
IMS General Web Services WSDL Binding Guidelines

Version 1.0 Final Specification

Copyright © 2005 IMS Global Learning Consortium, Inc. All Rights Reserved.
The IMS Logo is a registered trademark of IMS/GLC
Document Name: IMS General Web Services WSDL Binding Guidelines
Revision: 19 December 2005

Date Issued: 19 December 2005

Latest version: http://www.imsglobal.org/gws/gwsv1p0/imsgws_wsdlBindv1p0.html

Register comments or
implementations:

http://www.imsglobal.org/developers/ims/imsforum
/categories.cfm?catid=20

IPR and Distribution Notices

Recipients of this document are requested to submit, with their comments, notification of any relevant
patent claims or other intellectual property rights of which they may be aware that might be infringed by any
implementation of the specification set forth in this document, and to provide supporting documentation.

IMS takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Information on IMS's procedures with respect to rights in
IMS specifications can be found at the IMS Intellectual Property Rights web page: http://www.imsglobal.org
/ipr/imsipr_policyFinal.pdf.

Copyright © IMS Global Learning Consortium 2006. All Rights Reserved.

If you wish to distribute this document or use this document to implement a product or service, you must
complete a valid license registration with IMS and receive an email from IMS granting the license. To
register, follow the instructions on the IMS website: http://www.imsglobal.org/specificationdownload.cfm.

This document may be copied and furnished to others by Licensee organizations registered on the IMS
website provided that the above copyright notice and this paragraph are included on all such copies.
However, this document itself may not be modified in any way, such as by removing the copyright notice or
references to IMS, except as needed for the purpose of developing IMS specifications, under the auspices of
a chartered IMS work group.

Use of this specification to develop products or services is governed by the license with IMS found on the
IMS website: http://www.imsglobal.org/gws/gwsv1p0/gwsv1p0speclicense.html.

The limited permissions granted above are perpetual and will not be revoked by IMS or its successors or

http://www.imsglobal.org/gws/gwsv1p0/imsg... 1 8/29/2009 7:09 PM

assigns.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN
PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY
USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN
RISK, AND NEITHER THE CONSORTIUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL
HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY
DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE
USE OF THIS SPECIFICATION.

Executive Summary
The 'IMS General Web Services WSDL Binding Guideline' document outlines a process for creating web
service bindings using the IMS General Web Services Base Profile, Abstract Framework and business domain
knowledge intrinsic to the Information Model of a particular Specification. The 'General Web Services WSDL
Binding Guideline' contains a description of how a project teams should use the Unified Modelling Language
(UML) and Extensible Mark-up Language (XML) style-sheet language auto-generation tools to specify a
Web Service protocol and binding as appropriate.

For the auto-generation approach to work the IMS specification must be represented with UML. IMS has
created a Web Services description Profile that defines how UML is to be used to describe a web
service-based specification. A specification becomes a collection of UML packages. UML packages are used
to ensure that the different ways in which UML models are visually presented by different UML tools do not
result in tool interoperability issues. Three types of package stereotypes are used:

Service Group Model - any specification that is service-based must have one and only one
'ServiceGroupModel' package. This package is used to describe the overall set of services being
defined;
Service Model - the service definition package. Any specification that has a ServiceGroupModel'
package must have at least one 'ServiceModel'. Each service should have its own 'ServiceModel'
package but the set of services are expected to be related to each other;
Data Model - the data model for the specification, i.e., the information that is to be represented as an
XSD. There can be several 'DataModel' packages. In principle each 'DataModel' package will result in
the creation of a separate XSD control document.

The IMS General Web Services Basic Profile introduced the approach of separate bindings for different
communications models. Therefore, three sets of transformation rules are required, one for each of the
communication models that are to be supported by the bindings, namely (at the current time only the
Synchronous binding is described herein):

Synchronous - the initiator is blocked until the respondent replies;a.
Asynchronous - the initiator is not blocked and so there can be more than one outstanding request;b.
Polled - once the initiator has sent the request the respondent will not reply until it is polled by the
initiator.

c.

This Guideline contains a description of how the IMS Binding Auto-generation Tool-kit (I-BAT) is used to
create the WSDL/XSD files from the XMI-based description of the specification. The I-BAT is used to create
WSDL/XSD bindings that are categorized as:

Single file WSDL/XSD representation - the WSDL and XSD descriptions are contained in a single file;a.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 2 8/29/2009 7:09 PM

Split file representation - the WSDL and XSD descriptions are contained in separate files, i.e., one file
for the WSDL and a second file for the XSD;

b.

Split service representation - the WSDL and XSD descriptions are contained in separate files, i.e., two
files for the WSDL (one for the abstract description and the other for the service specific description)
and a third file for the XSD;

c.

Multiple file representation - the WSDL descriptions are contained in two files (one for the abstract
description and the other for the service specific description) and the XSD is spread over several linked
files.

d.

The WSDL/XSD files created are designed to comply with the Web Service Interoperability (WS-I)
Consortium Base Profile v1.1. A clear statement of the relationship between the WS-I Base Profile and the
IMS General Web Service Basic Profile is described in the IMS GWS Base Profile V1.0 Specification.
Furthermore information on how the equivalent WSDL/XSD bindings are created to support the IMS General
Web Services extension profiles, e.g., Addressing, Security, Attachments, etc. are supplied in the
corresponding profile specifications. This guideline also presents recommendations on how to extend the
specification by changing the UML description and re-applying the auto-generation file, and the areas for
further work.

Table of Contents

Executive Summary

1. Introduction
 1.1 Scope and Context
 1.2 Structure of this Document
 1.3 Nomenclature
 1.4 References

2. Web Services Description Language Files
 2.1 WSDL Document Structure
 2.2 WSDL Schema
 2.2.1 Top-level Structure (<definitions>)
 2.2.2 <import> Element Structure
 2.2.3 <types> Element Structure
 2.2.4 <message> Element Structure
 2.2.5 <portType> Element Structure
 2.2.6 <binding> Element Structure
 2.2.7 <service> Element Structure
 2.3 Basic WSDL File Content
 2.3.1 Single File Representation
 2.3.2 Split File Representation
 2.3.3 Service Split File Representation
 2.3.4 Multiple File Representation
 2.3.5 Structure Relationships and Naming Conventions
 2.4 WS-I Basic Profile

3. WSDL Files for the Set of Communications Models
 3.1 Synchronous Communications Transformation Algorithms
 3.1.1 Single File Representation

http://www.imsglobal.org/gws/gwsv1p0/imsg... 3 8/29/2009 7:09 PM

 3.1.2 Split File Representation
 3.1.3 Service Split File Representation
 3.1.4 Multiple File Representation
 3.2 Asynchronous Communications Transformation Algorithms
 3.3 Polled Communications Transformation Algorithms

4. Creating a WSDL Binding

5. Base Profile WSDL Auto-generation
 5.1 WSDL Auto-generation for Synchronous Communications
 5.1.1 Single File Representation
 5.1.2 Split File Representation
 5.1.3 Service Split File Representation
 5.1.4 Multiple File Representation
 5.2 WSDL Auto-generation for Asynchronous Communications
 5.3 WSDL Auto-generation for Polled Communications

6. Extending the Binding
 6.1 Changing the Binding
 6.2 Adding New Services
 6.3 Adding New Behaviors
 6.4 Adding New Data Structures
 6.4.1 Adding New 'DataModel' Packages
 6.4.2 Using the DataModel Extension Classes
 6.5 Extending the SOAP headers

7. Claiming Conformance to the Specification
 7.1 WS-I Conformance Claim Attachment
 7.2 Creating Conformance Claims to IMS Profiles

8. Recommended Tools
 8.1 UML and Auto-generation of the Bindings
 8.2 Generating Code Stubs using Java
 8.3 Generating Code Stubs Using the Microsoft .NET Framework
 8.3.1 Code Generation using WSDL.EXE
 8.3.2 The .NET Tools

9. Further Work

Appendix A - The Binding Support XSD Files
 A1 - Status Information
 A2 - Message Header Structures for Synchronous Models
 A3 - Message Header Structures for Asynchronous Models
 A4 - Message Header Structures for Polled Models

About This Document
 List of Contributors

Revision History

Index

http://www.imsglobal.org/gws/gwsv1p0/imsg... 4 8/29/2009 7:09 PM

1. Introduction
1.1 Scope and Context

The objective of the General Web Services Web Services Description Language (WSDL) Binding Guidelines
activity is to provide a framework for guiding project teams looking to use web services as part of IMS/GLC
specification development. The General Web Services WSDL Binding Guidelines provide a methodology that
meets the following criteria:

Interoperability - artefacts produced under the General Web Services activity will seek to identify
mechanisms and standards that promote interoperability between web service specification
implementations across different software and operating system platform;
Efficiency - artefacts produced under the General Web Services activity will be designed to help other
IMS/GLC project teams efficiently and effectively evaluate web services protocols as they pertain to
the functional requirements of the project group;
Consistency - artefacts produced under the General Web Services activity will be designed to facilitate
the implementation of a consistent approach to the implementation of web service protocols across
IMS/GLC project groups and specifications;
Flexibility - artefacts produced under the General Web Services activity will be flexible enough to
adapt to the evolving web service protocols such as SOAP and SOAP message attachments, and to
work with a variety of binding methods for web services such as WSDL;
Practicality - artefacts produced under the General Web Services activity will seek to facilitate vendor's
ability to implement IMS/GLC based Web Service solutions and interoperability across platforms and
vendor implementations of web service protocols.

The General Web Services WSDL Binding Guidelines (GWSWBG) outlines a process for creating web
service bindings using the IMS General Web Services Base Profile, IMS Abstract Framework and business
knowledge intrinsic to the Information Model of a particular Specification. The GWSWBG includes
guidelines that instruct project groups in how to use the recommended tools in gathering information,
processing information, and specifying Web Services protocols and binding as appropriate. The methodology
includes information and graphics describing the role and relationship of the General Web Services
methodology to the IMS/GLC Specifications. The creation of the WSDL binding files is based upon
representation of the specification in the UML. The XML Metadata Interchange (XMI) representation of
UML is then used to enable the auto-generation. The automated conversion is supplied by applying one or
more specially developed Extensible Stylesheet Language Transformations (XSLTs) to the XMI to create the
corresponding set of WSDL and Extensible Schema Definition (XSD) files.

This document should be read in conjunction with the General Web Services Base Profile document [GWS,
05b] and the set if extension profiles [GWS, 05c], [GWS, 05d] and [GWS, 05d] and the IMS Binding
Auto-generation Toolkit (I-BAT) Manual [GWS, 05e]. The terms of reference for the creation of both
documents are defined in the original project charter [GWS, 03].

1.2 Structure of this Document

The structure of this document is:

2. Web Services Description
Language Files An overview of the structure of WSDL files;

http://www.imsglobal.org/gws/gwsv1p0/imsg... 5 8/29/2009 7:09 PM

3. WSDL Files for the Set of
Communications Models

A description of the transformation algorithms to be applied to the UML
representation to create the corresponding WSDL/XSD files;

4. Creating a WSDL Binding An explanation of how the WSDL files are created from the Information
Model description;

5. Base Profile WSDL
Auto-generation

A description of how a WSDL/XSD binding based upon the IMS GWS Base
Profile is created;

6. Extending the Binding Discusses the ways in which the binding can be extended including
extensibility as discussed in the WS-I Basic Profile v1.1;

7. Claiming Conformance to
the Specification

A discussion of how an implementation can prove that it conforms to the
specification. This also addresses the WS-I approach of embedded
conformance statements in the binding;

8. Recommended Tools The tools that are recommended to support the creation of a web service
binding including the messaging questionnaire;

9. Further Work
A summary of the further work that should be undertaken, particularly to
ensure full compatibility with the recommendations in the WS-I Basic
Profile v1.1;

Appendix A - The Binding
Support XSD Files

A description of the structure and contents of the common XSD files (the
Common Data Model and the Message Binding Schema) that support the
transformation rules.

1.3 Nomenclature

a-API Abstract Application Programming Interface

API Application Programming Interface

CORBA Common Object Request Broker Architecture

CRUD Create, Read, Update and Delete

DCOM Distributed Component Object Model

FTP File Transfer Protocol

GUID Global Unique Identifier

GWSBP General Web Services Base Profile

GWSWBG General Web Services WSDL Binding Guidelines

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IAF IMS Abstract Framework

I-BAT IMS Binding Auto-generation Toolkit

IIOP Internet Inter-ORB Protocol

IMS/GLC IMS Global Learning Consortium

http://www.imsglobal.org/gws/gwsv1p0/imsg... 6 8/29/2009 7:09 PM

MOM Middleware Oriented Messaging

MSIL Microsoft Intermediate Language

OSID Open Services Interface Definition (from the Open Knowledge Initiative)

POS Point of Service

QoS Quality of Service

RFC Request For Comments

SMTP Simple Message Transfer Protocol

SQL Server Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

UDDI Universal Description Discovery & Integration

UML Unified Modelling Language

URI Universal Resource Identifier

URL Universal Resource Locator

VLE Virtual Learning Environment

W3C World Wide Web Consortium

WMI Windows Management Instrumentation

WSDL Web Services Description Language

XMI XML Metadata Interface

XML Extensible Mark-up Language

XSD Extensible Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

1.4 References

[AbsASCs,
03]

IMS Abstract Framework: Applications, Services & Components v1.0, Ed. C.Smythe,
IMS/GLC, July 2003.

[AbsGloss,
03] IMS Abstract Framework: Glossary v1.0, Ed. C.Smythe, IMS/GLC, July 2003.

[AbsWhite,
03] IMS Abstract Framework: White Paper v1.0, Ed. C.Smythe, IMS/GLC, July 2003.

[APG, 04a] IMS Application Profile Guidelines Whitepaper: Part 1 Management Overview, K.Riley and
P.Hope, Version 1.0, IMS Publication, May 2004.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 7 8/29/2009 7:09 PM

[APG, 04b] IMS Application Profile Guidelines Whitepaper: Part 2 Technical Manual, K.Riley and
P.Hope, Version 1.0, IMS Publication, May 2004.

[Cockburn,
01] Writing Effective Use-case, A.Cockburn, Addison-Wesley, 2001, ISBN 0-201-70225-8.

[GWS, 03] General Web Services Project Team Charter, C.Schroeder, R.Kleinman and S.Griffin,
IMS/GLC, June 2003.

[GWS, 05a] IMS General Web Services UML to WSDL Binding Auto-generation Guidelines Public Draft,
C.Schroeder, S.Raju and C.Smythe, V1.0 IMS/GLC, January 2005.

[GWS, 05b] IMS General Web Services Base Profile Final Release, C.Schroeder, J.Simon and C.Smythe,
V1.0 IMS/GLC, December 2005.

[GWS, 05c] IMS General Web Services Addressing Profile Final Release, C.Schroeder, J.Simon and
C.Smythe, V1.0 IMS/GLC, December 2005.

[GWS, 05d] IMS General Web Services Attachments Profile Final Release, C.Schroeder, J.Simon and
C.Smythe, V1.0 IMS/GLC, December 2005.

[GWS, 05e] IMS General Web Services Security Profile Final Release, C.Schroeder, J.Simon and
C.Smythe, V1.0 IMS/GLC, December 2005.

[GWS, 05f] IMS Binding Auto-generation Toolkit Manual, C.Smythe, V1.0 IMS/GLC, December 2005.

[SOAP, 01a] SOAP Messages with Attachments, W3C, W3C Note 11, December 2000.

[SOAP, 03a] SOAP Version 1.2 Part 1: Messaging Framework, W3C, W3C Final Specification, June 2003.

[SOAP, 03b] SOAP Version 1.2 Part 2: Adjuncts, W3C, W3C Final Specification, June 2003.

[SpecDev,
03]

IMS Specification Development Methods & Best Practices v1.0, C.Smythe, IMS/GLC, Sept.
2003.

[UML, 04] The Unified Modeling Language Reference Manual, J.Rumbaugh, I.Jacobson and G.Booch,
2nd Ed, Addison-Wesley, ISBN 0-321-24562-8.

[WSDL, 01] Web Services Description Language, http://www.w3.org/TR/2001/NOTE-wsdl-20010315,
Version 1.1, W3C, W3C Note, March 2001.

[WSDL, 04] Web Services Description Language, Version 2.0, W3C, W3C Working Draft 3, August
2004.

[WSI, 03]
Web Services Interoperability Basic Profile Version 1.0, Eds K.Ballinger, D.Ehnebuske,
M.Gudgin, M.Nottingham and P.Yendluri Web Services-Interoperability Organization, June
2003.

[WSI, 04a]
Web Services Interoperability Basic Profile Version 1.1, Eds K.Ballinger, D.Ehnebuske,
C.Ferris, M.Gudgin, C.K.Liu, M.Nottingham and P.Yendluri, Web Services-Interoperability
Organization, August 2004.

[WSI, 04b] WS-I Attachments Profile Version 1.0, Eds C.Ferris, A.Karmarkar and C.K.Liu, Web
Services-Interoperability Organization, August 2004.

[WSI, 04c] WS-I Conformance Claim Attachment Mechanisms Version 1.0, Eds M.Nottingham and C.
von Riegen, Web Services-Interoperability Organization, November 2004.

[WSI, 04d] WS-I Simple SOAP Binding Profile Version 1.1, Ed M.Nottingham, Web Services-
Interoperability Organization, August 2004.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 8 8/29/2009 7:09 PM

2. Web Services Description Language Files
2.1 WSDL Document Structure

The structure of a WSDLv1.11 document is shown in Figure 2.1.

Figure 2.1 WSDL document structure.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract
definition of endpoints and messages is separated from their concrete network deployment or data format
bindings. This allows the reuse of abstract definitions: messages, which are abstract descriptions of the data
being exchanged, and port types that are abstract collections of operations. The concrete protocol and data
format specifications for a particular port type constitute a reusable binding. A port is defined by associating a
network address with a reusable binding and a collection of ports defines a service. Hence, a WSDL
document uses the following elements in the definition of network services:

Types - a container for data type definitions using some type system (such as XSD);
Message - an abstract, typed definition of the data being communicated. In general there are many
message parts;
Operation - an abstract description of an action supported by the service. In general there are many

http://www.imsglobal.org/gws/gwsv1p0/imsg... 9 8/29/2009 7:09 PM

operations each associated with one or two messages;
Port Type - an abstract set of operations supported by one or more endpoints. There may be more than
one Port Type defined each can have any number of operations;
Binding - a concrete protocol and data format specification for a particular port type. There is a
separate binding for every concrete protocol that is available;
Port - a single endpoint defined as a combination of a binding and a network address. More than one
port may be defined for each service;
Service - a collection of related endpoints. More than one service can be described in the WSDL file.

It should be noted that WSDLv1.1 supports the following simple message choreographies:

Single message to the server - in WSDL this is termed 'one-way';
Single message from the server - in WSDL this is termed 'notification' and is prohibited in the WS-I
Basic Profile [WSI, 04a];
Single message to the server and single response from the server - in WSDL this is termed 'request-
response';
Single message from the server and single response to the server - in WSDL this is termed 'solicit-
response' and is prohibited in the WS-I Basic Profile [WSI, 04a].

More complex choreographies have to be constructed using multiple WSDL file-sets with the choreography
between the file-sets imposed by an implementation.

2.2 WSDL Schema

2.2.1 Top-level Structure (<definitions>)

The top level XSD for the WSDL schema is shown in Figure 2.2.

Figure 2.2 Top-level XSD for WSDL schema.

There are three approaches to the creation of the WSDL description:

Single file - the creation of a single WSDL file that contains all of the WSDL and XSD definitions;a.
Split files - the creation of a single WSDL file and single XSD file. The XSD is linked to the WSDL fileb.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 10 8/29/2009 7:09 PM

by the usage of an <xsd:import> statement in the <wsdl:type> element in the WSDL file;
Service split files - the creation of a service specific WSDL file, an abstract definitions WSDL file and a
single XSD file. The WSDL files are linked using the <wsdl:import> statement in the service specific
WSDL file. The XSD file is linked using the <xsd:import> statement in the <wsdl:type> element in the
abstract definitions WSDL file;

c.

Multiple files - the creation of a service specific WSDL file, an abstract definitions WSDL file and one
or more XSD files. The WSDL files are linked using the <wsdl:import> statement in the service specific
WSDL file. The root XSD file is linked using the <xsd:import> statement in the <wsdl:type> element in
the abstract definitions WSDL file.

d.

2.2.2 <import> Element Structure

The <import> schema structure is shown in Figure 2.3. The <import> is used to enable a WSDL description
to be defined in several linked physical files. IMS will use the <import> element to link the abstract definition
file to the specific service file, i.e., the specific service file imports the abstract definitions file.

Figure 2.3 <import> element structure.

2.2.3 <types> Element Structure

The <type> schema structure is shown in Figure 2.4. The <type> Element is used within the single WSDL or
abstract definitions file to link to the associated XSD files. These XSD files will contain the XML definitions
of the SOAP structures.

Figure 2.4 <types> element structure.

2.2.4 <message> Element Structure

The <message> schema structure is shown in Figure 2.5. This element is used within the single WSDL or the
abstract definitions file to define the set of messages that are used to exchange the information for a particular
operation. The <part> elements are used to define the message header and body parts.

Figure 2.5 <message> element structure.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 11 8/29/2009 7:09 PM

2.2.5 <portType> Element Structure

The <portType> schema structure is shown in Figure 2.6. The <portType> element is used within the abstract
definitions file to identify the messages used to represent an operation. In a single abstract definition structure
an operation can have at most one input message (from the client to the server) and one output message (from
the server to the client).

Figure 2.6 <portType> element structure.

2.2.6 <binding> Element Structure

The <binding> schema structure is shown in Figure 2.7. The <binding> element is used within the single
WSDL or the specific service file to bind the abstract message definitions to a particular transport mechanism.
In the case of the IMS GWS the transport system is SOAPv1.1/HTTPv1.1; no other bindings are supported.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 12 8/29/2009 7:09 PM

Figure 2.7 <binding> element structure.

2.2.7 <service> Element Structure

The <service> element is used within the single WSDL or the specific service file to represent a collection of
port elements, where each port represents the availability of binding at a particular endpoint. The 'binding'
attribute of the port element ties it to the corresponding binding element (see sub-section 2.2.6).

Figure 2.8 <service> element structure.

2.3 Basic WSDL File Content

2.3.1 Single File Representation

This is a single file containing the WSDL and XSD information. The basic structure of an integrated WSDL
document is:

http://www.imsglobal.org/gws/gwsv1p0/imsg... 13 8/29/2009 7:09 PM

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:types>
 <xsd:schema>
 ...
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 ...
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 <wsdl:portType name = "??">
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 ...
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
 <wsdl:portType name = "??">
 ...
 </wsdl:portType>
 <wsdl:binding name = "??" type= "??">
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 </wsdl:binding>
 ...
 <wsdl:binding name = "??" type= "??">
 ...
 </wsdl:binding>
 <wsdl:service name = "??">
 <wsdl:port name="??" binding= "??"/>
 ...
 <wsdl:port name="??" binding= "??"/>
 </wsdl:service>
 ...
 <wsdl:service name = "??">
 ...
 </wsdl:service>
</wsdl:definitions>

2.3.2 Split File Representation

This is the separation of the WSDL and XSD into two separate files. The basic structure of the WSDL
document is:

http://www.imsglobal.org/gws/gwsv1p0/imsg... 14 8/29/2009 7:09 PM

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:types>
 <xsd:schema>
 <xsd:import namespace = "??" schemaLocation = "??"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 ...
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 <wsdl:portType name = "??">
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 ...
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
 <wsdl:portType name = "??">
 ...
 </wsdl:portType>
 <wsdl:binding name = "??" type= "??">
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 </wsdl:binding>
 ...
 <wsdl:binding name = "??" type= "??">
 ...
 </wsdl:binding>
 <wsdl:service name = "??">
 <wsdl:port name="??" binding= "??"/>
 ...
 <wsdl:port name="??" binding= "??"/>
 </wsdl:service>
 ...
 <wsdl:service name = "??">
 ...
 </wsdl:service>
</wsdl:definitions>

The associated XSD file structure that is linked using the <xsd:import> statement (line 5 - in the shaded
region) in the WSDL file is:

http://www.imsglobal.org/gws/gwsv1p0/imsg... 15 8/29/2009 7:09 PM

0001
0002
0003
0004

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema>
 ...
</xsd:schema>

2.3.3 Service Split File Representation

This is the separation of the WSDL into two files (abstract definitions and service specific files) and the XSD
as a single file. For the IMS GWS the recommended composition for the Abstract Definitions File is:

code

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:types>
 <xsd:schema>
 <xsd:import namespace = "??" schemaLocation = "??"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 ...
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 <wsdl:portType name = "??">
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 ...
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
 <wsdl:portType name = "??">
 ...
 </wsdl:portType>
</wsdl:definitions>

For the IMS GWS the recommended composition for the Specific Service File is (the link to the abstract
definitions file is achieved using the '<wsdl:import> statement in line 3 - see the shaded region):

0001
0002
0003
0004
0005
0006
0007
0008
0009

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:import namespace = "??" location = "??"/>
 <wsdl:binding name = "??" type= "??">
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>

http://www.imsglobal.org/gws/gwsv1p0/imsg... 16 8/29/2009 7:09 PM

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 </wsdl:binding>
 ...
 <wsdl:binding name = "??" type= "??">
 ...
 </wsdl:binding>
 <wsdl:service name = "??">
 <wsdl:port name="??" binding= "??"/>
 ...
 <wsdl:port name="??" binding= "??"/>
 </wsdl:service>
 ...
 <wsdl:service name = "??">
 ...
 </wsdl:service>
</wsdl:definitions>

Each of the associated XSD file structures that are linked using the <xsd:import> statement (lines 5 to 7 - see
the shaded region) in the abstract data definitions WSDL file have the structure:

0001
0002
0003
0004

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema>
 ...
</xsd:schema>

2.3.4 Multiple File Representation

This is the separation of the WSDL into two files (abstract definitions and service specific files) and one or
more XSD files as required. For the IMS GWS the recommended composition for the Abstract Definitions
File is:

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:types>
 <xsd:schema>
 <xsd:import namespace = "??" schemaLocation = "??"/>
 ...
 <xsd:import namespace = "??" schemaLocation = "??"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 ...
 <wsdl:message name = "??">
 <wsdl:part name = "??" element = "??"/>
 </wsdl:message>
 <wsdl:portType name = "??">
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>

http://www.imsglobal.org/gws/gwsv1p0/imsg... 17 8/29/2009 7:09 PM

0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

 ...
 <wsdl:operation name = "??">
 <wsdl:input message = "??"/>
 <wsdl:output message = "??"/>
 <wsdl:fault message = "??" name = "??"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
 <wsdl:portType name = "??">
 ...
 </wsdl:portType>
</wsdl:definitions>

For the IMS GWS the recommended composition for the Specific Service File is (the link to the abstract
definitions file is achieved using the <wsdl:import> statement in line 3 - see the shaded region):

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

<?xml version = "1.0" encoding = "UTF-8"?>
<wsdl:definitions name = "??" targetNamespace = "??">
 <wsdl:import namespace = "??" location = "??"/>
 <wsdl:binding name = "??" type= "??">
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 <wsdl:operation name = "??">
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name = "??"/>
 </wsdl:operation>
 </wsdl:binding>
 ...
 <wsdl:binding name = "??" type= "??">
 ...
 </wsdl:binding>
 <wsdl:service name = "??">
 <wsdl:port name="??" binding= "??"/>
 ...
 <wsdl:port name="??" binding= "??"/>
 </wsdl:service>
 ...
 <wsdl:service name = "??">
 ...
 </wsdl:service>
</wsdl:definitions>

Each of the associated XSD file structures that are linked using the <xsd:import> statement (lines 5 to 7 - see
the shaded region) in the abstract data definitions WSDL file have the structure:

0001
0002
0003
0004

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema>
 ...
</xsd:schema>

2.3.5 Structure Relationships and Naming Conventions

http://www.imsglobal.org/gws/gwsv1p0/imsg... 18 8/29/2009 7:09 PM

The Types, Message, Operation, Port Type, Binding, Port and Service elements in the set of WSDL files have
strict relationships. To make these relationships we propose a naming convention. The default target
namespace is allocated a prefix of 'tns:'. The naming conventions introduced here are further refined in
Section 5.

2.3.5.1 Service Definitions

Several services can be defined. Each Service will be given a unique name and will have the string 'Service' at
the end. An example of the WSDL is:

0001
0002
0003
0004
0005
0006

<wsdl:definitions>
 ...
 <wsdl:service name = "PackagingService">
 ...
 </wsdl:service>
</wsdl:definitions>

2.3.5.2 Port Definitions

Several ports can be defined for each service. The Port associates a binding with a network address. Ports that
are bound to the same Port Type are treated as alternatives, i.e., two ports could be defined for the same Port
Type but one port would use a SOAP binding and the other a HTTP-Post binding. Each Port will have a
unique name and will have the string 'Port' at the end. The binding identified in the <wsdl:port> declaration
must be defined elsewhere in the WSDL using the <wsdl:binding> element. An example of the WSDL is:

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

<wsdl:definitions>
 ...
 <wsdl:service name = "PackagingService">
 <wsdl:port name = "Packaging1SoapPort" binding = "tns:OpSet1SoapBinding">
 ...
 </wsdl:port>
 <wsdl:port name = "Packaging2SoapPort" binding = "tns:OpSet2SoapBinding">
 ...
 </wsdl:port>
 <wsdl:port name = "PackagingPostPort" binding = "tns:OpSet1PostBinding">
 ...
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

2.3.5.3 Binding Definitions

Every Port Type must have at least one binding. The binding defines the concrete protocol and data format
for a particular Port Type. Each binding must have a unique name and will have the string 'Binding' at the
end. The Port Type identified in the <wsdl:binding> element must be defined elsewhere n the WSDL using
the <wsdl:portType> element. An example of the WSDL is:

0001
0002
0003
0004
0005
0006

<wsdl:definitions>
 ...
 <wsdl:binding name = "OpSet1SoapBinding" type "tns:OpSet1PortType>
 ...
 </wsdl:binding>
 <wsdl:binding name = "OpSet2SoapBinding" type "tns:OpSet2PortType>

http://www.imsglobal.org/gws/gwsv1p0/imsg... 19 8/29/2009 7:09 PM

0007
0008
0009
0010
0011
0012
0013

 ...
 </wsdl:binding>
 <wsdl:binding name = "OpSet1PostBinding" type "tns:OpSet1PortType>
 ...
 </wsdl:binding>
 ...
</wsdl:definitions>

Note that for every binding name there must be an associated port usage (note the shaded words in the 'Port
Definitions' and 'Binding Definitions' examples.

2.3.5.4 Port Type Definitions

The Port Type is an abstract set of operations supported by one or more end points. Each Port Type must
have a unique name and will have the string 'PortType' at the end. An example of the WSDL is:

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

<wsdl:definitions>
 ...
 <wsdl:portType name = "OpSet1PortType">
 ...
 </wsdl: portType >
 <wsdl:portType name = "OpSet2PortType">
 ...
 </wsdl:portType>
 ...
</wsdl:definitions>

Note that every Port Type must be used in a binding. The relationship between the 'Port Type Definitions' and
the 'Binding Definitions' is shown by the underlined phrases in the corresponding examples.

2.3.5.5 Operation Definitions

An operation is an abstract description of an action supported by the service. Operations are associated with a
Port Type. Each operation within a Port Type must have a unique name and this name should be
representative of the functional nature of the operation. An example of the WSDL is:

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

<wsdl:definitions>
 ...
 <wsdl:portType name = "OpSet1PortType">
 <wsdl:operation name = "createObject">
 ...
 </wsdl:operation>
 ...
 <wsdl:operation name = "deleteObject">
 ...
 </wsdl:operation>
 </wsdl: portType >
 <wsdl:portType name = "OpSet2PortType">
 <wsdl:operation name = "compressObjects">
 ...
 </wsdl:operation>
 ...
 <wsdl:operation name = "expandObjects">
 ...
 </wsdl:operation>
 </wsdl:portType>

http://www.imsglobal.org/gws/gwsv1p0/imsg... 20 8/29/2009 7:09 PM

0021
0022

 ...
</wsdl:definitions>

2.3.5.6 Message Definitions

A message is the abstract construct of the information being communicated. Messages are used to
communicate the activity of the corresponding operations. The number of messages per operation depends
upon the choreography for the service is 'one-way', 'request-response', solicit-response' or 'notification'. For
the 'request-response' choreography the naming convention for the two messages is to take the name of the
operation and append the string 'Request' for the message to the endpoint and the string 'Response' for the
message from the end point. The example WSDL is:

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

<wsdl:definitions>
 ...
 <wsdl:message name = "createObjectRequest">
 ...
 </wsdl:message>
 <wsdl:message name = "createObjectResponse">
 ...
 </message>
 <wsdl:message name = "deleteObjectRequest">
 ...
 </wsdl:message>
 <wsdl:message name = "deleteObjectResponse">
 ...
 </wsdl:message>
 <wsdl:message name = "compressObjectRequest">
 ...
 </wsdl:message>
 <wsdl:message name = "compressObjectResponse">
 ...
 </wsdl:message>
 <wsdl:message name = "expandObjectRequest">
 ...
 </wsdl:message>
 <wsdl:message name = "expandObjectResponse">
 ...
 </wsdl:message>
 ...
 <wsdl:portType name = "OpSet1PortType">
 <wsdl:operation name = "createObject">
 <wsdl:input message = "tns:createObjectRequest">
 <wsdl:output message = "tns:createObjectResponse">
 </wsdl:operation>
 ...
 <wsdl:operation name = "deleteObject">
 <wsdl:input message = "tns:deleteObjectRequest">
 <wsdl:output message = "tns:deleteObjectResponse">
 </wsdl:operation>
 </wsdl: portType >
 <wsdl:portType name = "OpSet2PortType">
 <wsdl:operation name = "compressObjects">
 <wsdl:input message = "tns:compressObjectRequest">
 <wsdl:output message = "tns:compressObjectResponse">
 </wsdl:operation>
 ...
 <wsdl:operation name = "expandObjects">
 <wsdl:input message = "tns:expandObjectRequest">
 <wsdl:output message = "tns:expandObjectResponse">

http://www.imsglobal.org/gws/gwsv1p0/imsg... 21 8/29/2009 7:09 PM

0048
0049
0050
0051

 </operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Note that the message descriptions are linked to the operation descriptions and every message must be used in
at least one operation. In the WSDL example above the naming convention is shown by the shaded and
underlined phrases.

2.4 WS-I Basic Profile

The WS-I Basic Profile 1.1 [WSI, 04a] consists of a set of non-proprietary Web services specifications, plus
clarifications, refinements, interpretations and amplifications of those specifications which promote
interoperability. The Profile was developed according to a set of principles that, together, form the philosophy
of the Profile, as it relates to bringing about interoperability. The principles are:

No guarantee of interoperability - it is impossible to completely guarantee the interoperability of a
particular service. However, the Profile does address the most common problems that implementation
experience has revealed to date;

a.

Application semantics - although communication of application semantics can be facilitated by the
technologies that comprise the Profile, assuring the common understanding of those semantics is not
addressed by it;

b.

Testability - when possible, the Profile makes statements that are testable. However, such testability is
not required. Preferably, testing is achieved in a non-intrusive manner, e.g., examining artifacts "on the
wire";

c.

Strength of requirements - the Profile makes strong requirements, e.g., MUST, MUST NOT, wherever
feasible; if there are legitimate cases where such a requirement cannot be met, conditional
requirements, e.g., SHOULD, SHOULD NOT, are used. Optional and conditional requirements
introduce ambiguity and mismatches between implementations;

d.

Restriction vs. relaxation - when amplifying the requirements of referenced specifications, the Profile
may restrict them, but does not relax them, e.g., change a MUST to a MAY;

e.

Multiple mechanisms - if a referenced specification allows multiple mechanisms to be used
interchangeably, the Profile selects those that are well understood, widely implemented and useful.
Extraneous or underspecified mechanisms and extensions introduce complexity and therefore reduce
interoperability;

f.

Future compatibility - when possible, the Profile aligns its requirements with in-progress revisions to the
specifications it references. This aids implementers by enabling a graceful transition, and assures that
WS-I does not 'fork' from these efforts. When the Profile cannot address an issue in a specification it
references, this information is communicated to the appropriate body to assure its consideration;

g.

Compatibility with deployed services - backwards compatibility with deployed Web services is not a
goal for the Profile, but due consideration is given to it. The Profile does not introduce a change to the
requirements of a referenced specification unless doing so addresses specific interoperability issues;

h.

Focus on interoperability - although there are potentially a number of inconsistencies and design flaws
in the referenced specifications, the Profile only addresses those that affect interoperability;

i.

Conformance targets - where possible, the Profile places requirements on artifacts, e.g., WSDL
descriptions, SOAP messages, rather than the producing or consuming software's behaviors or roles.
Artifacts are concrete, making them easier to verify and therefore making conformance easier to
understand and less error-prone;

j.

Lower-layer interoperability - the Profile speaks to interoperability at the application layer; it assumes
that interoperability of lower-layer protocols, e.g., TCP/IP , Ethernet, is adequate and well understood.

k.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 22 8/29/2009 7:09 PM

Similarly, statements about application-layer substrate protocols (e.g., SSL /TLS , HTTP) are only made
when there is an issue affecting Web services, specifically, WS-I does not attempt to assure the
interoperability of these protocols as a whole. This assures that WS-I's expertise in and focus on Web
services standards is used effectively.

The IMS GWS Base Profile [GWS, 05a] is heavily based upon the WS-I Basic Profile v1.1 [WSI, 04a] and
the WS-I simple SOAP binding Profile v1.0 [WSI, 04d]. There are some points where the IMS GWS Base
Profile differs from the WS-I equivalent. These differences are identified in Section 3 of [GWS, 05a].

3. WSDL Files for the Set of Communications
Models
Three sets of transformation rules are required, one for each of the communication models that are to be
supported by the bindings. The three communication models are:

Synchronous - the initiator is blocked until the respondent replies;
Asynchronous - the initiator is not blocked and so there can be more than one outstanding request;
Polled - once the initiator has sent the request the respondent will not reply until it is polled by the
initiator.

3.1 Synchronous Communications Transformation Algorithms

3.1.1 Single File Representation

The transformation algorithm is used to create the single file WSDL/XSD representation shown in Figure 3.1.

Figure 3.1 Schematic of the synchronous communications single file binding.

The binding files described in Figure 3.1 contain:

'SyncSinglev1p0.wsdl' - the full WSDL and associated XSD definitions. The service will use
SOAP/http;
The two shaded files are the W3C WSDL and SOAP XSDs.

The name space prefixes used within this binding are listed in Table 3.1.

Table 3.1 Namespace prefixes used for the synchronous communications single file binding.

Namespace Usage

http://www.imsglobal.org/gws/gwsv1p0/imsg... 23 8/29/2009 7:09 PM

"tns:" The target namespace identifier.

"xs:" The XML schema definition namespace.
The reference is to: http://www.w3.org/2001/XMLSchema

"soap11:" The SOAP references used within the WSDL files.
The reference is to: "wsisoapv1p1.xsd".

"wsdl11:" The default WSDL files namespace for WSDL v1.1.
The reference is to: "wsiwsdlv1p1.xsd".

3.1.2 Split File Representation

The transformation algorithm is used to create the single WSDL and single XSD files representation shown in
Figure 3.2.

Figure 3.2 Schematic of the synchronous communications split file binding.

The binding files described in Figure 3.2 contain:

'SyncWSDLv1p0.wsdl' - the service specific and abstract definitions WSDL binding file. For a
particular Service this is based upon SOAP/http. This file imports the message and data XSD using the
<xsd:import> construct;
'SyncXSDv1p0.wsdl' - the XSD definitions. This includes the synchronous message body and header
definitions and the data schema. This file must be created for each synchronous service binding.
The two shaded files are the W3C WSDL and SOAP XSDs.

The name space prefixes used within this binding are listed in Table 3.2.

Table 3.2 Namespace prefixes used for the synchronous communications split file binding.

Namespace Usage

"tns:" The target namespace identifier.

"data:" The prefix for importing the XSD into the WSDL file.

"xs:" The XML schema definition namespace.
The reference is to: http://www.w3.org/2001/XMLSchema

http://www.imsglobal.org/gws/gwsv1p0/imsg... 24 8/29/2009 7:09 PM

"soap11:" The SOAP references used within the WSDL files.
The reference is to: "wsisoapv1p1.xsd".

"wsdl11:" The default WSDL files namespace for WSDL v1.1.
The reference is to: "wsiwsdlv1p1.xsd".

3.1.3 Service Split File Representation

The transformation algorithm is used to create the service specific and abstract definition WSDL and single
XSD files shown in Figure 3.3.

Figure 3.3 Schematic of the synchronous communications service split file binding.

The binding files described in Figure 3.3 contain:

'ServiceSyncv1p0.wsdl' - the service specific WSDL binding file. For a particular Service this is based
upon SOAP/http. This file imports the abstract definitions using the <wsdl:import> construct. This file
must be created for each synchronous service binding;
'AbstractSyncv1p0.wsdl' - the abstract message definitions that represent the behavior of a particular
Service and its operations. This file imports the message XSD using the <xsd:import> construct. This
file must be created for each synchronous service binding;
'SyncXSDv1p0.wsdl' - the XSD definitions. This includes the synchronous message body and header
definitions and the data schema. This file must be created for each synchronous service binding.
The two shaded files are the W3C WSDL and SOAP XSDs.

The name space prefixes used within this binding are listed in Table 3.3.

Table 3.3 Namespace prefixes used for the synchronous communications service split file binding.

Namespace Usage

"tns:" The target namespace identifier.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 25 8/29/2009 7:09 PM

"data:" The prefix for importing the XSD into the abstract definitions WSDL file.

"xs:" The XML schema definition namespace.
The reference is to: http://www.w3.org/2001/XMLSchema

"abs:" The abstract definitions file references.
The reference is to: "AbstractSyncv1p0.wsdl"

"soap11:" The SOAP references used within the WSDL files.
The reference is to: "wsisoapv1p1.xsd".

"wsdl11:" The default WSDL files namespace for WSDL v1.1.
The reference is to: "wsiwsdlv1p1.xsd".

3.1.4 Multiple File Representation

The transformation algorithm is used to create the multiple WSDL and XSD files shown in Figure 3.4. The
binding files described in Figure 3.4 contain:

'ServiceSyncv1p0.wsdl' - the service specific WSDL binding file. For a particular Service this is based
upon SOAP/http. This file imports the abstract definitions using the <wsdl:import> construct. This file
must be created for each synchronous service binding;
'AbstractSyncv1p0.wsdl' - the abstract message definitions that represent the behavior of a particular
Service and its operations. This file imports the message XSD using the <xsd:import> construct. This
file must be created for each synchronous service binding;
'MessSchemav1p0.xsd' - the XSD definitions for the synchronous messages. This file imports the
appropriate data model XSD using the <xsd:import> construct. This file must be created for each
synchronous service binding;
'DataSchemav1p0.xsd' - the definition of the particular Service data model. This file must be created for
each service binding. The same data model is used for the synchronous, polled and asynchronous
bindings;
'MessBindSchemav1p0.xsd' - the XSD binding of the message header parts. This includes the message
headers for synchronous, polled and asynchronous message models. This file is used for all of the
binding transformation rules independent of the type of communications model being supported (see
Appendix A for the structure and content of this file);
'CommonSchemav1p0.xsd' - the XSD binding of the IMS common data objects. This file is available to
the Service data model XSDs as well as the IMS message binding XSD. The content of this file does not
change between Service definitions;
'wsiwsdlv1p1.xsd' - this is the reference XSD for the WSDL definition. This file is the WS-I amended
version of the original file from W3C;
'wsisoapv1p1.xsd' - this is the reference XSD for the SOAP extensions to WSDL. This file is from
WS-I.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 26 8/29/2009 7:09 PM

Figure 3.4 Schematic of the synchronous communications multiple file binding.

The separation of the 'Service Specific' and 'Abstract Definition' files means that a new Service Specific
binding can be created without changing the Abstract Definition. The Abstract Definition describes the
behaviors in the UML model whereas the Service Specific file is responsible for binding these to the required
transport protocol (in this document this is SOAP/http).

The name space prefixes used within these bindings are listed in Table 3.4.

Table 3.4 Namespace prefixes used for the synchronous communications multiple file binding.

Namespace Usage

"tns:" The target namespace identifier.

'***:' The set of prefixes that are to be used for the set of XSD data files.

"xs:" The XML schema definition namespace.
The reference is to: http://www.w3.org/2001/XMLSchema

"msg:" The message structure definition for the service operations.
The reference is to "MessSchemav1p0.xsd".

"iaf:" The IMS common data model definitions namespace.
The reference is to: "CommonSchemav1p0.xsd".

http://www.imsglobal.org/gws/gwsv1p0/imsg... 27 8/29/2009 7:09 PM

"isb:" The IMS message header binding definitions namespace.
The reference is to: "MessBindSchemav1p0.xsd".

"abs:" The abstract definitions file references.
The reference is to: "AbstractSyncv1p0.wsdl"

"soap11:" The SOAP references used within the WSDL files.
The reference is to: "wsisoapv1p1.xsd".

"wsdl11:" The default WSDL files namespace for WSDL v1.1.
The reference is to: "wsiwsdlv1p1.xsd".

3.2 Asynchronous Communications Transformation Algorithms

At the current time IMS has not authorized the publication of the Asynchronous Communications
transformation algorithms as Final Release. This is because there are no validated implementations of this
technique and there is work underway in W3C that could result in that IMS approach becoming proprietary.
This work remains published as Public Draft material [GWS, 05a].

3.3 Polled Communications Transformation Algorithms

At the current time IMS has not authorized the publication of the Polled Communications transformation
algorithms as Final Release. This is because there are no validated implementations of this technique and
there is work underway in W3C that could result in that IMS approach becoming proprietary. This work
remains published as Public Draft material [GWS, 05a].

4. Creating a WSDL Binding
The process for creating a WSDL binding based upon the IMS GWS Base Profile is:

The Information Model must be defined using the IMS Service UML Profile [GWS, 05f]. This profile
describes how UML must be used to create a description of the specification that can be used by the
IMS auto-generation tools. Note that the specification is created without explicit identification of the
type of communications model to be supported by the binding, i.e., the nature of the communication
model supported is defined when the binding is created;

a.

The UML description must be made available as an XMI file, i.e., this is an XML instance that
conforms to the XMI specification. At the present time only XMI files that have been created by the
Poseidon tool, v2.5 or later, are valid. The Poseidon tool creates a '.zuml' file that must be unzipped and
the XMI file within used as input to the I-BAT;

b.

The XMI file is now used as input to the I-BAT. The XSL file 'UMLtoWSDLTransform.xsl' is applied
to the XMI file, using an appropriate XSLT tool (Oxygen is the tool recommended by IMS) to generate
the WSDL files. The XSL files automatically create the full set of WSDL files using a predetermined
naming convention for the corresponding directory structure, the name(s) of the services and the
communications model. The generation process also creates a validation report text file that can be
used to identify any problems that the I-BAT found while creating the binding files.

c.

The following points should be noted when using the I-BAT:

The I-BAT will attempt to generate the binding files irrespective of any problems described in the

http://www.imsglobal.org/gws/gwsv1p0/imsg... 28 8/29/2009 7:09 PM

validation report;
The I-BAT cannot be used to correct problems with the UML description. Any problems in the
Information Model must be corrected using the appropriate UML authoring tool. The binding creation
process must then be repeated using the new XMI file;
Any hand edits of the WSDL/XSD files will be lost when new binding files are created.

5. Base Profile WSDL Auto-generation
5.1 WSDL Auto-generation for Synchronous Communications

5.1.1 Single File Representation

The auto-generation files used to create the single file WSDL/XSD representation are shown in Figure 5.1.

Figure 5.1 Schematic of the synchronous communications single file auto-generation.

The transformation files are used to:

'UMLtoWSDLTransform.xsl' - to generate the single full WSDL/XSD file from the XMI representation
of the UML-based description of the specification;
'WSDLtoHTML.xsl' - to generate a HTML file that contains the description of the WSDL services
described in the single WSDL file.

Details of these XSL files are given in I-BAT [GWS, 05f].

The transformation files use the information supplied in the UML description as described in Table 5.1. In
Table 5.1 each attribute has an example value and for each set of values there follows the corresponding
WSDL file. All of the attribute values are used in the single WSDL/XSD file.

Table 5.1 Synchronous single file auto-generation attribute usage.

Attribute Original Value

http://www.imsglobal.org/gws/gwsv1p0/imsg... 29 8/29/2009 7:09 PM

ServiceGroupModel Attributes

Service Group Package Name ExampleGroup

WSDLv1.1:NameSpaceRoot http://www.example/services/

WSDLv1.1:TargetNameSpaceLeaf wsdlfilev1p0

WSDLv1.1:TargetNameSpacePrefix tns

WSDLv1.1:AbstractFileNameSpaceLeaf Unused

WSDLv1.1:AbstractFileNameSpacePrefix Unused

WSDLv1.1:XSDLinkNameSpaceLeaf Unused

WSDLv1.1:XSDLinkNameSpacePrefix Unused

WSDLv1.1:MessageHdrNameSpaceLeaf Unused

WSDLv1.1:MessageHdrNameSpacePrefix Unused

<wsdl11:definitions name = "ExampleGroupSyncServices"
 targetNamespace = "http://www.example/services/wsdl/sync/wsdlfilev1p0"
 xmlns:tns = "http://ww.example/services/wsdl/sync/wsdlfilev1p0"
 xmlns:soap11 ="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl11 ="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">

ServiceModel Attributes

Service Package Name EgServiceName

SOAPv1.1:AddressLocationRoot http://www.example.soap/serviceuri/

SOAPv1.1:OperationActionRoot http://www.example/soap/service/

<wsdl11:service name = "EgServiceNameSyncService">
 <wsdl11:port name = "CoreOperationsNameSyncSoapPort" binding = "...">
 <soap11:address
 location="http://www.example.soap/serviceuri/EgServiceNameSyncServiceSoap/"/>
 </wsdl11:port>
</wsdl11:service>

Interface Attributes

Interface Name

CoreOperationsName
createObject
deleteObject
updateObject
readObject
replaceObject

<wsdl11:binding name="CoreOperationsNameSyncSoapBinding"
 type="tns: CoreOperationsNameSyncPortType">
 <soap11:binding transport="http://schema.xmlsoap.org/soap/http" style="document"/>
 <wsdl11:operation name="createObject">
 <soap11:operation soapAction="http://www.example/soap/service/createObject"
 style="document"/>
 ...

http://www.imsglobal.org/gws/gwsv1p0/imsg... 30 8/29/2009 7:09 PM

 </wsdl11:operation>
 <wsdl11:operation name="replaceObject">
 <soap11:operation soapAction="http://www.example/soap/service/replaceObject"
 style="document"/>
 ...
 </wsdl11:operation>
</wsdl11:binding>
<wsdl11:service name = "EgServiceNameSyncService">
 <wsdl11:port name = "CoreOperationsNameSyncSoapPort"
 binding = "tns:CoreOperationsNameSyncSoapBinding">
 <soap11:address
 location="http://www.example.soap/serviceuri/EgServiceNameSyncServiceSoap/"/>
 </wsdl11:port>
</wsdl11:service>

DataModel Attributes

NameSpaceRoot Unused

NameSpaceLeaf Unused

NameSpacePrefix Unused

SchemaVersion IMS 1.0

QualifiedElements Yes

QualifiedAttributes No

<wsdl11:types>
 <xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example/services/wsdl/sync/wsdlfilev1p0"
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 version="IMS 1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 </xs:schema>
</wsdl11:types>

5.1.2 Split File Representation

The auto-generation files used to create the split file WSDL/XSD representation are shown in Figure 5.2.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 31 8/29/2009 7:09 PM

Figure 5.2 Schematic of the synchronous communications split file auto-generation.

The transformation files are used to:

'UMLtoWSDLTransform.xsl' - to generate the single full WSDL and XSD files from the XMI
representation of the UML-based description of the specification;
'WSDLtoHTML.xsl' - to generate a HTML file that contains the description of the WSDL services
described in the single WSDL file.

Details of these XSL files are given in I-BAT [GWS, 05f].

The transformation files use the information supplied in the UML description as described in Tables 5.2 and
5.3. In Tables 5.2 and 5.3 each attribute has an example value and for each set of values there follows the
corresponding WSDL file. All of the attribute values are used in the split WSDL and XSD files.

Table 5.2 Synchronous WSDL split file auto-generation attribute usage.

Attribute Original Value

ServiceGroupModel Attributes

Service Group Package Name ExampleGroup

WSDLv1.1:NameSpaceRoot http://www.example/services/

WSDLv1.1:TargetNameSpaceLeaf wsdlfilev1p0

WSDLv1.1:TargetNameSpacePrefix tns

WSDLv1.1:AbstractFileNameSpaceLeaf Unused

WSDLv1.1:AbstractFileNameSpacePrefix Unused

WSDLv1.1:XSDLinkNameSpaceLeaf Unused

WSDLv1.1:XSDLinkNameSpacePrefix Unused

http://www.imsglobal.org/gws/gwsv1p0/imsg... 32 8/29/2009 7:09 PM

WSDLv1.1:MessageHdrNameSpaceLeaf Unused

WSDLv1.1:MessageHdrNameSpacePrefix Unused

<wsdl:definitions name = "ExampleGroupSyncServices"
 targetNamespace = "http://www.example/services/wsdl/sync/wsdlfilev1p0"
 xmlns:tns = "http://ww.example/services/wsdl/sync/wsdlfilev1p0"
 xmlns:soap11="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl ="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">

ServiceModel Attributes

Service Package Name EgServiceName

SOAPv1.1:AddressLocationRoot http://www.example.soap/serviceuri/

SOAPv1.1:OperationActionRoot http://www.example/soap/service/

<wsdl:service name = "EgServiceNameSyncService">
 <wsdl:port name = "CoreOperationsNameSyncSoapPort" binding = "...">
 <soap11:address
 location="http://www.example.soap/serviceuri/EgServiceNameSyncServiceSoap/"/>
 </wsdl:port>
</wsdl:service>

Interface Attributes

Interface Name

CoreOperationsName
createObject
deleteObject
updateObject
readObject
replaceObject

<wsdl:binding name="CoreOperationsNameSyncSoapBinding"
 type="tns: CoreOperationsNameSyncPortType">
 <soap11:binding transport="http://schema.xmlsoap.org/soap/http" style="document"/>
 <wsdl:operation name="createObject">
 <soap11:operation soapAction="http://www.example/soap/service/createObject"
 style="document"/>
 ...
 </wsdl:operation>
 <wsdl:operation name="replaceObject">
 <soap11:operation soapAction="http://www.example/soap/service/replaceObject"
 style="document"/>
 ...
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name = "EgServiceNameSyncService">
 <wsdl:port name = "CoreOperationsNameSyncSoapPort"
 binding = "tns:CoreOperationsNameSyncSoapBinding">
 <soap11:address
 location="http://www.example.soap/serviceuri/ EgServiceNameSyncServiceSoap/"/>
 </wsdl:port>
</wsdl:service>

DataModel Attributes

http://www.imsglobal.org/gws/gwsv1p0/imsg... 33 8/29/2009 7:09 PM

NameSpaceRoot http://www.imsglobal.org/xsd/

NameSpaceLeaf exampleXSD

NameSpacePrefix Unused

SchemaVersion IMS 1.0

QualifiedElements Yes

QualifiedAttributes No

<wsdl11:types>
 <xs:schema>
 <xs:import namespace="http://www.imsglobal.org/xsd/exampleXSD"
 schemaLocation="http://www.imsglobal.org/xsd/exampleXSD.xsd"/>
 </xs:schema>
</wsdl11:types>

Table 5.3 Synchronous XSD split file auto-generation attribute usage.

Attribute Original Value

ServiceGroupModel Attributes

Service Group Package Name ExampleGroup

WSDLv1.1:NameSpaceRoot http://www.example/services/

WSDLv1.1:TargetNameSpaceLeaf wsdlfilev1p0

WSDLv1.1:TargetNameSpacePrefix tns

WSDLv1.1:AbstractFileNameSpaceLeaf Unused

WSDLv1.1:AbstractFileNameSpacePrefix Unused

WSDLv1.1:XSDLinkNameSpaceLeaf Unused

WSDLv1.1:XSDLinkNameSpacePrefix Unused

WSDLv1.1:MessageHdrNameSpaceLeaf Unused

WSDLv1.1:MessageHdrNameSpacePrefix Unused

ServiceModel Attributes

Unused

Interface Attributes

Unused

DataModel Attributes

NameSpaceRoot http://www.imsglobal.org/xsd/

NameSpaceLeaf exampleXSD

http://www.imsglobal.org/gws/gwsv1p0/imsg... 34 8/29/2009 7:09 PM

NameSpacePrefix Unused

SchemaVersion IMS 1.0

QualifiedElements Yes

QualifiedAttributes

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.imsglobal.org/xsd/exampleXSD"
 xmlns:tns="http://www.telcert/services/xsd/crasv1p0"
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 version="IMS 1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 ...

</xs>

5.1.3 Service Split File Representation

The auto-generation files used to create the split file WSDL/XSD representation are shown in Figure 5.3.

Figure 5.3 Schematic of the synchronous communications service split file auto-generation.

The transformation files are used to:

'UMLtoWSDLTransform.xsl' - to generate the service specific and abstract definitions WSDL and XSD
files from the XMI representation of the UML-based description of the specification;
'WSDLtoHTML.xsl' - to generate a HTML file that contains the description of the WSDL services

http://www.imsglobal.org/gws/gwsv1p0/imsg... 35 8/29/2009 7:09 PM

described in the single WSDL file.

Details of these XSL files are given in I-BAT [GWS, 05f]. At the current time the files created for this
approach have not been thoroughly tested in the .NET and J2EE tools and so their details are not presented.

5.1.4 Multiple File Representation

The auto-generation files used to create the multiple files WSDL/XSD representation are shown in Figure 5.4.

Figure 5.4 Schematic of the synchronous communications multiple file auto-generation.

The transformation files are used to:

'UMLtoWSDLTransform.xsl' - to generate the service-specific and abstract definitions WSDL and set
of XSD files from the XMI representation of the UML-based description of the specification;
'WSDLtoHTML.xsl' - to generate a HTML file that contains the description of the WSDL services
described in the single WSDL file.

Details of these XSL files are given in I-BAT [GWS, 05f]. At the current time the files created for this
approach have not been thoroughly tested in the .NET and J2EE tools and so their details are not presented.

5.2 WSDL Auto-generation for Asynchronous Communications

At the current time IMS has not authorized the publication of the Asynchronous WSDL auto-generation as
Final Release. This is because there are no validated implementations of this technique and there is work
underway in W3C that could result in that IMS approach becoming proprietary. This work remains published
as Public Draft material [GWS, 05a].

http://www.imsglobal.org/gws/gwsv1p0/imsg... 36 8/29/2009 7:09 PM

5.3 WSDL Auto-generation for Polled Communications

At the current time IMS has not authorized the publication of the Polled Communications WSDL
auto-generation as Final Release. This is because there are no validated implementations of this technique and
there is work underway in W3C that could result in that IMS approach becoming proprietary. This work
remains published as Public Draft material [GWS, 05a].

6. Extending the Binding
6.1 Changing the Binding

The IMS bindings are controlled documents. It is recommended that changes take the form as recommended
by the IMS Application Profile Guidelines [APG, 05a], [APG, 05b].

New capability should be added by creating new structures and not by changing a previously defined
structure, i.e., instead of changing the definition of an operation a new operation should be created. The
auto-generation files have been produced such that once they are re-applied to a new UML description then
the new features are included within the new WSDL/XSD files. It is recommended that all new structure have
a clear naming convention that show they are extensions to the original definition.

6.2 Adding New Services

It is strongly recommended that a new service be produced by creating a new set of WSDL/XSD files and not
by extending an established Service Group definition.

If it is undesirable or inappropriate to create a new Service Group set then a new service can be created by
adding a new 'ServiceModel' package to the original UML definition (see the IMS Auto-generation Toolkit
Manual [GWS, 05e] for more details on how this should be achieved). When the new service is defined it is
recommended that:

The service is given a unique name. The name should also denote that this is an extension to the
original service group definition;
The 'Legend' for the service is fully defined. The comment field should state that this is an extension to
the specification;
The 'Bindings' for the service are fully defined. If these are not included then the default of 'SOAPv1.1'
is assumed;
The new 'interface' definitions and 'DataModel' packages should now be created as required (see the
IMS Auto-generation Toolkit Manual [GWS, 05e] for how this is achieved).

6.3 Adding New Behaviors

It is strongly recommended that a new behavior is not produced by changing the definition of an established
operation. Instead, a new operation should be created within its own 'interface' definition, i.e., the new
operation should not be added to an established 'interface'. When new behaviors are defined it is
recommended that:

The new 'interface' class is given a unique name (this must be unique across all of the services defined
within the Service Group). The name should denote that this is an extension to the original service;

http://www.imsglobal.org/gws/gwsv1p0/imsg... 37 8/29/2009 7:09 PM

The new behaviors are given unique operation names (these names must be unique for all operations
across all of the services within the Service Group). The name should denote that this is an extension to
the original service;
Each behavior must use the 'StatusInfo' or 'StatusInfoSet' class as the return parameter. The default
behavior of the auto-generation files is to assume that 'StatusInfo' is the return parameter;
If the new behavior(s) require the definition of new data model structures then these new data
structures should be declared within a new 'DataModel' package (see the IMS Auto-generation Toolkit
Manual [GWS, 05e] for more details on how this should be completed);
The associated note for the 'interface' is fully defined. The note should state that this is an extension to
the specification.

6.4 Adding New Data Structures

6.4.1 Adding New 'DataModel' Packages

The data structure definition can be extended by adding one or more new 'DataModel' packages. When a new
'DataModel' package is defined it is recommended that:

The 'Legend' for the 'DataModel' is fully defined. The comment field should state that this is an
extension to the specification;
The standard set of XSD stereotypes are adopted and used in a consistent manner.

It is important to note that adding new 'DataModel' packages, as with adding any new Service or behavior,
requires that the client are server parts of the system use the same WSDL/XSD definition. It is not possible to
have just the client be constructed from the new service and leave the server with the original service
definition. This will result in a service rejection and the corresponding SOAP failure code being generated and
returned.

6.4.2 Using the DataModel Extension Classes

The only way to extend the service definition without requiring a change to both ends of the system is to use
the data model extension classes. These classes allow the XSD to be extended without requiring a change to
the XSD itself. However, this approach does not enable an XML parser to validate the modified data
definition model.

6.5 Extending the SOAP headers

It is possible to extend the SOAP header definitions using the auto-generation files. SOAP Header extensions
should be inserted in the 'DataModel' package description for the Statusinfo class within the service WSDL
files. The extensions should be given a new namespace to differentiate the extensions from the original
definition.

7. Claiming Conformance to the Specification
7.1 WS-I Conformance Claim Attachment

In an IMS service-oriented specification the Conformance Specification is defined with respect to the
Information Model and not to the binding. The binding must sustain the corresponding Information Model

http://www.imsglobal.org/gws/gwsv1p0/imsg... 38 8/29/2009 7:09 PM

conformance statement. Conformance to the binding is expressed as part of the corresponding set of
Application Profiles. An Application Profile is defined by the corresponding user community. Therefore,
while it is not the responsibility of IMS to define the Conformance Specification for a service binding, IMS
must supply the mechanisms by which a Conformance Specification for a binding can be created. This
approach is based upon that used by WS-I.

WS-I has written the Conformance Claim Attachments Mechanism document [WSI, 04b]. This document
catalogues mechanisms that can be used to attach WS-I Profile Conformance Claims to Web services
artifacts, e.g., WSDL descriptions, UDDI registries, etc.

To allow advertisement of profile conformance, artifacts can be annotated with conformance claims, which
use URIs to assert that a particular claim subject, e.g., an artifact or a party to a Web service, meets the
appropriate requirements in the indicated profile. The requirements considered in-scope for a particular
conformance claim are those placed upon the conformance target(s) associated with the claim attachment
mechanism by the relevant profile. Therefore, every profile specifies its own conformance claim URI.
Furthermore, every profile documents which of its conformance targets are in-scope for each claim
attachment mechanism described in the following sections. In WS-I the appropriate claim attachments
mechanisms are:

WSDL 1.1 Claim Attachment Mechanism for Web Services Instances - conformance claims can be
attached to a <wsdl:port> element in a WSDL v1.1 description as a child of its <wsdl:documentation>
element, using the Conformance Claim Schema. Such conformance claims indicate that the associated
Web service instance exhibits conformant behavior, as determined by the requirements associated with
this attachment mechanism by the referenced profile. A conformance claim attached to a <wsdl:port>
element also indicates that it itself is a conformant XML construct. Additionally, the same claim is
made for all elements recursively referenced by it, based on the transitivity rules described in "WSDL
1.1 Claim Attachment Mechanism for Description Constructs";

a.

WSDL 1.1 Claim Attachment Mechanism for Description Constructs - conformance claims can be
attached to <wsdl:binding>, <wsdl:portType>, <wsdl:operation> (as a child element of
<wsdl:portType>, but not of <wsdl:binding>) and <wsdl:message> elements in a WSDL v1.1
description, using the Conformance Claim Schema. A conformance claim attached to any of these
elements indicates that it is a conformant XML construct, as determined by the requirements associated
with this attachment mechanism by the referenced profile. Additionally, the same claim is made for all
elements that it references, based on the following transitivity rules, applied recursively:

A claim on a <wsdl:port> element is inherited by the referenced <wsdl:binding> element
A claim on a <wsdl:binding> element is inherited by the referenced <wsdl:portType> element
A claim on a <wsdl:portType> element is inherited by the referenced <wsdl:operation> elements
A claim on a <wsdl:operation> element is inherited by the referenced <wsdl:message> elements
of its child <wsdl:output> and/or <wsdl:input> elements;

b.

Conformance Claim XML Schema - when possible, i.e., when a claim attachment is made in an
extensible XML document, conformance claims SHOULD be made with an Element Information Item.
The <Claim> element has a mandatory 'conformsTo' attribute, whose value contains the actual
conformance claim URI. The conformance claim schema explicitly allows for extensibility elements
and attributes.

c.

7.2 Creating Conformance Claims to IMS Profiles

Apart from the WS-I Conformance Claims mechanism, the W3C is investigating the usage of WS-Policy.
Therefore, no definitive recommendation is made on the usage of the WS-I approach. However, if some form
of conformance statement is required then the WS-I approach can be used but no firm commitment is made to
supporting this technique in later releases of the IMS GWS specification.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 39 8/29/2009 7:09 PM

8. Recommended Tools
8.1 UML and Auto-generation of the Bindings

The tools that have been used to support the development of the auto-generation files are:

UML development - Poseidon for UML Standard Edition 3.0 (MacOS X version) from Gentleware was
used for the creation of the UML-based descriptions. It should be noted that the XSL files are created
based upon the way in which Poseidon stores its data files using the XMI representation. This usage
changes from tool to tool (as well as, in some cases, version to version for the same tool);
XSL creation - Oxygen Editor 6.2 (MacOS X) from SyncRO Soft Ltd was used for the creation of the
XSL files. The XSL files contains instructions specific to the Xalan processor. The XSLT testing was
also completed using this tool (if other XSLT processors are used then they must support the Xalan
extensions). The XSL files assume that the XMI files have been created using Poseidon for UML
Standard Edition 3.0 (see above). The resulting behavior using XMI files from other UML tools are
undefined.

8.2 Generating Code Stubs using Java

The open source Apache Axis web services engine is used to illustrate how one might implement a web
service in Java beginning with a WSDL. Axis provides a utility class, org.apache.axis.wsdl.WSDL2Java, to
use for generating client-side and server-side code from a WSDL. To generate stubs for making client-side
service calls, execute WSDL2Java against your WSDL. By default WSDL2Java generates client-side code,
which includes a class for each type specified in any schemas included in the types section of the WSDL, a
stub that represents the call, a service locator implementation, and associated interfaces.

To generate server-side classes, execute WSDL2Java against a WSDL with the arguments "--server-side
--skeletonDeploy true". The generated skeleton, the server-side equivalent of the client stub, sits between
your implementation of the service and the Axis web service engine, and handles details such as mapping
namespaces used in the WSDL onto generated Java classes. WSDL2Java also generates deployment
descriptors for use in deploying the service to an Axis web services instance running in a J2EE servlet
container such as Apache Tomcat. As in the client, classes are generated for schema types. WSDL2Java takes
a number of arguments that allow you, among other things, to fetch a WSDL from a remote URL, map
namespaces onto locally sensible package names, and generate Junit test cases. Axis also provides Ant
methods that allow you to automate code generation and service deployment within an Ant build. At the end
of the day, the Java developer is presented with a collection of familiar looking classes.

Axis can be obtained from the Apache site http://xml.apache.org/axis/.

8.3 Generating Code Stubs Using the Microsoft .NET Framework

The WSDL.EXE tool ships with Microsoft.NET and generates code for web services and web services clients
using WSDL contract files, XSD schema files and "discomap" discovery documents. This paper focuses on
code generation using WSDL. See 'MSDN Table2' (illustrating options for the WSDL.EXE tool) for examples
and other code generation options using the WSDL.EXE tool.

8.3.1 Code Generation using WSDL.EXE

http://www.imsglobal.org/gws/gwsv1p0/imsg... 40 8/29/2009 7:09 PM

The WSDL.EXE tool is automatically installed when Visual Studio or the .NET Framework 1.1 is installed. In
Visual Studio 2003 the WSDL.EXE tool is located in the C:\Program Files\Microsoft Visual Studio .NET
2003\SDK\v1.1\Bin folder. A batch file is included to ensure the developer will have all of the .NET Tools
included in the system PATH.

When you use WSDL.EXE to create a proxy class, a single source file is created in the programming
language that you specify (see language option in the following tables). The WSDL.EXE tool determines the
best type to use for objects specified in the service description. As a result, the generated type in the proxy
class might not be what the developer wants or expects. To ensure correct object type casts, open the file
containing the generated proxy class and change any incorrect object types to the expected object type. The
WSDL.EXE tool expects all WSDL files to be specified on the command line. If your WSDL file imports
additional schemas via one or more <wsdl:import> elements, a code generation error may occur. To get
around this issue make sure you specify all of your schemas on the command line following the WSDL file.
For example, if 'foo.wsdl' imports 'bar.xsd' which then imports 'example.xsd' the command line for the
WSDL.EXE tool should be:

wsdl foo.wsdl bar.xsd example.xsd

The "location" attribute (in <wsdl:import>) and 'schemaLocation' attribute (in <xsd:import>) are "hints" that
can be ignored by processors that provide alternate means to locate schemas (in accordance with the W3C
WSDL and XSD Technical Recommendations).

The table on the following page summarizes the use of the WSDL.EXE tool.

USAGE:

wsdl [options] {URL | path}

Argument Description

URL The URL to a WSDL file (.wsdl).

Path The path to a local WSDL contract file (.wsdl), XSD schema file (.xsd), or discovery document
(.disco or .discomap).

Option Description

/appsettingurlkey:key
or
/urlkey:key

Specifies the configuration key to use in order to read the default value for the
URL property when generating code.

/appsettingbaseurl:baseurl

or
/baseurl:baseurl

Specifies the base URL to use when calculating the URL fragment. The tool
calculates the URL fragment by converting the relative URL from the baseurl
argument to the URL in the WSDL document. You must specify the
/appsettingurlkey option with this option.

/d[omain]:domain Specifies the domain name to use when connecting to a server that requires
authentication.

/l[anguage]:language
Specifies the language to use for the generated proxy class. You can specify CS
(C#; default), VB (Visual Basic), JS (JScript) or VJS (Visual J#) as the language
argument. You can also specify the fully qualified name of a class that

http://www.imsglobal.org/gws/gwsv1p0/imsg... 41 8/29/2009 7:09 PM

implements the System.CodeDom.Compiler.CodeDomProvider Class.
http://msdn.microsoft.com/library/en-us/cpref
/html/frlrfSystemCodeDomCompilerCodeDomProviderClassTopic.asp

/n[amespace]:namespace Specifies the namespace for the generated proxy or template. The default
namespace is the global namespace.

/nologo Suppresses the Microsoft startup banner display.

/o[ut]:filename
Specifies the file in which to save the generated proxy code. The tool derives
the default file name from the XML Web service name. The tool saves
generated datasets in different files.

/parsableerrors Displays errors in a format similar to the error reporting format used by
language compilers.

/p[assword]:password Specifies the password to use when connecting to a server that requires
authentication.

/protocol:protocol Specifies the protocol to implement. You can specify SOAP (default), HttpGet,
HttpPost, or a custom protocol specified in the configuration file.

/proxy:URL Specifies the URL of the proxy server to use for HTTP requests. The default is
to use the system proxy setting.

/proxydomain:domain
or
/pd:domain

Specifies the domain to use when connecting to a proxy server that requires
authentication.

/proxypassword:password
or
/pp:password

Specifies the password to use when connecting to a proxy server that requires
authentication.

/proxyusername:username
or
/pu:username

Specifies the user name to use when connecting to a proxy server that requires
authentication.

/server Generates an abstract class for an XML Web service based on the contracts.
The default is to generate client proxy classes.

/u[sername]:username Specifies the user name to use when connecting to a server that requires
authentication.

/? Displays command syntax and options for the tool.

Resources

Demonstrating how to use the WSDL.EXE tool is available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide
/html/cpconcreatingwebserviceproxy.asp

1.

Illustrating options for the WSDL.EXE tool are available at; http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cptools/html/cpgrfWebServicesDescriptionLanguageToolWsdlexe.asp

2.

8.3.2 The .NET Tools

http://www.imsglobal.org/gws/gwsv1p0/imsg... 42 8/29/2009 7:09 PM

The .NET tools include:

Configuration and Deployment Tools:

ASP.NET IIS Registration Tool (Aspnet_regiis.exe) - allows an administrator or installation program to
update the scriptmaps for an ASP.NET application to point to the ASP.NET ISAPI version associated
with the tool. You can also use the tool to perform other ASP.NET configuration operations;
Assembly Cache Viewer (Shfusion.dll) - allows you to view and manipulate the contents of the global
assembly cache by using Windows Explorer;
Assembly Linker (Al.exe) - generates a file with an assembly manifest from one or more files that are
either resource files or Microsoft intermediate language (MSIL) files;
Assembly Registration Tool (Regasm.exe) - reads the meta-data within an assembly and adds the
necessary entries to the registry, which allows COM clients to create .NET Framework classes
transparently;
Assembly Binding Log Viewer (Fuslogvw.exe) - displays details for failed assembly binds. This
information helps you diagnose why the .NET Framework cannot locate an assembly at runtime;
Global Assembly Cache Tool (Gacutil.exe) - allows you to view and manipulate the contents of the
global assembly cache and download cache. While Shfusion.dll provides similar functionality, you can
use Gacutil.exe from build scripts, makefile files, and batch files;
Installer Tool (Installutil.exe) - allows you to install and uninstall server resources by executing the
installer components of a specified assembly;
Isolated Storage Tool (Storeadm.exe) - lists or removes all existing stores for the currently logged-on
user;
Native Image Generator Tool (Ngen.exe) - creates a native image from a managed assembly and installs
it into the native image cache on the local computer;
.NET Framework Configuration Tool (Mscorcfg.msc) - provides a graphical interface for managing
.NET Framework security policy and applications that use remoting services. This tool also allows you
to manage and configure assemblies in the global assembly cache;
.NET Services Installation Tool (Regsvcs.exe) - adds managed classes to Windows 2000 Component
Services by loading and registering the assembly and generating, registering, and installing the type
library into an existing COM+ 1.0 application;
Soapsuds Tool (Soapsuds.exe) - helps you compile client applications that communicate with XML
Web services by using a technique called remoting;
Type Library Exporter (Tlbexp.exe) - generates a type library from a common language runtime
assembly;
Type Library Importer (Tlbimp.exe) - converts the type definitions found within a COM type library
into equivalent definitions in managed meta-data format;
Web Services Discovery Tool (Disco.exe) - discovers the URLs of XML Web services located on a
Web server, and saves documents related to each XML Web service on a local disk;
WSDL Code Generation Tool (Wsdl.exe) - generates code for web services and web services clients
using WSDL contract files, XSD schema files, and "discomap" discovery documents;
XML Schema Definition Tool (Xsd.exe) - generates XML schemas that follow the XML Schema
Definition (XSD) language proposed by the W3C. This tool generates common language runtime
classes and 'DataSet' classes from an XSD schema file.

Debugger Tools

Microsoft CLR Debugger (DbgCLR.exe) - provides debugging services with a graphical interface to
help application developers find and fix bugs in programs that target the runtime;
Runtime Debugger (Cordbg.exe) - provides command-line debugging services using the common
language runtime Debug API. Use this tool to find and fix bugs in programs that target the runtime.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 43 8/29/2009 7:09 PM

Security Tools

Certificate Creation Tool (Makecert.exe) - generates X.509 certificates for testing purposes only;
Certificate Manager Tool (Certmgr.exe) - manages certificates, certificate trust lists (CTLs), and
certificate revocation lists (CRLs);
Certificate Verification Tool (Chktrust.exe) - verifies the validity of a file signed with an X.509
certificate;
Code Access Security Policy Tool (Caspol.exe) - allows you to examine and modify machine, user and
enterprise-level code access security policies;
File Signing Tool (Signcode.exe) - signs a portable executable (PE) file with an Authenticode digital
signature;
Permissions View Tool (Permview.exe) - displays the minimal, optional and refused permission sets
requested by an assembly. You can also use this tool to view all declarative security used by an
assembly;
PEVerify Tool (PEverify.exe) - performs MSIL type safety verification checks and meta-data
validation checks on a specified assembly;
Secutil Tool (Secutil.exe) - extracts strong name public key information or Authenticode publisher
certificates from an assembly, in a format that can be incorporated into code;
Set Registry Tool (Setreg.exe) - allows you to change the registry settings for the Software Publishing
State keys, which control the behavior of the certificate verification process;
Software Publisher Certificate Test Tool (Cert2spc.exe) - creates, for test purposes only, a Software
Publisher's Certificate (SPC) from one or more X.509 certificates;
Strong Name Tool (Sn.exe) - helps create assemblies with strong names. Sn.exe provides options for
key management, signature generation, and signature verification.

General Tools

Common Language Runtime Minidump Tool (Mscordmp.exe) - creates a file containing information
that is useful for analyzing system issues in the runtime. The Microsoft Dr. Watson tool (Drwatson.exe)
invokes this program automatically;
License Compiler (Lc.exe) - reads text files that contain licensing information and produces a licenses
file that can be embedded in a common language runtime executable;
Management Strongly Typed Class Generator (Mgmtclassgen.exe) - allows you to quickly generate an
early bound class in C#, Visual Basic, or JScript for a specified Windows Management Instrumentation
(WMI) class;
MSIL Assembler (Ilasm.exe) - generates a PE file from Microsoft Intermediate Language (MSIL). You
can run the resulting executable, which contains MSIL code and the required meta-data, to determine
whether the MSIL code performs as expected;
MSIL Disassembler (Ildasm.exe) - takes a PE file that contains MSIL code and creates a text file
suitable as input to the MSIL Assembler (Ilasm.exe);
Resource File Generator Tool (Resgen.exe) - converts text files and .resx (XML-based resource
format) files to .NET common language runtime binary .resources files that can be embedded in a
runtime binary executable or compiled into satellite assemblies;
Visual J# Binary Converter Tool (JbImp.exe) - converts certain Java-language bytecode (.class) files to
MSIL. This tool enables developers to convert most JDK 1.1.4-level libraries and applications available
only as bytecode files to MSIL assemblies and run them on the .NET Framework with the Visual J#
Redistributable Package. Use this tool only if the Java-language sources for the applications or libraries
are not available. If Java-language sources are available, it is recommended that you use the Visual J#
compiler (vjc.exe) instead (to use this tool, the Visual J# .NET Redistributable Package version 1.1
must be installed);
Windows Forms ActiveX Control Importer (Aximp.exe) - converts type definitions in a COM type

http://www.imsglobal.org/gws/gwsv1p0/imsg... 44 8/29/2009 7:09 PM

library for an ActiveX control into a Windows Forms control;
Windows Forms Class Viewer (Wincv.exe) - finds managed classes matching a specified search pattern
and displays information about those classes using the Reflection API;
Windows Forms Resource Editor (Winres.exe) - allows you to quickly and easily localize 'Windows
Forms' forms.

9. Further Work
The further work to be undertaken on the development of the auto-generation files is:

Support for new SOAP features include:
Reliable messaging - reliable application-to-application communications requires the usage
of the corresponding reliable SOAP messaging protocol. TCP does not operate at the right
level in the communications stack to provide coverage of the SOAP messages;

a.

Adoption of SOAP 1.2 - the current binding uses SOAP 1.1 but SOAP 1.2 is now available. We will not
consider supporting alternative SOAP bindings until reliable tools are available to support using SOAP
1.2;

b.

Adoption of WSDL 2.0 - W3C is developing WSDL 2.0 (this was originally referred to as version 1.2).
Changing the intermediate representation should not alter the actual SOAP messages to be generated
but will enable improved expression to allow more complex bindings to be described in the WSDL file.
We will not consider supporting alternative WSDL bindings until reliable tools are available to support
using WSDL 2.0;

c.

Support for the insertion of conformance claims - this may be based upon the WS-I conformance claims
mechanism or the usage of WS-Policy;

d.

Auto-generation of compliance information - in principle it is possible to automatically create a set of
compliance test sets directly from the UML description. It is also possible to use stereotypes to mark
the specification with indicators to identify the constituents for the conformance statement;

e.

Auto-generation of the corresponding Open Services Interface Definition (OSID) - it may be possible to
generate the equivalent new OSIDs by encapsulating the appropriate information in the UML
description. Again the usage of an XSL may then enable the OSID to be automatically generated. This
would provide a web service/OSID pairing created from a common UML description.

f.

Appendix A - The Binding Support XSD Files
All of the following data structures are either defined within the WSDL files or supplied in the external XSD
file: "imsMessBindSchemav1p0.xsd"3.

A1 - Status Information

A1.1 - Status Class Data Model

Description

The 'StatusInfo' class diagram is shown in Figure A1.1. This class is used to return the status information
reporting on the outcome of the associated request.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 45 8/29/2009 7:09 PM

Figure A1.1 StatusInfo class diagram.

Attributes

The set of attributes for the 'StatusInfo' class are summarized in Table A1.1.

Table A1.1 Summary of attributes for the 'StatusInfo' class.

Attribute Name Type Multiplicity Description

codeMajor CodeMajor 1
The major code assigned to the status block. This is a
fixed enumerated list. This is used in conjunction with
'severity'.

severity Severity 1
The severity of the status report. This is a fixed
enumerated list. This is used in conjunction with the
'codeMajor'.

codeMinor CodeMinor 0..1 This is a detailed report code that is used to identify
specific causes of failure.

messageRefIdentifier String 1 The message identifier of the request message invoking
this response.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 46 8/29/2009 7:09 PM

operationRefIdentifier String 0..* The identifier of the specific operation(s) whose status
are being reported in this status block.

description String 0..1 A human readable message or report.

OCL Definitions

The associated object constraint language description for this class is:

Context StatusInfo

inv: Set{success, processing, failure, unsupported}.includes(codeMajor)

inv: Set{status, warning, error}.includes(severity)

inv: codeMinorName.size <= 32

inv: codeMinorValue.size <= 32

inv: messageRefIdentifier.size <= 32

inv: operationRefIdentifier.size <= 32

CodeMajor/Severity Interpretation Matrix

The interpretation of the 'CodeMajor/Severity' matrix is shown in Table A1.2.

Table A1.2 Interpretation of the 'CodeMajor/severity' matrix.

Severity
CodeMajor

Success Processing Failure Unsupported

Status
The request has
fully completed
successfully.

The request is being
processed by the target,
i.e., the request has been
received and
acknowledged by the
target communications
handler.

The request has failed. The
associated CodeMinor
information contains the
more detailed reason for the
failure of the request.

Target does not
support the
requested
operation. This
request is a part of
the original service
specification.

Warning

Some of the
request has been
completed
successfully, e.g.,
partial storage of
the data structure
sent.

The request is being
processed (this does not
imply reception by the
target communications
handler) but it has not
yet been acknowledged
as received by the target.

Not permitted. Not permitted.

Error Not permitted.

An error has been
detected in the
immediate transmission
communications handler,
i.e., the message has not

The request has failed but it
was issued from the
communications handler(s).
Detailed failure reports
could be included. The

This is an
unknown service
request, i.e., it is
not a part of the
original service

http://www.imsglobal.org/gws/gwsv1p0/imsg... 47 8/29/2009 7:09 PM

left the end-system.

SOAP fault codes are
reported using this Severity/
CodeMajor value (supplied
in the CodeMinor object).

specification.

CodeMinor Values

The set of predefined 'CodeMinor' codes is shown in Table A1.3 (these is an initial set of common codes -
each specification is expected to define its own set of codes).

Table A1.3 Set of predefined 'CodeMinor' codes.

Logical Name Explanation for Generation

Successful Service Completion Codes

'fullsuccess' The request has been fully and successfully implemented by the target system.

'statealreadysuccess' The request has been successfully implemented because the target object was
already in the required state.

'unsupported' The service requested is not supported by the target system.

...

Transactions Service Source Failure Condition Codes

'incompletesourcedata' The source cannot send the message as the minimum set of data for the record is
not present.

'invalidsourcedata' The source cannot send the message as some of the data is invalid, e.g., wrong
type.

...

Transactions Service Target Failure Condition Codes

'overflowfail' The target could not create the object record due to lack of target allocation
memory.

'idallocfail' The target could not allocate a unique 'identifier' to the object as there are no
more spare identifiers available.

'incompletetargetdatafail' The target has detected that the minimum set of data received for the record is
not present.

'invalidtargetdatafail' The target has detected that some of the data received is invalid, e.g., wrong
type.

'duplicateidallocfail' The target could not allocate a presented 'identifier' because it is has already
been allocated to an object.

'unknownidfail' The target could not find an object that had the supplied 'identifier'

http://www.imsglobal.org/gws/gwsv1p0/imsg... 48 8/29/2009 7:09 PM

'invalididfail' The record that was identified using the supplied 'identifier' was not of the right
object type.

'corruptionfail' The target found a stored record that was corrupted and as such could not be
returned;

'partialdatastorage' The target has stored only a subset of the data structure received, e.g., only the
mandatory elements have been stored.

...

Common Service Source Failure Condition Codes

TBD in GWS v2.0.

Common Service Target Failure Condition Codes

TBD in GWS v2.0.

Infrastructure Source Failure Condition Codes

'targetcommsfail' The target system has not responded to the request. There is a communications
link failure.

'sourcecommsfail' The source system cannot send the request. There is a communications link
failure.

...

Infrastructure Target Failure Condition Codes

TBD in GWS v2.0.

XSD Binding

The XML binding for the Identifier class is shown in Figure A1.2. This binding is based upon the creation of
the complex-type StatusInfo.Type.

Figure A1.2 StatusInfo class XSD binding.
A1.2 - StatusInfoSet Class Data Model

http://www.imsglobal.org/gws/gwsv1p0/imsg... 49 8/29/2009 7:09 PM

Description

The StatusInfoSet class diagram is shown in Figure A1.3. This is a collection of StatusInfo classes and the
order of these reflects the sequence in which the individual operations were requested.

Figure A1.3 StatusInfoSet class diagram.

Attributes

None.

Associations

The set of associations for the StatusInfoSet class are summarized in Table A1.4.

Table A1.4 Summary of associations for the StatusInfoSet class.

Association Class
Name Multiplicity Description

StatusInfo 1..* The status information class returned for each and every operation. Each
StatusInfo instance references the status of each operation.

OCL Definitions

None.

XSD Binding

The XML binding for the Identifier class is shown in Figure A1.4. This binding is based upon the creation of
the complex-type 'StatusInfoSet.Type'.

Figure A1.4 StatusInfoSet class XSD binding.

A2 - Message Header Structures for Synchronous Models

http://www.imsglobal.org/gws/gwsv1p0/imsg... 50 8/29/2009 7:09 PM

The following structures are the message headers that are to be used in the synchronous, asynchronous and
polled message choreographies to implement the behaviors (these choreographies are described in [GWS,
05b]).

A2.1 - Synchronous Request Message Header

The synchronous request message header structure is shown in Figure A2.1. This header is attached to the
request message issued by the client system. The 'wildCard' extension element enables any new namespaced
element(s) to used.

Figure A2.1 SyncRequestHeaderInfo message header XSD binding.

<version> Element

This is the container for the version of the GWS infrastructure being employed. It is an enumerated field. This
is an optional field and if not used then the default value should be assumed to be '1.0'.

<messageIdentifier> Element

This is the container for the unique message identifier. This is to be assigned by the system constructing the
message header. It is the responsibility of the transmitting system to ensure that the message identifier is
unique.

A2.2 - Synchronous Response Message Header

The synchronous response message header structure is shown in Figure A2.2. This header is attached to the
response message issued by the server system. The 'wildCard' extension element enables any new
namespaced element(s) to used.

Figure A2.2 SyncResponseHeaderInfo message header XSD binding.

<version> Element

This is the container for the version of the GWS infrastructure being employed. It is an enumerated field. This
is an optional field and if not used then the default value should be assumed to be '1.0'.

<messageIdentifier> Element

http://www.imsglobal.org/gws/gwsv1p0/imsg... 51 8/29/2009 7:09 PM

This is the container for the unique message identifier. This is to be assigned by the system constructing the
message header. It is the responsibility of the transmitting system to ensure that the message identifier is
unique.

<statusInfo> Element

The status information returned as a response to single transaction request; see sub-section A1.1.

<statusInfoSet> Element

The status information returned as a response to multiple transaction request; see sub-section A1.2.

A3 - Message Header Structures for Asynchronous Models

At the current time IMS has not authorized the publication of the Asynchronous WSDL messaging in the
Final Release. This is because there are no validated implementations of this technique and there is work
underway in W3C that could result in the IMS approach becoming proprietary. This work remains published
as Public Draft material [GWS, 05a].

A4 - Message Header Structures for Polled Models

At the current time IMS has not authorized the publication of the Polled WSDL messaging in the Final
Release. This is because there are no validated implementations of this technique and there is work underway
in W3C that could result in the IMS approach becoming proprietary. This work remains published as Public
Draft material [GWS, 05a].

About This Document
Title IMS General Web Services WSDL Binding Guidelines

Editor Colin Smythe (IMS)

Team
Co-Leads Cathy Schroeder (Microsoft Corp.), James Simon (SUN Microsystems Corp.)

Version 1.0

Version
Date 19 December 2005

Status Final Specification

Summary

This document explains how to create a WSDL binding for specifications based upon the
IMS General Web Services Base Profile and the Extension Profiles. This auto-generation is
achieved using a set of transformation tools that are applied to the Unified Modelling
Language-based description of the information model of the specification to create the
equivalent WSDL. The auto-generation tools support bindings for the different
communications models supported as part of the IMS General Web Services Base Profile.

Revision
Information 19 December 2005

http://www.imsglobal.org/gws/gwsv1p0/imsg... 52 8/29/2009 7:09 PM

Purpose
This document is circulated for public adoption. This document is to be adopted by IMS and
all other organizations that wish to construct service-based interoperability specifications
using Web Services.

Document
Location http://www.imsglobal.org/gws/gwsv1p0/imsgws_wsdlBindv1p0.html

To register any comments or questions about this specification please visit: http://www.imsglobal.org
/developers/ims/imsforum/categories.cfm?catid=20

List of Contributors

The following individuals contributed to the development of this document:

Name Organization

Fred Beshears UC Berkeley

John Evdemon Microsoft Corp.

Ron Kleinman SUN Micrsosystems Corp.

Sherman Mohler Cisco Learning Institute, Inc.

Cathy Schroeder Microsoft Corp.

James Simon SUN Microsystems Corp.

Colin Smythe Dunelm Services Ltd.

Scott Thorne MIT

Revision History

Version No. Release
Date Comments

Base
Document
v1.0

25 August
2003

The version of the Base Document submitted for voting to the IMS Technical
Board.

Public Draft
v1.0

31 January
2005

This is the first version of the General Web Services Base Profile released for
public adoption. This document will remain in Public Draft form for
approximately 12 months. This will allow the many specification and
standardization activities in the field of Web Services to mature before final
evaluation and adoption by IMS.

Final v1.0
19
December
2005

This is the first formal version of the Final Release.

http://www.imsglobal.org/gws/gwsv1p0/imsg... 53 8/29/2009 7:09 PM

Index
A
a-API 1
Abstract Framework 1, 2, 3, 4
API 1, 2, 3
Application Profile 1, 2, 3
Asynchronous 1, 2, 3, 4, 5

B
Base Profile 1, 2, 3, 4, 5, 6, 7
Best Practice 1

C
Conformance 1, 2, 3, 4
Context 1, 2
CRUD 1

D
DCOM 1

G
General Web Services Base Profile 1

I
IMS Auto-generation Binding Tool 1, 2, 3, 4, 5, 6, 7
IMS General Web Services 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
 Addressing Profile 1
 Attachments Profile 1
 Base Profile 1, 2, 3, 4, 5, 6, 7
 Security Profile 1

M
Messaging
 Asynchronous 1, 2, 3, 4, 5
 Polled 1, 2, 3, 4, 5
 Synchronous 1, 2, 3, 4, 5, 6, 7
MOM 1

P
Protocols
 FTP 1
 HTTP 1, 2, 3
 HTTPS 1
 IIOP 1
 IP 1
 SMTP 1
 SOAP 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
 SSL 1, 2

http://www.imsglobal.org/gws/gwsv1p0/imsg... 54 8/29/2009 7:09 PM

 TCP 1, 2
 TLS 1, 2

Q
Quality of Service 1

S
Security 1, 2, 3
SOAP 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
SOAP Versions
 1.1 1
 1.2 1
Synchronous 1, 2, 3, 4, 5, 6, 7

T
TCP 1, 2
TLS 1, 2
Transport Layer Security 1, 2

U
UDDI 1, 2
Unified Modelling Language 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
 UML 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

W
W3C 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Web Services 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 SOAP 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
 WSDL 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
Web Services Interoperability Organization 1, 2, 3, 4, 5, 6, 7, 8, 9
WSDL 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
WSDL Versions
 1.1 1
 2.0 1
WS-I
 Basic Profile 1, 2, 3
 Simple SOAP Binding Profile 1
WS-I Basic Profile 1, 2, 3
WS-I Simple SOAP Binding Profile 1

X
XMI 1, 2, 3, 4, 5, 6, 7
XML 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
XML Metadata Interface 1
XML Schema 1, 2
XML Schema Definition 1

http://www.imsglobal.org/gws/gwsv1p0/imsg... 55 8/29/2009 7:09 PM

XSD 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33
XSLT 1, 2, 3

1 WSDLv1.1 is used even though WSDLv2.0 is available in draft form. This is because v2.0 is still subject to
significant change and there is no tool support. This document will be revisited once v2.0 has been published
as a final release and tools are available that support it.
2 The relevant MSDN Table is located at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools
/html/cpgrfWebServicesDescriptionLanguageToolWsdlexe.asp
3 The structures in this file have a naming convention prefix of 'imsx_'. This ensures that there are no name
clashes when global declarations are made.

IMS Global Learning Consortium, Inc. ("IMS/GLC") is publishing the information contained in this IMS
General Web Services WSDL Binding Guidelines ("Specification") for purposes of scientific, experimental,

and scholarly collaboration only.

IMS/GLC makes no warranty or representation regarding the accuracy or completeness of the
Specification.

This material is provided on an "As Is" and "As Available" basis.

The Specification is at all times subject to change and revision without notice.

It is your sole responsibility to evaluate the usefulness, accuracy, and completeness of the Specification as
it relates to you.

IMS/GLC would appreciate receiving your comments and suggestions.

Please contact IMS/GLC through our website at http://www.imsglobal.org

Please refer to Document Name: IMS General Web Services WSDL Binding Guidelines Revision: 19
December 2005

http://www.imsglobal.org/gws/gwsv1p0/imsg... 56 8/29/2009 7:09 PM

	IMS General Web Services WSDL Binding Guidelines Version 1.0 Final Specification
	19 Dec 2005 IMS Global Learning Consortium, Inc.
	Executive Summary
	Table of Contents
	1. Introduction
	2. Web Services Description Language Files
	3. WSDL Files for the Set of Communications Models
	4. Creating a WSDL Binding
	5. Base Profile WSDL Auto-generation
	6. Extending the Binding
	7. Claiming Conformance to the Specification
	8. Recommended Tools
	9. Further Work
	Appendix A - The Binding Support XSD Files
	About This Document
	Revision History
	Index

	
	IMS Title Page

