e e s et bt e e s sb st e e e e bbe e e e e anbneeeean 10
I = ot 111 [0 1 1= - 10

I N (] = 1 o OO PRSP PPPPPPO 10

3.4.1.2. SCAlAr TESUILS ...ttt e e e e e e e e e e e 11

3.4.1.3. BiNA PAraMELENSevviieieieee ettt e e st e e e e s e e e e e e e e e e e raaaeaa e 11

3414, PAOINGLIONeiiiiiiiieeiiii ettt e e e e et e e e s e e e e e e b e e e e as 11

3.4.1.5. Externalizing Named QUETTESuvveiieee et ee e e ettt e e e e e e e e e e e e 12

3416, NBLIVE QUENTESeveieeiiiieie ettt ettt e e et e e s s e e e e e annneeeeans 12

R By R @ 1= Y 1 11 | £ 12

3.5. Modifying persistent ODJECESoooiiiiiiiiiiie e 13

3.6. Modifying detached ODJECES ..o 13

3.7. AULOMELIC StALE AELECTIONeeeiiiiiiiie ittt et e e e e e e e e e nnbneeeeans 14

3.8. Deleting managed ODJECESooviiiieie e 15

3.9. Flushing the PersistENCE CONEXLuuviiiiieeii i e e e s e raeeeeeas 15
3.10. TranSItIVE PEFSISLENCEveeeeiiiiiieeeeii et e e ettt e e e sttt e e e e e ettt e e e sbe e e e e s sb s e e e e anbe e e e e anbreeeean 16

4. TransactionS aNd CONCUITENCY ...coeveieieiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerererereerreerrrrrrerrrerrrererrerrerereens 18
4.1. Entity manager and tranSaCtioN SCOPEScceeiiiiuriieiieeeeeeiseiitrrereeeeeeesssssarrereeaeessannnrsaeeeaens 18
g I I 0T o . PSS 18

4.1.2. LoNg UNItS OF WOIKcuviiieiiicc i e a e e 19

4.1.3. Considering ObJECE THENTITYvveeeiiiiiie e 20

4.1.4. Common CONCUITeNCY CONIOl ISSUESccccviiriiiieeeeeiciiiie e e e e e et e e e e e aeees 21

4.2. Database transaction demMarCationceeeiiiciiiieiireee e s st e e e e e s s s ereea e e s e ssneraneeeaens 21
4.2.1. Non-managed ENVIFONMENLcoviiiiiiiiiiiieieeeee e eeee e ee e eeereeeeeeererereeeeeeeeeeereeeeeeeees 22

A U £ 1 1o TN USSP 22

4.2.3. EXCEPLioN NANAIING ...ccoiiiiieieiieie e 24

4.3. OptimistiC CONCUITENCY CONLIOLuiiieiiiie e s e e e e e s e e e eas 24
4.3.1. Application VErsion CHECKINGccoourriieiiiiiieiiiiiie ettt 25

4.3.2. Extended entity manager and automatiC VErSIONINgccccveeeeeeeeeiiiiinnieeeeeeeeeeennene 25

4.3.3. Detached objects and automatiC VErSIONINGcocvvveeeeruirieeiiiieeeesiiieeessiieee e sieeee e 26

Hibernate 3.1 beta 5

Hibernate EntityM anager

5. Entity listenersand Callback Methods ... 27
B. BACN PrOCESSING ...ttt e e e e e e e s e e e e e e e e e s s et b r e e e e e e e e e e ntrrnaeeaaas 29
6.1. BUIK UPBLE/AEIELE ...t e e 29
7. EJB-QL: The Object QUery LanguUagecoooeeiiiiiie e, 31
7.1, CASE SENSITIVITY oooiieeiie ittt ettt e et e e et e e e e e st b e e e e e e e e e nbaeeeeans 31
7.2. ThETrOM CIAUSE ...t e e e e e s e e e e e e e e e e nnneaeeeeaaeeean 31
7.3. ASSOCIALIONS AN JOINS ...eeiiieeeiiiciiiee it e e e e e et e e e s e e e e e e e e e s e st e e e eaeesesanntraaneeaaaeeaaans 31
T4, ThE SEIECE ClALSEeieeeiiiiie e ettt ettt e e e e e ettt e e e e e e s e st e e e e eaeeeeaansraneeeeaaeeaans 32
7.5. AQQregate FUNCLIONSeeiii i e e e e e et e e e e e e e e s e atbreeeeeaaeeaaan 33
7.6. POIYMOIPNIC QUEITES ...ttt e e st e e e e e e e e snbneeeean 34
7.7, TREWREIE ClALISE ...ttt e e e e e e e e e e e e e e e e s ntneeeeeaaaeeean 34
7.8, EXPIESSIONSeeiieiitiie e e ittt ettt ettt e et e e ekttt e e e ettt e e e st bt e e e e h b et e e e e b e e e e e e ne e e e e nbreeeaans 36
7.9. The Order DY ClAUSEeoiiiieee e e e e e e e e e e e e e e e e e ns 38
7.10. TREGroUP DY CIALSE ...oeeiiie it e e e e s et e e e e e e e e ans 38
7. 11 SUDQUETTES ...ttt ettt e e et e e e e s e e e e ne e e e e nnbeeeeean 39
7.12. EJB-QL EXAMPIES ...oiiiiiiiie ettt e e e e e e e e e e et rraaaeeaan 40
7.13. Bulk UPDATE & DELETE StaemMentSccoooeeeieieeeieeeeeeeeeeeeeeeeeeeeeeeee e, 41
TAA. TIPS & THICKS oo 41
S NN = VY=o (U= Y/ PRSP P 43
8.1. EXPressing the FESUITSELcooiuiiiieiiiie et e e e 43
8.2. UsiNg Native SQL QUENIESccuiiieiiiee e e e ettt e e e e e s s ettt e e e e e e e s s st e e e e e e e e e s ssntbbnneeaaaeeaans 43
8.3. NAMEA QUETTES ...ttt ettt e e e e e et e e e e s e e e e annne e e e e nnbeeeeean 44
A. Compliance and KNOWN [IMItaHIONSueiiiiiiiiiiiiiiiie e e e e e e s et r e e e e e e e ans 45

Hibernate 3.1 beta 5

Introducing EJB3 Persistence

The EJB3 specification recognizes the interest and the success of the transparent object/relational mapping
paradigm. The EJB3 specification standardizes the basic APIs and the metadata needed for any object/relational
persistence mechanism. Hibernate EntityManager implements the programming interfaces and lifecycle rules
as defined by the EJB3 persistence specification. Together with Hibernate Annotations, this wrapper imple-
ments a complete (and standalone) EJB3 persistence solution on top of the mature Hibernate core. Y ou may use
a combination of all three together, annotations without EJB3 programming interfaces and lifecycle, or even
pure native Hibernate, depending on the business and technical needs of your project. You can at al times fall
back to Hibernate native APIs, or if required, even to native JDBC and SQL.

Hibernate 3.1 beta 5 iv

Chapter 1. Architecture

1.1. Definitions

EJB3 is part of the J2EE 5.0 platform. Persistence in EJB3 is available in EJB3 containers, as well as for stan-
dalone J2SE applications that execute outside of a particular container. The following programming interfaces
and artifacts are available in both environments.

Enti t yManager Fact ory
An entity manager factory provides entity manager instances, al instances are configured to connect to the
same database, to use the same default settings as defined by the particular implementation, etc. You can
prepare severa entity manager factories to access several data stores. This interface is similar to the Ses-
si onFact or y in native Hibernate.

Entit yManager
TheEnti t ymanager API isused to access adatabase in a particular unit of work. It is used to create and re-
move persistent entity instances, to find entities by their primary key identity, and to query over all entities.
Thisinterfaceis similar to the Sessi on in Hibernate.

Persistence context
A persistence context is a set of entity instances in which for any persistent entity identity there is a unique
entity instance. Within the persistence context, the entity instances and their lifecycle is managed by a par-
ticular entity manager. The scope of this context can either be the transaction, or an extended unit of work.

Persistence unit
The set of entity types that can be managed by a given entity manager is defined by a persistence unit. A
persistence unit defines the set of all classes that are related or grouped by the application, and which must
be collocated in their mapping to asingle data store.

Container-managed entity manager
An Entity Manager whose lifecycle is managed by the container

Application-managed entity manager
An Entity Manager whose lifecycle is managed by the application.

JTA entity manager
Entity manager involved in a JTA transaction

Resource-local entity manager
Entity manager using a resource transaction (not a JTA transaction).

1.2. EJB container environment

1.2.1. Container-managed entity manager

The most common and widely used entity manager in a J2EE environment is the container-managed entity
manager. In this mode, the container is responsible for the opening and closing of the entity manager (thisis
transparent to the application). It is also responsible for transaction boundaries. A container-managed entity
manager is obtained in an application through dependency injection or through JNDI lookup, A container-man-

Hibernate 3.1 beta 5 1

Architecture

aged entity manger requires JTA.

1.2.2. Application-managed entity manager

An application-managed entity manager allows you to control the entity manager in application code. This en-
tity manager is retrieved through the Ent i t yManager Fact ory API. An application managed entity manager can
be either involved in the current JTA transaction (a JTA entity manager), or the transaction may be controlled
through the EntityTransacti on APl (a resource-local entity manager). The resource-local entity manager
transaction maps to a direct resource transaction (i. e. in Hibernate's case a JDBC transaction). The entity man-
ager type (JTA or resource-local) is defined at configuration time, when setting up the entity manager factory.

1.2.3. Persistence context scope

An entity manager is the APl to interact with the persistence context. Two common strategies can be used:
binding the persistence context to the transaction boundaries, or keeping the persistence context available
across severa transactions.

The most common case is to bind the persistence context scope to the current transaction scope. Thisis particu-
larly convenient when JTA transactions are used: the persistence context is associated with the JTA transaction
life cycle. When a entity manager is invoked, the persistence context is also opened, if there is no persistence
context associated with the current JTA transaction. Otherwise, the associated persistence context is used. The
persistence context ends when the JTA transaction completes. This means that during the JTA transaction, an
application will be able to work on managed entities of the same persistence context. In other words, you don't
have to pass the entity manager's persistence context across your EJB method calls, but simply use dependency
injection or lookup whenever you need an entity manager. For a resource-local entity manager, a new persist-
ence context begins when a new resource transaction is started (through Enti t yTransacti on. begi ns()) and
ends when the resource transaction is completed. If the entity manager is invoked outside the scope of a trans-
action, the persistence context is created and destroyed to service only the method call, al entities loaded from
the database will become detached at the end of the method call. Thisis similar to auto-commit behavior in tra-
ditional JDBC.

Y ou can aso use an extended persistence context. This can be combined with stateful session beans, if you use
a container-managed entity manager: the persistence context is created when an entity manager is retrieved
from dependency injection or INDI lookup , and is kept until the container closes it after the completion of the
Remove stateful session bean method. This is a perfect mechanism for implementing a "long" unit of work pat-
tern. For example, if you have to deal with multiple user interaction cycles as a single unit of work (e.g. awiz-
ard dialog that has to be fully completed), you usually model this as a unit of work from the point of view of the
application user, and implement it using an extended persistence context. Please refer to the Hibernate refer-
ence manual or the book Hibernate In Action for more information about this pattern. For an application-man-
aged entity manager the persistence context is created when the entity manager is created and kept until the en-
tity manager is closed.

A resource-local entity manager or an entity manager created with EntityManager Fact -
ory.createEntityMnager () (application-managed) has a one-to-one relationship with a persistence context.
In other situations persistence context propagation occurs.

1.2.4. Persistence context propagation

Persistence context propagation occurs for container-managed entity managers and for entity managers ob-
tained through Ent i t yManager Fact ory. get Ent i t yManager () .

Hibernate 3.1 beta 5 2

Architecture

In a transaction-scoped container managed entity manager (common case in a J2EE environment), the JTA
transaction propagation is the same as the persistence context resource propagation. In other words, all contain-
er-managed transaction-scoped entity managers retrieved within agiven JTA transaction all share the same per-
sistence context. In Hibernate terms, this means all managers share the same session.

When a JTA-bound and application-managed entity manager is retrieved with EntityManager Fact -
ory. get EntityManager (), the entity manager returned is associated to the persistence context bound to the
JTA transaction. If no persistence context is associated yet, a new oneis created and associated.

Important: persistence context are never shared between different JTA transactions or between entity manager
that do not came from the same entity manager factory. There are some noteworthy exceptions for context
propagation when using extended persistence contexts:

e If astateless session bean, message-driven bean, or stateful session bean with a transaction-scoped persist-
ence context calls a stateful session bean with an extended persistence context in the same JTA transaction,
an lllegal StateException is thrown.

o |If astateful session bean with an extended persistence context calls as stateless session bean or a stateful
session bean with a transaction-scoped persistence context in the same JTA transaction, the persistence con-
text is propagated.

« If astateful session bean with an extended persistence context calls a stateless or stateful session bean in a
different JTA transaction context, the persistence context is not propagated.

o If astateful session bean with an extended persistence context instantiates another stateful session bean with
an extended persistence context, the extended persistence context is inherited by the second stateful session
bean. If the second stateful session bean is called with a different transaction context than the first, an Illeg-
al StateException is thrown.

o |If astateful session bean with an extended persistence context calls a stateful session bean with a different
extended persistence context in the same transaction, an |llegal StateException is thrown.

1.3. J2SE environments

In a J2SE environment only application-managed entity managers are available. You can retrieve an entity
manger using the Ent it yManager Fact ory API. Only resource-local entity managers are available. In other
words, JTA transactions and persistence context propagation are not supported in J2SE (you will have to
propagate the persistence context yourself, e.g. using the thread local session pattern popular in the Hibernate
community).

However you can still choose between two different entity manager strategies. The first one, transaction-scoped
entity manager will create a persistence context each time Enti t yTransacti on. begi n() iscaled. This persist-
ence context will be closed at transaction completion. The second strategy available is the extended context. In
that case, a persistence context is created when the entity manager is retrieved (using Enti t yManager Fact -
ory.creat eEntityManager (EXTENDED)) and closed when the entity manager is closed. Many resource-local
transaction share the same persistence context, in this case.

Hibernate 3.1 beta 5 3

Chapter 2. Setup and configuration

2.1. Setup

The EJB3 compatible Hibernate EntityManager is built on top of Hibernate core and Hibernate Annotations.
Y ou have to use compatible versions of each module - see the README.TXT filein the release package of En-
tityManager. The following libraries have to be in your classpath: hibernate3.jar, hibernate-annotations.jar, hi-
bernate-entity-manager.jar and all needed third party libraries for each package. (incl. g/ b-persistencejar).

2.2. Configuration and bootstrapping

The configuration for entity managers both inside an application server and in a standalone application reside in
a persistence archive (.par). A persistence archive is a JAR file with the . par suffix instead of . j ar. You must
also define apersi stence. xm file that resides in the MeTA- | NF folder of the . par file. All properly annotated
classes included in the par archive (ie having an @nti t y annotation), all annotated packages and all Hibernate
hbm.xml filesincluded in the par will be added to the persistence unit configuration, so by default, your persist-
ence.xml will be quite minimalist:

<entity-manager >
<j t a- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
<property nane="hi bernate. di al ect"” val ue="org. hi bernate. di al ect. HSQLDi al ect"/ >
<property nane="hi ber nat e. hbnRdd| . aut 0" val ue="cr eat e-drop"/>
</ properties>
</entity-manager>

Here's amore complete example of apersistence. xm file

<entity-manager >
<nanme>nanager 1</ nane>
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a-dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<mappi ng-fi |l e>or map. xm </ mappi ng-fil e>
<jar-file>WApp.jar</jar-file>
<cl ass>or g. acne. Enpl oyee</ cl ass>
<cl ass>or g. acne. Per son</ cl ass>
<cl ass>org. acne. Addr ess</ cl ass>
<properties>
<property nane="hi bernate.di al ect" val ue="org. hi bernate. di al ect. HSQLDi al ect"/ >
<property nane="hi ber nate. hbn2ddl . aut 0" val ue="create-drop"/>
</ properties>
</ entity-manager >

nane
Every entity manager must have a name. If no name is specified, the name of the . par file is used minus
the . par suffix.

provi der
The provider is afully-qualified class name of the EJB Persistence provider. You do not have to put thisin
as it will default to Hibernate. This is needed when you are using multiple vendor implementations of EJB
Persistence.

Hibernate 3.1 beta 5 4

Setup and configuration

j ta-dat a- source, non-jta-data-source
This is the INDI name of where the javax.sgl.DataSource is located. This is ignored when not used within
an application server. When running outside of an application server, you must specify JDBC connections
with Hibernate specific properties (see below).

mappi ng-file
The class element specifies a EJB3 compliant XML mapping file that you will map. This feature is cur-
rently not supported.

jar-file
The jar-file elements specifies a jar to analyse. All properly annotated classes, annotated packages and all
hbm.xml files part of thisjar file will be added to the persistence unit configuration. This element is mainly
used in Java EE environment. Use of this one in Java SE should be considered as non portable, in this case
a absolute url is needed.

cl ass
The class element specifies afully qualified class name that you will map. By default all properly annotated
classes and al hbm.xml files found inside the .par archive are added to the persistence unit configuration.
You can add some external entity through the class element though. As an extension to the specification,
you can add a package name in the <cl ass> element (eg <cl ass>or g. hi ber nat e. eg</ cl ass>).

properties
The properties element is used to specify vendor specific properties. Thisis where you will define your Hi-
bernate specific configurations. This is also where you will have to specify JDBC connection information
aswell.

The EJB3 specification defines a bootstrap procedure to accessthe Ent i t yManager Fact ory and the Ent i t yMan-
ager . The bootstrap classisj avax. persi st ence. Per si st ence, €.g.

EntityManager Factory enf = Persistence. createEntityManager Fact ory("nmanager1");
/I or
Map configOverrides = new HashMap();
configOverrides. put ("hi bernat e. hbnRddl . aut 0", "create-drop");
Enti t yManager Factory programmati cEnf =
Per si st ence. creat eEnti t yManager Fact ory(" manager 1", confi gOverri des);

The first version is equivalent to the second with an empty map. The map version is a set of overrides that will
take precedence over any properties defined in your persistencexml files. When Persist-
ence. cr eat eEnt i t yManager Fact ory() is called, the persistence implementation will search your classpath for
any META-| NF/ persi stence. xm files using the d assLoader . get Resour ce(" META- | NF/ per si st ence. xni ")
method. From this list of resources, it will try to find an entity manager that matches the name you specify in
the command line with what is specified in the persistence.xml file. If no persistence.xml with the correct name
are found, a Per si st enceExcept i on israised. If there is only one persistence.xml in your classpath, you don't
have to declare any entity manager factory name (however, if several files are found, a Per si st enceExcepti on
israised).

Ent it yManager Factory enf = Persi stence. createEntityManager Factory(null);

Apart from Hibernate system-level settings, al the properties available in Hibernate can be set in properties
element of the persistencexml file or as an override in the map you pass to cr eat eEnt i t yManager Fact ory() .
Please refer to the Hibernate reference documentation for a complete listing. There are however a couple of
properties available in the EIB3 provider only.

Hibernate 3.1 beta 5 5

Setup and configuration

Table 2.1. Hibernate Entity Manager specific properties

Property name

hibern-
ate.egjb.classcache.<classname>

hibern-
ate.gjb.collectioncache.<collectionr
ole>

hibernate.gjb.cfgfile

hibernate.archive.autodetection

hibernate.gjb.interceptor

hibernate.ejb.naming_strategy

hibernate.gjb.event.<eventtype>

Description

class cache strategy [comma cache region] of the class Default to no
cache, and default region cache to fully.qualified.classname (eg. hibern-
ate.gjb.classcache.com.acme.Cat read-write or hibern-
ate.gjb.classcache.com.acme.Cat read-write, MyRegion).

collection cache strategy [comma cache region] of the class Default to
no cache, and default region cache to fully.qualified.classname.role (eg.
hibernate.gjb.classcache.com.acme.Cat read-write or hibern-
ate.ejb.classcache.com.acme.Cat read-write, MyRegion).

XML configuration file to use to configure Hibernate (eg. /
hi bernat e. cf g. xm).

Determine which element is auto discovered by Hibernate Entity Man-
ager while parsing the .par archive. (default to cl ass, hbm).

An optional Hibernate interceptor. This interceptor has to implement
org. hi bernat e. | nter cept or and have ano-arg constructor.

An optional naming strategy. The default naming strategy used is
EJB3Nami ngStrat egy. You also might want to consider the Def aul t -
Conponent Saf eNani ngSt r at egy.

Event listener list for a given eventtype. The list of event listenersis a
comma separated fully qualified class name list (eg. hibern-
ate.gjb.event.pre-load com.acme.SecurityL istener,
com.acme.AuditListener)

Note that you can mix XML <cl ass> declaration and hi ber nate. ej b. cf gfi | e Usage in the same configura-
tion. Be aware of the potential clashed. The properties set in persi stence. xnl will override the one in the

defined hi bernate. cf g. xni .

Hereisatypical configuration in a J2SE environment

<entity- manager >
<name>manager 1</ name>

<cl ass>org. hi bernate. ej b.test. Cat </ cl ass>
<cl ass>or g. hi bernate. ejb.test. Di stributor</class>
<cl ass>org. hi bernate. ejb.test.|tenx/cl ass>

<properties>

<property nane="hi bernate. di al ect" val ue="org. hi bernate. di al ect. HSQLDi al ect"/ >
<property nane="hi bernate. connection.driver_class" val ue="org. hsql db. j dbcDriver"/>
<property nane="hi ber nat e. connecti on. usernane" val ue="sa"/>

<property nane="hi ber nat e. connecti on. password" val ue=""/>

<property nane="hi bernate.connection.url" val ue="jdbc: hsqgl db:."/>

<property nanme="hi bernate. max_fetch_depth" val ue="3"/>

<!-- cache configuration -->

<property nane="hi bernate. ejb.classcache.org. hi bernate.ejb.test.Iten! value="read-write"/>
<property name="hi bernate. ejb.collectioncache.org. hibernate.ejb.test.ltemdistributors" val ue=

<!-- alternatively to <class> and <property> decl arati ons,
<l-- property nane="hibernate.ejb.cfgfile" value="/org/hibernate/ejb/test/hibernate.cfg.xm"/

</ properties>
</entity-manager>

Hibernate 3.1 beta 5

you can use a regul ar hibernate. cfg.

Setup and configuration

To ease the programmatic configuration, Hibernate Entity Manager provide a proprietary API. This APl isvery
similar to the Confi gur ati on APl and share the same concepts: Ej b3Confi gur at i on. Refer to the JavaDoc and
the Hibernate reference guide for more detailed informations on how to useit.

TODO: me more descriptive on some APIs like setDatasource()

Ej b3Configuration cfg = new Ej b3Configuration();
Entit yManager Factory enf =
cfg.configure("/nypath/hibernate.cfg.xm") //add a regul ar hi bernate. cfg.xm

.addProperties(properties) //add sone properties
.setlnterceptor(nylnterceptorlnpl) // set an interceptor
. addAnnot at edd ass(MyAnnot at edd ass.class) //add a class to be mapped
.addd ass(NonAnnot at edd ass.class) //add an hbm xm file using the Hi bernate convention
.addFil e("/ nmypath/ MyQt her CLass. hbom xm) //add an hbm xm file
.CcreateEntityManager Factory(); //Create the entity manager factory

2.3. Event listeners

Hibernate Entity Manager needs to enhance Hibernate core to implements all the EJB3 semantics. It does that
through the event listener system of Hibernate. Be careful when you use the event system yourself, you might
override some of the EJB3 semantics. A safe way isto add your event listenersto the list given below.

Table 2.2. Hibernate Entity Manager default event listeners

Event Listeners
flush org.hibernate.gjb.event. EJB3FlushEventL istener
auto-flush org.hibernate.gjb.event. EJB3AutoFl ushEventListener
delete org.hibernate.ejb.event. EJB3Del eteEventListener
flush-entity org.hibernate.gjb.event. EJB3F ushEntityEventListener
merge org.hibernate.gjb.event. EJB3MergeEventListener
create org.hibernate.ejb.event. EJB3PersistEventL istener
save org.hibernate.ejb.event. EJB3SaveEventListener
save-update org.hibernate.gjb.event. EJB3SaveOrUpdateEventListener
pre-insert org.hibernate.secure.JACCPrel nsertEventListener,
org.hibernate.valitator.event.V alidateEventL istener
pre-insert org.hibernate.secure.JA CCPreUpdateEventL istener,
org.hibernate.valitator.event.ValidateEventL istener
pre-delete org.hibernate.secure.JACCPreDel eteEventL istener
pre-load org.hibernate.secure.JACCPreloadEventL istener
post-delete org.hibernate.ejb.event. EJB3PostDel eteEventL istener
post-insert org.hibernate.ejb.event. EJB3PostI nsertEventListener
post-load org.hibernate.gjb.event. EJB3PostL oadEventL istener
post-update org.hibernate.ejb.event. EJB3PostUpdateEventL istener

Hibernate 3.1 beta 5

Setup and configuration

Note that the JACC* EventListeners are removed if the security is not enabled.

You can configure the event listeners either through the properties (see Configuration and bootstrapping) or
through the ej b3confi gurati on. get Event Li st eners() API.

2.4. Obtaining an EntityManager in a J2SE environment

An entity manager factory should be considered as an immutable configuration holder, it is defined to point to a
single datasource and to map a defined set of entities. Thisis the entry point to create and manage Ent i t yMan-
ager S. The Per si st ence classis bootstrap class to create an entity manager factory.

/1 Use persistence.xm configuration

EntityManager Factory enf = Peri stence. createEntityManager Fact ory(" manager1")

EntityManager em = enf.createEntityManager(); // Retrieve a transactional -scoped entity manager
I/l Work with the EM

em cl ose();

enf.close(); //close at application end

An entity manager factory istypically create at application initialization time and closed at application end. It's
creation is an expensive process. For those who are familiar with Hibernate, an entity manager factory is very
much like a session factory. Actualy, an entity manager factory is awrapper on top of a session factory.

There are two kinds of entity managers. The transaction-scoped entity manager (default) create and destroy a
persistence context for each transaction: in other words, the managed entities are detached once the transaction
ends. The extended entity manager keep the same persistence context for the lifetime of the entity manager: in
other words, the entities are till managed between two transactions. enf . creat eEnti t yManager () creates a
transaction-scoped entity manager and enf . cr eat eEnt i t yManager (Per si st enceCont ext Type. EXTENDED) Cre-
ates an extended entity manager. Y ou can see an entity manager as a small wrapper on top of an Hibernate ses-
sion.

2.5. Various

Hibernate Entity Manager comes with Hibernate Validator configured out of the box. You don't have to over-
ride any event yourself. If you do not use Hibernate Validator annotations in your domain model, there will be
no performance cost. For more information on Hibernate Validator, please refer to the Hibernate Annotations
reference guide.

Hibernate 3.1 beta 5 8

Chapter 3. Working with objects

3.1. Entity states

Like in Hibernate (comparable terms in parantheses), an entity instance isin one of the following states:

¢ New (transient): an entity is new if it has just been instantiated using the new operator, and it is not associ-
ated with a persistence context. It has no persistent representation in the database and no identifier value has
been assigned.

« Managed (persistent): a managed entity instance is an instance with a persistent identity that is currently as-
sociated with a persistence context.

« Detached: the entity instance is an instance with a persistent identity that is no longer associated with a per-
sistence context, usually because the persistence context was closed or the instance was evicted from the
context.

* Removed: a removed entity instance is an instance with a persistent identity, associated with a persistence
context, but scheduled for removal from the database.

Theknti t yvanager APl alows you to change the state of an entity, or in other words, to load and store objects.
Y ou will find persistence with EJB3 easier to understand if you think about object state management, not man-
aging of SQL statements.

3.2. Making objects persistent

Once you've created a hew entity instance (using the common new operator) it is in new state. You can make it
persistent by associating it to an entity manager:

DonesticCat fritz = new DonmesticCat();
fritz.setCol or(Col or. A NGER) ;
fritz.setSex('M);

fritz. setName("Fritz");

em persist(fritz);

If the Donesti cCat entity type has a generated identifier, the value is associated to the instance when per -
si st () iscaled. If the identifier is not automatically generated, the application-assigned (usually natural) key
value has to be set on the instance before per si st () iscalled.

3.3. Loading an object

Load an entity instance by itsidentifier value with the entity manager'sfi nd() method:

cat = emfind(Cat.class, catld);
/1 You may need to wap the primtive identifiers

long catld = 1234;
emfind(Cat.class, new Long(catld));

In some cases, you don't really want to load the object state, but just having a reference to it (ie a proxy). You

Hibernate 3.1 beta 5 9

Working with objects

can get this reference using the get Ref er ence() method. This is especially useful to link a child to its parent
wo having to load the parent.

child = new Child();

chi |l d. Set Nane(" Henry");

Parent parent = em get Ref erence(Parent.class, parentld); //no query to the DB
chil d. set Parent (parent);

em persist(child);

Y ou can reload an entity instance and it's collections at any time using theem ref resh() operation. Thisis use-
ful when database triggers are used to initialize some of the properties of the entity. Note that only the entity in-
stance and its collections are refreshed unless you specify REFRESH as a cascade style of any associations:

em persist(cat);
em flush(); // force the SQ insert and triggers to run
emrefresh(cat); //re-read the state (after the trigger executes)

3.4. Querying objects

If you don't know the identifier values of the objects you are looking for, you need a query. The Hibernate En-
tityManager implementation supports an easy-to-use but powerful object-oriented query language (EJB3-QL)
which has been inspired by HQL (and vice-versa). Both query languages are portable across databases, the use
entity and property names as identifiers (instead of table and column names). Y ou may also express your query
in the native SQL of your database, with optional support from EJB3 for result set conversion into Java busi-
ness objects.

3.4.1. Executing queries

EJB3QL and SQL queries are represented by an instance of j avax. per si st ence. Query. This interface offers
methods for parameter binding, result set handling, and for execution of the query. Queries are always created
using the current entity manager:

Li st cats = em creat eQuery(
"select cat fromCat as cat where cat.birthdate < ?1")
.setParaneter (1, date, Tenporal Type. DATE)
.getResul tList();

Li st nothers = em creat eQuery(
"sel ect mother from Cat as cat join cat.nother as nother where cat.nane = ?1")
. set Parameter (1, namne)
.getResul tList();

List kittens = em creat eQuery(
"fromCat as cat where cat.nother = ?1")
.setEntity(1, pk)
.getResul tList();

Cat nmother = (Cat) em createQuery(
"sel ect cat.nother fromCat as cat where cat = ?1")
.setParaneter (1, izi)
.get Si ngl eResul t();

A query is usualy executed by invoking get Resul t Li st (). This method loads the resulting instances of the

query completly into memory. Entity instances retrieved by a query are in persistent state. The get Si ngl eRes-
ul't () method offers a shortcut if you know your query will only return a single object.

3.4.1.1. Projection

Hibernate 3.1 beta 5 10

Working with objects

An EJB3QL query queries can return tuples of objects if projection is used. Each result tuple is returned as an
object array:

Iterator kittensAndMothers = sess. creat eQuery(
"select kitten, mother from Cat kitten join kitten. nother nother")
. get Resul t Li st ()
.iterator();

whil e (kittensAndMot hers. hasNext ()) {
bject[] tuple = (Object[]) kittensAndMot hers. next();
Cat kitten = tuple[O0];
Cat not her tuple[1];

3.4.1.2. Scalar results

Queries may specify a particular property of an entity in the select clause, instead of an entity alias. You may
call SQL aggregate functions as well. Returned non-transactional objects or aggregation results are considered
"scalar" results and are not entities in persistent state (in other words, they are considered "read only"):

Iterator results = em createQuery(
"select cat.color, mn(cat.birthdate), count(cat) fromCat cat " +
"group by cat.color")
list()
.iterator();

while (results.hasNext()) {
oject[] row = results. next();
Color type = (Color) row0];
Date ol dest = (Date) row 1];
I nteger count = (Integer) row 2];

3.4.1.3. Bind parameters

Both named and positional query parameters are supported, the Query API offers several methods to bind argu-
ments. The EJB3 specification humbers positional parameters from one. Named parameters are identifiers of
the form : par ammarre in the query string. Named parameters should be prefered, they are more robust and easier
to read and understand:

/1 Named paraneter (preferred)

Query g = emcreateQuery("select cat from DonesticCat cat where cat.nanme = :nane");
g. set Paraneter ("nane", "Fritz");

List cats = g.getResultList();

/1 Positional paraneter

Query g = emcreateQuery("select cat from Donesti cCat cat where cat.nanme = ?1");
g.set Parameter (1, "lzi");

List cats = g.getResultList();

/1l Named paraneter |ist

Li st nanes = new Arraylist();

nanes. add("lzi");

nanes. add("Fritz");

Query g = emcreateQery("select cat from DonesticCat cat where cat.nane in (:nanmesList)");
g. set Paranet er ("nanesLi st", nanes);

List cats = qg.list();

3.4.1.4. Pagination

Hibernate 3.1 beta 5 11

Working with objects

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and/or
the first row you want to retrieve), use the following methods:

Query g = emcreateQery("select cat from DonmesticCat cat");

g. set Fi rst Resul t (20) ;

g. set MaxResul t s(10) ;

List cats = q.list(); //return cats fromthe 20th position to 29th

Hibernate knows how to trandlate this limit query into the native SQL of your DBMS.

3.4.1.5. Externalizing named queries
Y ou may also define named queries through annotations:

@ avax. persi st ence. NanedQuer y(nane="eg. Donesti cCat . by. nane. and. m ni nrum wei ght",
queryString="sel ect cat fromeg. DomesticCat as cat where cat.nanme = ?1 and cat.wei ght > ?2")

Parameters are bound programatically to the named query, before it is executed:

Query g = em creat eNamedQuery("eg. Donesti cCat. by. nane. and. m ni nrum wei ght");
g.setString(l, name);

g.setlnt(2, mnWight);

List cats = g.list();

Note that the actual program code is independent of the query language that is used, you may also define native
SQL queriesin metadata, or use Hibernate's native facilities by placing them in XML mapping files.

3.4.1.6. Native queries

You may express a query in SQL, using creat eNati veQuery() and let Hibernate take care mapping from JD-
BC result sets to business objects. Use the @ql Resul t Set Mappi ng (please see the Hibernate Annotations refer-
ence documentation on how to map a SQL resultset mapping) or the entity mapping (if the column names of
the query result are the same as the names declared in the entity mapping; remember that all entity columns
have to be returned for this mechanism to work):

@3ql Resul t Set Mappi ng(nanme="getltent', entities =
@Enti tyResul t (nane="org. hi bernate.ejb.test.Itent, fields= {
@i el dResul t (name="nane", colum="itemane"),
@i el dResul t (nane="descr", colum="itendescription")

})
)

Query g = emcreateNati veQuery("sel ect name as itemane, descr as itendescription fromlteni, "getltel
item= (ltem) q.getSingleResult(); //froma resultset

Query g = emcreateNati veQuery("select * fromlten, Itemclass);
item= (lten) g.getSingleResult(); //froma class colums nanmes match the mappi ng

Note

The current implementation of native queries doesn't support scalar results, only transactional entities.

3.4.1.7. Query hints

Query hints (for performance optimization, usualy) are implementation specific. Hints are declared using the
query.setHint(String name, Object val ue) method. Note that these are not SQL query hints! The Hibern-
ate EJB3 implementation offers the following query hints:

Hibernate 3.1 beta 5 12

Working with objects

Table 3.1. Hibernate query hints

Hint Description
org.hibernate.timeout Query timeout in seconds (eg. new Integer(10))
org.hibernate.fetchSize Number of rows fetched by the JDBC driver per

roundtrip (eg. new Integer(50))
org.hibernate.comment Add a comment to the SQL query, useful for the
DBA (eg. new String("fetch al orders in 1 state-
ment"))
org.hibernate.cacheable Whether or not a query is cacheable (eg. new
Boolean(true)), defaults to false
org.hibernate.cacheMode Override the cache mode for this query (eg. Ca
cheMode.REFRESH)
org.hibernate.cacheRegion Cache region of this query (eg. new

String("'regionName"))

org.hibernate.readOnly Entities retrieved by this query will be loaded in a
read-only mode where Hibernate will never dirty-
check them or make changes persistent (eg. new
Boolean(true)), default to false

Please refer to the Hibernate reference documentation for more information.

3.5. Modifying persistent objects

Transactional managed instances (ie. objects loaded, saved, created or queried by the entity manager) may be
manipulated by the application and any changes to persistent state will be persisted when the Entity manager is
flushed (discussed later in this chapter). Thereis no need to call a particular method to make your modifications
persistent. A straightforward wayt to update the state of an entity instanceisto fi nd() it, and then manipulate it
directly, while the persistence context is open:

Cat cat = emfind(Cat.class, new Long(69));
cat . set Name(" PK");
emflush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an al-
ternate approach, using detached instances.

3.6. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the presentation layer for manipula-
tion, and later save the changes in a new transaction. There can be significant user think and waiting time
between both transactions. Applications that use this kind of approach in a high-concurrency environment usu-
ally use versioned datato ensure isolation for the "long" unit of work.

Hibernate 3.1 beta 5 13

Working with objects

The EJIB3 specifications supports this development model by providing for persistence of modifications made
to detached instances using the Ent i t yManager . mer ge() method:

[l in the first entity nanager

Cat cat = firstEntityManager.find(Cat.class, catld);
Cat potential Mate = new Cat ();

firstEntityManager. persist(potential Mate);

/1 in a higher layer of the application
cat.set Mate(potenti al Mate);

/1 later, in a new entity manager
secondEnti tyManager. nmerge(cat); // update cat
secondEnt i t yManager. merge(nmate); // update nmate

The ner ge() method merges modifications made to the detached instance into the corresponding managed in-
stance, if any, without consideration of the state of the persistence context. In other words, the merged objects
state overrides the persistent entity state in the persistence context, if one is already present. The application
should individually merge() detached instances reachable from the given detached instance if and only if it
wants their state also to be persistent. This can be cascaded to associated entities and collections, using transit-
ive persistence, see Transitive persistence.

3.7. Automatic state detection

The merge operation is clever enough to automatically detect whether the merging of the detached instance has
to result in an insert or update. In other words, you don't have to worry about passing a new instance (and not a
detached instance) to ner ge() , the entity manager will figure this out for you:

[l In the first entity nmanager
Cat cat = firstEntityManager.find(Cat.class, catlD);

/1 In a higher |ayer of the application, detached
Cat mate = new Cat ();
cat.setMate(nmate);

/1 Later, in a new entity manager
secondEnti t yManager . nerge(cat); /1 update existing state
secondEnti tyManager. merge(mate); // save the new i nstance

The usage and semantics of ner ge() seems to be confusing for new users. Firstly, as long as you are not trying
to use aobject state loaded in one entity manager in another new entity manager, you should not need to use
ner ge() at al. Some whole applications will never use this method.

Usually ner ge() isused in the following scenario:

the application loads an object in the first entity manager

the object is passed up to the presentation layer

« some modifications are made to the object

the object is passed back down to the business logic layer
» the application persists these modifications by calling mer ge() in a second entity manager

Here is the exact semantic of ner ge():

Hibernate 3.1 beta 5 14

Working with objects

e if there is a managed instance with the same identifier currently associated with the persistence context,
copy the state of the given object onto the managed instance

e if there is no managed instance currently associated with the persistence context, try to load it from the
database, or create a new managed instance

¢ the managed instance is returned

» the given instance does not become associated with the persistence context, it remains detached and is usu-
ally discarded

Mer ging vs. saveOr Update/saveOr UpdateCopy

Merging in EJB3 is similar to the saveOr Updat eCopy() method in native Hibernate. However, it is not
the same as the saver Updat e() method, the given instance is not reattached with the persistence con-
text, but amanaged instance is returned by the ner ge() method.

3.8. Deleting managed objects

Entit yManager. remove() Will remove an objects state from the database. Of course, your application might
till hold a reference to a deleted object. You can think of renove() as making a persistent instance new (aka
transient) again. It is not detached, and a merge would result in an insertion.

3.9. Flushing the persistence context

From time to time the entity manager will execute the SQL DML statements needed to synchronize the data
store with the state of objects held in memory. This process, flush, occurs by default (this is Hibernate specific
and not defined by the specification) at the following points:

« before query execution
¢ fromj avax. persi stence. EntityTransaction. commit ()
e wheneEentitymanager. flush() iscalled

The SQL statements are issued in the following order

« dl entity insertions, in the same order the corresponding objects were saved using EntityMan-
ager. persist()

e al entity updates

» all collection deletions

« dl collection element deletions, updates and insertions
» all collection insertions

e al entity deletions, in the same order the corresponding objects were deleted using EntityMan-
ager.renove()

Hibernate 3.1 beta 5 15

Working with objects

(Exception: entity instances using application-assigned identifiers are inserted when they are saved.)

Except when you explicity f | ush() , there are absolutely no guarantees about when the entity manager executes
the JDBC calls, only the order in which they are executed. However, Hibernate does guarantee that the
Query. get Resul t Li st () /Query. get Si ngl eResul t () Will never return stale data; nor will they return wrong
data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushMbdeType for an en-
tity manager defines three different modes: only flush at commit time, flush automatically using the explained
routine, or never flush unless 11 ush() is caled explicitly. The last mode is useful for long running extended
perstence contexts, where the context and its entity manager is kept open (but disconnected from the JDBC data
source) possibly for along time. TODO: Add link to disconnection discussion, however, disconnection is im-
plementation specific.

em = enf.createEntityManager();
Transaction tx = em get Transaction(). begin();
em set Fl ushMbde(Fl ushvbdeType. COM T); // allow queries to return stale state

Cat izi = emfind(Cat.class, id);
i zi .setNane(iznizi);

/1 mght return stale data
em createQuery("from Cat as cat left outer join cat.kittens kitten").getResultList();

/1 change to izi is not flushed!

em get Transaction().commit(); // flush occurs

During flush, an exception might happen (e.g. if a DML operation violates a constraint). TODO: Add link to
exception handling.

3.10. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especidly if you deal with a graph of as-
sociated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings),
their lifecycle would depend on the parent and no further action would be required for convenient "cascading"
of state changes. When the parent is persisted, the value-typed child objects are persisted as well, when the par-
ent is removed, the children will be removed, etc. This even works for operations such as the removal of a child
from the collection; Hibernate will detect this and, since value-typed objects can't have shared references, re-
move the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories
and items, or parent and child cats). Entities have their own lifecycle, support shared references (so removing
an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from
one entity to any other associated entities. The EJB3 specification does not require persistence by reachability.
It supports a more flexible model of transitive persistence, asfirst seen in Hibernate.

For each basic operation of the entity manager - including persi st (), merge(), renove(), refresh() - thereis
a corresponding cascade style. Respectively, the cascade styles are named PERSIST, MERGE, REMOVE, RE-
FRESH. If you want an operation to be cascaded to associated entity (or collection of entities), you must indic-
ate that in the association annotation:

@neToOne(cascade=CascadeType. PERSI ST)

Hibernate 3.1 beta 5 16

Working with objects

Cascading options can be combined:

@neToOne(cascade= { CascadeType. PERSI ST, CascadeType. REMOVE, CascadeType. REFRESH })

You may even use CascadeType ALL to specify that all operations should be cascaded for a particular associ-
ation. Remember that by default, no operation is cascaded.

Hibernate offers more native cascading options, please refer to the Hibernate Annotations manual and the Hi-
bernate reference guide for more informations.

Recommendations:

e |t doesn't usually make sense to enable cascade on a @anyToOne or @many ToMany association. Cascade is of -
ten useful for @neToOne and @neToMany associations.

» |If the child object's lifespan is bounded by the lifespan of the parent object, make the parent a full lifecycle
object by specifying CascadeType. ALL and or g. hi ber nat e. annot at i ons. CascadeType. DELETE_ORPHAN
(please refer to the Hibernate reference guide for the semantics of orphan delete)

e Otherwise, you might not need cascade at all. But if you think that you will often be working with the par-
ent and children together in the same transaction, and you want to save yourself some typing, consider us-
ing cascade={ PERSI ST, MERGE} . These options can even make sense for a many-to-many association.

Hibernate 3.1 beta 5 17

Chapter 4. Transactions and Concurrency

The most important point about Hibernate Entity Manager and concurrency control is that it is very easy to un-
derstand. Hibernate Entity Manager directly uses JDBC connections and JTA resources without adding any ad-
ditional locking behavior. We highly recommend you spend some time with the JDBC, ANSI, and transaction
isolation specification of your database management system. Hibernate Entity Manager only adds automatic
versioning but does not lock abjects in memory or change the isolation level of your database transactions. Ba
sicaly, use Hibernate Entity Manager like you would use direct JDBC (or JTA/CMT) with your database re-
sources.

We start the discussion of concurrency control in Hibernate with the granularity of EntityManager Factory,
and Ent i t yManager , aswell as database transactions and long units of work..

In this chapter, and unless explicitly expressed, we will mix and match the concept of entity manager and per-
sistence context. One is an APl and programming object, the other a definition of scope. However, keep in
mind the essential difference. A persistence context is usually bound to a JTA transaction in J2EE, and a per-
sistence context starts and ends at transaction boundaries (transaction-scoped) unless you use an extended entity
manager. Please refer to Section 1.2.3, “ Persistence context scope” for more information.

4.1. Entity manager and transaction scopes

A EntityManager Fact ory iS an expensive-to-create, threadsafe object intended to be shared by all application
threads. It is created once, usually on application startup.

An Entit yManager iSan inexpensive, non-threadsafe object that should be used once, for a single business pro-
cess, a single unit of work, and then discarded. An Enti t yManager will not obtain a JDBC Connecti on (Or a
Dat asour ce) unlessit is needed, so you may safely open and close an Ent i t yManager even if you are not sure
that data access will be needed to serve a particular request. (This becomes important as soon as you are imple-
menting some of the following patterns using request interception.)

To complete this picture you also have to think about database transactions. A database transaction has to be as
short as possible, to reduce lock contention in the database. Long database transactions will prevent your ap-
plication from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate Ent i t yManager Span several database transactions
or isthis a one-to-one relationship of scopes? When should you open and close a Sessi on and how do you de-
marcate the database transaction boundaries?

4.1.1. Unit of work

First, don't use the entitymanager -per-operation antipattern, that is, don't open and close an Ent i t yManager for
every simple database call in a single thread! Of course, the same is true for database transactions. Database
calls in an application are made using a planned sequence, they are grouped into atomic units of work. (Note
that this al'so means that auto-commit after every single SQL statement is useless in an application, this mode is
intended for ad-hoc SQL console work.)

The most common pattern in a multi-user client/server application is entitymanager-per-request. In this model,
areguest from the client is send to the server (where the EJB3 persistence layer runs), a new Enti t yManager IS
opened, and all database operations are executed in this unit of work. Once the work has been completed (and
the response for the client has been prepared), the persistence context is flushed and closed, as well as the entity
manager object. Y ou would also use a single database transaction to serve the clients request. The relationship

Hibernate 3.1 beta 5 18

Transactions and Concurrency

between the two is one-to-one and this model is a perfect fit for many applications.

This is the default EIB3 persistence model in a J2EE environment (JTA bounded, transaction-scoped persist-
ence context); injected (or looked up) entity managers share the same persistence context for a particular JTA
transaction. The beauty of EJB3 is that you don't have to care about that anymore and just see data access
through entity manager and demaraction of transaction scope on session beans as compl etely orthogonal.

The challenge is the implementation of this (and other) behavior outside an EJB3 container: not only has the
Enti t yManager and resource-local transaction to be started and ended correctly, but they aso have to be ac-
cessible for data access operations. The demarcation of a unit of work is ideally implemented using an inter-
ceptor that runs when a request hits the non-EJB3 container server and before the response will be send (i.e. a
Servl et Fil ter if you are using a standalone servlet container). We recommend to bind the Ent i t yManager to
the thread that serves the request, using a Thr eadLocal variable. This allows easy access (like accessing a static
variable) in all code that runs in this thread. Depending on the database transaction demarcation mechanism
you chose, you might also keep the transaction context in a Thr eadLocal variable. The implementation patterns
for this are known as ThreadLocal Session and Open Session in View in the Hibernate community. You can
easily extend the Hi bernat eUti| shown in the Hibernate reference documentation to implement this pattern,
you don't need any external software (it'sin fact very trivial). Of course, you'd have to find a way to implement
an interceptor and set it up in your environment. See the Hibernate website for tips and examples. Once again,
remember that your first choice is naturally an EJB3 container - preferably a light and modular one such as
JBoss application server.

4.1.2. Long units of work

The entitymanager-per-request pattern is not the only useful concept you can use to design units of work. Many
business processes require a whole series of interactions with the user interleaved with database accesses. In
web and enterprise applications it is not acceptable for a database transaction to span a user interaction with
possibly long waiting time between requests. Consider the following example:

« Thefirst screen of adialog opens, the data seen by the user has been loaded in a particular Ent i t yManager
and resource-local transaction. The user is free to modify the detached objects.

e The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he also expects
that he was the only person editing this information and that no conflicting modification can occur.

We call this unit of work, from the point of view of the user, along running application transaction. There are
many ways how you can implement this in your application.

A first naive implementation might keep the Enti t yvanager and database transaction open during user think
time, with locks held in the database to prevent concurrent modification, and to guarantee isolation and atom-
icity. Thisis of course an anti-pattern, a pessimistic approach, since lock contention would not allow the applic-
ation to scale with the number of concurrent users.

Clearly, we have to use severa database transactions to implement the application transaction. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application tier. A single
application transaction usually spans severa database transactions. It will be atomic if only one of these data-
base transactions (the last one) stores the updated data, all others simply read data (e.g. in a wizard-style dialog
spanning several request/response cycles). Thisis easier to implement than it might sound, especially if you use
EJB3 entity manager and persistence context features:

e Automatic Versioning - An entity manager can do automatic optimistic concurrency control for you, it can
automatically detect if a concurrent modification occured during user think time (usually by comparing ver-

Hibernate 3.1 beta 5 19

Transactions and Concurrency

sion numbers or timestamps when updating the data in the final resource-local transaction).

e Detached Entities - If you decide to use the aready discussed entity-per-request pattern, al loaded in-
stances will be in detached state during user think time. The entity manager allows you to merge the de-
tached (modified) state and persist the modifications, the pattern is caled entitymanager-
per-request-with-detached-entities. Automatic versioning is used to isolate concurrent modifications.

« Extended Entity Manager - The Hibernate Entity Manager may be disconnected from the underlying JDBC
connection after the database transaction has been committed, and reconnected when a new client request
occurs. This pattern is known as entitymanager -per -application-transaction and makes even merging unne-
cessary. An extend persistence context is responsible to collect and remember any modifications made.
Automatic versioning is used to isolate concurrent modifications.

Both entitymanager-per-request-with-detached-objects and entitymanager-per-application-transaction have
advantages and disadvantages, we discuss them later in this chapter in the context of optimistic concurrency
control.

TODO: This note should probably come later.

Recommended approach

The entitymanager-per-application-transaction is avaliable out-of-the-box in an EJB3 container using
a Stateful Session Bean that keeps the state of an extended entity manager and its persistence context.
To enable this extended persistence context, annotate your bean as @er si st enceCont ext (EXTENDED)
TODO: What exactly am | supposed to do? Thisisincomplete...

4.1.3. Considering object identity

An application may concurrently access the same persistent state in two different persistence contexts.
However, an instance of a managed class is never shared between two persistence contexts. Hence there are
two different notions of identity:

Database Identity
foo.getld().equal s(bar.getld())

JVM ldentity

f oo==bar

Then for objects attached to a particular persistence context (i.e. in the scope of an Ent i t yManager) the two no-
tions are equivaent, and VM identity for database identity is guaranteed by the Hibernate Entity Manager.
However, while the application might concurrently access the "same" (persistent identity) business object in
two different persistence contexts, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using (automatic versioning) at flush/commit time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best scal abil-
ity, since guaranteeing identity in single-threaded units of work only doesn't need expensive locking or other
means of synchronization. The application never needs to synchronize on any business object, as long as it
sticks to a single thread per Ent i t ymManager . Within a persistence context, the application may safely use == to
compare entities.

However, an application that uses == outside of a persistence context might see unexpected results. This might
occur even in some unexpected places, for example, if you put two detached instances into the same set . Both
might have the same database identity (i.e. they represent the same row), but VM identity is by definition not

Hibernate 3.1 beta 5 20

Transactions and Concurrency

guaranteed for instances in detached state. The developer has to override the equal s() and hashCode() meth-
ods in persistent classes and implement his own notion of object equality. There is one caveat: Never use the
database identifier to implement equality, use a business key, a combination of unique, usualy immutable, at-
tributes. The database identifier will change if atransient entity is made persistent (see the contract of the per -
si st () operation). If the transient instance (usually together with detached instances) isheld in a set , changing
the hashcode breaks the contract of the Set . Attributes for good business keys don't have to be as stable as data-
base primary keys, you only have to guarantee stability as long as the objects are in the same set . See the Hi-
bernate website for a more thorough discussion of this issue. Also note that this is not a Hibernate issue, but
simply how Java object identity and equality hasto be implemented.

4.1.4. Common concurrency control issues

Never use the anti-patterns entitymanager-per-user-session or entitymanager-per-application (of course, there
are rare exceptions to this rule, e.g. entitymanager-per-application might be acceptable in a desktop application,
with manual flushing of the persistence context). Note that some of the following issues might also appear with
the recommended patterns, make sure you understand the implications before making a design decision:

* An entity manager is not thread-safe. Things which are supposed to work concurrently, like HTTP requests,
session beans, or Swing workers, will cause race conditionsif an Enti t yManager instance would be shared.
If you keep your Hibernate Ent i t yManager inyour Ht t pSessi on (discussed later), you should consider syn-
chronizing access to your Http session. Otherwise, a user that clicks reload fast enough may use the same
EntityManager in two concurrently running threads. You will very likely have provisions for this case
aready in place, for other non-threadsafe but session-scoped objects.

* Anexception thrown by the Entity Manager means you have to rollback your database transaction and close
the Enti t ymvanager immediately (discussed later in more detail). If your Enti t yManager is bound to the ap-
plication, you have to stop the application. Rolling back the database transaction doesn't put your business
objects back into the state they were at the start of the transaction. This means the database state and the
business objects do get out of sync. Usually this is not a problem, because exceptions are not recoverable
and you have to start over your unit of work after rollback anyway.

« The persistence context caches every object that isin managed state (watched and checked for dirty state by
Hibernate). This means it grows endlessly until you get an cut O Menor yExcept i on, if you keep it open for a
long time or simply load too much data. One solution for this is some kind batch processing with regular
flushing of the persistence context, but you should consider using a database stored procedure if you need
mass data operations. Some solutions for this problem are shown in Chapter 6, Batch processing. Keeping a
persistence context open for the duration of a user session also means a high probability of stale data, which
you have to know about and control appropriately.

4.2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with the database can
occur outside of a database transaction (this seems to confuse many developers who are used to the auto-
commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your
isolation level and database capabilities this might not be required but there is no downside if you always de-
marcate transactions explicitly.

An EJB3 application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and man-
aged J2EE environments. In a non-managed environment, an Ent i t yManager Fact ory is usually responsible for
its own database connection pool. The application developer has to manually set transaction boundaries, in oth-
er words, begin, commit, or rollback database transactions himself. A managed environment usualy provides

Hibernate 3.1 beta 5 21

Transactions and Concurrency

container-managed transactions, with the transaction assembly defined declaratively through annotations of
EJB session beans, for example. Programmatic transaction demarcation is then no longer necessary, even flush-
ing the Ent i t yManager isdone automatically.

Usually, ending a unit of work involves four distinct phases:

e commit the (resource-local or JTA) transaction (this automatically flushes the entity manager and persist-
ence context)

¢ closethe entity manager (if running outside an EJB3 container)

* handle exceptions

WEe'l now have a closer look at transaction demarcation and exception handling in both managed- and non-
managed environments.

4.2.1. Non-managed environment

If an EJB3 persistence layer runs in a non-managed environment, database connections are usualy handled by
Hibernate's pooling mechanism behind the scenes. The common entity manager and transaction handling idiom
looks like this:

/1 Non- managed environnent idiom
EntityManager em = enf.createEntityManager();
EntityTransaction tx = null;

try {
tx = em get Transaction();

tx. begi n();

/! do sone work

tx.commt();

}

catch (Runti neException e) {
if (tx '=null) tx.rollback();
throw e; // or display error nessage

}
finally {

em cl ose();
}

You don't have to f1 ush() the EntityManager explicitly - the call to conmi t () automatically triggers the syn-
chronization.

A call to cl ose() marks the end of an Entit yManager . The main implication of cl ose() is the release of re-
sources - make sure you always close and never outside of guaranteed finally block.

You will very likely never see this idiom in business code in a normal application; fatal (system) exceptions
should always be caught at the "top". In other words, the code that executes entity manager calls (in the persist-
ence layer) and the code that handles Runt i meExcept i on (and usually can only clean up and exit) are in differ-
ent layers. This can be a challenge to design yourself and you should use J2EE/EJB container services whenev-
er they are available. Exception handling is discussed later in this chapter.

4.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB3 session beans), every datasource con-
nection obtained internally by the entity manager will automatically be part of the global JTA transaction. Hi-
bernate offers two strategies for this integration.

Hibernate 3.1 beta 5 22

Transactions and Concurrency

If you use bean-managed transactions (BMT), the code will look like this:
TODO: Check if UserTransaction is now really rollback() and not setRollbackOnly()

// BMT idiom
@Resource public UserTransaction utx;
@Resource public EntityManagerFactory factory;

public void doBusi ness() {
EntityManager em = factory. creat eEntityManager();

try {

/1 do sone work

ut x. commit();

}

catch (Runti neException e) {
if (utx !'= null) utx.rollback();
throw e; // or display error nessage

}
finally {

em cl ose();
}

With Container Managed Transactions (CMT) in an EJB3 container, transaction demarcation is done in session
bean annotations or deployment descriptors, not programatically. The Entit yManager will automatically be
flushed on transaction completion (and if you have injected or lookup the Ent i t yManager , it will be also closed
automatically). If an exception occurs during the Ent i t yManager use, transaction rollback occurs automatically
if you don't catch the exception. Since Enti t yManager exceptions are Runti meExcept i onS they will rollback
the transaction as per the EJB specification (system exception vs. application exception).

TODO: Check if this configuration is till the same for EJB3 entity manager factory

Note that you should choose or g. hi bernat e. t ransact i on. JTATr ansact i onFact ory in a BMT session bean,
and or g. hi bernat e. transacti on. CMITransact i onFactory in a CMT session bean, when you configure Hi-
bernate's transaction factory. Remember to also set or g. hi ber nat e. t ransact i on. manager _| ookup_cl ass.

If you work in a CMT environment, you might also want to use the same entity manager in different parts of
your code. Typically, in a non-managed environment you would use a Thr eadLocal variable to hold the entity
manager, but a single EJB request might execute in different threads (e.g. session bean calling another session
bean). The EJB3 container takes care of the persistence context propagation for you. Either using injection or
using Ent i t yManager Fact ory. get Ent i t yManager (), the EJB3 container will return an entity manager with the
same persistence context bound to the JTA context if any, or create a new one and bind it (see Section 1.2.4,
“Persistence context propagation” .)

Our entity manager/transaction management idiom for CMT and EJB3 container-use is reduced to this:

[/ CMI idiomthrough factory
EntityManager em = factory. get EntityManager ();

/! do sone work

[[CMI idiomthrough injection
@Resource EntityManager em

In other words, al you have to do in a managed environment is cal EntityMnagerFact-
ory. get EntityManager () Or inject the Entit yManager , do your data access work, and leave the rest to the con-
tainer. Transaction boundaries are set declaratively in the annotations or deployment descriptors of your session

Hibernate 3.1 beta 5 23

Transactions and Concurrency

beans. The lifecycle of the entity manager and persistence context is completely managed by the container.
TODO: The following paragraph is very confusing, especially the beginning...

When using particular Hibernate native APIs, one caveat has to be remembered: af t er _st at ement connection
release mode. Due to asilly limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul t's Of I t erat or instances returned by scrol | () Oriterate().You must release
the underlying database cursor by calling Scrol | abl eResul ts. cl ose() Of Hi ber nate. cl ose(lterator) expli-
city from afinal Iy block. (Of course, most applications can easily avoid using scrol I () Oriterate() at al
from the CMT code.)

4.2.3. Exception handling

If the Enti t yManager throws an exception (including any SQLExcept i on), you should immediately rollback the
database transaction, call EntityManager. cl ose() (if createEntityManager () has been called) and discard
the Ent i t yManager instance. Certain methods of Enti t yManager will not leave the persistence context in a con-
sistent state. No exception thrown by an entity manager can be treated as recoverable. Ensure that the Enti ty-
vanager Will be closed by calling cl ose() inafinally block. Note that a container managed entity manager
will do that for you. You just have to let the RuntimeException propagate up to the container.

The Hibernate entity manager generally raises exceptions which encapsulate the Hibernate core exception.
Common exceptions raised by the Ent i t yManager APl are

[11egal ArgumentException: something wrong happen

EntityNotFoundException: an entity was expected but none match the regquirement

¢ TransactionRequiredException: this operation hasto be in atransaction

I11egal StateException: the entity manager is used in awrong way

The Hi ber nat eExcept i on, which wraps most of the errors that can occur in a Hibernate persistence layer, is an
unchecked exception. Note that Hibernate might also throw other unchecked exceptions which are not a Hi -
ber nat eExcept i on. These are, again, not recoverable and appropriate action should be taken.

Hibernate wraps sQ.Except i ons thrown while interacting with the database in a JDBCExcept i on. In fact, Hi-
bernate will attempt to convert the eexception into a more meningful subclass of JDBCExcept i on. The underly-
ing SQLExcepti on is aways available via JDBCExcept i on. get Cause() . Hibernate converts the SQLExcepti on
into an appropriate JDBCExcept i on subclass using the SQLExcept i onConverter attached to the Sessi onFact -
ory. By default, the SQLExcept i onConverter is defined by the configured dialect; however, it is also possible
to plug in a custom implementation (see the javadocs for the SQLExcepti onConverter Factory class for de-
tails). The standard JDBCExcept i on Subtypes are:

* JDBCConnect i onExcept i on - indicates an error with the underlying JDBC communication.

* SQLG ammar Except i on - indicates agrammar or syntax problem with the issued SQL.

e ConstraintViol ati onExcepti on - indicates some form of integrity constraint violation.

e LockAcqui sitionException - indicates an error acquiring a lock level necessary to perform the requested
operation.

* Generi cJDBCExcept i on - ageneric exception which did not fall into any of the other categories.

4.3. Optimistic concurrency control

Hibernate 3.1 beta 5 24

Transactions and Concurrency

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates (and
to prevent lost updates). Hibernate provides for three possible approaches to writing application code that uses
optimistic concurrency. The use cases we show are in the context of long application transactions but version
checking also has the benefit of preventing lost updates in single database transactions.

4.3.1. Application version checking

In an implementation without much help from the persistence mechanism, each interaction with the database
occursin anew Entit yManager and the developer is responsible for reloading all persistent instances from the
database before manipulating them. This approach forces the application to carry out its own version checking
to ensure application transaction isolation. This approach is the least efficient in terms of database access. It is
the approach most similar to EJB2 entities:

/1 foo is an instance | oaded by a previous entity nanager

em = factory. createEntityMinager();

EntityTransaction t = em get Transaction();

t. begin();

int ol dVersi on = foo. getVersion();

Foo dbFoo = em find(foo.getd ass(), foo.getKey()); // load the current state

i f (dbFoo. get Version()!=foo.getVersion) throw new St al eCbj ect St at eExcepti on();
dbFoo. set Property("bar");

t.commt();

em cl ose();

Thever si on property is mapped using @er si on, and the entity manager will automatically increment it during
flush if the entity is dirty.

Of course, if you are operating in alow-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check. In that case, last commit wins will be the default strategy
for your long application transactions. Keep in mind that this might confuse the users of the application, as they
might experience lost updates without error messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for most ap-
plications. Often not only single instances, but complete graphs of modified ojects have to be checked. Hibern-
ate offers automatic version checking with either detached instances or an extended entity manager and persist-
ence context as the design paradigm.

4.3.2. Extended entity manager and automatic versioning

A single persistence context is used for the whole application transaction. The entity manager checks instance
versions at flush time, throwing an exception if concurrent modification is detected. It's up to the developer to
catch and handle this exception (common options are the opportunity for the user to merge his changes or to re-
start the business process with non-stale data).

TheEntity Manager isdisconnected from any underlying JDBC connection when waiting for user interaction.
In an application-managed extended entity manager, this occurs automatically at transaction completion. In a
stateful session bean holding a container-managed extended entity manager (i.e. a SFSB annotated with
@er si st enceCont ext (EXTENDED)), this occurs transparently as well. This approach is the most efficient in
terms of database access. The application need not concern itself with version checking or with merging de-
tached instances, nor does it have to reload instances in every database transaction. For those who might be
concerned by the number of connections opened and closed, remember that the connection provider should be a
connection pool, so there is no performance impact. The following examples show the idiom in a non-managed
environment:

Hibernate 3.1 beta 5 25

Transactions and Concurrency

/1 foo is an instance | oaded earlier by the extended entity manager

em get Transaction. begin(); // new connection to data store is obtained and tx started
f 0o. set Property("bar");

em get Transaction().commit(); // End tx, flush and check version, disconnect

The f oo object still knows which persi st ence context it wasloaded in. With get Transacti on. begi n(); the
entity manager obtains a new connection and resumes the persistence context. The method get Tr ansac-
tion().comit () will not only flush and check versions, but also disconnects the entity manager from the JD-
BC connection and return the connection to the pool.

This pattern is problematic if the persistence context is too big to be stored during user think time, and if you
don't know where to storeit. E.g. the Ht t pSessi on should be kept as small as possible. As the persistence con-
text is also the (mandatory) first-level cache and contains all loaded objects, we can probably use this strategy
only for a few request/response cycles. This is indeed recommended, as the persistence context will soon also
have stale data.

It is up to you where you store the extended entity manager during requests, inside an EJB3 container you
simply use a stateful session bean as described above. Don't transfer it to the web layer (or even seridlizeit to a
separate tier) to store it in the Ht t pSessi on. In a non-managed, two-tiered environment the Ht t pSessi on might
indeed be the right place to storeit.

4.3.3. Detached objects and automatic versioning

With this paradigm, each interaction with the data store occurs in a new persistence context. However, the same
persistent instances are reused for each interaction with the database. The application manipulates the state of
detached instances originally loaded in another persistence context and then merges the changes using Ent i t y-

Manager . merge() :

/1 foo is an instance | oaded by a non-extended entity manager

f 0o. set Property("bar");

entityManager = factory.createEntityManager();

ent it yManager. get Transaction(). begi n();

managedFoo = session. nerge(foo); // discard foo and from now on use nanagedFoo
enti tyManager. get Transaction().comit();

entityManager. cl ose();

Again, the entity manager will check instance versions during flush, throwing an exception if conflicting up-
dates occured.

Hibernate 3.1 beta 5 26

Chapter 5. Entity listeners and Callback methods

It is often useful for the application to react to certain events that occur inside the persistence mechanism. This
allows the implementation of certain kinds of generic functionality, and extension of built-in functionality. The
EJB3 specification provides two related mechanisms for this purpose.

A method of the entity may be designated as a callback method to receive notification of a particular entity life
cycle event. Callbacks methods are annotated by a callback annotation. You can also define an entity listener
class to be used instead of the callback methods defined directly inside the entity class. An entity listener is a
stateless class with a no-arg constructor. An entity listener is defined by annotating the entity class with the
@ntityListener annotation:

@ntity(access=Fl ELD)

@ntityLi stener(cl ass=Audit.cl ass)

public class Cat {
@d private |Integer id;
private String nane;
private Cal endar dateO'Birth;
@ransi ent private int age;
private Date |astUpdate;
/lgetters and setters

/**
* Set ny transient property at |load tinme based on a cal cul ation,
* note that a native Hibernate fornmula mapping is better for this purpose.
*/
@ost Load
public void cal cul ateAge() {
Cal endar birth = new Gregori anCal endar () ;
birth.setTine(dateXf Birth);
Cal endar now = new Gregori anCal endar () ;
now. set Ti me(new Date());
int adjust = 0;
i f (now get(Cal endar. DAY_OF _YEAR) - birth.get(Cal endar. DAY _OF_YEAR) < 0) {
adjust = -1;
}
age = now. get (Cal endar. YEAR) - birth. get (Cal endar. YEAR) + adj ust;

}

public class LastUpdateLi stener {

/**
* automatic property set before any database persistence
*/
@°r eUpdat e
@r ePer si st
public void setlLastUpdate(Cat o) {
0. set Last Update(new Date());

}

The same callback method or entity listener method can be annotated with more than one callback annotation.
For a given entity, you cannot have two methods being annotated by the same callback annotation whether it is
a callback method or an entity listener method. A callback method is a no-arg method with no return type and
any arbitrary name. An entity listener has the signature public voi d <METHOD>(Obj ect) Where Object is of the
actual entity type (note that Hibernate Entity Manager relaxed this constraint and allows oject of
java. | ang. vj ect type (allowing sharing of listeners accross several entities.)

A callback method can raise aRunt i mneExcept i on. The current transaction, if any, must be rolled back. The fol-
lowing callbacks are defined:

Hibernate 3.1 beta 5 27

Entity listeners and Callback methods

Table5b.1. Callbacks

Type
@PrePersist

@PreRemove

@PostPersist

@PostRemove

@PreUpdate
@PostUpdate
@PostLoad

Description

Executed before the entity manager persist operation
is actually executed or cascaded. This cal is syn-
chronous with the persist operation.

Executed before the entity manager remove operation
is actually executed or cascaded. This cal is syn-
chronous with the remove operation.

Executed after the entity manager persist operation is
actually executed or cascaded. This call is invoked
after the database INSERT is executed.

Executed after the entity manager remove operation is
actually executed or cascaded. This call is synchron-
ous with the remove operation.

Executed before the database UPDATE operation.
Executed after the database UPDATE operation.

Eexecuted after an entity has been loaded into the
current persistence context or an entity has been re-
freshed.

A callback method must not invoke Ent i t yManager Or Quer y methods!

Hibernate 3.1 beta 5

28

Chapter 6. Batch processing

Batch processing has traditionally been difficult in full object/relational mapping. ORM is al about object state
management, which implies that object state is available in memory. However, Hibernate has some features to
optimize batch processing which are discussed in the Hibernate reference guide, however, EJB3 persistence dif-
fersdightly.

6.1. Bulk update/delete

As aready discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. Thisimplies that the object state is available in memory, hence updating or deleting (using SQL
UPDATE and DELETE) data directly in the database will not affect in-memory state. However, Hibernate provides
methods for bulk SQL-style UPDATE and DELETE statement execution which are performed through EJB-QL
(Chapter 7, EJB-QL: The Object Query Language).

The pseudo-syntax for UPDATE and DELETE statements is; (UPDATE | DELETE) FROW? O assNanme (WHERE
VWHERE_CONDI TI ONS) ?. Note that:

¢ Inthefrom-clause, the FROM keyword is optional.

« There can only be a single class named in the from-clause, and it cannot have an alias (thisis a current Hi-
bernate limitation and will be removed soon).

* No joins (either implicit or explicit) can be specified in a bulk EJB-QL query. Sub-queries may be used in
the where-clause.

e Thewhere-clauseis also optional.

As an example, to execute an EJB-QL UPDATE, use the Query. execut eUpdat e() method:

EntityManager entityManager = entityManager Factory. createEntityManager();
entityManager. get Transacti on(). begi n();

String ej bgl Update = "update Custoner set nane = :newNane where nane = : ol dNane"
int updatedEntities = entityManager.createQuery(hgl Update)
.set Paranmet er ("newNane", newNane)
.set Paranmeter ("ol dNane", ol dNane)
. execut eUpdat e();
ent it yManager. get Trasnaction().comit();
enti tyManager. cl ose();

To execute an EJB-QL DELETE, use the same Query. execut eUpdat e() method (the method is named for those
familiar with JDBC's Pr epar edSt at enent . execut eUpdat e()):

EntityManager entityManager = entityManager Factory. createEntityManager();
ent it yManager. get Transaction(). begin();

String hgl Del ete = "del ete Customer where name = : ol dNane";

int deletedEntities = entityManager.createQery(hqgl Del ete)
.set Paranmeter ("ol dNane", ol dNane)
. execut eUpdat e() ;

entityManager. get Trasnaction().comit();

enti tyManager. cl ose();

Theint vaue returned by the Query. execut eUpdat e() method indicate the number of entities effected by the
operation. This may or may not correlate with the number of rows effected in the database. An EJB-QL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to

Hibernate 3.1 beta 5 29

Batch processing

which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritence hierarchy.

Note that there are some limitations with bulk operations which will be addressed in future releases; consult the
JRA roadmap for details.

Hibernate 3.1 beta 5 30

Chapter 7. EJB-QL: The Object Query Language

EJB3-QL has been heavily inspired by HQL, the native Hibernate Query Language. Both are therefore very
close to SQL, but portable and independent of the database schema. People familiar with HQL shouldn't have
any problem using EJB-QL. Actually, you use the same query API for EJB-QL and HQL queries. Portable
EJB3 applications however should stick to EJB-QL or similar vendor extensions are needed.

7.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but org. hi bernate. eg. FOO iS Nnot or g. hi ber nat e. eg. Foo and f oo. bar Set iS not
f 00. BARSET.

This manual uses lowercase EJBQL keywords. Some users find queries with uppercase keywords more read-
able, but we find this convention ugly when embedded in Java code.

7.2. The from clause

The simplest possible EJB-QL query is of the form:

select ¢ fromeg.Cat c

which simply returns all instances of the class eg. cat . Unlike HQL, the select clause is not optional in EJB-
QL. We don't usually need to qualify the class name, since the entity name defaults to the unqualified class
name (@nt i ty). So we almost aways just write:

select ¢ fromCat ¢

As you may have noticed you can assign aliases to classes, the as keywork is optional. An alias alows you to
refer to cat in other parts of the query.

sel ect cat from Cat as cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

select form paramfrom Fornmula as form Paraneter as param
It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. donest i cCat).
7.3. Associations and joins

Y ou may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

select cat, mate, kitten from Cat as cat
inner join cat.mte as mate
left outer join cat.kittens as kitten

select cat fromCat as cat left join cat.mate.kittens as kittens

Hibernate 3.1 beta 5 31

EJB-QL: The Object Query Language

The supported join types are borrowed from ANSI SQL

® inner join
e |eft outer join

Theinner join,left outer join constructs may be abbreviated.

sel ect cat, mate, kitten from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
fetching options in the associations and collection mapping metadata. See the Performance chapter of the Hi-
bernate reference guide for more information.

sel ect cat from Cat as cat
inner join fetch cat. mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object. The only reason we might need an aliasisif we are recurs-
ively join fetching a further collection:

sel ect cat from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the fet ch construct may not be used in queries called using scrol I () or iterate(). Nor should
f et ch be used together with set MaxResul t s() Of set Fi rst Resul t () . It ispossible to create a cartesian product
by join fetching more than one collection in a query (as in the example above), be careful the result of this
product isn't bigger than you expect. Join fetching multiple collection roles also sometimes gives unexpected
results for bag mappings, so be careful about how you formulate your queriesin this case.

TODO: The last statement is useless and typical developer thinking, please elaborate. The word "sometimes'
should never appear in any technical documentation.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to
fetch the lazy properties immediately (in the first query) using fetch all properties. Thisis Hibernate spe-
cific option:

sel ect doc from Docunment doc fetch all properties order by doc. nane

sel ect doc from Docunment doc fetch all properties where | ower(doc. nane) |like '%ats%

7.4. The select clause

Thesel ect clause picks which objects and properties to return in the query result set. Consider:

sel ect mate
from Cat as cat
inner join cat.mate as mate

Hibernate 3.1 beta 5 32

EJB-QL: The Object Query Language

The query will select nat es of other cat s. Actually, you may express this query more compactly as:

sel ect cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.nane from DonesticCat cat
where cat.nanme like '"fri%

sel ect cust.nane.firstName from Custoner as cust

Queries may return multiple objects and/or properties as an array of type j ect[],

sel ect nother, offspr, nate.nane
from Domesti cCat as not her
inner join nother.mate as nate
left outer join nother.kittens as offspr

orasalist (HQL specific feature)

sel ect new |ist(nother, offspr, mate.nane)
from Donmesti cCat as not her

inner join nother.mate as nate

|l eft outer join nother.kittens as offspr

or as an actual typesafe Java object,

sel ect new Fam | y(nother, mate, offspr)
from Donmesti cCat as not her

join nother.mate as mate

left join nmother.kittens as offspr

assuming that the class Fani | y has an appropriate constructor.

Y ou may assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, mi n(bodyWight) as mn, count(*) as n
from Cat cat

Thisis most useful when used together with sel ect new map (HQL specific feature):

sel ect new map(nmax(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n)
from Cat cat

This query returns a vap from aliases to selected values.

7.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are

e avg(...), avg(distinct ...), sun(...), sumidistinct ...), mn(...), max(...)

Hibernate 3.1 beta 5 33

EJB-QL: The Object Query Language

e count(*)
e count(...), count(distinct ...), count(all...)

Y ou may use arithmetic operators, concatenation, and recognized SQL functions in the select clause (dpending
on configured dialect, HQL specific feature):

sel ect cat.weight + sum(Kkitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' "||initial||" "]|]|upper(lastNanme) from Person

Thedi stinct andal | keywords may be used and have the same semanticsasin SQL.

sel ect distinct cat.name from Cat cat

sel ect count(distinct cat.nanme), count(cat) from Cat cat

7.6. Polymorphic queries

A query like:

sel ect cat from Cat as cat

returns instances not only of cat, but also of subclasses like Donest i cCat . Hibernate queries may name any
Java class or interface in the fr om clause (portable EJB-QL queries should only name mapped entities). The
query will return instances of all persistent classes that extend that class or implement the interface. The follow-
ing query would return all persistent objects:

fromjava.lang. Object o // HQL only

The interface Named might be implemented by various persistent classes:

from Named n, Naned m where n.nanme = mnanme // HQ only

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set. (It also means you can't call these queries using Query. scrol | () .)

7.7. The where clause

The wher e clause allows you to narrow the list of instances returned. If no alias exists, you may refer to proper-
ties by name:

sel ect cat from Cat cat where cat.name=' Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar. date

will return al instances of Foo for which there exists an instance of bar with a date property equal to the

Hibernate 3.1 beta 5 34

EJB-QL: The Object Query Language

start Date property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
Sider:

sel ect cat from Cat cat where cat.mate.nane is not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

sel ect foo from Foo foo
where foo. bar. baz. custoner. address.city is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

select cat, rival fromCat cat, Cat rival where cat.mate = rival.mte

sel ect cat, mate
fromCat cat, Cat mate
where cat.nmate = nmate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (Y ou may also
use its mapped identifer property name.). Note that this keyword is specific to HQL.

select cat from Cat as cat where cat.id = 123

select cat from Cat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
count ry and medi car eNunber .

sel ect person from bank. Person person
where person.id.country = "'AU
and person.id. nedi car eNunber = 123456

sel ect account from bank. Account account
wher e account.owner.id.country = "'AU
and account.owner.id. nedi careNunber = 123456

Once again, the second query requires no tablejain.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator value. Once
again, thisis specific to HQL.

sel ect cat from Cat cat where cat.class = DonesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if st or e. owner isan entity with a component addr ess

store. owner. address.city /'l okay
st or e. owner . addr ess /1 error!

An "any" type has the special properties i d and cl ass, alowing us to express a join in the following way
(where Audi t Log. i t emis aproperty mapped with <any>). Any is specific to Hibernate

Hibernate 3.1 beta 5 35

EJB-QL: The Object Query Language

from AuditLog | og, Paynment payment
where log.itemclass = 'Paynment’ and log.itemid = paynent.id

Notice that 1 og. i tem cl ass and paynent . cl ass would refer to the values of completely different database
columnsin the above query.

7.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL.:

* mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
e logical operationsand, or, not

e Parentheses(), indicating grouping

* in,not in,between,is null,is not null,is enpty,is not enpty, menber of andnot nenber of

e "Simple" case, case ... when ... then ... else ... end, and "searched" case, case when ... then
else ... end (specific to HQ)

e string concatenation...||... Orconcat(...,...) (use concat() for portable EJB-QL queries)

e current_date(),current_time(),current _tinmestanp()

e second(...),minute(...),hour(...),day(...),nmonth(...),year(...), (Specificto HQL)

e Any function or operator defined by EJB-QL 3.0: substring(), trinm(), lower(), upper(), |ength(),
| ocate(), abs(), sqrt(), bit_length()

e coalesce() andnullif()

e cast(... as ...), where the second argument is the name of a Hibernate type, and extract (... from
...) if ANSI cast () and extract () issupported by the underlying database

« Any database-supported SQL scalar function likesi gn(), trunc(),rtrin(), sin()

e JDBCIN parameters ?

e named parameters: nane, : start_date, : x1

e SQL literals' foo', 69, ' 1970-01-01 10: 00: 01. O’

e Javapublic static final constantseg. Col or. TABBY

i n and bet ween may be used as follows:
sel ect cat from DonmesticCat cat where cat.nane between 'A and 'B

sel ect cat from DonesticCat cat where cat.nanme in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

sel ect cat from DonesticCat cat where cat.nane not between 'A" and 'B
sel ect cat from DonesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise, is null andis not null may beused to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:
hi bernat e. query. substitutions true 1, false 0

Thiswill replace the keywordst rue and f al se with theliterals 1 and 0 in the translated SQL from thisHQL.:

sel ect cat from Cat cat where cat.alive = true

Hibernate 3.1 beta 5 36

EJB-QL: The Object Query Language

You may test the size of a collection with the special property si ze, or the specia si ze() function (HQL spe-
cific feature).

select cat from Cat cat where cat.kittens.size > 0
select cat from Cat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using mi ni ndex and maxi ndex
functions. Similarly, you may refer to the minimum and maximum elements of a collection of basic type using
the mi nel ement and maxel ement functions. These are HQL specific features.

sel ect cal from Cal endar cal where maxel enent (cal . hol i days) > current date
sel ect order from Order order where maxindex(order.itens) > 100
sel ect order from Order order where m nel ement (order.itens) > 10000

The SQL functionsany, sonme, all, exists, in aresupported when passed the element or index set of acol-
lection (el ement s and i ndi ces functions) or the result of a subguery (see below). While subqueries are suppor-
ted by EJB-QL, el ement s and i ndi ces are specific HQL features.

sel ect nother from Cat as nother, Cat as kit
where kit in el ements(foo.kittens)

sel ect p from NaneList |ist, Person p
where p.nanme = sone el ements(list. nanes)

select cat from Cat cat where exists el enents(cat.kittens)
sel ect cat from Player p where 3 > all el enents(p.scores)
sel ect cat from Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni ni ndex, maxi ndex, m nel ement , nmaxel enent - may
only be used in the where clause in Hibernate3.

In HQL, elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where clause
only):

sel ect order from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. hol i days[' national day'] = person. birthDay
and person.nationality.cal endar = cal endar

select itemfromltemitem Order order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem Order order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

select itemfromltemitem Order order
where order.itens[size(order.itenms) - 1] = item

Hibernate 3.1 beta 5 37

EJB-QL: The Object Query Language

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(itenm) from Order order
join order.itens item
where index(iten) < 5

Scalar SQL functions supported by the underlying database may be used

sel ect cat from DonmesticCat cat where upper(cat.nanme) |ike 'FR %

If you are not yet convinced by all this, think how much longer and less readable the following query would be
in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.custoners cust
where prod. name = 'w dget'
and store.location.name in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOrder.lineltens)

Hint: something like

SELECT cust.nane, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc,
product prod
VWHERE prod. nane = 'w dget'
AND store.loc_id = loc.id
AND | oc. nane I N (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itenms item orders o
WHERE itemorder_id = o.id
AND cust.current_order = o.id

7.9. The order by clause

The list returned by a query may be ordered by any property of areturned class or components:

sel ect cat from DonesticCat cat
order by cat.nane asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

7.10. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

sel ect cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat. col or

Hibernate 3.1 beta 5 38

EJB-QL: The Object Query Language

sel ect foo.id, avg(nane), nmax(nane)
from Foo foo join foo.nanes nane
group by foo.id

A havi ng clauseisalso allowed.

sel ect cat.color, sun(cat.weight), count(cat)

from Cat cat

group by cat.col or

havi ng cat.color in (eg.Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-

derlying database (eg. not in MySQL).

sel ect cat
from Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100
order by count(kitten) asc, sun(kitten.weight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

7.11. Subqueries

For databases that support subselects, EJB-QL supports subgueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that

refer to an alias in the outer query) are allowed.

sel ect fatcat from Cat as fatcat
where fatcat.weight > (

sel ect avg(cat.weight) from DonmesticCat cat
)

sel ect cat from DonmesticCat as cat
where cat.name = sone (

sel ect nane. ni ckNanme from Nane as nane
)

sel ect cat from Cat as cat
where not exists (
fromCat as nate where nate.nate = cat

)

sel ect cat from DonesticCat as cat
where cat.nanme not in (

sel ect nane. ni ckNane from Nane as nane
)

For subqueries with more than one expression in the select list, you can use a tuple constructor:

sel ect cat from Cat as cat
where not (cat.name, cat.color) in (
sel ect cat.nanme, cat.color from DonesticCat cat

)

Note that on some databases (but not Oracle or HSQLDB), you can use tuple constructors in other contexts, for

example when querying components or compasite user types:

Hibernate 3.1 beta 5

39

EJB-QL: The Object Query Language

sel ect cat from Person where nane = (' Gavin', 'A, 'King')

Which is equivalent to the more verbose:

sel ect cat from Person where nane.first = 'Gavin' and nanme.initial ="'A and nane.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely portable
between database platforms; second, the query is now dependent upon the ordering of properties in the map-
ping document.

7.12. EJB-QL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-
bernate's main selling points (and now EJB-QL). Here are some example queries very similar to queries that |
used on arecent project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrelated) subselect.

sel ect order.id, sun(price.anmount), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as cat al og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. amount) > :m nAnmount
order by sun(price.anmount) desc

What amonster! Actually, inreal life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.anmount), count(item
from Order as order

join order.lineltens as item

join item product as product,

Cat al og as cat al og

join catal og.prices as price
where order.paid = fal se

and order.customer = :custoner
and price. product = product
and catal og = : current Cat al og

group by order
havi ng sum(price. amount) > :m nAmount
order by sum(price.amunt) desc

The next query counts the number of payments in each status, excluding all payments in the awal T-
| NG_APPROVAL status where the most recent status change was made by the current user. It trandates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-

Hibernate 3.1 beta 5 40

EJB-QL: The Object Query Language

MENT_STATUS CHANGE tables.

sel ect count (paynent), status.nane
from Paynent as payment
join paynent.currentStatus as status
join paynment. st at usChanges as st at usChange
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
st atusChange. ti meStanp = (
sel ect max(change. ti meSt anp)
f rom Paynent St at usChange change
wher e change. paynment = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOder

If | would have mapped the st at usChanges collection as a list, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status.nane
from Payment as payment
join paynent.currentStatus as status
wher e paynent. st at us. name <> Paynent St at us. AWAI TI NG_APPROVAL
or paymnent. st atusChanges[naxl ndex(paynent. statusChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortOrder

However the query would have been HQL specific.

The next query uses the MS SQL Server i sNul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It translates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and

ORG_USER tables.

sel ect account, paynent
from Account as account
join account. hol der. users as user
|l eft outer join account.paynents as payment

where :currentUser = user
and Payment St at us. UNPAI D = i sNul | (paynent . current St at us. nanme, Paynent St at us. UNPAI D)

order by account.type.sortOrder, account.account Nunber, paynent. dueDate

7.13. Bulk UPDATE & DELETE Statements

Hibernate now supports UPDATE and DELETE statementsin HQL/EJB-QL. See Section 6.1, “Bulk update/de-
lete” for details.

7.14. Tips & Tricks

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
left join usr.nessages as nsg
group by usr.id, usr.nane
order by count (nsg)

Hibernate 3.1 beta 5 41

EJB-QL: The Object Query Language

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.nmessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr.nane

join usr.messages nsg
group by usr.id, usr.nane
havi ng count(nsg) >= 1

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.name
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.nanme
havi ng count(nsg) = 0

Hibernate 3.1 beta 5 42

Chapter 8. Native query

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the CONNECT BY option in Oracle. It also provides a clean
migration path from a direct SQL/JDBC based application to Hibernate. Note that Hibernate3 alows you to
specify handwritten SQL (including stored procedures) for al create, update, delete, and load operations
(please refer to the reference guide for more information.)

8.1. Expressing the resultset

To use a SQL query, you need to describe the SQL resultset, this description will help the Enti t yManager to
map your columns onto entity properties. This is done using the @ql Resul t Set Mappi ng annotation. Each
@ql Resul t Set Mappi ng has a name wich is used when creating a SQL query on Ent i t yManager .

@3ql Resul t Set Mappi ng(name="CGet Ni ght AndArea", entities={
@ntityResul t (nane="org. hi bernate.test.annotations.query.N ght", fields = {
@i el dResul t (name="i d", colum="nid"),
@i el dResul t (nane="dur ati on", colum="ni ght_duration"),
@i el dResul t (name="dat e", col um="ni ght _date"),
@i el dResul t (nane="area", colum="area_id")

1,

@ntityResul t (nane="org. hi bernate.test.annotations. query. Area", fields = {
@i el dResul t (name="id", colum="aid"),
@i el dResul t (nane="nane", col um="nane")

})
}
)

/[or
@ql Resul t Set Mappi ng(nane="def aul t SpaceShi p", entities=@ntityResult(nane="org. hi bernate.test.annotati

Please refer to the Hibernate Annatations reference guide for more information about @ql Resul t Set Mappi ng.

Note

The current implementation does not support scalar results in native SQL queries.

8.2. Using native SQL Queries

TODO: This sounds like a dupe...

Now that the result set is described, we are capable of executing the native SQL query. EntityManager
provides all the needed APIs. The first method isto use a SQL resultset name to do the binding, the second one
uses the entity default mapping (the column returned has to have the same names as the one used in the map-
ping). A third one (not yet supported by Hibernate entity manager), returns pure scalar results.

String sql Query = "select night.id nid, night.night_duration, night.night _date, area.id aid, "
+ "night.area_id, area.nane from N ght night, Area area where night.area_id = area.id "
+ "and ni ght.ni ght_duration >= ?";

Query g = entityManager.createNativeQuery(sql Query, "GCetN ght AndArea");

g. set Paraneter(1, expectedDuration);

g.get Resul tList();

This native query returns nights and area based on the Get Ni ght AndAr ea result set.

Hibernate 3.1 beta 5 43

Native query

String sql Query = "select * fromtbl_spaceship where owner = ?";
Query g = entityManager.createNativeQuery(sqgl Query, SpaceShip.cl ass);
g.set Paraneter(1, "Han");

g. get Resul tList();

The second version is useful when your SQL query returns one entity reusing the same columns as the ones
mapped in metadata.

8.3. Named queries

Native named queries share the same calling API than EJB-QL named queries. Y our code doesn't need to know
the difference between the two. Thisis very useful for migration from SQL to EJB-QL:

Query g = entityManager. creat eNanedQuer y("get SeasonByNati veQuery");
g.setParanmeter(1, name);

Season season = (Season) q.getSingleResult();

Hibernate 3.1 beta 5 44

Appendix A. Compliance and known
limitations

3. 1beta5 (13- 12-2005)

* % Bug
* [BEIJB-52] - PERSIST cascade loads unilitialized elements at flush tine

[EJB-68] - hibernate.ejb.interceptor property in persistence.xm is ignored

[EIB-73] - Id is not set in @PostPersist

[EJB-76] - JarVisitor unqualify algorithmfails when the nanme ends with 'ar

[EIB-78] - default value for hibernate.transaction.flush_before_conpletion

*
*
* and is less than 4
*

** New Feature

* [EJB- 58] Support @& Annot ati on annotated with an @ntityLi stener
* [EJB-71] - Support custom event |isteners

** | npr ovenent

* [EJB-35] - Support custom Nami ngStrategy as property.

* [EIJB-72] - Make setDataSource() nore out of container friendly

* [EJB-75] - Fall back to <property nane="bl ah">bl ah</ property> when the value attribute is enpty
*

[EIB-79] - Package. get Package() returns null on sone cl assl oaders

3. 1bet a4 (06- 10- 2005)

* EJB-67 Lazy access to the streamin JarVisitor leading to a non access when filters are enpty (ie |
* EJB-65 handl e eclipse bundl eresource url protocol during netadata search

* EJB-66 Support all url protocols that returns zip streans for jars like http

* EJB-62 Error during stateful session bean passivation

* EJB-61 inplicit paraneter ? no | onger supported

* EJB-63 Positional paraneters should start fromindex 1 to say sort of consistent with the spec

3. 1bet a3 (14-09-2005)

EJB- 6 Support ?1, ?2 style positional paraneters

EJB- 60 Support byte code instrunentation via a C assFil eTransforner
EJB-55 Problens using a .par file with Tontat

EJB-56 Support exploded jar files *not* ending with .xar

EJB-51 Support persistence.xnm declaration and hi bernate.cfg.xm
EJB- 53 DELETE_ORPHAN not executed at flush tinme

EJB-52 Persist cascade |oads uninitialized elements at flush tinme
EJB- 43 Aut odetection magic |eads to duplicate inports

EJB- 24 Byt eArrayBl obType i nconpatible with Oracle

EJB- 28 create an EMF t hrough Persistencel nfo

EJB- 44 Support Hibernate Interceptors in EJB3 inlenmentation as an extension
EJB-40 Entity cal |l backs shoul d cast away access nodifiers

EJB-48 Plug Validator framework i nto HEM

EJB-47 Validator and Jacc event |isteners clashes

EE R S S I I R

3. lbet a2 (04-08-2005)
* Support package nanes in
<cl ass></cl ass>

EJB- 42 Aut odet ection nagi c ignores hibernate.cfg.xn

EJB-45 Allow to disable autodetection in .par through a property

EJB-41 Short-circuit dirty checking when no call back are actually called
EJB- 38 St andal one EM shoul d search for package-info files

EJB- 31 Cut-of -contai ner should search for .hbmxm files

EJB- 29 Lifecycle callbacks and dirty checking clash

EJB- 36 proxied instances raise an exception in em contains()

EJB- 28 support injected DataSource

EJB-34 EMF.isOpen() is wong

EJB- 27 Support transaction-less operations with getEntityManager ()
EJB-23 No |ifecycle interceptor used when getCurrent Session() is called

L R S T I

Hibernate 3.1 beta 5 45

Compliance and known limitations

* EJB-20 Sync Hibernate *state* and entity on |ifecycle @call backs
* EJB-21 NPE in Transactionlnpl.isActive() when tx is not initialized (Shane Bryzak)
* EJB-19
<jar-file></jar-file>
anal ysed, but the resource path is mandatory and not only the jar nane
* EJB-18 get mapped classes from.par files both expl oded and regul ar zip

3. 1lbetal Preview (24-06-2005)

Initial rel ease

M ssing features for spec conpliance

* XML depl oynent descri ptor
* Support scalar results in native queries

Hibernate 3.1 beta 5

46

	Hibernate EntityManager User guide Version: 3.1 beta 5
	31 Dec 2005 Hibernate community
	Hibernate EntityManager
	Table of Contents
	Introducing EJB3 Persistence
	Chapter 1. Architecture
	1.1. Definitions
	1.2. EJB container environment
	1.2.1. Container-managed entity manager
	1.2.2. Application-managed entity manager
	1.2.3. Persistence context scope
	1.2.4. Persistence context propagation

	1.3. J2SE environments

	Chapter 2. Setup and configuration
	2.1. Setup
	2.2. Configuration and bootstrapping
	2.3. Event listeners
	2.4. Obtaining an EntityManager in a J2SE environment
	2.5. Various

	Chapter 3. Working with objects
	3.1. Entity states
	3.2. Making objects persistent
	3.3. Loading an object
	3.4. Querying objects
	3.4.1. Executing queries
	3.4.1.1. Projection
	3.4.1.2. Scalar results
	3.4.1.3. Bind parameters
	3.4.1.4. Pagination
	3.4.1.5. Externalizing named queries
	3.4.1.6. Native queries
	3.4.1.7. Query hints

	3.5. Modifying persistent objects
	3.6. Modifying detached objects
	3.7. Automatic state detection
	3.8. Deleting managed objects
	3.9. Flushing the persistence context
	3.10. Transitive persistence

	Chapter 4. Transactions and Concurrency
	4.1. Entity manager and transaction scopes
	4.1.1. Unit of work
	4.1.2. Long units of work
	4.1.3. Considering object identity
	4.1.4. Common concurrency control issues

	4.2. Database transaction demarcation
	4.2.1. Non-managed environment
	4.2.2. Using JTA
	4.2.3. Exception handling

	4.3. Optimistic concurrency control
	4.3.1. Application version checking
	4.3.2. Extended entity manager and automatic versioning
	4.3.3. Detached objects and automatic versioning

	Chapter 5. Entity listeners and Callback methods
	Chapter 6. Batch processing
	6.1. Bulk update/delete

	Chapter 7. EJB-QL: The Object Query Language
	7.1. Case Sensitivity
	7.2. The from clause
	7.3. Associations and joins
	7.4. The select clause
	7.5. Aggregate functions
	7.6. Polymorphic queries
	7.7. The where clause
	7.8. Expressions
	7.9. The order by clause
	7.10. The group by clause
	7.11. Subqueries
	7.12. EJB-QL examples
	7.13. Bulk UPDATE & DELETE Statements
	7.14. Tips & Tricks

	Chapter 8. Native query
	8.1. Expressing the resultset
	8.2. Using native SQL Queries
	8.3. Named queries

	Appendix A. Compliance and known limitations

	
	JBoss Title Page

