
IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

1 of 68 2/24/2005 11:43 AM

IMS Question and Test 
Interoperability Information Model

Version 2.0 Final Specification

Copyright © 2005 IMS Global Learning Consortium, Inc. All Rights Reserved.
The IMS Logo is a registered trademark of IMS/GLC.
Document Name: IMS Question and Test Interoperability Information Model
Revision: 24 January 2005

Date Issued: 24 January 2005

Latest version: http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

Supersedes:
QTI Item v2.0 Public Draft specification, 07 June 2004, 
http://www.imsglobal.org/question/

Register 
comments or 
implementations:

http://www.imsglobal.org/developers/ims/imsforum/categories.cfm?catid=23

IMS Global Learning Consortium has made no inquiry into whether or not the implementation of 
third party material included in this specification would infringe upon the intellectual property rights 
of any party.

Recipients of this document are requested to submit, with their comments, notification of any 
relevant patent claims or other intellectual property rights of which they may be aware that might be 
infringed by any implementation of the specification set forth in this document, and to provide 
supporting documentation.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, 
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY 
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE 
IMPLEMENTER'S OWN RISK, AND NEITHER THE CONSORTIUM, NOR ANY OF ITS 
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY 
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE 
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS 
SPECIFICATION.

Table of Contents

1. Introduction



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

2 of 68 2/24/2005 11:43 AM

2. References
3. Definitions
4. Items
5. Item Variables

5.1. Response Variables
5.2. Outcome Variables

6. Content Model
6.1. Basic Classes
6.2. XHTML Elements

6.2.1. Text Elements
6.2.2. List Elements
6.2.3. Object Elements
6.2.4. Presentation Elements
6.2.5. Table Elements
6.2.6. Image Element
6.2.7. Hypertext Element

6.3. MathML
6.3.1. Combining Template Variables and MathML

6.4. Variable Content
6.4.1. Number Formatting Rules

6.5. Formatting Items with Stylesheets
7. Interactions

7.1. Simple Interactions
7.2. Text-based Interactions
7.3. Graphical Interactions
7.4. Miscellaneous Interactions
7.5. Alternative Ways to End an Attempt

8. Response Processing
8.1. Response Processing Templates

8.1.1. Standard Templates
8.2. Generalized Response Processing

9. Modal Feedback
10. Expressions

10.1. Operators
11. Item Templates

11.1. Using Template Variables in an the Item's Body
11.2. Template Processing

12. Basic Data Types

1. Introduction

2. References

CMI
IEEE 1484.11.1, Standard for Learning Technology - Data Model for Content Object
Communication

ISO11404



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

3 of 68 2/24/2005 11:43 AM

ISO11404:1996 Information technology — Programming languages, their environments and
system software interfaces — Language-independent datatypes
Published: 1996

ISO8601
ISO8601:2000 Data elements and interchange formats – Information interchange –
Representation of dates and times
Published: 2000

ISO_9899
ISO/IEC 9899:1999 Programming Languages - C

MathML
Mathematical Markup Language (MathML), Version Version 2.0 (Second Edition)
http://www.w3.org/TR/2003/REC-MathML2-20031021/
Published: 2003-10-21

RFC2045
RFC 2045-2048 Multipurpose Internet Mail Extensions (MIME)

RR
IMS Question & Test Interoperability: Results Reporting Specification, Version 1.2
Published: 2002-02

URI
RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
Published: 1998-08

XHTML
XHTML 1.1: The Extensible HyperText Markup Language

XHTML_MOD
XHTML Modularization
http://www.w3.org/MarkUp/modularization

XML
Extensible Markup Language (XML), Version 1.0 (second edition)
Published: 2000-10

XML_SCHEMA2
XML Schema Part 2: Datatypes
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

3. Definitions

Adaptive Item

An adaptive item is an Item that adapts either its appearance, its scoring (Response Processing) or both 
in response to each of the candidate's Attempts. For example, an adaptive item may start by prompting
the candidate with a box for free-text entry but, on receiving an unsatisfactory answer, present a simple
choice Interaction instead and award fewer marks for subsequently identifying the correct response.
Adaptivity allows authors to create items for use in formative situations which both help to guide
candidates through a given task while also providing an Outcome that takes into consideration their 
path, enabling better subsequent content sequencing decisions to be made.

Adaptive Test

Adaptive Tests are out of scope for this specification.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

4 of 68 2/24/2005 11:43 AM

Assessment

An Assessment is equivalent to a 'Test'. It contains the collection of Items that are used to determine
the level of mastery, or otherwise, that a participant has on a particular subject. The Assessment
contains all of the necessary instructions to enable variable sequencing of the Items and the
corresponding aggregated scoring to produce the final test score. Assessments are out of scope for this
document.

Assessment Delivery System

A system for the administration and delivery of assessments to candidates. See also Delivery Engine.

Attempt

An attempt (at an Item) is the process by which the Candidate interacts with an item in one or more
Candidate Sessions, possibly assigning values to or updating the associated Response Variables.

Authoring System

A system used by authors for creating and editing Items.

Base-type

A base-type is a predefined data type that defines a value set from which values for Item Variables are
drawn. These values are indivisible with respect to the runtime model described by this specification.

Basic Item

A basic item is an Item that contains one and only one Interaction.

Candidate

A person that participates in a test, assessment or exam by answering questions. See also the actor
candidate.

Candidate Session

A period of time during which the candidate is interacting with the Item as part of an Attempt. An 
attempt may consist of more than one candidate session. For example, candidates that are not sure of
the answer to one question may navigate to a second question in the same test and return to the first
one later. When they leave the first question they terminate the candidate session but they do not
terminate the Attempt. The attempt is simply suspended until a subsequent candidate session
concludes it, triggering Response Processing and (possibly) Feedback. 

Cloning Engine

A cloning engine is a system for creating multiple similar items (Item Clones) from an Item Template.

Composite Item

A composite item is an Item that contains more than one Interaction.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

5 of 68 2/24/2005 11:43 AM

Container

A container is an aggregate data type that can contain multiple values of the primitive Base-types. 
Containers may be empty.

Delivery Engine

The process that coordinates the rendering and delivery of the Item(s) and the evaluation of the
responses to produce scores and Feedback.

Feedback

Any material presented to the candidate conditionally based on the value of an Outcome Variable. See 
also Integrated Feedback and Modal Feedback

Interaction

Interactions allow the candidate to interact with the item. Through an interaction, the candidate selects
or constructs a response. See also the class interaction.

Integrated Feedback

Integrated feedback is the name given to Feedback that is integrated into the item's itemBody. Unlike 
Modal Feedback the candidate is free to update their responses while viewing integrated feedback.

Item

The smallest exchangeable assessment object within this specification. An item is more than a
'Question' in that it contains the question and instructions to be presented, the responseProcessing to be
applied to the candidates response(s) and the Feedback that may be presented (including hints and
solutions). In this specification items are represented by the assessmentItem class and the term
assessment item is used interchangeably for item.

Item Clone

Item Clones are items created by an Item Template.

Item Session

An item session is the accumulation of all the Attempts made by a candidate. 

Item Template

Item templates are templates that can be used for producing large numbers of similar Items. Such items 
are often called cloned items. Item templates can be used to produce items by a special purpose
Cloning Engine or, where Delivery Engines support them, be used directly to produce a dynamically
chosen clone at the start of an Item Session. Each item cloned from an item template is identical except
for the values given to a set of Template Variables. An item is therefore an item template if it declares 
one or more template variables and a contains set of Template Processing rules for assigning them 
values.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

6 of 68 2/24/2005 11:43 AM

Item Variable

A variable that records part of the state of an Item Session. The candidate's responses and any
outcomes assigned by Response Processing are stored in item variables. Item variables are also used to
define Item Templates. See also the class itemVariable.

Material

Material means all static text, image or media objects that are intended for the user rather than being
interpreted by a processing system. Interactions are not material.

Modal Feedback

Modal feedback is the name give to Feedback that is presented to the candidate on its own, as opposed
to being integrated into the item's itemBody.

Multiple Response

A multiple response is a Response Variable that is a Container for multiple values all drawn from the
value set defined by one of the Base-types. A multiple response is processed as an unordered list of 
these values. The list may be empty.

Non-adaptive Item

An non-adaptive item is an Item that does not adapt itself in response to the candidate's Attempts.

Ordered Response

An ordered response is a Response Variable that is a Container for multiple values all drawn from the
value set defined by one of the Base-types. An ordered response is processed as an ordered list
(sequence) of values. The list may be empty.

Outcome

The result of an assessment. For an Item, an outcome is represented by one or more Outcome 
Variables.

Outcome Variable

Outcome variables are declared by outcome declarations. Their value is set either from a default given
in the declaration itself or by a response rule encountered during Response Processing. See also the 
class outcomeVariable. 

Response Processing

The process by which the values of Response Variables are judged (scored) and the values of Outcome
Variables are assigned.

Response Variable

Response variables are declared by response declarations and bound to Interactions in the Item body, 



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

7 of 68 2/24/2005 11:43 AM

they record the candidate's responses. See also the class responseVariable

Scoring Engine

The part of the assessment system that handles the scoring based on the Candidate's responses and the
Response Processing rules.

Single Response

A single response is a Response Variable that can take a single value from the set of values defined by
one of the Base-types.

Template Processing

A set of rules used to set the values of the Template Variables, typically involving some random
process, and thereby select the specific clone to be used for an Item Session. 

Template Variable

Template variables are declared by template declarations and used to record the values required to
instantiate an item template. The values determine which clone from the set of similar items defined by
an Item Template is being used for a given Item Session.

Test

See Assessment.

Time Dependent Item

A time dependent item is an Item that records the accumulated elapsed time for the Candidate Sessions 
in a Response Variable that is used during Response Processing.

Time Independent Item

A time independent item is an Item that does not record the amount of time spent by the Candidate
completing it. In practice, this information may be collected by a Delivery Engine but it is not used for 
Response Processing and the method by which it is reported is outside the scope of this specification.

4. Items

Class : assessmentItem

Attribute : identifier [1]: string

Attribute : title [1]: string
The title of an assessmentItem is intended to enable the item to be selected in situations where the full
text of the itemBody is not available, for example when a candidate is browsing a set of items to
determine the order in which to attempt them. Therefore, delivery engines may reveal the title to
candidates at any time but are not required to do so.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

8 of 68 2/24/2005 11:43 AM

Attribute : label [0..1]: string256

Attribute : lang [0..1]: language

Attribute : adaptive [1]: boolean = false
Items are classified into Adaptive Items and Non-adaptive Items.

Attribute : timeDependent [1]: boolean

Attribute : toolName [0..1]: string256
The tool name attribute allows the tool creating the item to identify itself. Other processing systems
may use this information to interpret the content of application specific data, such as labels on the 
elements of the item's itemBody.

Attribute : toolVersion [0..1]: string256
The tool version attribute allows the tool creating the item to identify its version. This value must only
be interpreted in the context of the toolName

Contains : responseDeclaration [*]

Contains : outcomeDeclaration [*]

Contains : templateDeclaration [*]

Contains : templateProcessing [0..1]

Contains : stylesheet [0..*]

Contains : itemBody [0..1]

Contains : responseProcessing [0..1]

Contains : modalFeedback [*]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

9 of 68 2/24/2005 11:43 AM

Item Sessions

Abstract class : itemSession

itemSession is an abstract class to help illustrate the requirements on Delivery Engines when 
delivering to candidates items that conform to this specification.

Associated with : assessmentItem [1]
An itemSession is associated with one and only one assessmentItem.

Attribute : completionStatus [1]: identifier
Delivery Engines must maintain the value of the built-in outcome variable completionStatus as part of 
the session state. It starts with the reserved value "not_attempted". At the start of the first attempt it
changes the to the reserved value "unknown". It remains with this value for the duration of the item
session unless set to a different value by a setOutcomeValue rule in responseProcessing. There are four 
permitted values: completed, incomplete, not_attempted and unknown. Any one of these values may be
set during response processing, for definitions of the meanings see [CMI]. If an Adaptive Item sets 
completionStatus to complete then the session must be placed into the closed state, however, an
itemSession is not required to wait for the complete signal before terminating, it may terminate in
response to a direct request from the candidate, through running out of time or through some other
exceptional circumstance. Similarly, Non-adaptive Items are not required to set a value for 
completionStatus, however, Adaptive Items must maintain a suitable value and should set
completionStatus to "complete" to indicate when the cycle of interaction, response processing and
feedback must stop. Delivery Engines are encouraged to use the value of completionStatus when
communicating using [CMI]. See the accompanying integration guide for more details.

Attribute : duration [0..1]: float
Systems that support Time Dependent Items must record the duration of the session. The duration is
defined as being the accumulated time (in seconds) of all Candidate Sessions for all Attempts. In other
words the time between the beginning and the end of the itemSession minus any time the itemSession 
was in the suspended state. The resolution of the duration must be at least 1s and should be 0.1s or
smaller. If the resolution is denoted by epsilon then each value of duration represents the range of
values [duration,duration+epsilon). In other words, duration values are truncated. For items that are not
time dependent duration must not be used.

Contains : itemVariable [*]
The itemSession keeps track of the current values assigned to all itemVariables. The values of
completionStatus and duration are treated as special item variables. They share the same namespace as
the item variables explicitly declared through variableDeclarations.

Contains : sessionContext [1]
An itemSession is also associated with a sessionContext which provides information about the
candidate, when and where the session took place and so on.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

10 of 68 2/24/2005 11:43 AM

The following diagram illustrates the user-perceived states of the itemSession. Not all states will apply
to every scenario, for example feedback may not be provided for an item or it may not be allowed in
the context in which the item is being used. Similarly, the candidate may not be permitted to review
their responses and/or examine a model solution. In practice, systems may support only a limited
number of the indicated state transitions and/or support other state transitions not shown here.

For system developers, an important first step in determining which requirements apply to their system
is to identify which of the user-perceived states are supported in their system and to match the state
transitions indicated in the diagram to their own event model.

Lifecycle of an Item Session

A delivery system notionally creates an instance of an itemSession object when it first becomes
eligible for delivery to the candidate. The itemSession's state is then maintained and updated in
response to the actions of the candidate until the session is over. At this point the state of the session is
turned into a session report (or thrown away). A delivery system may also allow a session report from
a past session to be used to re-create the session in order to allow a candidate's responses to be seen in
the context of the item itself (and possibly compared to a solution).



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

11 of 68 2/24/2005 11:43 AM

The initial state of an itemSession represents the state after it has been determined that the item will be
delivered to the candidate but before the delivery has taken place.

In a typical non-Adaptive Test the items are selected in advance and the candidate's interaction with all
items is reported at the end of the test session, regardless of whether or not the candidate actually
attempted all the items. In effect, itemSessions are created in the initial state for all items at the start of
the test and are maintained in parallel. In an Adaptive Test the items that are to be presented are
selected during the session based on the responses and outcomes associated with the items presented
so far. Items are selected from a large pool and the delivery engine only reports the candidate's
interaction with items that have actually been selected.

A candidate's interaction with an item is broken into 0 or more attempts. During each attempt the
candidate interacts with the item through one or more candidate sessions. At the end of a candidate
session the item is placed into the suspended state ready for the next candidate session. During a
candidate session the itemSession is in the interacting state. Once an attempt has ended response
processing takes place, after response processing a new attempt may be started.

For non-adaptive items, response processing may only be invoked a limited number of times, typically
once. For adaptive items, no such limit is required because the response processing adapts the values it 
assigns to the outcome variables based on the path through the item. In both cases, each invocation of
response processing indicates the end of an attempt. The appearance of the item's body, and whether
any modal feedback is shown, is determined by the values of the outcomeVariables.

When no more attempts are allowed the itemSession passes into the closed state. Once in the closed
state the values of the response variables are fixed. A delivery system or reporting tool may still allow
the item to be presented after it has reached the closed state. This type of presentation takes place in
the review state, summary feedback may also be visible at this point if response processing has taken
place and set a suitable outcomeVariable.

Finally, for systems that support the display of solutions, the itemSession may pass into the solution
state. In this state, the candidate's responses are temporarily replaced by the correct values supplied in
the corresponding responseDeclarations (or NULL if none was declared).

Abstract class : sessionContext

Associated classes:
itemSession

The details of sessionContext will be application specific and are therefore outside the scope of this
document. Applications that handle result reports using [RR] should consider the limits of the data
model imposed on the context element in that specification.

5. Item Variables

Abstract class : variableDeclaration

Derived classes:
outcomeDeclaration, responseDeclaration, templateDeclaration



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

12 of 68 2/24/2005 11:43 AM

Variable Declarations

Item variables are declared by variable declarations. All variables must be declared except for the
built-in session variables referred to below which are declared implicitly. The purpose of the
declaration is to associate an identifier with the variable and to identify the runtime type of the
variable's value. At runtime (i.e., during an itemSession) the value of the variable is notionally
represented by a class derived from itemVariable

Attribute : identifier [1]: identifier
The identifiers of the built-in session variables are reserved. They are completionStatus and duration. 
All item variables declared in an item share the same namespace. Different items have different
namespaces.

Attribute : cardinality [1]: cardinality
Each variable is either single valued or multi-valued. Multi-valued variables are referred to as
containers and come in ordered, unordered and record types. See cardinality for more information.

Attribute : baseType [0..1]: baseType
The value space from which the variable's value can be drawn (or in the case of containers, from which
the individual values are drawn) is identified with a baseType. The baseType selects one of a small set 
of predefined types that are considered to have atomic values within the runtime data model. Variables 
with record cardinality have no base-type.

Contains : defaultValue [0..1]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

13 of 68 2/24/2005 11:43 AM

An optional default value for the variable. The point at which a variable is set to its default value
varies depending on the type of item variable.

Abstract class : itemVariable

Derived classes:
outcomeVariable, responseVariable, templateVariable

Associated classes:
itemSession

Associated with : variableDeclaration [1]
At runtime, item variables are created in the itemSession each corresponding to a variableDeclaration
in the corresponding assessmentItem.

Attribute : identifier [1]: identifier
The purpose of an itemVariable is to associate the runtime value of the variable with the variable's
identifier and declaration. At runtime the variable has the cardinality and baseType given in the 
associated declaration

Contains : value [*]
An itemVariable may have no value at all, in which case it is said to have the special value NULL. For
example, if the candidate has not yet had an opportunity to respond to an interaction then any 
associated responseVariable will have a NULL value. Empty containers and empty strings are always 
treated as NULL values.

Class : value

Associated classes:
ordinaryStatistic, defaultValue, correctResponse, itemVariable

A class that can represent a single value of any baseType in variable declarations. The base-type is 
defined by the baseType attribute of the declaration except in the case of variables with record
cardinality.

Attribute : fieldIdentifier [0..1]: identifier
This attribute is used for specifying the field identifier for a value that forms part of a record. 

Attribute : baseType [0..1]: baseType
This attribute is used for specifying the base-type of a value that forms part of a record. 

Class : defaultValue

Associated classes:
variableDeclaration

Attribute : interpretation [0..1]: string
A human readable interpretation of the default value.

Contains : value [1..*]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

14 of 68 2/24/2005 11:43 AM

Enumeration: cardinality

single

multiple

ordered

record

An expression or itemVariable can either be single-valued or multi-valued. A multi-valued expression
(or variable) is called a container. A container contains a list of values, this list may be empty in which
case it is treated as NULL. All the values in a multiple or ordered container are drawn from the same
value set, however, containers may contain multiple occurrences of the same value. In other words, 
[A,B,B,C] is an acceptable value for a container. A container with cardinality multiple and value
[A,B,C] is equivalent to a similar one with value [C,B,A] whereas these two values would be
considered distinct for containers with cardinality ordered. When used as the value of a
responseVariable this distinction is typified by the difference between selecting choices in a
multi-response multi-choice task and ranking choices in an order objects task. In the language of
[ISO11404] a container with multiple cardinality is a "bag-type", a container with ordered cardinality
is a "sequence-type" and a container with record cardinality is a "record-type".

The record container type is a special container that contains a set of independent values each
identified by its own identifier and having its own base-type. This specification does not make use of
the record type directly however it is provided to enable customInteractions to manipulate more
complex responses and customOperators to return more complex values.

Enumeration: baseType

A base-type is simply a description of a set of atomic values (atomic to this specification). Note that
several of the baseTypes used to define the runtime data model have identical definitions to those of
the basic data types used to define the values for attributes in the specification itself. The use of an
enumeration to define the set of baseTypes used in the runtime model, as opposed to the use of classes
with similar names, is designed to help distinguish between these two distinct levels of modeling.

identifier

The set of identifier values is the same as the set of values defined by the identifier class

boolean

The set of boolean values is the same as the set of values defined by the boolean class. 

integer

The set of integer values is the same as the set of values defined by the integer class.

float

The set of float values is the same as the set of values defined by the float class.

string

The set of string values is the same as the set of values defined by the string class.

point

A point value represents an integer tuple corresponding to a graphic point. The two integers



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

15 of 68 2/24/2005 11:43 AM

correspond to the horizontal (x-axis) and vertical (y-axis) positions respectively. The up/down and
left/right senses of the axes are context dependent.

pair

A pair value represents a pair of identifiers corresponding to an association between two objects. The
association is undirected so (A,B) and (B,A) are equivalent.

directedPair

A directedPair value represents a pair of identifiers corresponding to a directed association between
two objects. The two identifiers correspond to the source and destination objects.

duration

A duration value specifies a distance (in time) between two time points. In other words, a time period
as defined by [ISO8601]. Durations are measured in seconds and may have a fractional part.

file

A file value is any sequence of octets (bytes) qualified by a content-type and an optional filename
given to the file (for example, by the candidate when uploading it as part of an interaction). The
content type of the file is one of the MIME types defined by [RFC2045].

uri

A URI value is a Uniform Resource Identifier as defined by [URI].

Class : mapping

Associated classes:
responseDeclaration, categorizedStatistic

A special class used to create a mapping from a source set of any baseType to a single float. When 
mapping containers the result is the sum of the mapped values from the target set. See mapResponse
for details.

Attribute : lowerBound [0..1]: float
The lower bound for the result of mapping a container. If unspecified there is no lower-bound.

Attribute : upperBound [0..1]: float
The upper bound for the result of mapping a container. If unspecified there is no upper-bound.

Attribute : defaultValue [1]: float = 0
The default value from the target set to be used when no explicit mapping for a source value is given.

Contains : mapEntry [1..*]
The map is defined by a set of mapEntries, each of which maps a single value from the source set onto
a single float.

Class : mapEntry

Associated classes:
mapping

Attribute : mapKey [1]: value



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

16 of 68 2/24/2005 11:43 AM

The source value

Attribute : mappedValue [1]: float
The mapped value

5.1. Response Variables

Class : responseDeclaration (variableDeclaration)

Associated classes:
assessmentItem

Response variables are declared by response declarations and bound to interactions in the itemBody.

itemSession defines one built-in pre-bound response variable: duration.

Contains : correctResponse [0..1]
A response declaration may assign an optional correctResponse. This value may indicate the only
possible value of the response variable to be considered correct or merely just a correct value. For 
responses that are being measured against a more complex scale than correct/incorrect this value 
should be set to the (or an) optimal value. Finally, for responses for which no such optimal value is
defined the correctResponse must be omitted. If a delivery system supports the display of a solution
then it should display the correct values of responses (where defined) to the candidate. When correct
values are displayed they must be clearly distinguished from the candidate's own responses (which may
be hidden completely if necessary).

Contains : mapping [0..1]
The mapping provides a mapping from the set of base values to a set of numeric values for the
purposes of response processing. See mapResponse for information on how to use the mapping.

Contains : areaMapping [0..1]
The areaMapping, which may only be present in declarations of variables with baseType point, 
provides an alternative form of mapping which tests against areas of the coordinate space instead of
mapping single values (i.e., single points).

Class : correctResponse

Associated classes:
responseDeclaration

Attribute : interpretation [0..1]: string
A human readable interpretation of the correct value.

Contains : value [1..*]

Class : areaMapping

Associated classes:
responseDeclaration



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

17 of 68 2/24/2005 11:43 AM

A special class used to create a mapping from a source set of point values to a target set of float values. 
When mapping containers the result is the sum of the mapped values from the target set. See
mapResponsePoint for details. The attributes have the same meaning as the similarly named attributes
on mapping.

Attribute : lowerBound [0..1]: float

Attribute : upperBound [0..1]: float

Attribute : defaultValue [1]: float = 0

Contains : areaMapEntry [1..*] {ordered}
The map is defined by a set of areaMapEntries, each of which maps an area of the coordinate space
onto a single float. When mapping points each area is tested in turn, with those listed first taking
priority in the case where areas overlap and a point falls in the intersection.

Class : areaMapEntry

Associated classes:
areaMapping

Attribute : shape [1]: shape
The shape of the area.

Attribute : coords [1]: coords
The size and position of the area, interpreted in conjunction with the shape.

Attribute : mappedValue [1]: float
The mapped value

Abstract class : responseVariable (itemVariable)

At runtime, response variables are instantiated as part of an itemSession. Their values are always 
initialized to NULL (no value) regardless of whether or not a default value is given in the declaration.
A response variable with a NULL value indicates that the candidate has not offered a response, either
because they have not attempted the item at all or because they have attempted it and chosen not to
provide a response.

If a default value has been provided for a response variable then the variable is set to this value at the
start of the first attempt. If the candidate never attempts the item, in other words, the itemSession
passes straight from the initial state to the closed state without going through the interacting state, then
the response variable remains NULL and the default value is never used.

Implementors of Delivery Engine's should take care when implementing user interfaces for items with
default response variable values. If the associated interaction is left in the default state (i.e.,
representing the default value) then it is important that the system is confident that the candidate
intended to submit this value and has not simply failed to notice that a default has been provided. This
is especially true if the candidate's attempt ended due to some external event, such as running out of
time. The techniques required to distinguish between these cases are an issue for user interface design
and are therefore out of scope for this specification.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

18 of 68 2/24/2005 11:43 AM

5.2. Outcome Variables

Class : outcomeDeclaration (variableDeclaration)

Associated classes:
assessmentItem

Outcome variables are declared by outcome declarations. Their value is set either from a default given
in the declaration itself or by a responseRule during responseProcessing.

itemSession defines one built-in outcome variable: completionStatus. 

Attribute : interpretation [0..1]: string
A human interpretation of the variable's value.

Attribute : longInterpretation [0..1]: uri
An optional link to an extended interpretation of the outcome variable's value.

Attribute : normalMaximum [0..1]: float
The normalMaximum attribute optionally defines the maximum magnitude of numeric outcome 
variables, it must be a positive value. If given, the outcome's value can be divided by normalMaximum
and then truncated (if necessary) to obtain a normalized score in the range [-1.0,1.0]. normalMaximum
has no affect on responseProcessing or the values that the outcome variable itself can take.

Abstract class : outcomeVariable (itemVariable)

Outcome variables are instantiated as part of an itemSession. Their values may be initialized with a 
default value and/or set during responseProcessing. If no default value is given in the declaration then
the outcome variable is initialized to NULL unless the outcome is of a numeric type (integer or float) 
in which case it is initialized to 0.

For Non-adaptive Items, the values of the outcome variables are reset to their default values prior to
each invocation of responseProcessing. For Adaptive Items the outcome variables retain the values 
that were assigned to them during the previous invocation of response processing. For more
information, see Response Processing.

6. Content Model

Class : itemBody (bodyElement)

Associated classes:
assessmentItem

Contains : block [*]

The item body contains the text, graphics, media objects and interactions that describe the item's
content and information about how it is structured. The body is presented by combining it with
stylesheet information, either explicitly or implicitly using the default style rules of the delivery or
authoring system.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

19 of 68 2/24/2005 11:43 AM

The body must be presented to the candidate when the associated itemSession is in the interacting 
state. In this state, the candidate must be able to interact with each of the visible interactions and 
therefore set or update the values of the associated responseVariables. The body may be presented to 
the candidate when the item session is in the closed or review state. In these states, although the
candidate's responses should be visible, the interactions must be disabled so as to prevent the candidate
from setting or updating the values of the associated response variables. Finally, the body may be
presented to the candidate in the solution state, in which case the correct values of the response
variables must be visible and the associated interactions disabled.

The content model employed by this specification uses many concepts taken directly from [XHTML]. 
In effect, this part of the specification defines a profile of XHTML. Only some of the elements defined
in XHTML are allowable in an assessmentItem and of those that are, some have additional constraints
placed on their attributes. Finally, this specification defines some new elements which are used to
represent the interactions and to control the display of Integrated Feedback and content restricted to
one or more of the defined content views.

Abstract class : bodyElement

Derived classes:
atomicBlock, atomicInline, caption, choice, col, colgroup, div, dl, dlElement, 
hr, interaction, itemBody, li, object, ol, printedVariable, prompt, 
simpleBlock, simpleInline, table, tableCell, tbody, templateElement, tfoot, 

thead, tr, ul

The root class of all content objects in the item content model is the bodyElement. It defines a number
of attributes that are common to all elements of the content model.

Attribute : id [0..1]: identifier
The id of a body element must be unique within the item.

Attribute : class [*]: styleclass
Classes can be assigned to individual body elements. Multiple class names can be given. These class
names identify the element as being a member of the listed classes. Membership of a class can be used
by authoring systems to distinguish between content objects that are not differentiated by this
specification. Typically, this information is used to apply different formatting based on definitions in
an associated stylesheet.

Attribute : lang [0..1]: language
The main language of the element. This attribute is optional and will usually be inherited from the
enclosing element.

Attribute : label [0..1]: string256
The label attribute provides authoring systems with a mechanism for labeling elements of the content
model with application specific data. If an item uses labels then values for the associated toolName
and toolVersion attributes must also be provided.

6.1. Basic Classes

Underpinning the content model are a number of abstract classes that are used to group elements of the
body into categories that define peer-groups.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

20 of 68 2/24/2005 11:43 AM

Abstract class : objectFlow

Derived classes:
flow, param

Associated classes:
object

Elements that can appear within an object.

Abstract class : inline

Derived classes:
inlineInteraction, inlineStatic

Associated classes:
simpleInline, dt, caption, atomicBlock

Elements that behave as spans of text, such as the contents of paragraphs.

Abstract class : block

Derived classes:
blockInteraction, blockStatic, customInteraction, positionObjectStage

Associated classes:
itemBody, simpleBlock

Elements that provide structure to the text, such as paragraphs, tables etc. Most elements are either
inline or block elements.

Abstract class : flow (objectFlow)

Derived classes:
blockInteraction, customInteraction, flowStatic, inlineInteraction

Associated classes:
tableCell, div, dd, li

Elements that can appear inside list items, table cells, etc. which includes block-type and inline-type
elements.

Abstract class : inlineStatic (inline)

Derived classes:
atomicInline, gap, hottext, math, object, printedVariable, simpleInline, 

templateInline, textRun

Associated classes:
hottext, prompt, templateInline

A sub-class of inline that excludes interactions.

Abstract class : blockStatic (block)

Derived classes:



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

21 of 68 2/24/2005 11:43 AM

atomicBlock, div, dl, hr, math, ol, simpleBlock, table, templateBlock, ul

Associated classes:
templateBlock, gapMatchInteraction, hottextInteraction

A sub-class of block that excludes interactions.

Abstract class : flowStatic (flow)

Derived classes:
atomicBlock, atomicInline, div, dl, hottext, hr, math, object, ol, 
printedVariable, simpleBlock, simpleInline, table, templateBlock, 

templateInline, textRun, ul

Associated classes:
simpleAssociableChoice, modalFeedback, simpleChoice

A sub-class of flow that excludes interactions.

The following classes define a small number of common element types used by XHTML.

Abstract class : simpleInline (bodyElement, flowStatic, inlineStatic)

Derived classes:
a, abbr, acronym, b, big, cite, code, dfn, em, feedbackInline, i, kbd, q, samp, 

small, span, strong, sub, sup, tt, var

Contains : inline [*]

Abstract class : simpleBlock (blockStatic, bodyElement, flowStatic)

Derived classes:
blockquote, feedbackBlock, rubricBlock

Contains : block [*]

Abstract class : atomicInline (bodyElement, flowStatic, inlineStatic)

Derived classes:
br, img

Abstract class : atomicBlock (blockStatic, bodyElement, flowStatic)

Derived classes:
address, h1, h2, h3, h4, h5, h6, p, pre

Contains : inline [*]

Class : textRun (flowStatic, inlineStatic)

A text run is simply a run of characters. Unlike all other elements in the content model it is not a
sub-class of bodyElement. To assign attributes to a run of text you must use the span element instead.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

22 of 68 2/24/2005 11:43 AM

6.2. XHTML Elements

The structural elements of the content model that are taken from [XHTML] are documented in groups 
according to their suggested classification in [XHTML_MOD]. Only those attributes listed here may
be used (including attributes inherited from parent classes). By default, elements and attributes have
the same interpretation and restrictions as the corresponding elements and attributes in [XHTML].

6.2.1. Text Elements

Class : abbr (simpleInline)

Note that the title attribute defined by XHTML is not supported.

Class : acronym (simpleInline)

Note that the title attribute defined by XHTML is not supported.

Class : address (atomicBlock)

Class : blockquote (simpleBlock)

Attribute : cite [0..1]: uri

Class : br (atomicInline)

Class : cite (simpleInline)

Class : code (simpleInline)

Class : dfn (simpleInline)

Class : div (blockStatic, bodyElement, flowStatic)

Contains : flow [*]

Class : em (simpleInline)

Class : h1 (atomicBlock)

Class : h2 (atomicBlock)

Class : h3 (atomicBlock)

Class : h4 (atomicBlock)

Class : h5 (atomicBlock)

Class : h6 (atomicBlock)

Class : kbd (simpleInline)



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

23 of 68 2/24/2005 11:43 AM

Class : p (atomicBlock)

Class : pre (atomicBlock)

Although pre inherits from atomicBlock it must not contain, either directly or indirectly, any of the
following objects: img, object, big, small, sub, sup.

Class : q (simpleInline)

Attribute : cite [0..1]: uri

Class : samp (simpleInline)

Class : span (simpleInline)

Class : strong (simpleInline)

Class : var (simpleInline)

6.2.2. List Elements

Class : dl (blockStatic, bodyElement, flowStatic)

Contains : dlElement [*]

Abstract class : dlElement (bodyElement)

Derived classes:
dd, dt

Associated classes:
dl

Class : dt (dlElement)

Contains : inline [*]

Class : dd (dlElement)

Contains : flow [*]

Class : ol (blockStatic, bodyElement, flowStatic)

Contains : li [*]

Class : ul (blockStatic, bodyElement, flowStatic)

Contains : li [*]

Class : li (bodyElement)

Associated classes:



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

24 of 68 2/24/2005 11:43 AM

ul, ol

Contains : flow [*]

6.2.3. Object Elements

Class : object (bodyElement, flowStatic, inlineStatic)

Associated classes:
drawingInteraction, positionObjectInteraction, positionObjectStage, 

graphicInteraction, gapImg

Contains : objectFlow [*]

Attribute : data [1]: string
The data attribute provides a URI for locating the data associated with the object.

Attribute : type [1]: mimeType

Attribute : width [0..1]: length

Attribute : height [0..1]: length

Class : param (objectFlow)

Attribute : name [1]: string
The name of the parameter, as interpreted by the object.

Attribute : value [1]: string
The value to pass to the object for the named parameter. This value is subject to template variable
expansion. If the value is the name of a template variable that was declared with the paramVariable set 
to true then the template variable's value is passed to the object as the value for the given parameter.

When expanding a template variable as a parameter value, types other than identifiers, strings and uris 
must be converted to strings. Numeric types are converted to strings using the "%i" or "%G" formats
as appropriate (see printedVariable for a discussion of numeric formatting). Values of base-type
boolean are expanded to one of the strings "true" or "false". Values of base-type point are expanded to 
two space-separated integers in the order horizontal coordinate, vertical coordinate, using "%i" format.
Values of base-type pair and directedPair are converted to a string consisting of the two identifiers,
space separated. Values of base-type duration are converted using "%G" format. Values of base-type
file cannot be used in parameter expansion.

If the valuetype is REF the template variable must be of base-type uri.

Attribute : valuetype [1]: paramType = DATA
This specification supports the use of DATA and REF but not OBJECT.

Attribute : type [0..1]: mimeType
Used to provide a type for values valuetype REF.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

25 of 68 2/24/2005 11:43 AM

Enumeration: paramType

DATA

REF

6.2.4. Presentation Elements

Class : b (simpleInline)

Class : big (simpleInline)

Class : hr (blockStatic, bodyElement, flowStatic)

Class : i (simpleInline)

Class : small (simpleInline)

Class : sub (simpleInline)

Class : sup (simpleInline)

Class : tt (simpleInline)

6.2.5. Table Elements

Class : caption (bodyElement)

Associated classes:
table

Contains : inline [*]

Class : col (bodyElement)

Associated classes:
table, colgroup

Class : colgroup (bodyElement)

Associated classes:
table

Contains : col [*]

Class : table (blockStatic, bodyElement, flowStatic)

Attribute : summary [0..1]: string

Contains : caption [0..1]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

26 of 68 2/24/2005 11:43 AM

Contains : col [*]
If a table directly contains a col then it must not contain any colgroup elements.

Contains : colgroup [*]
If a table contains a colgroup it must not directly contain any col elements.

Contains : thead [0..1]

Contains : tfoot [0..1]

Contains : tbody [1..*]

Abstract class : tableCell (bodyElement)

Derived classes:
td, th

Associated classes:
tr

In XHTML, table cells are represented by either th or td and these share the following attributes and
content model:

Attribute : headers [*]: identifier

Attribute : scope [0..1]: tableCellScope

Attribute : abbr [0..1]: string

Attribute : axis [0..1]: string

Attribute : rowspan [0..1]: integer

Attribute : colspan [0..1]: integer

Contains : flow [*]

Enumeration: tableCellScope

row

col

rowgroup

colgroup

Class : tbody (bodyElement)

Associated classes:
table



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

27 of 68 2/24/2005 11:43 AM

Contains : tr [1..*]

Class : td (tableCell)

Class : tfoot (bodyElement)

Associated classes:
table

Contains : th [1..*]

Class : th (tableCell)

Associated classes:
tfoot

Class : thead (bodyElement)

Associated classes:
table

Contains : tr [1..*]

Class : tr (bodyElement)

Associated classes:
tbody, thead

Contains : tableCell [1..*]

6.2.6. Image Element

Class : img (atomicInline)

Attribute : src [1]: uri

Attribute : alt [1]: string256

Attribute : longdesc [0..1]: uri

Attribute : height [0..1]: length

Attribute : width [0..1]: length

6.2.7. Hypertext Element

Class : a (simpleInline)

Although a inherits from simpleInline it must not contain, either directly or indirectly, another a.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

28 of 68 2/24/2005 11:43 AM

Attribute : href [1]: uri

Attribute : type [0..1]: mimeType

6.3. MathML

[MathML] defines a Markup Language for describing mathematical notation using XML. The primary
purpose of MathML is to provide a language for embedding mathematical expressions into other
documents, in particular into HTML documents.

Class : math (blockStatic, flowStatic, inlineStatic)

The math class is defined externally by the MathML specification. It can behave in the item's content
model as an inline, block or flow element.

6.3.1. Combining Template Variables and MathML

It is often desirable to vary elements of a mathematical expression when creating item templates.
Although it is impossible to embed objects such as printedVariable defined for that purpose within a
math object the techniques described in this section can be used to achieve a similar effect.

In MathML, numbers are represented either by the <mn> or <cn> elements, for presentation or content
representation respectively. Similarly, <mi> and <ci> represent identifiers. If mathVariable is set in a
template variable's declaration then all instances of <mi> and <ci> that match the name of the template
variable must be replaced by <mn> and <cn> respectively with the template variable's value as their
content.

It is possible that this technique of expanding template variables will be extended to other elements of
MathML in future.

6.4. Variable Content

This specification defines two methods by which the content of an assessmentItem can vary depending
on the state of the itemSession.

The first method is based on the value of an outcomeVariable.

Abstract class : feedbackElement

Derived classes:
feedbackBlock, feedbackInline

Attribute : outcomeIdentifier [1]: identifier
The identifier of an outcome variable that must have a base-type of identifier and be of either single or 
multiple cardinality. The visibility of the feedbackElement is controlled by assigning a value (or
values) to this outcome variable during responseProcessing.

Attribute : showHide [1]: showHide = show
The showHide attribute determines how the visibility of the feedbackElement is controlled. If set to



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

29 of 68 2/24/2005 11:43 AM

show then the feedback is hidden by default and shown only if the associated outcome variable
matches, or contains, the value of the identifier attribute. If set to hide then the feedback is shown by 
default and hidden if the associated outcome variable matches, or contains, the value of the identifier
attribute.

Attribute : identifier [1]: identifier
The identifier that determines the visibility of the feedback in conjunction with the showHide attribute.

A feedback element that forms part of a Non-adaptive Item must not contain an interaction object, 
either directly or indirectly.

When an interaction is contained in a hidden feedback element it must also be hidden. The candidate
must not be able to set or update the value of the associated responseVariable.

Enumeration: showHide

show

hide

Class : feedbackBlock (feedbackElement, simpleBlock)

Class : feedbackInline (feedbackElement, simpleInline)

Class : rubricBlock (simpleBlock)

Attribute : view [1..*]: view
The views in which the rubric block's content are to be shown.

A rubric block identifies part of an assessmentItem's itemBody that represents instructions to one or
more of the actors that view the item. Although rubric blocks are defined as simpleBlocks they must 
not contain interactions.

The visibility of nested bodyElements or rubricBlocks is determined by the outermost element. In 
other words, if an element is determined to be hidden then all of its content is hidden including
conditionally visible elements for which the conditions are satisfied and that therefore would otherwise
be visible.

Class : printedVariable (bodyElement, flowStatic, inlineStatic)

Attribute : identifier [1]: identifier
The outcomeVariable or templateVariable that must have been defined and have single cardinality.
The values of responseVariables cannot be printed directly as their values are implicitly known to the
candidate through the interactions they are bound to. If necessary, their values can be assigned to
outcomeVariables during responseProcessing and displayed to the candidate as part of a bodyElement
visible only in the appropriate feedback states.

If the variable's value is NULL then the element is ignored.

Variables of baseType string are treated as simple runs of text.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

30 of 68 2/24/2005 11:43 AM

Variables of baseType integer or float are converted to runs of text (strings) using the formatting rules 
described below. Float values should only be formatted in the e, E, f, g, G, r or R styles..

Variables of baseType duration are treated as floats, representing the duration in seconds.

Attribute : format [0..1]: string256
The format conversion specifier to use when converting numerical values to strings. See Number 
Formatting Rules for details. 

Attribute : base [0..1]: integer = 10
The number base to use when converting integer variables to strings with the i conversion type code.

Variables of baseType file are rendered using a control that enables the user to open the file. The
control should display the name associated with the file, if any.

Variables of baseType uri are rendered using a control that enables the user to open the identified
resource, for example, by following a hypertext link in the case of a URL.

6.4.1. Number Formatting Rules

The syntax of the format attribute is based on the format conversion specifiers defined in the C
programming language [ISO_9899] for use with printf and related functions.

Each conversion specifier starts with a '%' character and is followed by zero or more flag characters (#,
0, -, " " [space] and +), an optional digit string indicating the minimum field width, an optional
precision (consisting of a "." followed by zero or more digits) and finally one of the conversion type
codes: E, e, f, G, g, r, R, i, o, X, or x. These are interpreted according to the C standard with the
exception of i, which may be used to format numbers in bases other than 10 using the base attribute, 
and r/R which round to the number of significant figures given by the precision in the same way as g/G
except that scientific format is only used if the requested number of significant figures is less than the
number of digits to the left of the decimal point.

6.5. Formatting Items with Stylesheets

Class : stylesheet

Associated classes:
assessmentItem

Used to associate an external stylesheet with an assessmentItem.

Attribute : href [1]: uri
The identifier or location of the external stylesheet.

Attribute : type [1]: mimeType
The type of the external stylesheet.

Attribute : media [0..1]: string
An optional media descriptor that describes the media to which this stylesheet applies.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

31 of 68 2/24/2005 11:43 AM

Attribute : title [0..1]: string
An optional title for the stylesheet.

Datatype: styleclass

The type used when referring to a class definition, for example in a stylesheet. Class names cannot
contain spaces.

7. Interactions

Abstract class : interaction (bodyElement)

Derived classes:
blockInteraction, customInteraction, inlineInteraction, 

positionObjectInteraction

Interactions allow the candidate to interact with the item. Through an interaction, the candidate selects
or constructs a response. The candidate's responses are stored in the responseVariables. Each
interaction is associated with (at least) one response variable.

Attribute : responseIdentifier [1]: identifier
The response variable associated with the interaction.

The state of the interaction reflects the value of the associated response variable.

Abstract class : inlineInteraction (flow, inline, interaction)

Derived classes:
endAttemptInteraction, inlineChoiceInteraction, textEntryInteraction

An interaction that appears inline.

Abstract class : blockInteraction (block, flow, interaction)

Derived classes:
associateInteraction, choiceInteraction, drawingInteraction, 
extendedTextInteraction, gapMatchInteraction, graphicInteraction, 
hottextInteraction, matchInteraction, orderInteraction, sliderInteraction, 

uploadInteraction

An interaction that behaves like a block in the content model. Most interactions are of this type.

Contains : prompt [0..1]
An optional prompt for the interaction.

Class : prompt (bodyElement)

Associated classes:
blockInteraction



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

32 of 68 2/24/2005 11:43 AM

Contains : inlineStatic [*]
A prompt must not contain any nested interactions.

Abstract class : choice (bodyElement)

Derived classes:
associableChoice, hotspotChoice, hottext, inlineChoice, simpleChoice

Many of the interactions involve choosing one or more predefined choices. These choices all have the
following attributes in common:

Attribute : identifier [1]: identifier
The identifier of the choice. This identifier must not be used by any other choice or item variable.

Attribute : fixed [0..1]: boolean = false
If fixed is true for a choice then the position of this choice within the interaction must not be changed
by the delivery engine even if the immediately enclosing interaction supports the shuffling of choices.
If no value is specified then the choice is free to be shuffled.

Abstract class : associableChoice (choice)

Derived classes:
associableHotspot, gap, gapChoice, simpleAssociableChoice

Other interactions involve associating pairs of predefined choices. These choices all have the following
attribute in common:

Attribute : matchGroup [0..*]: identifier
A set of choices that this choice may be associated with, all others are excluded. If no matchGroup is
given, or if it is empty, then all other choices may be associated with this one subject to their own
matching constraints.

7.1. Simple Interactions

Class : choiceInteraction (blockInteraction)

The choice interaction presents a set of choices to the candidate. The candidate's task is to select one or
more of the choices, up to a maximum of maxChoices. There is no corresponding minimum number of
choices. The interaction is always initialized with no choices selected.

The choiceInteraction must be bound to a responseVariable with a baseType of identifier and single or 
multiple cardinality.

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are presented subject to the fixed attribute.

Attribute : maxChoices [1]: integer = 1
The maximum number of choices that the candidate is allowed to select. If maxChoices is 0 then there
is no restriction. If maxChoices is greater than 1 (or 0) then the interaction must be bound to a



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

33 of 68 2/24/2005 11:43 AM

response with multiple cardinality.

Contains : simpleChoice [1..*]
An ordered list of the choices that are displayed to the user. The order is the order of the choices
presented to the user unless shuffle is true.

Class : orderInteraction (blockInteraction)

In an order interaction the candidate's task is to reorder the choices, the order in which the choices are
displayed initially is significant.

If a default value is specified for the response variable associated with an order interaction then its
value should be used to override the order of the choices specified here.

By its nature, an order interaction may be difficult to render in an unanswered state so implementors
should be aware of the issues concerning the use of default values described in the section on
responseVariables.

The orderInteraction must be bound to a responseVariable with a baseType of identifier and ordered
cardinality only.

Contains : simpleChoice [1..*]
An ordered list of the choices that are displayed to the user. The order is the initial order of the choices
presented to the user unless shuffle is true.

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are initially presented subject to the fixed attribute.

Attribute : orientation [0..1]: orientation
The orientation attribute provides a hint to rendering systems that the ordering has an inherent vertical
or horizontal interpretation.

Class : simpleChoice (choice)

Associated classes:
orderInteraction, choiceInteraction

Contains : flowStatic [*]

simpleChoice is a choice that contains flowStatic objects. A simpleChoice must not contain any nested
interactions.

Class : associateInteraction (blockInteraction)

An associate interaction is a blockInteraction that presents candidates with a number of choices and
allows them to create associations between them.

The associateInteraction must be bound to a responseVariable with base-type pair and either single or 
multiple cardinality.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

34 of 68 2/24/2005 11:43 AM

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are presented subject to the fixed attribute of the choice.

Attribute : maxAssociations [1]: integer = 1
The maximum number of associations that the candidate is allowed to make. If maxAssociations is 0
then there is no restriction. If maxAssociations is greater than 1 (or 0) then the interaction must be
bound to a response with multiple cardinality.

Contains : simpleAssociableChoice [1..*]
An ordered set of choices.

Class : matchInteraction (blockInteraction)

A match interaction is a blockInteraction that presents candidates with two sets of choices and allows
them to create associates between pairs of choices in the two sets, but not between pairs of choices in
the same set. Further restrictions can still be placed on the allowable associations using the matchMax
and matchGroup attributes of the choices.

The matchInteraction must be bound to a responseVariable with base-type directedPair and either 
single or multiple cardinality.

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are presented within each set, subject to the fixed attribute of the choices themselves.

Attribute : maxAssociations [1]: integer = 1
The maximum number of associations that the candidate is allowed to make. If maxAssociations is 0
then there is no restriction. If maxAssociations is greater than 1 (or 0) then the interaction must be
bound to a response with multiple cardinality.

Contains : simpleMatchSet [2]
The two sets of choices, the first set defines the source choices and the second set the targets.

Class : simpleAssociableChoice (associableChoice)

Associated classes:
associateInteraction, simpleMatchSet

Attribute : matchMax [1]: integer
The maximum number of choices this choice may be associated with. If matchMax is 0 then there is
no restriction.

Contains : flowStatic [*]

associableChoice is a choice that contains flowStatic objects, it must not contain nested interactions.

Class : simpleMatchSet

Associated classes:



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

35 of 68 2/24/2005 11:43 AM

matchInteraction

Contains : simpleAssociableChoice [*]
An ordered set of choices for the set.

Class : gapMatchInteraction (blockInteraction)

A gap match interaction is a blockInteraction that contains a number gaps that the candidate can fill
from an associated set of choices. The candidate must be able to review the content with the gaps filled
in context, as indicated by their choices.

The gapMatchInteraction must be bound to a responseVariable with base-type directedPair and either 
single or multiple cardinality, depending on the number of gaps. The choices represent the source of
the pairing and gaps the targets. Each gap can have at most one choice associated with it. The
maximum occurrence of the choices is controlled by the matchMax attribute of gapChoice.

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are presented (not the gaps), subject to the fixed attribute of the choices themselves.

Contains : gapChoice [1..*]
An ordered list of choices for filling the gaps. There may be fewer choices than gaps if required.

Contains : blockStatic [1..*]
The content of the interaction is simply a piece of content that contains the gaps. If the block contains 
more than one gap then the interaction must be bound to a response with multiple cardinality.

Class : gap (associableChoice, inlineStatic)

gap is an inlineStatic element that must only appear within a gapMatchInteraction.

Abstract class : gapChoice (associableChoice)

Derived classes:
gapImg, gapText

Associated classes:
gapMatchInteraction

The choices that are used to fill the gaps in a gapMatchInteraction are either simple runs of text or 
single image objects, both derived from gapChoice.

Attribute : matchMax [1]: integer
The maximum number of choices this choice may be associated with. If matchMax is 0 there is no
restriction.

Class : gapText (gapChoice)

A simple run of text to be inserted into a gap by the user.

Class : gapImg (gapChoice)



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

36 of 68 2/24/2005 11:43 AM

Associated classes:
graphicGapMatchInteraction

A gap image contains a single image object to be inserted into a gap by the candidate.

Attribute : objectLabel [0..1]: string
An optional label for the image object to be inserted.

Contains : object [1]

7.2. Text-based Interactions

Class : inlineChoiceInteraction (inlineInteraction)

A inline choice is an inlineInteraction that presents the user with a set of choices, each of which is a
simple piece of text. The candidate's task is to select one of the choices. Unlike the choiceInteraction, 
the delivery engine must allow the candidate to review their choice within the context of the
surrounding text.

The inlineChoiceInteraction must be bound to a responseVariable with a baseType of identifier and 
single cardinality only.

Contains : inlineChoice [1..*]
An ordered list of the choices that are displayed to the user. The order is the order of the choices
presented to the user unless shuffle is true.

Attribute : shuffle [1]: boolean = false
If the shuffle attribute is true then the delivery engine must randomize the order in which the choices
are presented subject to the fixed attribute.

Class : inlineChoice (choice)

Associated classes:
inlineChoiceInteraction

A simple run of text to be displayed to the user.

Abstract class : stringInteraction

Derived classes:
extendedTextInteraction, textEntryInteraction

String interactions can be bound to numeric response variables, instead of strings, if desired.

Attribute : base [0..1]: integer = 10
If the string interaction is bound to a numeric response variable then the base attribute must be used to
set the number base in which to interpret the value entered by the candidate.

Attribute : stringIdentifier [0..1]: identifier
If the string interaction is bound to a numeric response variable then the actual string entered by the



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

37 of 68 2/24/2005 11:43 AM

candidate can also be captured by binding the interaction to a second response variable (of base-type
string).

Attribute : expectedLength [0..1]: integer
The expectedLength attribute provides a hint to the candidate as to the expected overall length of the
desired response. A Delivery Engine should use the value of this attribute to set the size of the
response box, where applicable.

Attribute : patternMask [0..1]: string
If given, the pattern mask specifies a regular expression that the candidate's response must match in
order to be considered valid. The regular expression language used is defined in Appendix F of
[XML_SCHEMA2].

Attribute : placeholderText [0..1]: string
In visual environments, string interactions are typically represented by empty boxes into which the
candidate writes or types. However, in speech based environments it is helpful to have some
placeholder text that can be used to vocalize the interaction. Delivery engines should use the value of
this attribute (if provided) instead of their default placeholder text when this is required. Implementors
should be aware of the issues concerning the use of default values described in the section on
responseVariables. 

Class : textEntryInteraction (inlineInteraction, stringInteraction)

A textEntry interaction is an inlineInteraction that obtains a simple piece of text from the candidate.
Like inlineChoiceInteraction, the delivery engine must allow the candidate to review their choice
within the context of the surrounding text.

The textEntryInteraction must be bound to a responseVariable with single cardinality only. The
baseType must be one of string, integer or float.

Class : extendedTextInteraction (blockInteraction, stringInteraction)

An extended text interaction is a blockInteraction that allows the candidate to enter an extended
amount of text.

The extendedTextInteraction must be bound to a responseVariable with baseType of string, integer or 
float. When bound to response variable with single cardinality a single string of text is required from
the candidate. When bound to a response variable with multiple or ordered cardinality several separate
text strings may be required, see maxStrings below.

Attribute : maxStrings [0..1]: integer
The maxStrings attribute is required when the interaction is bound to a response variable that is a
container. A Delivery Engine must use the value of this attribute to control the maximum number of
separate strings accepted from the candidate. When multiple strings are accepted, expectedLength
applies to each string.

Attribute : expectedLines [0..1]: integer
The expectedLines attribute provides a hint to the candidate as to the expected number of lines of input
required. A Delivery Engine should use the value of this attribute to set the size of the response box,



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

38 of 68 2/24/2005 11:43 AM

where applicable. 

Class : hottextInteraction (blockInteraction)

The hottext interaction presents a set of choices to the candidate represented as selectable runs of text
embedded within a surrounding context, such as a simple passage of text. Like choiceInteraction, the 
candidate's task is to select one or more of the choices, up to a maximum of maxChoices. The 
interaction is initialized from the defaultValue of the associated responseVariable, a NULL value 
indicating that no choices are selected (the usual case).

The hottextInteraction must be bound to a responseVariable with a baseType of identifier and single or
multiple cardinality.

Attribute : maxChoices [1]: integer = 1
The maximum number of choices that can be selected by the candidate. If matchChoices is 0 there is
no restriction. If maxChoices is greater than 1 (or 0) then the interaction must be bound to a response
with multiple cardinality.

Contains : blockStatic [1..*]
The content of the interaction is simply a piece of content, such as a simple passage of text, that
contains the hottext areas.

Class : hottext (choice, flowStatic, inlineStatic)

A hottext area is used within the content of an hottextInteraction to provide the individual choices. It
must not contain any nested interactions or other hottext areas.

Contains : inlineStatic [*]

7.3. Graphical Interactions

Abstract class : hotspot

Derived classes:
associableHotspot, hotspotChoice

Some of the graphic interactions involve images with specially defined areas or hotspots.

Attribute : shape [1]: shape
The shape of the hotspot.

Attribute : coords [1]: coords
The size and position of the hotspot, interpreted in conjunction with the shape.

Attribute : hotspotLabel [0..1]: string256
The alternative text for this (hot) area of the image, if specified it must be treated in the same way as 
alternative text for img. For hidden hotspots this label is ignored.

Class : hotspotChoice (choice, hotspot)



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

39 of 68 2/24/2005 11:43 AM

Associated classes:
hotspotInteraction, graphicOrderInteraction

Class : associableHotspot (associableChoice, hotspot)

Associated classes:
graphicAssociateInteraction, graphicGapMatchInteraction

Attribute : matchMax [1]: integer
The maximum number of choices this choice may be associated with. If matchMax is 0 there is no
restriction.

Abstract class : graphicInteraction (blockInteraction)

Derived classes:
graphicAssociateInteraction, graphicGapMatchInteraction, 

graphicOrderInteraction, hotspotInteraction, selectPointInteraction

Contains : object [1]
Each graphical interaction has an associated image which is given as an object that must be of an
image type, as specified by the type attribute.

Class : hotspotInteraction (graphicInteraction)

A hotspot interaction is a graphical interaction with a corresponding set of choices that are defined as
areas of the graphic image. The candidate's task is to select one or more of the areas (hotspots). The
hotspot interaction should only be used when the spatial relationship of the choices with respect to
each other (as represented by the graphic image) is important to the needs of the item. Otherwise,
choiceInteraction should be used instead with separate material for each option.

The delivery engine must clearly indicate the selected area(s) of the image and may also indicate the
unselected areas as well. Interactions with hidden hotspots are achieved with the
selectPointInteraction.

The hotspot interaction must be bound to a responseVariable with a baseType of identifier and single
or multiple cardinality.

Attribute : maxChoices [1]: integer = 1
The maximum number of choices that the candidate is allowed to select. If maxChoices is 0 there is no
restriction. If maxChoices is greater than 1 (or 0) then the interaction must be bound to a response with
multiple cardinality.

Contains : hotspotChoice [1..*] {ordered}
The hotspots that define the choices that can be selected by the candidate. If the delivery system does
not support pointer-based selection then the order in which the choices are given must be the order in
which they are offered to the candidate for selection. For example, the 'tab order' in simple keyboard
navigation. If hotspots overlap then those listed first hide overlapping hotspots that appear later. The
default hotspot, if defined, must appear last.

Class : selectPointInteraction (graphicInteraction)



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

40 of 68 2/24/2005 11:43 AM

Like hotspotInteraction, a select point interaction is a graphic interaction. The candidate's task is to
select one or more points. The associated response may have an areaMapping that scores the response 
on the basis of comparing it against predefined areas but the delivery engine must not indicate these
areas of the image. Only the actual point(s) selected by the candidate shall be indicated.

The select point interaction must be bound to a responseVariable with a baseType of point and single
or multiple cardinality.

Attribute : maxChoices [1]: integer = 1
This attribute is interpreted as the maximum number of points that the candidate is allowed to select. If 
maxChoices is 0 there is no restriction. If maxChoices is greater than 1 (or 0) then the interaction must
be bound to a response with multiple cardinality.

Class : graphicOrderInteraction (graphicInteraction)

A graphic order interaction is a graphic interaction with a corresponding set of choices that are defined
as areas of the graphic image. The candidate's task is to impose an ordering on the areas (hotspots).
The order hotspot interaction should only be used when the spacial relationship of the choices with
respect to each other (as represented by the graphic image) is important to the needs of the item.
Otherwise, orderInteraction should be used instead with separate material for each option.

The delivery engine must clearly indicate all defined area(s) of the image.

The order hotspot interaction must be bound to a responseVariable with a baseType of identifier and 
ordered cardinality.

Contains : hotspotChoice [1..*]
The hotspots that define the choices that are to be ordered by the candidate. If the delivery system does
not support pointer-based selection then the order in which the choices are given must be the order in
which they are offered to the candidate for selection. For example, the 'tab order' in simple keyboard
navigation.

Class : graphicAssociateInteraction (graphicInteraction)

A graphic associate interaction is a graphic interaction with a corresponding set of choices that are
defined as areas of the graphic image. The candidate's task is to associate the areas (hotspots) with
each other. The graphic associate interaction should only be used when the graphical relationship of
the choices with respect to each other (as represented by the graphic image) is important to the needs
of the item. Otherwise, associateInteraction should be used instead with separate Material for each 
option.

The delivery engine must clearly indicate all defined area(s) of the image.

The associateHotspotInteraction must be bound to a responseVariable with base-type pair and either
single or multiple cardinality.

Attribute : maxAssociations [1]: integer = 1
The maximum number of associations that the candidate is allowed to make. If maxAssociations is 0
there is no restriction. If maxAssociations is greater than 1 (or 0) then the interaction must be bound to
a response with multiple cardinality.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

41 of 68 2/24/2005 11:43 AM

Contains : associableHotspot [1..*]
The hotspots that define the choices that are to be associated by the candidate. If the delivery system
does not support pointer-based selection then the order in which the choices are given must be the
order in which they are offered to the candidate for selection. For example, the 'tab order' in simple
keyboard navigation.

Class : graphicGapMatchInteraction (graphicInteraction)

A graphic gap-match interaction is a graphical interaction with a set of gaps that are defined as areas
(hotspots) of the graphic image and an additional set of gap choices that are defined outside the image.
The candidate must associate the gap choices with the gaps in the image and be able to review the
image with the gaps filled in context, as indicated by their choices. Care should be taken when
designing these interactions to ensure that the gaps in the image are a suitable size to receive the
required gap choices. It must be clear to the candidate which hotspot each choice has been associated
with. When associated, choices must appear wholly inside the gaps if at all possible and, where
overlaps are required, should not hide each other completely. If the candidate indicates the association
by positioning the choice over the gap (e.g., drag and drop) the system should 'snap' it to the nearest
position that satisfies these requirements. 

The graphicGapMatchInteraction must be bound to a responseVariable with base-type directedPair and
multiple cardinality. The choices represent the source of the pairing and the gaps in the image (the
hotspots) the targets. Unlike the simple gapMatchInteraction, each gap can have several choices
associated with it if desired, furthermore, the same choice may be associated with an
associableHotspot multiple times, in which case the corresponding directed pair appears multiple times
in the value of the response variable.

Contains : gapImg [1..*]
An ordered list of choices for filling the gaps. There may be fewer choices than gaps if required.

Contains : associableHotspot [1..*]
The hotspots that define the gaps that are to be filled by the candidate. If the delivery system does not
support pointer-based selection then the order in which the gaps is given must be the order in which
they are offered to the candidate for selection. For example, the 'tab order' in simple keyboard
navigation. The default hotspot must not be defined.

Class : positionObjectInteraction (interaction)

Associated classes:
positionObjectStage

The position object interaction consists of a single image which must be positioned on another graphic
image (the stage) by the candidate. Like selectPointInteraction, the associated response may have an 
areaMapping that scores the response on the basis of comparing it against predefined areas but the
delivery engine must not indicate these areas of the stage. Only the actual position(s) selected by the
candidate shall be indicated.

The position object interaction must be bound to a responseVariable with a baseType of point and 
single or multiple cardinality. The point records the coordinates, with respect to the stage, of the center
point of the image being positioned.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

42 of 68 2/24/2005 11:43 AM

Attribute : centerPoint [0..2]: integer
The centrePoint attribute defines the point on the image being positioned that is to be treated as the
center as an offset from the top-left corner of the image in horizontal, vertical order. By default this is
the center of the image's bounding rectangle.

The stage on which the image is to be positioned may be shared amongst several position object
interactions and is therefore defined in a class of its own: positionObjectStage.

Attribute : maxChoices [1]: integer = 1
The maximum number of positions (on the stage) that the image can be placed. If matchChoices is 0
there is no limit. If maxChoices is greater than 1 (or 0) then the interaction must be bound to a
response with multiple cardinality.

Contains : object [1]
The image to be positioned on the stage by the candidate.

Class : positionObjectStage (block)

Contains : object [1]
The image to be used as a stage onto which individual positionObjectInteractions allow the candidate 
to place their objects.

Contains : positionObjectInteraction [1..*]

7.4. Miscellaneous Interactions

Class : sliderInteraction (blockInteraction)

The slider interaction presents the candidate with a control for selecting a numerical value between a
lower and upper bound. It must be bound to a response variable with single cardinality with a
base-type of either integer or float.

Attribute : lowerBound [1]: float
If the associated response variable is of type integer then the lowerBound must be rounded down to the
greatest integer less than or equal to the value given.

Attribute : upperBound [1]: float
If the associated response variable is of type integer then the upperBound must be rounded up to the
least integer greater than or equal to the value given.

Attribute : step [0..1]: integer
The steps that the control moves in. For example, if the lowerBound and upperBound are [0,10] and 
step is 2 then the response would be constrained to the set of values {0,2,4,6,8,10}. If bound to an
integer response the default step is 1, otherwise the slider is assumed to operate on an approximately
continuous scale.

Attribute : stepLabel [0..1]: boolean = false
By default, sliders are labeled only at their ends. The stepLabel attribute controls whether or not each
step on the slider should also be labeled. It is unlikely that delivery engines will be able to guarantee to



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

43 of 68 2/24/2005 11:43 AM

label steps so this attribute should be treated only as request.

Attribute : orientation [0..1]: orientation
The orientation attribute provides a hint to rendering systems that the slider is being used to indicate
the value of a quantity with an inherent vertical or horizontal interpretation. For example, an
interaction that is used to indicate the value of height might set the orientation to vertical to indicate
that rendering it horizontally could spuriously increase the difficulty of the item.

Attribute : reverse [0..1]: boolean
The reverse attribute provides a hint to rendering systems that the slider is being used to indicate the
value of a quantity for which the normal sense of the upper and lower bounds is reversed. For example,
an interaction that is used to indicate a depth below sea level might specify both a vertical orientation
and set reverse.

Note that a slider interaction does not have a default or initial position except where specified by a
default value for the associated responseVariable. The currently selected value, if any, must be clearly 
indicated to the candidate .

Class : drawingInteraction (blockInteraction)

The drawing interaction allows the candidate to use a common set of drawing tools to modify a given
graphical image (the canvas). It must be bound to a responseVariable with base-type file and single
cardinality. The result is a file in the same format as the original image.

Contains : object [1]
The image that acts as the canvas on which the drawing takes place is given as an object which must
be of an image type, as specified by the type attribute.

Class : uploadInteraction (blockInteraction)

The upload interaction allows the candidate to upload a pre-prepared file representing their response. It
must be bound to a responseVariable with base-type file and single cardinality.

Attribute : type [0..1]: mimeType
The expected mime-type of the uploaded file.

Class : customInteraction (block, flow, interaction)

The custom interaction provides an opportunity for extensibility of this specification to include support
for interactions not currently documented.

7.5. Alternative Ways to End an Attempt

Class : endAttemptInteraction (inlineInteraction)

The end attempt interaction is a special type of interaction which allows item authors to provide the
candidate with control over the way in which the candidate terminates an attempt. The candidate can
use the interaction to terminate the attempt (triggering response processing) immediately, typically to
request a hint. It must be bound to a responseVariable with base-type boolean and single cardinality.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

44 of 68 2/24/2005 11:43 AM

If the candidate invokes response processing using an endAttemptInteraction then the associated 
response variable is set to true. If response processing is invoked in any other way, either through a
different endAttemptInteraction or through the default method for the delivery engine, then the
associated response variable is set to false. The default value of the response variable is always
ignored.

Attribute : title [1]: string
The string that should be displayed to the candidate as a prompt for ending the attempt using this
interaction. This should be short, preferably one word. A typical value would be "Hint". For example,
in a graphical environment it would be presented as the label on a button that, when pressed, ends the
attempt.

8. Response Processing

Response processing is the process by which the Delivery Engine assigns outcomes to the itemSession
based on the candidate's responses. The outcomes may be used to provide feedback to the candidate.
Feedback is either provided immediately following the end of the candidate's attempt or it is provided
at some later time, perhaps as part of a summary report on the itemSession.

The end of an attempt, and therefore response processing, must only take place in direct response to a
user action or in response to some expected event, such as the end of a test. An itemSession that enters 
the suspended state may have values for the responseVariables that have yet to be submitted for
response processing.

For a Non-adaptive Item the values of the outcomeVariables are reset to their default values (or NULL 
if no default is given) before each invocation of response processing. However, although a Delivery 
Engine may invoke response processing multiple times for a Non-adaptive Item it must only report the 
first set of outcomes produced or limit the number of attempts to some predefined limit agreed outside
the scope of this specification.

For an Adaptive Item the values of the outcomeVariables are not reset to their defaults. A Delivery 
Engine that supports Adaptive Items must allow the candidate to revise and submit their responses for 
response processing and must only report the last set of outcomes produced. Furthermore, it must
present all applicable modal and integrated feedback to the candidate. Subsequent response processing
may take into consideration the feedback seen by the candidate when updating the session outcomes.
An adaptive item can signal to the delivery engine that the candidate has completed the interaction and
no more attempts are to be allowed by setting the built-in outcome variable completionStatus to 
complete.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

45 of 68 2/24/2005 11:43 AM

Feedback Followed by Further Interaction

8.1. Response Processing Templates

Response processing involves the application of a set of responseRules, including the testing of 
responseConditions and the evaluation of expressions involving the item variables. For delivery
engines that are only designed to support very simple use cases the implementation of a system for
carrying out this evaluation, conditional testing and processing may pose a barrier to the adoption of
the specification.

To alleviate this problem, the implementation of generalized response processing is an optional
feature. Engines that don't support it can instead implement a smaller number of standard response
processors called response processing templates described below. These templates are described using 
the processing language defined in this specification and are distributed (in XML form) along with it.
Delivery engines that support generalized response processing do not need to implement special
mechanisms to support them as a template file can be parsed directly while processing the
assessmentItem that refers to it.

Delivery engines that do not support generalized response processing but do support response
processing mechanisms that go beyond the standard templates described below should, where possible,
define templates of their own. Authors wishing to write items for those delivery engines can then refer
to these custom templates. Publishing these custom templates will then ensure that these items can be
used with delivery engines that do support generalized response processing.

8.1.1. Standard Templates

Match Correct
rptemplates/match_correct.xml

Full template URI: http://www.imsglobal.org/question/qti_v2p0/rptemplates/match_correct

The match correct response processing template uses the match operator to match the value of a 
response variable RESPONSE with its correct value. It sets the outcome variable SCORE to either 0 or 
1 depending on the outcome of the test. A response variable with called RESPONSE must have been 
declared and have an associated correct value. Similarly, the outcome variable SCORE must also have 
been declared. The template applies to responses of any baseType and cardinality though bear in mind
the limitations of matching more complex data types. This template shouldn't be used for testing the
numerical equality of responses with base-type float.

Note that this template always sets a value for SCORE, even if no RESPONSE was given.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

46 of 68 2/24/2005 11:43 AM

Map Response
rptemplates/map_response.xml

Full template URI: http://www.imsglobal.org/question/qti_v2p0/rptemplates/map_response

The map response processing template uses the mapResponse operator to map the value of a response 
variable RESPONSE onto a value for the outcome SCORE. Both variables must have been declared
and RESPONSE must have an associated mapping. The template applies to responses of any baseType
and cardinality. See the notes about mapResponse for details of its behavior when applied to
containers.

If RESPONSE was NULL the SCORE is set to 0.

Map Response Point
rptemplates/map_response_point.xml

Full template URI: 
http://www.imsglobal.org/question/qti_v2p0/rptemplates/map_response_point

The map response point processing template uses the mapResponsePoint operator to map the value of 
a response variable RESPONSE onto a value for the outcome SCORE. Both variables must been
declared and RESPONSE must have baseType point. See the notes about mapResponsePoint for details 
of its behavior when applied to containers.

If RESPONSE was NULL the SCORE is set to 0.

8.2. Generalized Response Processing

Class : responseProcessing

Associated classes:
assessmentItem

Attribute : template [0..1]: uri
If a template identifier is given it may be used to locate an externally defined responseProcessing
template. The rules obtained from the external template may be used instead of the rules defined
within the item itself, though if both are given the internal rules are still preferred.

Attribute : templateLocation [0..1]: uri
In practice, the template attribute may well contain a URN or the URI of a template stored on a remote
web server, such as the standard response processing templates defined by this specification. When
processing an assessmentItem tools working offline will not be able to obtain the template from a URN
or remote URI. The templateLocation attribute provides an alternative URI, typically a relative URI to
be resolved relative to the location of the assessmentItem itself, that can be used to obtain a copy of the
response processing template.

Contains : responseRule [*]

The mapping from values assigned to Response Variables by the candidate onto appropriate values for
the item's Outcome Variables is achieved through a number of rules.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

47 of 68 2/24/2005 11:43 AM

Response Processing

Abstract class : responseRule

Derived classes:
exitResponse, responseCondition, setOutcomeValue

Associated classes:
responseElse, responseIf, responseProcessing, responseElseIf

A response rule is either a responseCondition or a simple action. Response rules define the
light-weight programming language necessary for deriving outcomes from responses (i.e., scoring).
Note that this programming language contains a minimal number of control structures, more complex
scoring rules must be coded in other languages and referred to using a customOperator .

Class : responseCondition (responseRule)

Contains : responseIf [1]

Contains : responseElseIf [*]

Contains : responseElse [0..1]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

48 of 68 2/24/2005 11:43 AM

If the expression given in a responseIf or responseElseIf evaluates to true then the sub-rules contained
within it are followed and any following responseElseIf or responseElse parts are ignored for this
response condition.

If the expression given in a responseIf or responseElseIf does not evaluate to true then consideration
passes to the next responseElseIf or, if there are no more responseElseIf parts then the sub-rules of the
responseElse are followed (if specified).

Class : responseIf

Associated classes:
responseCondition

Contains : expression [1]

Contains : responseRule [*]

A responseIf part consists of an expression which must have an effective baseType of boolean and
single cardinality. For more information about the runtime data model employed see Expressions. It 
also contains a set of sub-rules. If the expression is true then the sub-rules are processed, otherwise
they are skipped (including if the expression is NULL) and the following responseElseIf or 
responseElse parts (if any) are considered instead.

Class : responseElseIf

Associated classes:
responseCondition

Contains : expression [1]

Contains : responseRule [*]

responseElseIf is defined in an identical way to responseIf.

Class : responseElse

Associated classes:
responseCondition

Contains : responseRule [*]

Class : setOutcomeValue (responseRule)

Attribute : identifier [1]: identifier
The outcomeVariable to be set.

Contains : expression [1]
An expression which must have an effective baseType and cardinality that matches the base-type and 
cardinality of the outcomeVariable being set.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

49 of 68 2/24/2005 11:43 AM

The setOutcomeValue rule sets the value of an outcomeVariable to the value obtained from the 
associated expression. An outcome variable can be updated with reference to a previously assigned
value, in other words, the outcomeVariable being set may appear in the expression where it takes the
value previously assigned to it.

Special care is required when using the numeric base-types because floating point values can not be 
assigned to integer variables and vice-versa. The truncate, round or integerToFloat operators must be
used to achieve numeric type conversion.

Class : exitResponse (responseRule)

The exit response rule terminates response processing immediately (for this invocation).

9. Modal Feedback

Class : modalFeedback

Associated classes:
assessmentItem

Modal feedback is shown to the candidate directly following response processing. The value of an
outcomeVariable is used in conjunction with the showHide and identifier attributes to determine 
whether or not the feedback is shown in a similar way to feedbackElement.

Attribute : outcomeIdentifier [1]: identifier

Attribute : showHide [1]: showHide

Attribute : identifier [1]: identifier

Attribute : title [0..1]: string
Delivery engines are not required to present the title to the candidate but may do so, for example as the
title of a modal pop-up window. 

Contains : flowStatic [*]
The content of the modalFeedback must not contain any interactions. 

10. Expressions

Abstract class : expression

Derived classes:
and, anyN, baseValue, contains, correct, customOperator, default, delete, 
divide, durationGTE, durationLT, equal, equalRounded, fieldValue, gt, gte, 
index, inside, integerDivide, integerModulus, integerToFloat, isNull, lt, lte, 
mapResponse, mapResponsePoint, match, member, multiple, not, null, or, ordered, 
patternMatch, power, product, random, randomFloat, randomInteger, round, 

stringMatch, substring, subtract, sum, truncate, variable

Associated classes:
and, gt, ordered, divide, setCorrectResponse, random, responseIf, substring, 



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

50 of 68 2/24/2005 11:43 AM

equalRounded, index, integerDivide, gte, durationLT, contains, durationGTE, 
member, lt, match, templateIf, product, multiple, power, integerToFloat, 
setDefaultValue, customOperator, stringMatch, setTemplateValue, 
setOutcomeValue, not, templateElseIf, integerModulus, subtract, responseElseIf, 
anyN, round, inside, equal, fieldValue, isNull, patternMatch, lte, sum, 

truncate, or, delete

Expressions are used to assign values to item variables and to control conditional actions in response
and template processing.

An expression can be a simple reference to the value of an itemVariable, a constant value from one of 
the value sets defined by baseTypes or a hierarchical expression operator. Like itemVariables, each 
expression can also have the special value NULL.

Class : baseValue (expression)

Attribute : baseType [1]: baseType
The base-type of the value.

The simplest expression returns a single value from the set defined by the given baseType.

Class : variable (expression)

Attribute : identifier [1]: identifier

This expression looks up the value of an itemVariable that has been declared in a corresponding
variableDeclaration or is one of the built-in variables. The result has the base-type and cardinality
declared for the variable.

Class : default (expression)

Attribute : identifier [1]: identifier

This expression looks up the declaration of an itemVariable and returns the associated defaultValue or 
NULL if no default value was declared.

Class : correct (expression)

Attribute : identifier [1]: identifier

This expression looks up the declaration of a responseVariable and returns the associated 
correctResponse or NULL if no correct value was declared.

Class : mapResponse (expression)

Attribute : identifier [1]: identifier

This expression looks up the value of a responseVariable and then transforms it using the associated
mapping, which must have been declared. The result is a single float. If the response variable has
single cardinality then the value returned is simply the mapped target value from the map. If the
response variable has single or multiple cardinality then the value returned is the sum of the mapped 
target values. This expression cannot be applied to variables of record cardinality.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

51 of 68 2/24/2005 11:43 AM

For example, if a mapping associates the identifiers {A,B,C,D} with the values {0,1,0.5,0}
respectively then mapResponse will map the single value 'C' to the numeric value 0.5 and the set of
values {C,B} to the value 1.5.

If a container contains multiple instances of the same value then that value is counted once only. To 
continue the example above {B,B,C} would still map to 1.5 and not 2.5.

Class : mapResponsePoint (expression)

Attribute : identifier [1]: identifier

This expression looks up the value of a responseVariable that must be of base-type point , and 
transforms it using the associated areaMapping. The transformation is similar to mapResponse except 
that the points are tested against each area in turn. When mapping containers each area can be mapped
once only. For example, if the candidate identified two points that both fall in the same area then the
mappedValue is still added to the calculated total just once.

Class : null (expression)

null is a simple expression that returns the NULL value - the null value is treated as if it is of any
desired baseType.

Class : randomInteger (expression)

Selects a random integer from the specified range [min,max] satisfying min + step * n for some integer
n. For example, with min=2, max=11 and step=3 the values {2,5,8,11} are possible.

Attribute : min [1]: integer = 0

Attribute : max [1]: integer

Attribute : step [0..1]: integer = 1

Class : randomFloat (expression)

Selects a random float from the specified range [min,max].

Attribute : min [1]: float = 0

Attribute : max [1]: float

10.1. Operators

Operators are a family of classes derived from expression that obtain their value (referred to as their
result) either by modifying a single sub-expression or by combining two or more sub-expressions in a
specified way. Operators never effect the values of itemVariables directly, in other words, there are no
'side effects'.

All operators have a baseType and cardinality though these may be dependent on the sub-expression(s)
they contain.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

52 of 68 2/24/2005 11:43 AM

Class : multiple (expression)

Contains : expression [*]

The multiple operator takes 0 or more sub-expressions all of which must have either single or multiple
cardinality. Although the sub-expressions may be of any base-type they must all be of the same
base-type. The result is a container with multiple cardinality containing the values of the
sub-expressions, sub-expressions with multiple cardinality have their individual values added to the
result: containers cannot contain other containers. For example, when applied to A, B and {C,D} the
multiple operator results in {A,B,C,D}. All sub-expressions with NULL values are ignored. If no
sub-expressions are given (or all are NULL) then the result is NULL.

Class : ordered (expression)

Contains : expression [*]

The ordered operator takes 0 or more sub-expressions all of which must have either single or ordered
cardinality. Although the sub-expressions may be of any base-type they must all be of the same
base-type. The result is a container with ordered cardinality containing the values of the
sub-expressions, sub-expressions with ordered cardinality have their individual values added (in order)
to the result: contains cannot contain other containers. For example, when applied to A, B, {C,D} the
ordered operator results in {A,B,C,D}. Note that the ordered operator never results in an empty
container. All sub-expressions with NULL values are ignored. If no sub-expressions are given (or all
are NULL) then the result is NULL

Class : isNull (expression)

Contains : expression [1]

The isNull operator takes a sub-expression with any base-type and cardinality. The result is a single
boolean with a value of true if the sub-expression is NULL and false otherwise. Note that empty
containers and empty strings are both treated as NULL.

Class : index (expression)

Attribute : n [1]: integer

Contains : expression [1]

The index operator takes a sub-expression with an ordered container value and any base-type. The
result is the nth value of the container. The result has the same base-type as the sub-expression but
single cardinality. The first value of a container has index 1, the second 2 and so on. n must be a
positive integer. If n exceeds the number of values in the container then the result of the index operator
is NULL.

Class : fieldValue (expression)

Attribute : fieldIdentifier [1]: identifier
The identifier of the field to be selected.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

53 of 68 2/24/2005 11:43 AM

Contains : expression [1]

The field-value operator takes a sub-expression with a record container value. The result is the value of
the field with the specified fieldIdentifier. If there is no field with that identifier then the result of the
operator is NULL.

Class : random (expression)

Contains : expression [1]

The random operator takes a sub-expression with a multiple or ordered container value and any
base-type. The result is a single value randomly selected from the container. The result has the same
base-type as the sub-expression but single cardinality. If the sub-expression is NULL then the result is
also NULL.

Class : member (expression)

Contains : expression [2]

The member operator takes two sub-expressions which must both have the same base-type. The first
sub-expression must have single cardinality and the second must be a multiple or ordered container. 
The result is a single boolean with a value of true if the value given by the first sub-expression is in the
container defined by the second sub-expression. If either sub-expression is NULL then the result of the
operator is NULL.

The member operator should not be used on sub-expressions with a base-type of float because of the 
poorly defined comparison of values. It must not be used on sub-expressions with a base-type of
duration.

Class : delete (expression)

Contains : expression [2]

The delete operator takes two sub-expressions which must both have the same base-type. The first
sub-expression must have single cardinality and the second must be a multiple or ordered container. 
The result is a new container derived from the second sub-expression with all instances of the first
sub-expression removed. For example, when applied to A and {B,A,C,A} the result is the container
{B,C}.

Class : contains (expression)

Contains : expression [2]

The contains operator takes two sub-expressions which must both have the same base-type and
cardinality - either multiple or ordered. The result is a single boolean with a value of true if the
container given by the first sub-expression contains the value given by the second sub-expression and
false if it doesn't. Note that the contains operator works differently depending on the cardinality of the 
two sub-expressions. For unordered containers the values are compared without regard for ordering,
for example, [A,B,C] contains [C,A]. Note that [A,B,C] does not contain [B,B] but that [A,B,B,C]
does. For ordered containers the second sub-expression must be a strict sub-sequence within the first.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

54 of 68 2/24/2005 11:43 AM

In other words, [A,B,C] does not contain [C,A] but it does contain [B,C].

If either sub-expression is NULL then the result of the operator is NULL. Like the member operator,
the contains operator should not be used on sub-expressions with a base-type of float and must not be 
used on sub-expressions with a base-type of duration.

Class : substring (expression)

Contains : expression [2]

The substring operator takes two sub-expressions which must both have an effective base-type of
string and single cardinality. The result is a single boolean with a value of true if the first expression is
a substring of the second expression and false if it isn't. If either sub-expression is NULL then the
result of the operator is NULL.

Attribute : caseSensitive [1]: boolean = true
Used to control whether or not the substring is matched case sensitively. If true then the match is case
sensitive and, for example, "Hell" is not a substring of "Shell". If false then the match is not case
sensitive and "Hell" is a substring of "Shell".

Class : not (expression)

Contains : expression [1]

The not operator takes a single sub-expression with a base-type of boolean and single cardinality. The 
result is a single boolean with a value obtained by the logical negation of the sub-expression's value. If
the sub-expression is NULL then the not operator also results in NULL.

Class : and (expression)

Contains : expression [1..*]

The and operator takes one or more sub-expressions each with a base-type of boolean and single
cardinality. The result is a single boolean which is true if all sub-expressions are true and false if any of
them are false. If one or more sub-expressions are NULL and all others are true then the operator also
results in NULL.

Class : or (expression)

Contains : expression [1..*]

The or operator takes one or more sub-expressions each with a base-type of boolean and single
cardinality. The result is a single boolean which is true if any of the sub-expressions are true and false
if all of them are false. If one or more sub-expressions are NULL and all the others are false then the
operator also results in NULL.

Class : anyN (expression)

Contains : expression [1..*]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

55 of 68 2/24/2005 11:43 AM

The anyN operator takes one or more sub-expressions each with a base-type of boolean and single
cardinality. The result is a single boolean which is true if at least min of the sub-expressions are true
and at most max of the sub-expressions are true. If more than n - min sub-expressions are false (where
n is the total number of sub-expressions) or more than max sub-expressions are true then the result is
false. If one or more sub-expressions are NULL then it is possible that neither of these conditions is
satisfied, in which case the operator results in NULL. For example, if min is 3 and max is 4 and the
sub-expressions have values {true,true,false,NULL} then the operator results in NULL whereas
{true,false,false,NULL} results in false and {true,true,true,NULL} results in true. The result NULL
indicates that the correct value for the operator cannot be determined.

Attribute : min [1]: integer
The minimum number of sub-expressions that must be true.

Attribute : max [1]: integer
The maximum number of sub-expressions that may be true.

Class : match (expression)

Contains : expression [2]

The match operator takes two sub-expressions which must both have the same base-type and
cardinality. The result is a single boolean with a value of true if the two expressions represent the same
value and false if they do not. If either sub-expression is NULL then the operator results in NULL.

The match operator must not be confused with broader notions of equality such as numerical equality.
To avoid confusion, the match operator should not be used to compare subexpressions with base-types
of float and must not be used on sub-expressions with a base-type of duration.

Class : stringMatch (expression)

Contains : expression [2]

The stringMatch operator takes two sub-expressions which must have single and a base-type of string. 
The result is a single boolean with a value of true if the two strings match according to the comparison
rules defined by the attributes below and false if they don't. If either sub-expression is NULL then the
operator results in NULL.

Attribute : caseSensitive [1]: boolean
Whether or not the match is to be carried out case sensitively.

Attribute : substring [1]: boolean = false
If true, then the comparison returns true if the first string contains the second one, otherwise it returns
true only if they match entirely.

Class : patternMatch (expression)

Contains : expression [1]

The patternMatch operator takes a sub-expression which must have single cardinality and a base-type 
of string. The result is a single boolean with a value of true if the sub-expression matches the regular



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

56 of 68 2/24/2005 11:43 AM

expression given by pattern and false if it doesn't. If the sub-expression is NULL then the operator
results in NULL.

Attribute : pattern [1]: string
The syntax for the regular expression language is as defined in Appendix F of [XML_SCHEMA2].

Class : equal (expression)

Contains : expression [2]

The equal operator takes two sub-expressions which must both have single cardinality and have a
numerical base-type. The result is a single boolean with a value of true if the two expressions are
numerically equal and false if they are not. If either sub-expression is NULL then the operator results
in NULL.

Attribute : toleranceMode [1]: toleranceMode = exact
When comparing two floating point numbers for equality it is often desirable to have a tolerance to
ensure that spurious errors in scoring are not introduced by rounding errors. The tolerance mode
determines whether the comparison is done exactly, using an absolute range or a relative range.

Attribute : tolerance [0..2]: float
If the tolerance mode is absolute or relative then the tolerance must be specified. The tolerance consists
of two positive numbers, t0 and t1, that define the lower and upper bounds. If only one value is given it
is used for both.

In absolute mode the result of the comparison is true if the value of the second expression, y is within 
the following range defined by the first value, x.

[x-t0,x+t1]

In relative mode, t0 and t1 are treated as percentages and the following range is used instead.

[x*(1-t0/100),x*(1+t1/100)]

Enumeration: toleranceMode

exact

absolute

relative

Class : equalRounded (expression)

Contains : expression [2]

The equalRounded operator takes two sub-expressions which must both have single cardinality and 
have a numerical base-type. The result is a single boolean with a value of true if the two expressions
are numerically equal after rounding and false if they are not. If either sub-expression is NULL then
the operator results in NULL.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

57 of 68 2/24/2005 11:43 AM

Attribute : roundingMode [1]: roundingMode = significantFigures
Numbers are rounded to a given number of significantFigures or decimalPlaces. 

Attribute : figures [1]: integer
The number of figures to round to.

For example, if the two values are 1.56 and 1.6 and significantFigures mode is used with figures=2 
then the result would be true.

Enumeration: roundingMode

significantFigures

decimalPlaces

Class : inside (expression)

Contains : expression [1]

The inside operator takes a single sub-expression which must have a baseType of point. The result is a 
single boolean with a value of true if the given point is inside the area defined by shape and coords. If 
the sub-expression is a container the result is true if any of the points are inside the area. If either
sub-expression is NULL then the operator results in NULL.

Attribute : shape [1]: shape
The shape of the area.

Attribute : coords [1]: coords
The size and position of the area, interpreted in conjunction with the shape.

Class : lt (expression)

Contains : expression [2]

The lt operator takes two sub-expressions which must both have single cardinality and have a 
numerical base-type. The result is a single boolean with a value of true if the first expression is
numerically less than the second and false if it is greater than or equal to the second. If either
sub-expression is NULL then the operator results in NULL.

Class : gt (expression)

Contains : expression [2]

The gt operator takes two sub-expressions which must both have single cardinality and have a 
numerical base-type. The result is a single boolean with a value of true if the first expression is
numerically greater than the second and false if it is less than or equal to the second. If either
sub-expression is NULL then the operator results in NULL.

Class : lte (expression)

Contains : expression [2]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

58 of 68 2/24/2005 11:43 AM

The lte operator takes two sub-expressions which must both have single cardinality and have a 
numerical base-type. The result is a single boolean with a value of true if the first expression is
numerically less than or equal to the second and false if it is greater than the second. If either
sub-expression is NULL then the operator results in NULL.

Class : gte (expression)

Contains : expression [2]

The gte operator takes two sub-expressions which must both have single cardinality and have a 
numerical base-type. The result is a single boolean with a value of true if the first expression is
numerically less than or equal to the second and false if it is greater than the second. If either
sub-expression is NULL then the operator results in NULL.

Class : durationLT (expression)

Contains : expression [2]

The durationLT operator takes two sub-expressions which must both have single cardinality and 
base-type duration. The result is a single boolean with a value of true if the first duration is shorter than
the second and false if it is longer than (or equal) to the second. If either sub-expression is NULL then
the operator results in NULL.

There is no 'durationLTE' or 'durationGT' because equality of duration is meaningless given the
variable precision allowed by duration. Given that duration values are obtained by truncation rather
than rounding it makes sense to test only less-than or greater-than-equal inequalities only. For
example, if we want to determine if a candidate took less than 10 seconds to complete a task in a
system that reports durations to a resolution of epsilon seconds (epsilon<1) then a value equal to 10 
would cover all durations in the range [10,10+epsilon).

Class : durationGTE (expression)

Contains : expression [2]

The durationGTE operator takes two sub-expressions which must both have single cardinality and 
base-type duration. The result is a single boolean with a value of true if the first duration is longer (or
equal, within the limits imposed by truncation as described above) than the second and false if it is
shorter than the second. If either sub-expression is NULL then the operator results in NULL.

See durationLT for more information about testing the equality of durations.

Class : sum (expression)

Contains : expression [1..*]

The sum operator takes 1 or more sub-expressions which all have single cardinality and have 
numerical base-types. The result is a single float or, if all sub-expressions are of integer type, a single 
integer that corresponds to the sum of the numerical values of the sub-expressions. If any of the
sub-expressions are NULL then the operator results in NULL.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

59 of 68 2/24/2005 11:43 AM

Class : product (expression)

Contains : expression [1..*]

The product operator takes 1 or more sub-expressions which all have single cardinality and have 
numerical base-types. The result is a single float or, if all sub-expressions are of integer type, a single 
integer that corresponds to the product of the numerical values of the sub-expressions. If any of the
sub-expressions are NULL then the operator results in NULL.

Class : subtract (expression)

Contains : expression [2]

The subtract operator takes 2 sub-expressions which all have single cardinality and numerical 
base-types. The result is a single float or, if both sub-expressions are of integer type, a single integer 
that corresponds to the first value minus the second. If either of the sub-expressions is NULL then the
operator results in NULL.

Class : divide (expression)

Contains : expression [2]

The divide operator takes 2 sub-expressions which both have single cardinality and numerical 
base-types. The result is a single float that corresponds to the first expression divided by the second
expression. If either of the sub-expressions is NULL then the operator results in NULL.

Item authors should make every effort to ensure that the value of the second expression is never 0,
however, if it is zero or the resulting value is outside the value set defined by float (not including
positive and negative infinity) then the operator should result in NULL.

Class : power (expression)

Contains : expression [2]

The power operator takes 2 sub-expression which both have single cardinality and numerical 
base-types. The result is a single float that corresponds to the first expression raised to the power of the
second. If either or the sub-expressions is NULL then the operator results in NULL.

If the resulting value is outside the value set defined by float (not including positive and negative 
infinity) then the operator shall result in NULL.

Class : integerDivide (expression)

Contains : expression [2]

The integer divide operator takes 2 sub-expressions which both have single cardinality and base-type
integer. The result is the single integer that corresponds to the first expression (x) divided by the
second expression (y) rounded down to the greatest integer (i) such that i<=(x/y). If y is 0, or if either
of the sub-expressions is NULL then the operator results in NULL.



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

60 of 68 2/24/2005 11:43 AM

Class : integerModulus (expression)

Contains : expression [2]

The integer modulus operator takes 2 sub-expressions which both have single cardinality and base-type
integer. The result is the single integer that corresponds to the remainder when the first expression (x)
is divided by the second expression (y). If z is the result of the corresponding integerDivide operator 
then the result is x-z*y. If y is 0, or if either of the sub-expressions is NULL then the operator results in
NULL.

Class : truncate (expression)

Contains : expression [1]

The truncate operator takes a single sub-expression which must have single cardinality and base-type
float. The result is a value of base-type integer formed by truncating the value of the sub-expression
towards zero. For example, the value 6.8 becomes 6 and the value -6.8 becomes -6. If the
sub-expression is NULL then the operator results in NULL.

Class : round (expression)

Contains : expression [1]

The round operator takes a single sub-expression which must have single cardinality and base-type 
float. The result is a value of base-type integer formed by rounding the value of the sub-expression.
The result is the integer n for all input values in the range [n-0.5,n+0.5). In other words, 6.8 and 6.5
both round up to 7, 6.49 rounds down to 6 and -6.5 rounds up to -6. If the sub-expression is NULL
then the operator results in NULL.

Class : integerToFloat (expression)

Contains : expression [1]

The integer to float conversion operator takes a single sub-expression which must have single
cardinality and base-type integer. The result is a value of base type float with the same numeric value.
If the sub-expression is NULL then the operator results in NULL.

Class : customOperator (expression)

The custom operator provides an extension mechanism for defining operations not currently supported
by this specification.

Attribute : class [0..1]: identifier
The class attribute allows simple sub-classes to be named. The definition of a sub-class is tool specific
and may be inferred from toolName and toolVersion. 

Attribute : definition [0..1]: uri
A URI that identifies the definition of the custom operator in the global namespace.

In addition to the class and definition attributes, sub-classes may add any number of attributes of their



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

61 of 68 2/24/2005 11:43 AM

own.

Contains : expression [*]
Custom operators can take any number of sub-expressions of any type to be treated as parameters.

11. Item Templates

Item templates are templates that can be used for producing large numbers of similar items. Such items
are often called cloned items. Item templates can be used to produce items by special purpose Cloning 
Engines or, where delivery engines support them, be used directly to produce a dynamically chosen
clone at the start of an itemSession.

Each item cloned from an item template is identical except for the values given to a set of
templateVariables. An assessmentItem is therefore an item template if it contains one or more
templateDeclarations and a set of templateProcessing rules for assigning them values.

A cloning engine that creates cloned items must assign a different identifier to each clone and record 
the values of the template variables used to create it. A report of an itemSession with such a clone can 
then be transformed into an equivalent report for the original item template by substituting the item
template's identifier for the cloned item's identifier and adding the values of the template variables to
the report.

Class : templateDeclaration (variableDeclaration)

Associated classes:
assessmentItem

Template declarations declare item variables that are to be used specifically for the purposes of cloning
items. They can have their value set only during templateProcessing. They are referred to within the
itemBody in order to individualize the clone and possibly also within the responseProcessing rules if 
the cloning process affects the way the item is scored.

Attribute : paramVariable [1]: boolean
This attribute determines whether or not the template variable's value should be substituted for object
parameter values that match its name. See param for more information. 

Attribute : mathVariable [1]: boolean = false
This attribute determines whether or not the template variable's value should be substituted for
identifiers that match its name in MathML expressions. See Combining Template Variables and 
MathML for more information. 

Abstract class : templateVariable (itemVariable)

Template variables are instantiated as part of an itemSession. Their values are initialized during 
templateProcessing and thereafter behave as constants within the session.

11.1. Using Template Variables in an the Item's Body

Template variables can be referred to by printedVariable objects in the item body. The value of the



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

62 of 68 2/24/2005 11:43 AM

template variable is used to create an appropriate run of text that is displayed. Template variables can
also be used to conditionally control content through the two templateElements in a similar way to 
outcome variables with feedbackElements. 

Abstract class : templateElement (bodyElement)

Derived classes:
templateBlock, templateInline

Attribute : templateIdentifier [1]: identifier
The identifier of a template variable that must have a base-type of identifier and be of either single or 
multiple cardinality. The visibility of the templateElement is controlled by the value of the variable.

Attribute : showHide [1]: showHide = show

Attribute : identifier [1]: identifier

The showHide and identifier attributes determine how the visibility of the templateElement is
controlled in the same way as the similarly named showHide and identifier attributes of 
feedbackElement.

A template element must not contain any interactions, either directly or indirectly.

Class : templateBlock (blockStatic, flowStatic, templateElement)

Contains : blockStatic [*]

Class : templateInline (flowStatic, inlineStatic, templateElement)

Contains : inlineStatic [*]

11.2. Template Processing

Class : templateProcessing

Associated classes:
assessmentItem

Contains : templateRule [1..*]
Template processing consists of one or more templateRules that are followed by the cloning engine or 
delivery system in order to assign values to the templateVariables. Template processing is identical in 
form to responseProcessing except that the purpose is to assign values to Template Variables, not 
outcomeVariables.

Abstract class : templateRule

Derived classes:
exitTemplate, setCorrectResponse, setDefaultValue, setTemplateValue, 

templateCondition

Associated classes:



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

63 of 68 2/24/2005 11:43 AM

templateProcessing, templateElseIf, templateIf, templateElse

A template rule is either a templateCondition or a simple action. Template rules define the light-weight
programming language necessary for creating cloned items. Note that this programming language
contains a minimal number of control structures, more complex cloning rules are outside the scope of
this specification. 

An expression used in a templateRule must not refer to the value of a responseVariable or 
outcomeVariable. It may only refer to the values of the templateVariables.

Class : templateCondition (templateRule)

Contains : templateIf [1]

Contains : templateElseIf [*]

Contains : templateElse [0..1]

If the expression given in the templateIf or templateElseIf evaluates to true then the sub-rules
contained within it are followed and any following templateElseIf or templateElse parts are ignored for
this template condition.

If the expression given in the templateIf or templateElseIf does not evaluate to true then consideration
passes to the next templateElseIf or, if there are no more templateElseIf parts then the sub-rules of the
templateElse are followed (if specified).

Class : templateIf

Associated classes:
templateCondition

Contains : expression [1]

Contains : templateRule [*]

A templateIf part consists of an expression which must have an effective baseType of boolean and
single cardinality. For more information about the runtime data model employed see Expressions. It 
also contains a set of sub-rules. If the expression is true then the sub-rules are processed, otherwise
they are skipped (including if the expression is NULL) and the following templateElseIf or 
templateElse parts (if any) are considered instead.

Class : templateElseIf

Associated classes:
templateCondition

Contains : expression [1]

Contains : templateRule [*]



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

64 of 68 2/24/2005 11:43 AM

templateElseIf is defined in an identical way to templateIf.

Class : templateElse

Associated classes:
templateCondition

Contains : templateRule [*]

Class : setTemplateValue (templateRule)

Attribute : identifier [1]: identifier
The templateVariable to be set.

Contains : expression [1]
An expression which must have an effective baseType and cardinality that matches the base-type and 
cardinality of the templateVariable being set.

The setTemplateValue rules sets the value of a templateVariable to the value obtained from the 
associated expression. A template variable can be updated with reference to a previously assigned
value, in other words, the templateVariable being set may appear in the expression where it takes the 
value previously assigned to it.

Class : setCorrectResponse (templateRule)

Attribute : identifier [1]: identifier
The responseVariable to have its correct value set.

Contains : expression [1]

Class : setDefaultValue (templateRule)

Attribute : identifier [1]: identifier
The responseVariable or outcomeVariable to have its default value set.

Contains : expression [1]

Class : exitTemplate (templateRule)

The exit template rule terminates template processing immediately.

12. Basic Data Types

Datatype: boolean

A boolean value is either true or false. Note that lexical bindings to strings such as "Yes", "TRUE",
"1", etc. are outside the scope of this document.

Datatype: coords



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

65 of 68 2/24/2005 11:43 AM

The coords type provides the coordinates that determine the size and location of an area defined by a
corresponding shape.

The coordinates themselves are an ordered list of lengths (as defined in [XHTML]). The interpretation 
of each length value is dependent on the value of the associated shape as follows.

rect: left-x, top-y, right-x, bottom-y.
circle: center-x, center-y, radius. Note. When the radius value is a percentage value, user agents
should calculate the final radius value based on the associated object's width and height. The
radius should be the smaller value of the two.
poly: x1, y1, x2, y2, ..., xN, yN. The first x and y coordinate pair and the last should be the same
to close the polygon. When these coordinate values are not the same, user agents should infer an
additional coordinate pair to close the polygon.
ellipse: center-x, center-y, h-radius, v-radius. Note that the ellipse shape is deprecated as it is not
defined by [XHTML].
default: no coordinates should be given.

Datatype: date

A fully-specified calendar date, including year, month and day of month from the reference system
defined in [ISO8601].

Datatype: float

The IEEE double-precision 64-bit floating point type.

Datatype: identifier

An identifier is simply a logical reference to another object in the item, such as an itemVariable or 
choice. An identifier is a string of characters that must start with a Letter or an underscore ('_') and
contain only Letters, underscores, hyphens ('-'), period ('.', a.k.a. full-stop), Digits, CombiningChars
and Extenders. Identifiers containing the period character are reserved for future use. The character
classes Letter, Digit, CombiningChar and Extender are defined in the Extensible Markup Language
(XML) 1.0 (Second Edition) [XML]. Note particularly that identifiers may not contain the colon (':')
character. Identifiers should have no more than 32 characters. for compatibility with version 1 They are 
always compared case-sensitively.

Datatype: integer

An integer value is a whole number in the range [-2147483648,2147483647]. This is the range of a
twos-complement 32-bit integer.

Datatype: language

Datatype: length

The length datatype is as defined in [XHTML].



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

66 of 68 2/24/2005 11:43 AM

Datatype: mimeType

Enumeration: orientation

vertical

horizontal

Datatype: sign

Enumeration: shape

A value of a shape is alway accompanied by coordinates (see coords and an associated image which 
provides a context for interpreting them.

default

The default shape refers to the entire area of the associated image.

rect

A rectangular region.

circle

A circular region

poly

An arbitrary polygonal region

ellipse

This value is deprecated, but is included for compatibility with version of 1 of the QTI specification.
Systems should use circle or poly shapes instead.

Datatype: string

A string value is any sequence of characters. A character is anything in the class Char defined in
Extensible Markup Language (XML) 1.0 (Second Edition).

Datatype: string256

Datatype: uri

A Uniform Resource Identifier as defined in [URI]

Enumeration: view

author

candidate

proctor

Sometimes referred to as an invigilator



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

67 of 68 2/24/2005 11:43 AM

scorer

tutor

About This Document

Title IMS Question and Test Interoperability Information Model

Editor Steve Lay (University of Cambridge)

Version 2.0

Version Date 24 January 2005

Status Final Specification

Summary This document describes the QTI Information Model specification.

Revision 
Information

24 January 2005

Purpose
This document has been approved by the IMS Technical Board and is made 
available for adoption.

Document 
Location

http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

To register any comments or questions about this specification please visit: 
http://www.imsglobal.org/developers/ims/imsforum/categories.cfm?catid=23

List of Contributors

The following individuals contributed to the development of this document:

Name Organization Name Organization

Niall Barr CETIS Joshua Marks McGraw-Hill

Sam Easterby-Smith Canvas Learning David Poor McGraw-Hill

Jeanne Ferrante ETS Greg Quirus ETS

Pierre Gorissen SURF Niall Sclater CETIS

Regina Hoag ETS Colin Smythe IMS

Christian Kaefer McGraw-Hill GT Springer Texas Instruments

John Kleeman Question Mark Colin Tattersall OUNL



IMS Question and Test Interoperability Information Model v2.0 http://www.imsglobal.org/question/qti_v2p0/imsqti_infov2p0.html

68 of 68 2/24/2005 11:43 AM

Steve Lay UCLES Rowin Young CETIS

Jez Lord Canvas Learning

Revision History

Version No. Release Date Comments

Base Document 2.0 09 March 2004 The first version of the QTI Item v2.0 specification.

Public Draft 2.0 07 June 2004 The Public Draft version 2.0 of the QTI Item Specification.

Final 2.0 24 January 2005 The Final version 2.0 of the QTI specification.

 

 

 

IMS Global Learning Consortium, Inc. ("IMS/GLC") is publishing the information contained in this
IMS Question and Test Interoperability Information Model ("Specification") for purposes of scientific, 

experimental, and scholarly collaboration only.

IMS/GLC makes no warranty or representation regarding the accuracy or completeness of the 
Specification.

This material is provided on an "As Is" and "As Available" basis.

The Specification is at all times subject to change and revision without notice.

It is your sole responsibility to evaluate the usefulness, accuracy, and completeness of the 
Specification as it relates to you.

IMS/GLC would appreciate receiving your comments and suggestions.

Please contact IMS/GLC through our website at http://www.imsglobal.org

Please refer to Document Name: IMS Question and Test Interoperability Information Model Revision:
24 January 2005


	IMS Question and Test Interoperability Information Model
	24 Jan 2005 Version 2.0 Final Specification, IMS Global Learning Consortium Inc.
	Table of Contents
	1. Introduction
	2. References
	3. Definitions
	4. Items
	5. Item Variables
	6. Content Model
	7. Interactions
	8. Response Processing
	9. Modal Feedback
	10. Expressions
	11. Item Templates
	12. Basic Data Types
	About This Document
	Revision History

	 
	IMS Title Page

