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Abstr act

The Network Tinme Protocol (NTP) is widely used to synchronize
computer clocks in the Internet. This docunent describes NTP version
4 (NTPv4), which is backwards conpatible with NTP version 3 (NTPv3),
described in RFC 1305, as well as previous versions of the protocol
NTPv4 includes a nodified protocol header to accommobdate the Internet
Prot ocol version 6 address fam|ly. NTPv4 includes fundanental

i mprovenents in the mtigation and discipline algorithns that extend
the potential accuracy to the tens of nicroseconds wth nodern

wor kstations and fast LANs. It includes a dynanic server discovery
schene, so that in many cases, specific server configuration is not
required. It corrects certain errors in the NTPv3 design and

i npl ementation and i ncludes an optional extension nmechani sm
Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtained at
http://ww. rfc-editor.org/info/rfc5905
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1. Introduction

Thi s docunment defines the Network Tinme Protocol version 4 (NTPv4),
which is widely used to synchronize system cl ocks anong a set of
distributed tine servers and clients. It describes the core
architecture, protocol, state nachines, data structures, and

al gorithms. NTPv4 introduces new functionality to NTPv3, as
described in [RFCL1305], and functionality expanded from Si npl e NTP
version 4 (SNTPv4) as described in [RFC4330] (SNTPv4 is a subset of
NTPv4). This docunent obsol etes [ RFC1305] and [ RFC4330]. Wiile
certain mnor changes have been nade in sonme protocol header fields
these do not affect the interoperability between NTPv4 and previous
versi ons of NTP and SNTP.

The NTP subnet nodel includes a nunber of wi dely accessible primary
tinme servers synchronized by wire or radio to national standards.

The purpose of the NTP protocol is to convey tinekeeping information
fromthese primary servers to secondary time servers and clients via
both private networks and the public Internet. Precisely tuned
algorithms mtigate errors that may result from network disruptions,
server failures, and possible hostile actions. Servers and clients
are configured such that values flow towards clients fromthe prinary
servers at the root via branching secondary servers

The NTPv4 design overcomes significant shortconmings in the NTPv3
design, corrects certain bugs, and incorporates new features. In
particul ar, expanded NTP tinmestanp definitions encourage the use of
the floating double data type throughout the inplenentation. As a
result, the tine resolution is better than one nanosecond, and
frequency resolution is | ess than one nanosecond per second.

Addi tional inprovenents include a new clock discipline algorithmthat
is nore responsive to system cl ock hardware frequency fluctuations.
Typical primary servers using nodern nmachines are precise within a
few tens of microseconds. Typical secondary servers and clients on

fast LANs are within a few hundred m croseconds with poll intervals
up to 1024 seconds, which was the maxinumw th NTPv3. Wth NTPv4,
servers and clients are precise within a fewtens of mlliseconds
with poll intervals up to 36 hours.

The mai n body of this docunent describes the core protocol and data
structures necessary to interoperate between conforning

i mpl enmentations. Appendix A contains a full-featured exanple in the
formof a skeleton program including data structures and code
segnments for the core algorithns as well as the mtigation algorithns
used to enhance reliability and accuracy. While the skel eton program
and other descriptions in this docunent apply to a particul ar

i npl ementation, they are not intended as the only way the required
functions can be inplenmented. The contents of Appendix A are non-
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1.

1.

normati ve exanples designed to illustrate the protocol’s operation
and are not a requirenment for a conforming inplenentation. While the
NTPv3 symmetric key authentication schene described in this docunent
has been carried over from NTPv3, the Autokey public key

aut henti cation schene new to NTPv4 is described in [ RFC5906].

The NTP protocol includes nodes of operation described in Section 2
usi ng data types described in Section 6 and data structures described
in Section 7. The inplenentation nodel described in Section 5 is
based on a threaded, nulti-process architecture, although other
architectures could be used as well. The on-wire protocol described
in Section 8 is based on a returnable-tinme design that depends only
on nmeasured clock offsets, but does not require reliable nmessage
delivery. Reliable nmessage delivery such as TCP [ RFC0793] can
actually nake the delivered NTP packet less reliable since retries
woul d i ncrease the delay value and other errors. The synchronization
subnet is a self-organizing, hierarchical, naster-slave network wth
synchroni zati on paths determ ned by a shortest-path spanning tree and
defined nmetric. Wiile nmultiple nmasters (primary servers) may exi st,
there is no requirenent for an el ection protocol

This docunent includes material from[ref9], which contains flow
charts and equations unsuited for RFC format. There is nuch
additional information in [ref7], including an extensive technica
anal ysi s and performance assessnment of the protocol and algorithns in
this docunment. The reference inplenentation is available at

www. nt p. or g.

The remai nder of this document contains numerous variabl es and

mat hemati cal expressions. Sonme variables take the formof G eek
characters, which are spelled out by their full case-sensitive nane.
For exanple, DELTA refers to the uppercase Greek character, while
delta refers to the | owercase character. Furthernore, subscripts are
denoted with ' '; for exanple, theta i refers to the | owercase G eek
character theta with subscript i, or phonetically theta sub i. In
this docunent, all tine values are in seconds (s), and all
frequencies will be specified as fractional frequency offsets (FFQOs)
(pure number). It is often convenient to express these FFGs in parts

per million (ppnm.

Requi renments Notation

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].
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2

Modes of QOperation

An NTP inplementation operates as a primary server, secondary server
or client. A primary server is synchronized to a reference cl ock
directly traceable to UTC (e.g., GPS, Galileo, etc.). Aclient
synchroni zes to one or nore upstream servers, but does not provide
synchroni zati on to dependent clients. A secondary server has one or
nmore upstream servers and one or nore downstream servers or clients.
Al'l servers and clients who are fully NTPv4-conpliant MJST inpl ement
the entire suite of algorithns described in this docunent. In order
to maintain stability in large NTP subnets, secondary servers SHOULD
be fully NTPv4-conpliant. Alternative algorithns MAY be used, but
their output MJIST be identical to the algorithnms described in this
speci fication.

Pr ot ocol Modes

There are three NTP protocol variants: symmetric, client/server, and
broadcast. FEach is associated with an association node (a
description of the relationship between two NTP speakers) as shown in
Figure 1. 1In addition, persistent associations are nobilized upon
startup and are never denobilized. Epheneral associations are
nmobi | i zed upon the arrival of a packet and are denobilized upon error
or timeout.

| Association Mbde | Assoc. Mdde Val ue | Packet Mde Val ue|

| Symmetric Active | 1 |
| Symmetric Passive | 2 |
| dient | 3 |
| Server | 4 |
| Broadcast Server | 5 |
| Broadcast dient | 6 [

+
I
I
I
I
I
I

Figure 1: Association and Packet Moddes

In the client/server variant, a persistent client sends packet node 4
packets to a server, which returns packet node 3 packets. Servers
provi de synchroni zation to one or nore clients, but do not accept
synchroni zation fromthem A server can also be a reference cl ock
driver that obtains tine directly froma standard source such as a
GPS receiver or tel ephone nodem service. |In this variant, clients
pul I synchroni zation from servers
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In the symmetric variant, a peer operates as both a server and client
using either a symetric active or symmetric passive association. A
persistent symretric active association sends symetric active (node
1) packets to a symmetric active peer association. Alternatively, an
epheneral synmetric passive association can be nobilized upon the
arrival of a symretric active packet with no matchi ng associ ati on.
That association sends symretric passive (node 2) packets and
persists until error or timeout. Peers both push and pul

synchroni zation to and fromeach other. For the purposes of this
docunent, a peer operates like a client, so references to client

i mply peer as well.

In the broadcast variant, a persistent broadcast server association
sends periodi c broadcast server (node 5) packets that can be received
by multiple clients. Upon reception of a broadcast server packet

wi thout a matching associ ation, an epheneral broadcast client (node
6) association is nobilized and persists until error or tinmeout. It
is useful to provide an initial volley where the client operating in
client node exchanges several packets with the server, so as to
calibrate the propagation delay and to run the Autokey security
protocol, after which the client reverts to broadcast client node. A
broadcast server pushes synchronization to clients and ot her servers.

Loosely followi ng the conventions established by the tel ephone

i ndustry, the level of each server in the hierarchy is defined by a
stratum nunber. Primary servers are assigned stratum one; secondary
servers at each |lower |evel are assigned stratum nunbers one greater
than the preceding level. As the stratum nunber increases, its
accuracy degrades depending on the particular network path and system
clock stability. Mean errors, nmeasured by synchronization di stances,
i ncrease approximately in proportion to stratum nunbers and measured
round-trip del ay.

As a standard practice, timng network topol ogy should be organized
to avoid timng | oops and mninize the synchronization distance. In
NTP, the subnet topology is determ ned using a variant of the

Bel | man- Ford distributed routing algorithm which conputes the
shortest-path spanning tree rooted on the primary servers. As a
result of this design, the algorithmautomatically reorganizes the
subnet, so as to produce the nost accurate and reliable tinme, even
when there are failures in the tinmng network.

3.1. Dynanic Server Discovery
There are two special associations, manycast client and manycast
server, which provide a dynam c server discovery function. There are

two types of manycast client associations: persistent and epheneral .
The persistent manycast client sends client (nbde 3) packets to a
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designated | Pv4 or | Pv6 broadcast or nulticast group address.

Desi gnat ed manycast servers within range of the time-to-live (TTL)
field in the packet header listen for packets with that address. |If
a server is suitable for synchronization, it returns an ordinary
server (node 4) packet using the client’s unicast address. Upon
receiving this packet, the client nobilizes an epheneral client (node
3) association. The epheneral client association persists unti

error or timeout.

A manycast client continues sending packets to search for a m ni num

nunber of associations. It starts with a TTL equal to one and
continuously adding one to it until the m ni mum nunmber of
associations is made or when the TTL reaches a maxi rumvalue. |[|f the

TTL reaches its maxi mum val ue and yet not enough associations are
mobi | i zed, the client stops transm ssion for a tine-out period to
clear all associations, and then repeats the search cycle. If a

m ni mum nunber of associations has been nobilized, then the client
starts transnitting one packet per time-out period to maintain the
associations. Field constraints lint the nmininmumvalue to 1 and the
maxi mumto 255. These linmts may be tuned for individual application
needs.

The epheneral associations conpete anong thensel ves. As new
epheneral associations are nmobilized, the client runs the nitigation
al gorithnms described in Sections 10 and 11.2 for the best candidates
out of the popul ation, the remaining epheneral associations are tined
out and dempbilized. In this way, the popul ation includes only the
best candi dates that have nobst recently responded with an NTP packet
to discipline the system cl ock

4. Definitions

A nunmber of technical ternms are defined in this section. A timescale
is a frame of reference where tine is expressed as the value of a
nmonot oni cal Iy increasing binary counter with an indefinite nunber of
bits. It counts in seconds and fractions of a second, when a deci nal
point is enployed. The Coordinated Universal Time (UTC) tinescale is
defined by I TR TF. 460 [I TU-R_TF.460]. Under the auspices of the
Metre Convention of 1865, in 1975 the CGPM [ CGPM strongly endorsed
the use of UTC as the basis for civil tine.

The Coordinated Universal Tinme (UTC) tinmescale represents nean sol ar
time as dissenminated by national standards |aboratories. The system
time is represented by the system cl ock maintai ned by the hardware
and operating system The goal of the NTP algorithns is to mnimze
both the tine difference and frequency difference between UTC and the
system cl ock. Wen these differences have been reduced bel ow noni na
tol erances, the systemclock is said to be synchronized to UTC
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The date of an event is the UTC time at which the event takes place.
Dat es are epheneral val ues designated with uppercase T. Running tinme
is another timescale that is coincident to the synchronization
function of the NTP program

A timestanp T(t) represents either the UTC date or tine offset from
UTC at running time t. VWich nmeaning is intended should be clear
fromthe context. Let T(t) be the tine offset, R(t) the frequency
offset, and D(t) the aging rate (first derivative of R(t) with
respect tot). Then, if T(t_0) is the UTC tine offset determ ned at
t =t 0, the UTCtine offset at tinet is

T(t) = T(t_0) + R(t_0)(t-t_0) + 1/2 * D(t_0)(t-t_0)"2 + e,

where e is a stochastic error termdiscussed |later in this docunent.
While the D(t) termis inportant when characterizing precision
oscillators, it is ordinarily neglected for conputer oscillators. In
this docunent, all tine values are in seconds (s) and all frequency
val ues are in seconds-per-second (s/s). It is sonetines convenient
to express frequency offsets in parts-per-mllion (ppn), where 1 ppm
is equal to 107(-6) s/s.

It is inportant in conputer tinekeeping applications to assess the
performance of the tinmekeeping function. The NTP performance nodel
i ncludes four statistics that are updated each tine a client nmakes a
measurenent with a server. The offset (theta) represents the

maxi mum | i kel i hood time of fset of the server clock relative to the
system clock. The delay (delta) represents the round-trip del ay
between the client and server. The dispersion (epsilon) represents
the maxi mum error inherent in the nmeasurenent. |t increases at a
rate equal to the maxi mum di sciplined system cl ock frequency
tolerance (PH), typically 15 ppm The jitter (psi) is defined as
the root-nmean-square (RMS5) average of the nost recent offset
differences, and it represents the nominal error in estimating the
of f set.

While the theta, delta, epsilon, and psi statistics represent
measurenents of the systemclock relative to each server clock
separately, the NTP protocol includes nmechanisns to combine the
statistics of several servers to nore accurately discipline and
calibrate the systemclock. The system offset (THETA) represents the
maxi mum | i kel i hood of fset estimate for the server population. The
systemjitter (PSI) represents the nominal error in estimating the
systemoffset. The delta and epsilon statistics are accumnul ated at
each stratumlevel fromthe reference clock to produce the root del ay
(DELTA) and root dispersion (EPSILON) statistics. The
synchroni zati on distance (LAMBDA) equal to EPSILON + DELTA / 2
represents the maxi numerror due to all causes. The detailed
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They are

avail abl e to the dependent applications in order to assess the
performance of the synchronization function.

5. I nplenentation NMdel

Figure 2 shows the architecture of a typical,

i mpl ementation. It

nmul ti -t hreaded
i ncludes two processes dedicated to each server,

a peer process to receive nessages fromthe server or reference

clock, and a poll
ref erence cl ock.

process to transnit nessages to the server or

Renot e Peer / Pol |
Servers Processes
R R +: oo oo
A | ->] ||
.| Server 1] |Peer/Poll 1]-3>|
- | <1 I
JE TS +, - - - oo - |
" I
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| [ ->] |. | Selection
.| Server 2| |Peer/Poll 2|->| and
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R S e | Algorithmns
A I
: I I
[ TR N I —— |
A | ->] ||
.| Server 3| |Peer/Poll 3|->|
| | <1 -
R S U oo
.................... N
|
Figure 2: Inplenentati
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These processes operate on a common data structure, called an

associ ation, which contains the statistics described above along with
various other data described in Section 9. A client sends packets to
one or nore servers and then processes returned packets when they are
received. The server interchanges source and destination addresses
and ports, overwites certain fields in the packet and returns it
imediately (in the client/server node) or at some tinme later (in the
symretric nodes). As each NTP nmessage is received, the offset theta
bet ween the peer clock and the systemclock is conputed along with
the associated statistics delta, epsilon, and psi

The system process includes the selection, cluster, and conbi ne
algorithnms that nmitigate anong the various servers and reference
clocks to determ ne the nost accurate and reliable candidates to
synchroni ze the systemclock. The selection algorithmuses Byzantine
fault detection principles to discard the presumably incorrect

candi dates called "fal setickers" fromthe incident popul ation

| eavi ng only good candi dates called "truechimers". A truechinmer is a
cl ock that maintains tinmekeeping accuracy to a previously published
and trusted standard, while a falseticker is a clock that shows

m sl eadi ng or inconsistent time. The cluster al gorithm uses
statistical principles to find the nbst accurate set of truechiners.
The conbine al gorithm conputes the final clock offset by
statistically averaging the surviving truechiners.

The cl ock discipline process is a system process that controls the
time and frequency of the systemclock, here represented as a

vari abl e frequency oscillator (VFO. Tinmestanps struck fromthe VFO
cl ose the feedback | oop that maintains the systemclock tine.
Associated with the clock discipline process is the clock-adjust
process, which runs once each second to inject a conputed tinme offset
and maintain constant frequency. The RMS average of past tinme offset
di fferences represents the nomnal error or systemclock jitter. The
RVMS average of past frequency offset differences represents the
oscillator frequency stability or frequency wander. These terns are
given precise interpretation in Section 11.3.

A client sends nessages to each server with a poll interval of 2*tau
seconds, as deternmined by the poll exponent tau. In NTPv4, tau
ranges from4 (16 s) to 17 (36 h). The value of tau is determ ned by
the clock discipline algorithmto match the | oop-tinme constant T ¢ =
2"tau. In client/server node, the server responds inmedi ately;
however, in symetric nodes, each of two peers nmanhages tau as a
function of current systemoffset and systemjitter, so they may not
agree with the sane value. It is inportant that the dynam c behavi or
of the clock discipline algorithmbe carefully controlled in order to
mai ntain stability in the NTP subnet at large. This requires that
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the peers agree on a common tau equal to the ninimum poll exponent of
both peers. The NTP protocol includes provisions to properly
negoti ate this val ue.

The i npl enmentati on nodel includes sone neans to set and adjust the
system cl ock. The operating systemis assuned to provide two
functions: one to set the time directly, for exanple, the Unix
settimeofday() function, and another to adjust the tinme in small
increments advancing or retarding the time by a designated amount,

for exanple, the Unix adjtime() function. 1In this and follow ng
ref erences, parentheses following a nane indicate reference to a
function rather than a sinple variable. In the intended design the

cl ock discipline process uses the adjtinme() function if the
adjustnent is less than a designated threshold, and the
settinmeofday() function if above the threshold. The nmanner in which
this is done and the value of the threshold as described in

Section 10.

6. Data Types

Al'l NTP time values are represented in twoss-conplenent format, with
bits nunbered in big-endian (as described in Appendi x A of [RFC0791])
fashion fromzero starting at the left, or high-order, position
There are three NTP tinme formats, a 128-bit date format, a 64-bit
timestanp format, and a 32-bit short format, as shown in Figure 3.
The 128-bit date format is used where sufficient storage and word
size are available. It includes a 64-bit signed seconds field
spanning 584 billion years and a 64-bit fraction field resolving .05
attosecond (i.e., 0.5e-18). For conveni ence in nmappi hg between
formats, the seconds field is divided into a 32-bit Era Nunber field
and a 32-bit Era Ofset field. Eras cannot be produced by NTP
directly, nor is there need to do so. Wen necessary, they can be
derived fromexternal neans, such as the filesystem or dedi cated

har dwar e
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NTP Date Format

Figure 3: NTP Tine Formats

The 64-bit tinestanp format is used in packet headers and ot her
places with [imted word size. It includes a 32-bit unsigned seconds
field spanning 136 years and a 32-bit fraction field resolving 232

pi coseconds. The 32-bit short format is used in delay and di spersion
header fields where the full resolution and range of the other
formats are not justified. It includes a 16-bit unsigned seconds
field and a 16-bit fraction field.

In the date and tinestanp formats, the prine epoch, or base date of
era 0, is 0 h 1 January 1900 UTC, when all bits are zero. It should
be noted that strictly speaking, UTC did not exist prior to 1 January
1972, but it is convenient to assune it has existed for all eternity,
even if all know edge of historic |l eap seconds has been lost. Dates
are relative to the prinme epoch; values greater than zero represent
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times after that date; values |l ess than zero represent tinmes before
it. Note that the Era Ofset field of the date format and the
Seconds field of the timestanp format have the same interpretation

Ti mest anps are unsi gned val ues, and operations on them produce a
result in the same or adjacent eras. FEra 0 includes dates fromthe
prinme epoch to sonme time in 2036, when the tinmestanp field waps
around and the base date for era 1 is established. |In either format,
a value of zero is a special case representing unknown or
unsynchroni zed tine. Figure 4 shows a nunber of historic NTP dates
together with their corresponding Mddified Julian Day (MID), NTP era
and NTP tinestanp.

o m e e oo o - s +----- B s +
| Date | MID | NTP | NTP Timestanp | Epoch |
[ [ | Era | Era Ofset [ [
S TS +--- o= o e oo o e e o - +
| 1 Jan -4712 | -2,400,001 | -49 | 1,795,583,104 | 1st day Julian |
| 1 Jan -1 | -679, 306 | -14 | 139,775,744 | 2 BCE [
| 1 Jan O | -678,491 | -14 | 171, 311,744 | 1 BCE [
| 1Jan 1 | -678,575 | -14 | 202,939, 144 | 1 CE [
| 4 Gt 1582 | -100, 851 | -3 | 2,873,647,488 | Last day Julian |
| 15 Cct 1582 | -100, 840 | -3 | 2,874,597,888 | First day |
I I I I | Gregorian I
| 31 Dec 1899 | 15019 | -1 | 4,294,880,896 | Last day NTP Era

I I I I | -1 I
| 1 Jan 1900 | 15020 | O | O | First day NTP [
I I I I | Era 0 I
| 1 Jan 1970 | 40,587 | O | 2,208,988,800 | First day UNI X |
| 1 Jan 1972 | 41, 317 | O | 2,272,060,800 | First day UTC [
| 31 Dec 1999 | 51,543 | O | 3,155,587,200 | Last day 20th [
I I I I | Century I
| 8 Feb 2036 | 64,731 | 1 | 63,104 | First day NTP [
I I I I | Eral I
S TS +--- o= o e oo o e e o - +

Figure 4: Interesting Historic NTP Dates

Let p be the nunber of significant bits in the second fraction. The
clock resolution is defined as 2*(-p), in seconds. |n order to

m nim ze bias and hel p nake tinmestanps unpredictable to an intruder
the non-significant bits should be set to an unbi ased random bit
string. The clock precision is defined as the running tinme to read
the systemclock, in seconds. Note that the precision defined in
this way can be larger or smaller than the resolution. The termrho,
representing the precision used in the protocol, is the larger of the
t wo.
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The only arithnetic operation pernmitted on dates and tinestanps is
twos- conpl enent subtraction, yielding a 127-bit or 63-bit signed
result. It is critical that the first-order differences between two
dates preserve the full 128-bit precision and the first-order

di fferences between two tinestanps preserve the full 64-bit

preci sion. However, the differences are ordinarily small conpared to
the seconds span, so they can be converted to floating double format
for further processing and w thout conprom sing the precision

It is inportant to note that twos-conplenent arithnmetic does not

di stingui sh between signed and unsi gned val ues (although conpari sons
can take sign into account); only the conditional branch instructions
do. Thus, although the distinction is made between signed dates and
unsi gned tinmestanps, they are processed the sane way. A perceived
hazard with 64-bit timestanp cal cul ati ons spanning an era, such as is
possible in 2036, mght result in over-run. |In point of fact, if the
client is set within 68 years of the server before the protocol is
started, correct values are obtained even if the client and server
are in adjacent eras.

Sone tine values are represented in exponent format, including the
precision, time constant, and poll interval. These are in 8-bit
signed integer format in log2 (log base 2) seconds. The only
arithmetic operations permitted on themare increment and decremnent.
For the purpose of this document and to sinplify the presentation, a
reference to one of these variables by nane neans the exponenti ated
value, e.g., the poll interval is 1024 s, while reference by nane and
exponent neans the actual value, e.g., the poll exponent is 10.

To convert systemtinme in any format to NTP date and tinestanp
formats requires that the nunber of seconds s fromthe prine epoch to
the systemtine be determined. To deternine the integer era and

ti mestanp given s,

era =s / 27(32) and tinmestanp = s - era * 2"(32),

whi ch works for positive and negative dates. To determnmine s given
the era and tinestanp,

s = era * 2°(32) + tinestanp.
Converting between NTP and systemtine can be a little nmessy, and is
beyond the scope of this docunment. Note that the nunber of days in

era 0 is one nore than the nunber of days in nost other eras, and
this won’t happen again until the year 2400 in era 3.
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In the description of state variables to follow, explicit reference
to integer type inmplies a 32-bit unsigned integer. This sinplifies
bounds checks, since only the upper limt needs to be defined.
Wthout explicit reference, the default type is 64-bit floating
doubl e. Exceptions will be noted as necessary.

7. Data Structures

The NTP state machines are defined in the followi ng sections. State
vari abl es are separated into classes according to their function in
packet headers, peer and poll processes, the system process, and the
clock discipline process. Packet variables represent the NTP header
values in transnitted and received packets. Peer and poll variables
represent the contents of the association for each server separately.
System vari abl es represent the state of the server as seen by its
dependent clients. Cock discipline variables represent the interna
wor ki ngs of the clock discipline algorithm An exanple is described
in Appendi x A

7.1. Structure Conventions

In order to distinguish between different variables of the sane nane
but used in different processes, the nam ng convention sunmarized in
Figure 5 is adopted. A receive packet variable v is a nenber of the
packet structure r with fully qualified name r.v. In a simlar
manner, X.v is a transmt packet variable, p.v is a peer variable,
S.v is a systemvariable, and c.v is a clock discipline variable.
There is a set of peer variables for each association; there is only
one set of system and cl ock vari abl es.

| r | receive packet header variable

| x. | transmit packet header variable

| p. | peer/poll variable [
| s | systemvariable |
| ¢ | clock discipline variable |

Figure 5: Prefix Conventions
7.2. dobal Paraneters
In addition to the variable classes, a nunber of global paraneters

are defined in this docunment, including those shown with values in
Fi gure 6.
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R [ R, oo e e e e e e e e e e +
| Nare | Value | Description |
Fom e e e e - - Fom e - o e e e e e e e e e e e e e ee o +
| PORT | 123 | NTP port nunber [
| VERSION | 4 | NTP version nunber |
| TOLERANCE | 15e-6 | frequency tolerance PH (s/s) |
| M NPCLL | 4 | mininmmpoll exponent (16 s) [
| MAXPOLL | 17 | maxi mum pol | exponent (36 h) |
| MAXDISP | 16 | maxi mum di spersion (16 s) |
| MNDISP | .005 | mninmmdispersion increment (s) |
| MAXDI ST | 1 | distance threshold (1 s) |
| MAXSTRAT | 16 | maxi mum st ratum nunber |
R [ R, oo e e e e e e e e e e +

Figure 6: d obal Paraneters

Wil e these are the only gl obal paraneters needed for
interoperability, a larger collection is necessary in any

i mpl erentation. Appendix A 1.1 contains those used by the skel eton
for the mtigation algorithms, clock discipline algorithm and

rel ated i npl ement ati on-dependent functions. Some of these paraneter
val ues are cast in stone, |like the NTP port nunber assigned by the

| ANA and the version nunber assigned NTPv4 itself. Qhers, |like the
frequency tolerance (also called PH), involve an assunption about

t he wor st-case behavior of a system clock once synchroni zed and then
allowed to drift when its sources have becone unreachable. The

m ni mum and maxi mum paraneters define the limts of state variables
as described in later sections of this document.

While shown with fixed values in this docunent, sone inplenentations
may nmake them vari abl es adjustable by configuration commands. For

i nstance, the reference inplenmentation conputes the val ue of

PRECI SION as |l og2 of the minimumtime in several iterations to read
the system cl ock.

7.3. Packet Header Vari abl es

The nmost inportant state variables froman external point of view are
t he packet header variables described in Figure 7 and below. The NTP
packet header consists of an integral nunber of 32-bit (4 octet)
words in network byte order. The packet format consists of three
conmponents: the header itself, one or nore optional extension fields,
and an optional nmessage authentication code (MAC). The header
component is identical to the NTPv3 header and previ ous versions.

The optional extension fields are used by the Autokey public key
cryptographic algorithns described in [ RFC5906]. The optional MAC is
used by both Autokey and the synmetric key cryptographic al gorithm
described in this RFC
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R S o e e e e e oo +
| Nare | Fornul a | Description |
Fom e e e e - - Fom e e o o e e e e e e e e e e e oo n +
| leap | leap | leap indicator (LI)

| version | version | version nunber (VN) |
| node | node | node |
| stratum | stratum | stratum [
| poll | poll | poll exponent |
| precision | rho | precision exponent |
| rootdelay | delta_r | root del ay [
| rootdisp | epsilon_r | root dispersion |
| refid | refid | reference ID [
| reftinme | reftinme | reference tinestanp |
| org | T1 | origin tinmestanp |
| rec | T2 | receive tinmestanp

| xmt | T3 | transmit timestanp [
| dst | T4 | destination timestanp |
| keyid | keyid | key ID [
| dgst | dgst | nmessage digest |
B s ) +

Figure 7: Packet Header Vari ables

The NTP packet is a UDP datagram [ RFCO768]. Sone fields use nultiple
words and others are packed in snaller fields within a word. The NTP
packet header shown in Figure 8 has 12 words foll owed by optiona
extension fields and finally an optional nmessage authenticati on code
(MAC) consisting of the Key Identifier field and Message Di gest

field.
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Fi gure 8: Packet Header For nmat
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The extension fields are used to add optional capabilities, for
exanpl e, the Autokey security protocol [RFC5906]. The extension
field format is presented in order for the packet to be parsed

wi t hout the know edge of the extension field functions. The MACis
used by both Autokey and the synmetric key authentication schene.

A list of the packet header variables is shown in Figure 7 and
described in detail below Except for a mnor variation when using
the 1Pv6 address fanmily, these fields are backwards conpatible with
NTPv3. The packet header fields apply to both transnitted packets (X
prefix) and received packets (r prefix). |In Figure 8, the size of
some multiple-word fields is shown in bits if not the default 32
bits. The basic header extends fromthe begi nning of the packet to
the end of the Transmit Timestanp field.

The fields and associ ated packet variables (in parentheses) are
interpreted as foll ows:

LI Leap Indicator (leap): 2-bit integer warning of an inpending |eap
second to be inserted or deleted in the last mnute of the current
month with val ues defined in Figure 9.

Fom e e oo e e e e e e e e e e e e e e e e eeeooo oo +
| Value | Meaning [
[ R, oo m e e e e e e e e e e e e e e e me— oo - +
| O | no warning |
| 1 | last minute of the day has 61 seconds

| 2 | last minute of the day has 59 seconds

| 3 | unknown (cl ock unsynchroni zed) |
Fom e e oo e e e e e e e e e e e e e e e e meeeoo oo +

Figure 9: Leap Indicator

VN Version Nunber (version): 3-bit integer representing the NTP
versi on nunmber, currently 4.

Mode (mode): 3-bit integer representing the node, with val ues defined
in Figure 10.
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| reserved [
| symmetric active |
| symmetric passive |
| client [
| server |
| broadcast |
| NTP control nessage [
| reserved for private use

Fi gure 10: Associ ati on Mdes

Stratum (stratun): 8-bit integer representing the stratum with
val ues defined in Figure 11

oo T N TS +
| Value | Meaning |
Fom e e e - - o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me e em o +
| O | unspecified or invalid [
| 1 | primary server (e.g., equipped with a GPS receiver)

| 2-15 | secondary server (via NTP) |
| 16 | unsynchroni zed [
| 17-255 | reserved |
Fom e e e - - o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me e em o +

Figure 11: Packet Stratum

It is customary to map the stratumvalue 0 in received packets to
MAXSTRAT (16) in the peer variable p.stratumand to map p.stratum

val ues of MAXSTRAT or greater to O in transmtted packets. This

all ows reference clocks, which nornally appear at stratum O, to be
conveniently mitigated using the sane cl ock selection algorithnms used
for external sources (see Appendix A 5.5.1 for an exanple).

Poll: 8-bit signed integer representing the maxi muminterval between
successi ve nessages, in |log2 seconds. Suggested default linmts for
m ni mum and maxi rum poll intervals are 6 and 10, respectively.

Precision: 8-bit signed integer representing the precision of the
systemcl ock, in log2 seconds. For instance, a value of -18
corresponds to a precision of about one m crosecond. The precision
can be deternined when the service first starts up as the m ni mum
time of several iterations to read the system cl ock
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Root Del ay (rootdelay): Total round-trip delay to the reference
clock, in NTP short format.

Root Dispersion (rootdisp): Total dispersion to the reference clock,
in NTP short format.

Reference ID (refid): 32-bit code identifying the particul ar server
or reference clock. The interpretation depends on the value in the
stratumfield. For packet stratum O (unspecified or invalid), this
is a four-character ASCI| [RFC1345] string, called the "kiss code"
used for debuggi ng and nonitoring purposes. For stratum 1l (reference
clock), this is a four-octet, left-justified, zero-padded ASCII
string assigned to the reference clock. The authoritative |ist of
Reference Identifiers is maintained by | ANA, however, any string
beginning with the ASCI1 character "X' is reserved for unregistered
experinentation and devel opnent. The identifiers in Figure 12 have
been used as ASCI| identifiers:

GOES | Geosynchronous Orbit Environnent Satellite

USNO | USNO t el ephone nodem
PTB | European tel ephone nodem

I I
| GPS | dobal Position System |
| GAL | Galileo Positioning System |
| PPS | Ceneric pul se-per-second |
| TRIG| Inter-Range Instrumentation G oup |
| WWB | LF Radio WWB Ft. Collins, CO 60 kHz [
| DCF | LF Radio DCF77 Mainflingen, DE 77.5 kHz [
| HBG | LF Radio HBG Prangins, HB 75 kHz |
| MSF | LF Radio MSF Anthorn, UK 60 kHz |
| JJY | LF Radio JJY Fukushima, JP 40 kHz, Saga, JP 60 kHz [
| LORC| MF Radio LORAN C station, 100 kHz [
| TDF | MF Radio Allouis, FR 162 kHz [
| CHU | HF Radio CHU Otawa, Ontario [
| WW | HF Radio WW Ft. Collins, CO |
| WWH | HF Radi o WAWH Kauai, H [
| NIST | N ST tel ephone nodem |
| ACTS | NI ST tel ephone nodem |
I I
I I

Figure 12: Reference ldentifiers

Above stratum 1 (secondary servers and clients): this is the
reference identifier of the server and can be used to detect tinmng

| oops. If using the IPv4 address fanily, the identifier is the four-
octet | Pv4 address. |If using the IPv6 address family, it is the
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first four octets of the MD5 hash of the | Pv6 address. Note that,
when using the | Pv6 address famly on an NTPv4 server with a NTPv3
client, the Reference Identifier field appears to be a random val ue
and a timng |loop mght not be detected.

Ref erence Tinestanp: Time when the systemclock was | ast set or
corrected, in NTP tinmestanp format.

Oigin Tinestanp (org): Tinme at the client when the request departed
for the server, in NIP timestanp fornat.

Receive Tinmestanp (rec): Time at the server when the request arrived
fromthe client, in NTP timestanp format.

Transmit Tinestanp (xnt): Time at the server when the response |eft
for the client, in NIP timestanp fornat.

Destination Tinmestanp (dst): Tine at the client when the reply
arrived fromthe server, in NTP tinmestanp format.

Note: The Destination Timestanp field is not included as a header
field; it is determ ned upon arrival of the packet and nade avail abl e
in the packet buffer data structure.

If the NTP has access to the physical layer, then the tinmestanps are
associated with the begi nning of the synbol after the start of frane.
O herwi se, inplenmentations should attenpt to associate the tinestanp
to the earliest accessible point in the frane.

The MAC consists of the Key ldentifier followed by the Message

Di gest. The nessage digest, or cryptosum is calculated as in

[ RFC1321] over all NTP-header and optional extension fields, but not
the MAC itself.

Extension Field n: See Section 7.5 for a description of the fornmat of
this field.

Key ldentifier (keyid): 32-bit unsigned integer used by the client
and server to designate a secret 128-bit M5 key.

Message Digest (digest): 128-bit MD5 hash conputed over the key
foll owed by the NTP packet header and extensions fields (but not the
Key ldentifier or Message Digest fields).

It should be noted that the MAC conputation used here differs from

those defined in [RFCL305] and [ RFC4330] but is consistent with how
exi sting inplenentations generate a MAC
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7.4. The Kiss-0' -Death Packet

If the Stratumfield is 0, which inplies unspecified or invalid, the
Reference Identifier field can be used to convey nessages useful for
status reporting and access control. These are called Kiss-0'-Death
(KoD) packets and the ASCI| nessages they convey are called kiss
codes. The KoD packets got their name because an early use was to
tell clients to stop sending packets that violate server access
controls. The kiss codes can provide useful information for an
intelligent client, either NTPv4 or SNTPv4. Kiss codes are encoded
in four-character ASCI| strings that are left justified and zero
filled. The strings are designed for character displays and | og
files. Alist of the currently defined kiss codes is given in
Figure 13. Recipients of kiss codes MJST inspect themand, in the
foll owi ng cases, take these actions:

a. For kiss codes DENY and RSTR, the client MJST denobilize any
associations to that server and stop sending packets to that
server;

b. For kiss code RATE, the client MJST inmediately reduce its
polling interval to that server and continue to reduce it each
time it receives a RATE ki ss code.

c. Kiss codes beginning with the ASCII character "X' are for
unregi stered experinmentation and devel opnment and MJUST be ignored
i f not recognized.

d. Oher than the above conditions, KoD packets have no protoco
significance and are discarded after inspection
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[ S, o o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e meeem oo - +
| Code | Meani ng |
Homm - - o m m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e +
| ACST | The association belongs to a unicast server. [
| AUTH | Server authentication fail ed. |
| AUTO | Autokey sequence fail ed. |
| BCST | The association bel ongs to a broadcast server. |
| CRYP | Cryptographic authentication or identification failed. |
| DENY | Access denied by renote server. |
| DROP | Lost peer in symetric node. [
| RSTR | Access denied due to |ocal policy. |
| INIT | The association has not yet synchronized for the first |
[ | tinme. [
| MCST | The association belongs to a dynanically di scovered server.

| NKEY | No key found. Either the key was never installed or is |
[ | not trusted. [
| RATE | Rate exceeded. The server has tenporarily denied access |
[ | because the client exceeded the rate threshold. |
| RMOT | Alteration of association froma renote host running [
| | ntpdc. |
| STEP | A step change in systemtinme has occurred, but the |
[ | association has not yet resynchronized. [
Homm e o o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e eeeemo oo +

Fi gure 13: Kiss Codes

The Receive Tinmestanp and the Transmt Tinmestanp (set by the server)
are undefined when in a KoD packet and MJUST NOT be relied upon to
have valid values and MJUST be di scarded.

7.5. NTP Extension Field Format

In NTPv4, one or nore extension fields can be inserted after the
header and before the MAC, which is always present when an extension
field is present. Oher than defining the field format, this
docunent nakes no use of the field contents. An extension field
contains a request or response nessage in the format shown in

Fi gure 14.
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0 1 2 3
01234567890123456789012345678901
B i S S T s i S T st i S S S S S S S S i
[ Field Type [ Lengt h [
B e i i e o e e S T S e e s i i TR S

Val ue

B i S S T s i S T st i S S S S S S S S i
Paddi ng (as needed)
B e i i e o e e S T S e e s i i TR S

Figure 14: Extension Field Format

Al'l extension fields are zero-padded to a word (four octets)

boundary. The Field Type field is specific to the defined function
and is not elaborated here. Wiile the mininumfield |length
containing required fields is four words (16 octets), a maximumfield
I ength remains to be established.

The Length field is a 16-bit unsigned integer that indicates the
Il ength of the entire extension field in octets, including the Paddi ng
field.

8. On-Wre Protocol

The heart of the NTP on-wire protocol is the core nechani smthat
exchanges tine val ues between servers, peers, and clients. It is

i nherently resistant to |lost or duplicate packets. Data integrity is
provided by the I P and UDP checksuns. No flow control or

retransm ssion facilities are provided or necessary. The protoco
uses tinestanps, which are either extracted from packet headers or
struck fromthe systemclock upon the arrival or departure of a
packet. Tinestanps are precision data and should be restruck in the
case of link-level retransm ssion and corrected for the tine to
compute a MAC in transmt.

NTP nmessages nake use of two different comruni cati on nodes, one-to-
one and one-to-many, commonly referred to as uni cast and broadcast.
For the purposes of this docunent, the term broadcast is interpreted
as any avail abl e one-to-many nmechanism For |Pv4, this equates to
either |1 Pv4 broadcast or IPv4 nulticast. For IPv6, this equates to
IPv6 nulticast. For this purpose, | ANA has allocated the |IPv4

mul ticast address 224.0.1.1 and the I Pv6 nulticast address ending
2101, with the prefix determ ned by scoping rules. Any other non-

al |l ocated nulticast address may al so be used in addition to these

al | ocated nulticast addresses.
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The on-wire protocol uses four timestanps nunbered t1 through t4 and
three state variables org, rec, and xnt, as shown in Figure 15. This
figure shows the nost general case where each of two peers, A and B

i ndependently nmeasure the offset and delay relative to the other

For purposes of illustration, the packet tinestanps are shown in

| owercase, while the state variables are shown in uppercase. The
state variables are copied fromthe packet timestanps upon arrival or
departure of a packet.
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In the figure, the first packet transmtted by A contains only the
origin tinestanp t1, which is then copied to T1l. B receives the
packet at t2 and copies t1 to Tl and the receive tinestanp t2 to T2.
At this time or sone tinme later at t3, B sends a packet to A
containing t1l and t2 and the transmit tinestanp t3. Al three

ti mestanps are copied to the corresponding state variables. A

recei ves the packet at t4 containing the three tinestanps t1, t2, and
t3 and the destination timestanp t4. These four tinmestanps are used
to conmpute the offset and delay of B relative to A as described

bel ow

Before the xm and org state vari ables are updated, two sanity checks
are performed in order to protect against duplicate, bogus, or

repl ayed packets. |In the exchange above, a packet is duplicate or
replay if the transmt tinestanp t3 in the packet matches the org
state variable T3. A packet is bogus if the origin tinmestanp tl in
the packet does not match the xm state variable Tl. |In either of
these cases, the state variables are updated, then the packet is

di scarded. To protect against replay of the last transmitted packet,
the xm state variable is set to zero imediately after a successfu
bogus check.

The four nost recent tinestanps, Tl through T4, are used to conpute
the offset of Brelative to A

theta = T(B) - T(A) = 1/2 * [(T2-T1) + (T3-T4)]
and the round-trip del ay
delta = T(ABA) = (T4-T1) - (T3-T2).

Note that the quantities w thin parentheses are conputed from 64-bit
unsi gned tinmestanps and result in signed values with 63 significant
bits plus sign. These values can represent dates from 68 years in
the past to 68 years in the future. However, the offset and del ay
are conputed as suns and differences of these values, which contain
62 significant bits and two sign bits, so they can represent

unamnbi guous val ues from 34 years in the past to 34 years in the

future. In other words, the tinme of the client nust be set within 34
years of the server before the service is started. This is a
fundanmental linmtation with 64-bit integer arithnetic.

In inplenentations where floating double arithnmetic is available, the
first-order differences can be converted to floating double and the
second-order sums and differences conmputed in that arithnmetic. Since
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the second-order ternms are typically very small relative to the
ti mestanp magnitudes, there is no loss in significance, yet the
unambi guous range is restored from 34 years to 68 years.

In sone scenarios where the initial frequency offset of the client is
relatively large and the actual propagation tine small, it is

possi ble for the delay conputation to become negative. For instance,
if the frequency difference is 100 ppmand the interval T4-T1 is 64
s, the apparent delay is -6.4 ns. Since negative values are

m sl eadi ng i n subsequent conputations, the value of delta should be
cl anped not less than s.rho, where s.rho is the system precision
described in Section 11.1, expressed in seconds.

The di scussi on above assumes the nost general case where two
symretric peers independently neasure the offsets and del ays between
them |In the case of a statel ess server, the protocol can be
simplified. A stateless server copies T3 and T4 fromthe client
packet to T1 and T2 of the server packet and tacks on the transnmit
timestanp T3 before sending it to the client. Additional details for
filling in the remaining protocol fields are given in a Section 9 and
foll owi ng sections and in the appendi x.

Note that the on-wire protocol as described resists replay of a
server response packet. However, it does not resist replay of the
client request packet, which would result in a server reply packet
with new values of T2 and T3 and result in incorrect offset and
delay. This vulnerability can be avoided by setting the xm state
variable to zero after conputing the offset and del ay.

9. Peer Process

The process descriptions to follow include a listing of the inportant
state variables followed by an overview of the process operations

i npl emented as routines. Frequent reference is made to the skel eton
in the appendi x. The skel eton includes C|anguage fragnents that
describe the functions in nore detail. It includes the paraneters,
vari abl es, and decl arati ons necessary for a conforning NTPv4

i npl ementation. However, many additional variables and routines may
be necessary in a working inplenmentation

The peer process is called upon arrival of a server or peer packet.
It runs the on-wire protocol to deternine the clock offset and round-
trip delay and computes statistics used by the system and pol
processes. Peer variables are instantiated in the association data
structure when the structure is initialized and updated by arriving
packets. There is a peer process, poll process, and association
process for each server.
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9.1. Peer Process Vari abl es

Figures 16, 17, 18, and 19 sunmarize the common nanes, fornula nanes
and a short description of the peer variables. The commpn nanes and
formul a names are interchangeable; fornula nanes are intended to

i ncrease readability of equations in this specification. Unless
noted ot herw se, all peer variables have assumed prefix p

Fomm e o Fom e - o e e e e e e e e e e e oo n +
| Nane | Formula | Description [
TS [ SR o m e e e e oo +
| srcaddr | srcaddr | source address |
| srcport | srcport | source port |
| dstaddr | dstaddr | destination address

| dstport | destport | destination port |
| keyid | keyid | key identifier key ID
TS [ SR o m e e e e oo +

Fi gure 16: Peer Process Configuration Variables

| eap | eap | eap indicator

I I I I
| version | version | version nunber |
| node | node | node |
| stratum | stratum | stratum [
| ppoll | ppoll | peer poll exponent |
| rootdelay | delta_r | root del ay |
| rootdisp | epsilon_r | root dispersion |
| refid | refid | reference ID |
| reftinme | reftinme | reference timestanp |
[ S Fom e e o Fom e e e e oo oo +

Figure 17: Peer Process Packet Variabl es

Homm - - Fomm e o e m e e e e e e oo - +
| Nanme | Fornula | Description [
. N S +
| org | T1 | origin tinmestanp |
| rec | T2 | receive tinmestanp |
| xnmt | T3 | transmit tinestanp |
| | | |

packet tinme

Fi gure 18: Peer Process Tinmestanp Vari abl es
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oo I T +
| Nare | Fornmula | Description |
Fom e e e - - Fomm e o e e e e e oo - +
| offset | theta | clock offset [
| delay | delta | round-trip del ay|
| disp | epsilon | dispersion |
| jitter | psi | jitter [
| filter | filter | clock filter |
| tp | t_p | filter time |
Hom e e oo - Fomm e - S +

Fi gure 19: Peer Process Statistics Variables

The follow ng configuration variables are nornmally initialized when
the association is nobilized, either froma configuration file or
upon the arrival of the first packet for an unknown associ ation

srcaddr: | P address of the renpte server or reference clock. This
beconmes the destination |IP address in packets sent fromthis
associ ati on.

srcport: UDP port nunber of the server or reference clock. This
becones the destination port nunber in packets sent fromthis
association. Wen operating in symmetric nodes (1 and 2), this field
nmust contain the NTP port number PORT (123) assigned by the 1ANA. In
other nodes, it can contain any nunber consistent with |local policy.

dstaddr: I P address of the client. This becones the source IP
address in packets sent fromthis association

dstport: UDP port nunber of the client, ordinarily the NTP port
nunber PORT (123) assigned by the 1ANA. This becomes the source port
nunber in packets sent fromthis association

keyid: Symmetric key ID for the 128-bit MD5 key used to generate and
verify the MAC. The client and server or peer can use different
val ues, but they nmust map to the same key.

The variables defined in Figure 17 are updated fromthe packet header
as each packet arrives. They are interpreted in the sane way as the
packet variables of the same nanmes. It is convenient for later
processing to convert the NTP short format packet val ues r.rootdel ay
and r.rootdisp to floating doubl es as peer vari abl es.

The variables defined in Figure 18 include the tinmestanps exchanged

by the on-wire protocol in Section 8 The t variable is the seconds
counter c.t associated with these values. The c.t variable is

mai nt ai ned by the cl ock-adjust process described in Section 12. It
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9.

2

counts the seconds since the service was started. The vari abl es
defined in Figure 19 include the statistics conputed by the

clock filter() routine described in Section 10. The tp variable is
t he seconds counter associated with these val ues.

Peer Process Operations

The receive routine defines the process flow upon the arrival of a
packet. An exanple is described by the receive() routine in

Appendix A.5.1. There is no specific nmethod required for access
control, although it is recomended that inplenentations include such
a schene, which is simlar to many others now in w despread use. The
access() routine in Appendix A 5.4 describes a nmethod of inplenmenting
access restrictions using an access control list (ACL). Format
checks require correct field length and alignnent, acceptable version
nunber (1-4), and correct extension field syntax, if present.

There is no specific requirenent for authentication; however, if
aut hentication is inplenented, then the MD5-keyed hash al gorithm
described in [ RFC1321] mnust be supported.

Next, the association table is searched for matchi ng source address
and source port, for exanple, using the find assoc() routine in
Appendix A.5.1. Figure 20 is a dispatch table where the col umms
correspond to the packet node and rows correspond to the association
nmode. The intersection of the association and packet nobdes

di spat ches processing to one of the foll ow ng steps.

e . +
| | Packet Mbde |
T oo - oo - oo - oo - oo - +
| Association Mde | 1 | 2 | 3 | 4 | 5 |
Fom e e e e e Fom e - Fom e - Fom e - Fom e - Fom e - +
| No Association O | NEWPS | DSCRD | FXM T | MANY | NEWBC |
| Syy'm Active 1| PROC | PROC | DSCRD | DSCRD | DSCRD |
| Synm Passive 2| PROC | ERR | DSCRD | DSCRD | DSCRD |
| dient 3] DSCRD | DSCRD | DSCRD | PROC | DSCRD |
| Server 4 | DSCRD | DSCRD | DSCRD | DSCRD | DSCRD |
| Broadcast 5| DSCRD | DSCRD | DSCRD | DSCRD | DSCRD |
| Bcast dient 6 | DSCRD | DSCRD | DSCRD | DSCRD | PRCC

Fi gure 20: Peer Dispatch Table

DSCRD. This indicates a non-fatal violation of protocol as the
result of a programming error, |ong-delayed packet, or replayed
packet. The peer process discards the packet and exits.
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ERR. This indicates a fatal violation of protocol as the result of a
programm ng error, |ong-del ayed packet, or replayed packet. The peer
process di scards the packet, denobilizes the symetric passive

associ ation, and exits.

FXM T. This indicates a client (node 3) packet matching no
association (node 0). |If the destination address is not a broadcast
address, the server constructs a server (nmode 4) packet and returns
it tothe client without retaining state. The server packet header
is constructed. An exanple is described by the fast _xmt() routine
in Appendi x A.5.3. The packet header is assenbled fromthe receive
packet and system variables as shown in Figure 21. If the
s.rootdel ay and s.rootdi sp systemvariables are stored in floating
doubl e, they nmust be converted to NTP short format first.

o mm e e e e e e e e e e e e e e oo +
| Packet Variable --> Variable |
o e e e eaiaaoo-s +
| r.leap --> p. | eap [
| r.node --> p. node |
| r.stratum --> p.stratum |
| r.poll --> p. ppol | [
| r.rootdel ay --> p.rootdel ay |
| r.rootdisp --> p.rootdisp |
| r.refid --> p.refid [
| r.reftime --> p.reftine |
| r.keyid --> p. keyi d |
o mm e e e e e e e e e e e e e e oo +

Fi gure 21: Receive Packet Header

Note that, if authentication fails, the server returns a special
message called a crypto-NAK.  This nmessage includes the normal NTP
header data shown in Figure 8, but with a MAC consisting of four
octets of zeros. The client MAY accept or reject the data in the
message. After these actions, the peer process exits.

If the destination address is a nulticast address, the sender is
operating in manycast client node. |If the packet is valid and the
server stratumis less than the client stratum the server sends an
ordinary server (node 4) packet, but one which uses its unicast
destination address. A crypto-NAK is not sent if authentication
fails. After these actions, the peer process exits.

MANY: This indicates a server (node 4) packet matching no

association. Odinarily, this can happen only as the result of a
manycast server reply to a previously sent nulticast client packet.
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If the packet is valid, an ordinary client (node 3) association is
mobi | i zed and operation continues as if the association was nobilized
by the configuration file.

NEWBC. This indicates a broadcast (node 5) packet matching no
association. The client nobilizes either a client (node 3) or
broadcast client (nobde 6) association. Exanples are shown in the
mobi li ze() and clear() routines in Appendix A 2. Then, the packet is
val i dated and the peer variables initialized. An exanple is provided
by the packet() routine in Appendix A 5.1.1

If the inplenentation supports no additional security or calibration
functions, the association node is set to broadcast client (node 6)
and the peer process exits. |Inplenmentations supporting public key
aut henti cati on MAY run the Autokey or equival ent security protocol

| mpl enent ati ons SHOULD set the association node to 3 and run a short
client/server exchange to deternine the propagation delay. Follow ng
t he exchange, the association node is set to 6 and the peer process
continues in listen-only node. Note the distinction between a node-6
packet, which is reserved for the NTP nonitor and control functions,
and a node-6 associ ati on.

NEWPS. This indicates a symmetric active (node 1) packet matching no
association. The client nobilizes a symmetric passive (node 2)
association. An exanple is shown in the nmobilize() and clear()
routines in Appendix A 2. Processing continues in the PROC section
bel ow.

PROC. This indicates a packet matching an existing association. The
packet tinmestanps are carefully checked to avoid invalid, duplicate,
or bogus packets. Additional checks are sunmarized in Figure 22

Note that all packets, including a crypto-NAK, are considered valid
only if they survive these tests.
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1 duplicate packet The packet is at best an old duplicate
or at worst a replay by a hacker. |
This can happen in symetric nodes if |
the poll intervals are uneven. [
2 bogus packet |
3invalid One or nore tinestanp fields are |
invalid. This normally happens in [
symetri ¢ nodes when one peer sends |
the first packet to the other and |
before the other has received its |
first reply. |
The access controls have bl acklisted |
t he source. [
The cryptographi c nessage di gest does |
not match the MAC [
The server is not synchronized to a

val id source. |
One or nore header fields are invalid. |

4 access deni ed
5 authentication failure

6 unsynchroni zed

7 bad header data

Fi gure 22: Packet Error Checks

Processi ng conti nues by copying the packet variables to the peer

vari abl es as shown in Figure 21. An exanple is described by the
packet () routine in Appendix A 5.1.1. The receive() routine

i mpl ements tests 1-5 in Figure 22; the packet() routine inplenents
tests 6-7. If errors are found, the packet is discarded and the peer
process exits.

The on-wire protocol calculates the clock offset theta and round-trip
delay delta fromthe four nost recent tinestanps as described in
Section 8. Wile it is, in principle, possible to do all

cal cul ations except the first-order tinestanp differences in fixed-
point arithnetic, it is nmuch easier to convert the first-order
differences to floating doubles and do the remaining cal culations in
that arithnmetic, and this will be assumed in the foll ow ng

descri ption.

Next, the 8-bit p.reach shift register in the poll process described
in Section 13 is used to determ ne whether the server is reachable
and the data are fresh. The register is shifted left by one bit when
a packet is sent and the rightnost bit is set to zero. As valid

packets arrive, the rightnost bit is set to one. |If the register
contains any nonzero bits, the server is considered reachabl e;
otherwise, it is unreachable. Since the peer poll interval night
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have changed since the | ast packet, the host poll interval is
reviewed. An exanple is provided by the poll _update() routine in
Appendi x A 5.7.2.

The di spersion statistic epsilon(t) represents the maxi num error due
to the frequency tolerance and tinme since the | ast packet was sent.
It is initialized

epsilon(t_0) =r.rho + s.rho + PH * (T4-T1)

when the nmeasurenent is nade at t 0 according to the seconds counter
Here, r.rho is the packet precision described in Section 7.3 and
s.rho is the system precision described in Section 11.1, both
expressed in seconds. These terns are necessary to account for the
uncertainty in reading the systemclock in both the server and the
client.

The dispersion then grows at constant rate PH; in other words, at
time t, epsilon(t) = epsilon(t_0) + PH * (t-t_0). Wth the default
value PH = 15 ppm this anounts to about 1.3 s per day. Wth this
under st andi ng, the argunent t will be dropped and the di spersion
represented sinply as epsilon. The remaining statistics are conputed
by the clock filter algorithmdescribed in the next section

Clock Filter Al gorithm

The clock filter algorithmis part of the peer process. |t groons
the streamof on-wire data to select the sanples nost likely to
represent accurate tinme. The algorithm produces the variabl es shown
in Figure 19, including the offset (theta), delay (delta), dispersion
(epsilon), jitter (psi), and tine of arrival (t). These data are
used by the mtigation algorithnms to determnmine the best and fina

of fset used to discipline the systemclock. They are also used to
determne the server health and whether it is suitable for
synchroni zati on.

The clock filter algorithm saves the npst recent sanple tuples
(theta, delta, epsilon, t) in the filter structure, which functions
as an 8-stage shift register. The tuples are saved in the order that
packets arrive. Here, t is the packet tine of arrival according to
the seconds counter and should not be confused with the peer variable

tp.

The followi ng scheme is used to ensure sufficient sanples are in the
filter and that old stale data are discarded. Initially, the tuples
of all stages are set to the dummy tuple (0, MAXDI SP, MAXDI SP, 0).
As valid packets arrive, tuples are shifted into the filter causing
old tuples to be discarded, so eventually only valid tuples renain.
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If the three loworder bits of the reach register are zero
indicating three poll intervals have expired with no valid packets
recei ved, the poll process calls the clock filter algorithmwith a
dummy tuple just as if the tuple had arrived fromthe network. |If
this persists for eight poll intervals, the register returns to the
initial condition.

In the next step, the shift register stages are copied to a tenporary
list and the list sorted by increasing delta. Let i index the stages
starting with the lowest delta. |If the first tuple epoch t 0 is not
|ater than the last valid sanple epoch tp, the routine exits without
affecting the current peer variables. Oherwi se, let epsilon_i be
the dispersion of the ith entry, then

i=n-1

--- epsilon_i
epsilon = | U

/ (i +1)

--- 2

i =0

is the peer dispersion p.disp. Note the overload of epsilon, whether
input to the clock filter or output, the neaning should be clear from
cont ext .

The observer should note (a) if all stages contain the dumy tuple
wi th dispersion MAXDI SP, the conputed dispersionis alittle less
than 16 s, (b) each tinme a valid tuple is shifted into the register
the dispersion drops by a little less than half, depending on the
valid tuples dispersion, and (c) after the fourth valid packet the
di spersion is usually a little less than 1 s, which is the assuned
val ue of the MAXDI ST paraneter used by the selection algorithmto
determ ne whether or not the peer variables are acceptabl e.

Let the first stage offset in the sorted list be theta 0; then, for
the other stages in any order, the jitter is the RVS average

e +"1/ 2
| n-1 |
|- |
1 |\ 2 |
psi = aee---- * 1 (theta O-theta j) |
(n-1) | --- I
| j=1 I
e +

where n is the nunber of valid tuples in the filter (n > 1). In

order to ensure consistency and avoi d divide exceptions in other
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conputations, the psi is bounded from bel ow by the system precision
s.rho expressed in seconds. Wiile not in general considered a major
factor in ranking server quality, jitter is a valuable indicator of
fundanental tinmekeeping performance and network congestion state. O
particular inportance to the mitigation algorithns is the peer
synchroni zati on di stance, which is conputed fromthe delay and

di spersi on.

| anbda = (delta / 2) + epsilon

Note that epsilon and therefore | anbda increase at rate PH . The
| anbda is not a state variable, since |anbda is recal cul ated at each
use. It is a conmponent of the root synchronization distance used by

the mtigation algorithnms as a nmetric to evaluate the quality of time
avai |l abl e from each server.

It is inportant to note that, unlike NTPv3, NTPv4 associations do not
show a tineout condition by setting the stratumto 16 and | eap
indicator to 3. The association variables retain the val ues

determ ned upon arrival of the last packet. In NTPv4, |anbda
increases with tine, so eventually the synchroni zati on di stance
exceeds the distance threshold MAXDI ST, in which case the association
is considered unfit for synchronization

An exanpl e i npl enentation of the clock filter algorithmis shown in
the clock _filter() routine of Appendix A 5.2.

System Process

As each new sanple (theta, delta, epsilon, jitter, t) is produced by
the clock filter algorithm all peer processes are scanned by the
mtigation algorithnms consisting of the selection, cluster, conbine,
and cl ock discipline algorithms in the system process. The selection
al gorithm scans all associations and casts off the fal setickers,

whi ch have denonstrably incorrect tine, |eaving the truechinmers as
result. In a series of rounds, the cluster algorithmdiscards the
association statistically furthest fromthe centroid until a

speci fied m ni num nunber of survivors remain. The conbine al gorithm
produces the best and final statistics on a weighted average basis.
The final offset is passed to the clock discipline algorithmto steer
the systemclock to the correct tine.

The cluster algorithmselects one of the survivors as the system
peer. The associated statistics (theta, delta, epsilon, jitter, t)
are used to construct the systemvariables inherited by dependent
servers and clients and nade avail able to other applications running
on the same machi ne.
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1. System Process Vari abl es
Fi gure 23 sumari zes the common nanes, fornula nanes, and a short

description of each systemvariable. Unless noted otherw se, al
vari abl es have assuned prefix s.

update tine

I I I I
| p | p | system peer identifier

| leap | leap | leap indicator |
| stratum | stratum | stratum [
| precision | rho | precision |
| offset | THETA | conbi ned of f set |
| jitter | PSI | conbined jitter [
| rootdelay | DELTA | root delay |
| rootdisp | EPSILON | root dispersion |
| v | v | survivor |ist [
| refid | refid | reference ID |
| reftinme | reftinme | reference tinme |
| NMN | 3 | mnimum survivors [
| CMN | 1 | m ni mum candi dat es |
Fom e e oo - TS o e e e e e oo - +

Fi gure 23: System Process Vari abl es

Except for the t, p, offset, and jitter variables and the NM N and
CM N constants, the variables have the sane format and interpretation
as the peer variables of the same name. The NM N and CM N paraneters
are used by the selection and cluster algorithns described in the
next section.

The t variable is the seconds counter at the tine of the |ast update.
An exanple is shown by the clock update() routine in

Appendix A 5.5.4. The p variable is the system peer identifier
determined by the cluster() routine in Section 11.2.2. The precision
vari abl e has the sane format as the packet variable of the same nane.
The precision is defined as the larger of the resolution and tine to
read the clock, in log2 units. For instance, the precision of a

mai ns-frequency clock increnmenting at 60 Hz is 16 ns, even when the
system cl ock hardware representation is to the nanosecond.

The offset and jitter variables are determnined by the conbine
algorithmin Section 11.2.3. These values represent the best and
final offset and jitter used to discipline the system clock
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Initially, all variables are cleared to zero, then the leap is set to
3 (unsynchroni zed) and stratumis set to MAXSTRAT (16). Renenber
that MAXSTRAT is mapped to zero in the transmitted packet.

2. System Process Qperations

Figure 24 sumari zes the system process operations perforned by the
clock select routine. The selection algorithmdescribed in

Section 11.2.1 produces a mgjority clique of presumed correct

candi dates (truechi ners) based on agreenent principles. The cluster
al gorithm described in Section 11.2.2 discards outliers to produce
the nmost accurate survivors. The conbine algorithm described in
Section 11.2.3 provides the best and final offset for the clock
discipline algorithm An exanple is described in Appendix A 5.5.6.
If the selection algorithmcannot produce a majority clique, or if it
cannot produce at |least CM N survivors, the system process exits

wi t hout disciplining the systemclock. |f successful, the cluster
algorithm selects the statistically best candi date as the system peer
and its variables are inherited as the system vari abl es.
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| clock _select() |
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R e + | return (SYNQC) [
oo +

Fi gure 24: Cock Sel ect Routine

MIlls, et al. St andards Track [ Page 42]



RFC 5905 NTPv4 Specification June 2010

11.2.1. Selection Al gorithm

Note that the selection and cluster algorithns are described
separately, but conbined in the code skel eton. The sel ection

al gorithmoperates to find an intersection interval containing a
majority clique of truechimers using Byzantine agreenent principles
originally proposed by Marzullo [ref6], but nodified to inprove
accuracy. An overview of the algorithmis given bel ow and descri bed
inthe first half of the clock_select() routine in Appendix A.5.5.1

First, those servers that are unusable according to the rules of the
protocol are detected and di scarded as shown by the accept() routine
in Appendix A.5.5.3. Next, a set of tuples (p, type, edge) is
generated for the remaining candidates. Here, p is the association
identifier and type identifies the upper (+1), mddle (0), and | ower
(-1) endpoints of a correctness interval centered on theta for that
candidate. This results in three tuples, lowoint (p, -1, theta -

| anbda), midpoint (p, O, theta), and highpoint (p, +1, theta +

| anbda), where |anbda is the root synchronization di stance. An
exanple of this calculation is shown by the rootdist() routine in
Appendix A.5.1.1. The steps of the algorithm are:

1. For each of massociations, place three tuples as defined above
on the candidate |ist.

2. Sort the tuples on the list by the edge conponent. Order the
| owpoi nt, midpoint, and hi ghpoint of these intervals fromlowest to
hi ghest. Set the nunber of falsetickers f = 0.

3. Set the nunber of midpoints d = 0. Set ¢ = 0. Scan froml owest
endpoint to highest. Add one to c for every |owpoint, subtract one
for every highpoint, add one to d for every mdpoint. If ¢ > m- f,
stop; set | = current | owpoint.

4, Set ¢ = 0. Scan from highest endpoint to |lowest. Add one to ¢
for every highpoint, subtract one for every |owpoint, add one to d

for every midpoint. If ¢ > m- f, stop; set u = current highpoint.
5. Isd=f and | <u? If yes, then follow step 5A; else, follow
step 5B.

5A. Success: the intersection interval is [I, u].

5B. Add one to f. Is f < (m/ 2)? |If yes, then go to step 3 again.
If no, then go to step 6

6. Failure; a ngjority clique could not be found. There are no
suitabl e candidates to discipline the system cl ock
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The algorithmis described in detail in Appendix A 5.5.1. Note that
it starts with the assunption that there are no falsetickers (f = 0)
and attenpts to find a non-enpty intersection interval containing the

m dpoints of all correct servers, i.e., truechinmers. |If a non-enpty
i nterval cannot be found, it increases the nunber of assuned
fal setickers by one and tries again. |f a non-enpty interval is

found and the nunber of falsetickers is |ess than the nunber of
truechinmers, a majority clique has been found and the m dpoint of
each truechinmer (theta) represents the candi dates available to the
cluster algorithm

If a mpjority clique is not found, or if the number of truechimers is
less than CM N, there are insufficient candidates to discipline the
system cl ock. CM N defines the m ni mum nunmber of servers consi stent
with the correctness requirenments. Suspicious operators would set

CM N to ensure nultiple redundant servers are available for the
algorithnms to mtigate properly. However, for historic reasons the
default value for CMN is one.

2.2. Custer Algorithm

The candi dates of the majority clique are placed on the survivor |ist
v in the formof tuples (p, theta p, psi_p, lanbda p), where p is an
association identifier, theta p, psi_p, and stratump the current

of fset, jitter and stratum of association p, respectively, and
lanbda_p is a merit factor equal to stratump * MAXDI ST + | anbda
where | anbda is the root synchronization di stance for association p.
The list is processed by the cluster algorithmbelow. An exanple is
shown by the second half of the clock select() algorithmin

Appendi x A 5.5.1

1. Let (p, theta_p, psi_p, lanbda_p) represent a survivor candidate.

2. Sort the candidates by increasing |anbda_p. Let n be the nunber
of candidates and NM N the m ni nrum required nunber of survivors.

3. For each candidate, conpute the selection jitter psi_s:

e +"1/ 2
I n-1 I
| |
| 1 \ 2 |
psi_s =] ---- * /[ (theta_s - theta_j)
| n1 0 --- |
| =1 |
e +

4. Select psi_nmax as the candi date with nmaxi num psi_s.
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5. Select psi_nin as the candidate with m ni mum psi _p.

6. Is psi_max < psi_mn or n <= NMN? |If yes, follow step 6A;
otherw se, follow step 6B

6A. Done. The remaining candi dates on the survivor list are ranked
in the order of preference. The first entry on the Iist represents
the system peer; its variables are used later to update the system
vari abl es.

6B. Delete the outlier candidate with psi_nax; reduce n by one and go
back to step 3.

The al gorithm operates in a series of rounds where each round

di scards the statistical outlier with maxi mum selection jitter psi_s.
However, if psi_s is less than the mninum peer jitter psi_p, no

i mprovenent is possible by discarding outliers. This and the ni ni mum
nunmber of survivors represent the terninating conditions of the
algorithm Upon ternination, the final value of psi_max is saved as
the systemselection jitter PSI_s for use later.

2.3. Conbine Al gorithm

The cl ock conbi ne route processes the renaining survivors to produce
the best and final data for the clock discipline algorithm The
routi ne processes peer offset and jitter statistics to produce the
combi ned system of fset THETA and system peer jitter PSI_p, where each
server statistic is weighted by the reciprocal of the root
synchroni zati on distance and the result nornalized. An exanple is
shown by the clock _conbine() routine in Appendix A 5.5.5

The conbi ned THETA is passed to the clock update routine. The first
candi date on the survivor list is nomnated as the system peer with
identifier p. The systempeer jitter PSI _p is a conponent of the
systemjitter PSI. It is used along with the selection jitter PSI_s
to produce the systemjitter

PSI = [(PSI _s)*2 + (PSI _p)~2]~1/2

Each tinme an update is received fromthe system peer, the clock
update routine is called. By rule, an update is discarded if its
time of arrival p.t is not strictly later than the | ast update used
s.t. The labels IGNOR, PANIC, ADJ, and STEP refer to return codes
fromthe local clock routine described in the next section

| GNORE neans the update has been ignored as an outlier. PAN C neans
the offset is greater than the panic threshold PANICT (1000 s) and
SHOULD cause the programto exit with a diagnostic nessage to the
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systemlog. STEP neans the offset is Iess than the panic threshold,
but greater than the step threshold STEPT (125 nms). |In this case,
the clock is stepped to the correct offset, but since this neans al
peer data have been invalidated, all associations MJST be reset and
the client begins as at initial start.

ADJ means the offset is less than the step threshold and thus a valid
update. In this case, the systemvariables are updated fromthe peer
vari abl es as shown in Figure 25.

s.leap <-- p.leap |
s.stratum <-- p.stratum+ 1 |
s. of fset <-- THETA [
s.jitter <-- PS |
s.rootdelay <-- p.delta r + delta |
s.rootdisp <-- p.epsilon_r + p.epsilon + |
.psi + PH * (s.t - p.t) |

I

I

I

I

TCTT +TTT

| THETA|
s.refid <-- p.refid
s.reftine <-- p.reftinme
S.t <-- t
oo e e e e e e e e e e e e e e e e eeao o +

Fi gure 25: System Vari abl es Update

There is an inportant detail not shown. The dispersion increnent
(p.-epsilon + p.psi + PH * (s.t - p.t) + | THETA]) is bounded from
bel ow by M NDI SP. |n subnets with very fast processors and networks
and very small delay and di spersion this forces a nonotone-definite
increase in s.rootdisp (EPSILON), which avoids | oops between peers
operating at the sane stratum

The system variables are available to dependent application prograns
as nomi nal perfornmance statistics. The systemoffset THETA is the
clock offset relative to the avail abl e synchroni zati on sources. The
systemjitter PSI is an estimate of the error in determning this
val ue, el sewhere called the expected error. The root delay DELTA is
the total round-trip delay relative to the prinmary server. The root
di spersion EPSILON is the dispersion accunul ated over the network
fromthe primary server. Finally, the root synchronization distance
is defined as:
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LAVBDA = EPSILON + DELTA / 2,

whi ch represents the maxi mumerror due all causes and is designated
the root synchroni zation di stance.

An exanpl e of the clock update routine is provided in
Appendi x A 5.5. 4.

11.3. dock Discipline Al gorithm

The NTPv4 clock discipline algorithm shortened to discipline in the
followi ng, functions as a conbination of two quite phil osophically

di fferent feedback control systens. In a phase-locked |oop (PLL)
design, periodic phase updates at update intervals nu seconds are
used directly to mnimze the time error and indirectly the frequency
error. In a frequency-locked | oop (FLL) design, periodic frequency
updates at intervals nmu are used directly to mninize the frequency
error and indirectly the time error. As shown in [ref7], a PLL
usual |y works better when network jitter dom nates, while an FLL

wor ks better when oscillator wander domi nates. This section contains
an outline of how the NTPv4 design works. An in-depth discussion of
the design principles is provided in [ref7], which also includes a
performance anal ysi s.

The discipline is inplemented as the feedback control system shown in
Figure 26. The variable theta r represents the conbine al gorithm

of fset (reference phase) and theta c the VFO offset (control phase).
Each update produces a signal V_d representing the instantaneous
phase difference theta r - theta c. The clock filter for each server
functions as a tapped delay line, with the output taken at the tap
selected by the clock filter algorithm The selection, cluster, and
combi ne al gorithms conbine the data fromnultiple filters to produce
the signal V.s. The loop filter, with inpul se response F(t),
produces the signal V_c, which controls the VFO frequency onega_c and
thus the integral of the phase theta c which closes the | oop. The
V_c signal is generated by the clock-adjust process in Section 12.
The detail ed equations that inplenent these functions are best
presented in the routines of Appendices A 5.5.6 and A 5.6.1.
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theta_r + +--------- \ R +
NTP --------- >| Phase \' v.d | | V_s
theta c - | Detector ------ > dock Filter |----+
oo > / | I
| Foemmmmaas / e + |
I I
----- |
/ \ |
| VFO | [
\ / [
........................ T |
n Loop Filter [
| Fomm e e - + D G R + |
| V_c I | <----- I I
+------ -| dock | y | Phase/Freq |[<--------- +
| Adjust |<----- | Prediction |
I I I I
TP + e +

Fi gure 26: C ock Discipline Feedback Loop

Ordinarily, the pseudo-linear feedback |oop described above operates
to discipline the systemclock. However, there are cases where a
non-linear algorithmoffers considerable inprovement. One case is
when the discipline starts w thout know edge of the intrinsic clock
frequency. The pseudo-linear |oop takes several hours to devel op an
accurate neasurenent and during nost of that tinme the poll interva
cannot be increased. The non-linear |oop described bel ow does this
in 15 minutes. Another case is when occasional bursts of |arge
jitter are present due to congested network links. The state machine
descri bed below resists error bursts lasting |l ess than 15 m nutes.

Fi gure 27 contains a summary of the variables and paraneters
including the variable (lowercase) or paranmeter (uppercase) nane,
formul a name, and short description. Unless noted otherw se, al

vari abl es have assuned prefix c¢c. The variables t, tc, state, hyster
and count are integers; the remaining variables are floating doubl es.
The function of each will be explained in the algorithm descriptions
bel ow
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F S o m e e e e e i oo - +
| Nare | Fornul a | Description |
Fom e e e - - Fom e e o o e e e e e e e e e +
| t | tiner | seconds counter [
| offset | theta | conbi ned of f set |
| resid | theta_r | residual offset |
| freq | phi | clock frequency [
| jitter | psi | clock offset jitter |
| wander | onega | clock frequency wander |
| tc | tau | tine constant (I|o0g2) [
| state | state | state |
| adj | adj | frequency adjustnent |
| hyster | hyster | hysteresis counter [
| STEPT | 125 | step threshold (.125 s) |
| WATCH | 900 | stepout thresh(s) |
| PANICT | 1000 | panic threshold (1000 s)

| LIMT | 30 | hysteresis limt |
| PGATE | 4 | hysteresis gate [
| TC | 16 | time constant scale |
| AVG | 8 | averagi ng constant |
Fom e e e - - Fom e e o o e e e e e e e e e +

Figure 27: C ock Discipline Variables and Paraneters

The process terminates inmmediately if the offset is greater than the
pani ¢ threshold PANICT (1000 s). The state transition function is
described by the rstclock() function in Appendix A 5.5.7. Figure 28
shows the state transition function used by this routine. It has
four columms showi ng, respectively, the state name, predicate and
action if the offset theta is less than the step threshold, the
predi cate and actions otherwi se, and finally sone conments.
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[ R, Fom e e e oo Fom e e e e oo oo +
| State | theta < STEP | theta > STEP | Comments [
Fom e - e e e e e e e e o B S +
| NSET | ->FREQ | ->FREQ | no frequency

| | adjust tinme | step tine | file |
Fom e e o e e e e e e e oo o +
| FSET | ->SYNC | ->SYNC | frequency |
| | adjust time | step time | file |
Fom e - e e e e e e e e o B S +
| SPIK | ->SYNC | if <900 s ->SPIK | outlier [
[ | adjust freq | else ->SYNC | detected [
[ | adjust tine | step freq [ [
[ [ | step time [ [
Fomm oo - Fom e e e e e e e e oo ) B +
| FREQ | if <900 s ->FREQ | if <900 s ->FREQ | initial [
[ | else ->SYNC | else ->SYNC | frequency [
| | step freq | step freq | |
| | adjust time | adjust time | |
[ R, Fom e e e oo Fom e e e e oo oo +
| SYNC | ->SYNC | if <900 s ->SPIK | nornal |
| | adjust freq | else ->SYNC | operation |
[ | adjust tine | step freq [ [
I I | step time I I
Fom e e o e e e e e e e oo o +

Figure 28: State Transition Function

In the table entries, the next state is identified by the arrow ->
with the actions |listed below. Actions such as adjust tinme and

adj ust frequency are inplenmented by the PLL/FLL feedback | oop in the
| ocal _clock() routine. A step clock action is inplenented by setting
the clock directly, but this is done only after the stepout threshold
WATCH (900 s) when the offset is nmore than the step threshold STEPT
(.125 s). This resists clock steps under conditions of extrene

net wor k congesti on

The jitter (psi) and wander (onmega) statistics are conputed using an
exponential average with weight factor AVG The tine constant
exponent (tau) is determ ned by conparing psi with the magnitude of
the current offset theta. |If the offset is greater than PGATE (4)
times the clock jitter, the hysteresis counter hyster is reduced by
two; otherwise, it is increased by one. |f hyster increases to the
upper limt LIMT (30), tau is increased by one; if it decreases to
the lower limt -LIMT (-30), tau is decreased by one. Normally, tau
hovers near MAXPOLL, but quickly decreases if a tenperature spike
causes a frequency surge.
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12. d ock-Adjust Process

The actual cl ock-adjust process runs at one-second intervals to add
the frequency correction and a fixed percentage of the residua
offset theta r. The thetar is, in effect, the exponential decay of
the theta val ue produced by the loop filter at each update. The TC
paranmeter scales the tine constant to match the poll interval for
conveni ence. Note that the dispersion EPSILON i ncreases by PH at
each second

The cl ock-adjust process includes a timer interrupt facility driving
the seconds counter c.t. It begins at zero when the service starts
and increnents once each second. At each interrupt, the
clock_adjust() routine is called to incorporate the clock discipline
time and frequency adjustments, then the associations are scanned to
determne if the seconds counter equals or exceeds the p.next state
vari abl e defined in the next section. |If so, the poll process is
called to send a packet and conpute the next p.next val ue.

An exanpl e of the clock-adjust process is shown by the cl ock_adjust()
routine in Appendix A 5.6.1

13. Poll Process

Each associ ation supports a poll process that runs at regul ar
intervals to construct and send packets in symmetric, client, and

broadcast server associations. It runs continuously, whether or not
servers are reachable in order to manage the clock filter and reach
register.

13.1. Poll Process Vari abl es

Figure 29 sumari zes the common nanes, fornula nanes, and a short
description of the poll process variables (|l owercase) and paraneters
(uppercase). Unless noted otherw se, all variables have assuned
prefix p.
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13.

I I T +
| Nare | Fornmula | Description |
Fomm e o Fomm e o e m e e e e e e oo - +
| hpoll | hpoll | host poll exponent |
| last | last | last poll tinme |
| next | next | next poll tinme |
| reach | reach | reach register |
| unreach | unreach | unreach counter |
| UNREACH | 24 | unreach limt |
| BCOUNT | 8 | burst count [
| BURST | flag | burst enable |
| I1BURST | flag | iburst enable [
N N T +

Figure 29: Poll Process Variables and Paraneters

The poll process variables are allocated in the association data
structure along with the peer process variables. The following is a
detail ed description of the variables. The paranmeters will be called
out in the follow ng text.

hpol | : signed integer representing the poll exponent, in |og2 seconds

last: integer representing the seconds counter when the nost recent
packet was sent

next: integer representing the seconds counter when the next packet
is to be sent

reach: 8-bit integer shift register shared by the peer and pol
processes

unreach: integer representing the nunber of seconds the server has
been unreachabl e

2. Poll Process Operations

As described previously, once each second the cl ock-adjust process is
called. This routine calls the poll routine for each association in
turn. If the tine for the next poll nessage is greater than the
seconds counter, the routine returns imediately. Symretric (nodes
1, 2), client (node 3), and broadcast server (node 5) associations
routinely send packets. A broadcast client (node 6) association runs
the routine to update the reach and unreach variabl es, but does not
send packets. The poll process calls the transmt process to send a
packet. If in a burst (burst > 0), nothing further is done except
call the poll update routine to set the next poll interval
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If not in a burst, the reach variable is shifted |l eft by one bit,
with zero replacing the rightnost bit. |If the server has not been
heard for the last three poll intervals, the clock filter routine is
called to increase the dispersion. An exanple is shown in

Appendi x A 5.7.3.

If the BURST flag is Iit and the server is reachable and a valid
source of synchronization is available, the client sends a burst of

BCOUNT (8) packets at each poll interval. The interval between
packets in the burst is two seconds. This is useful to accurately
measure jitter with long poll intervals. |If the IBURST flag is lit

and this is the first packet sent when the server has been
unreachabl e, the client sends a burst. This is useful to quickly
reduce the synchronization distance bel ow the di stance threshold and
synchroni ze the cl ock

If the P_.MANY flag is lit in the p.flags word of the association

this is a manycast client association. Mnycast client associations
send client node packets to designated multicast group addresses at

M NPCLL intervals. The association starts out with a TTL of 1. |If
by the time of the next poll there are fewer than M NCLOCK servers
have been nobilized, the ttl is increased by one. |[If the ttl reaches
the limt TTLMAX, without finding MNCLOCK servers, the poll interva
i ncreases until reaching BEACON, when it starts over fromthe
begi nni ng.

The poll () routine includes a feature that backs off the pol

interval if the server becones unreachable. |f reach is nonzero, the
server is reachable and unreach is set to zero; otherw se, unreach is
incremented by one for each poll to the maxi mum UNREACH. Thereafter
for each poll hpoll is increased by one, which doubles the pol
interval up to the maxi nrum MAXPOLL determ ned by the poll __update()
routine. When the server again becones reachable, unreach is set to
zero, hpoll is reset to the tc systemvariable, and operation resunes
normal | y.

A packet is sent by the transnmt process. Sone header values are
copied fromthe peer variables left by a previous packet and others
fromthe systemvariables. Figure 30 shows which val ues are copied
to each header field. |In those inplenentations, using floating
doubl e data types for root delay and root dispersion, these nust be
converted to NTP short format. Al other fields are either copied
intact from peer and system variables or struck as a tinmestanp from
the system cl ock.
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o m e e e e e e e e e me oo +
| Packet Variable <-- Vari abl e |
o m e e e e e e e e e e e e e +
| x.leap <-- s.leap [
| x.version <-- s.version |
| x.node <-- s. node |
| x.stratum <-- s.stratum |
| x.poll <- - s. pol | |
| x.precision <-- S. precision
| x.rootdel ay <-- s.rootdel ay |
| x.rootdisp <-- s.rootdisp |
| x.refid <-- s.refid [
| x.reftime <-- s.reftime [
| x.org <- - p. xmt |
| x.rec <-- p. dst |
| x.xmt <-- cl ock [
| x.keyid <-- p. keyi d |
| x.digest <-- md5 di gest |
o m e e e e e e e e e me oo +

14.

MIls, et al

Figure 30: xmit_packet Packet Header

The poll update routine is called when a valid packet is received and

i medi ately after a poll nessage has been sent. |If in a burst, the
poll interval is fixed at 2 s; otherwi se, the host poll exponent
hpoll is set to the m ninmum of ppoll fromthe | ast packet received

and hpoll fromthe poll routine, but not Iess than M NPOLL or greater
than MAXPOLL. Thus, the clock discipline can be oversanpl ed but not

undersanpl ed. This is necessary to preserve subnet dynam ¢ behavi or

and protect against protocol errors.

The poll exponent is converted to an interval, which, when added to
the last poll tine variable, determ nes the value of the next pol
time variable. Finally, the last poll tine variable is set to the
current seconds counter

Sinmpl e Network Tinme Protocol (SNTP)

Primary servers and clients conplying with a subset of NIP, called
the Sinple Network Tine Protocol (SNTPv4) [ RFC4330], do not need to
i mpl ement the mitigation algorithns described in Section 9 and
followi ng sections. SNTP is intended for prinmary servers equi pped
with a single reference clock, as well as for clients with a single
upstream server and no dependent clients. The fully devel oped NTPv4
i npl ementation is intended for secondary servers with nultiple
upstream servers and nultiple downstream servers or clients. O her
than these considerations, NTP and SNTP servers and clients are
compl etely interoperable and can be interm xed in NTP subnets.
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described in

Section 8 has no upstream servers except a single reference cl ock.
i s indistinguishable froman NIP primary server that
has the mtigation algorithns and therefore capable of mtigating
between nmultiple reference cl ocks.

In principle, it

Upon receiving a client

request,

an SNTP primary server constructs

and sends the reply packet as described in Figure 31.
di spersion field in the packet header nust be updated as described in

Section 5.
IS +
| Packet Variable <-- Vari abl e [
o m e m e e e e e e e e e e e e e e e e +
| x.leap <-- s.leap |
| x.version <-- r.version [
| x.node <-- 4 |
| x.stratum <-- s.stratum |
| x.poll <-- r.poll [
| x.precision <-- S. precision |
| x.rootdel ay <-- s.rootdel ay |
| x.rootdisp <-- s.rootdisp |
| x.refid <-- s.refid |
| x.reftime <-- s.reftime [
| x.org <-- r.xnt [
| x.rec <- - r.dst |
| x.xnt <-- cl ock |
| x.keyid <-- r.keyid [
| x.digest <-- md5 di gest |
T T +
Figure 31: fast_xmt Packet Header

An SNTP client

and no dependent clients.

on-wi re protocol

ti mestanp of the server packet and ignoring all

i mpl ementing the on-wire protoco
It can operate with any subset of the NTP

Not e that the

has a single server

t he sinpl est approach using only the transnit

ot her fields.

However, the additional conplexity to inplement the full on-wire
protocol is mnimal so that a full inplenmentation is encouraged.
Security Considerations

NTP security requirenents are even nore stringent than nost other

di stri buted services.

First,

the operation of the authentication

mechani sm and the tine synchronization nmechanismare inextricably

i ntertw ned.

Rel i abl e ti me synchroni zation requires cryptographic
but,

tine

keys that are valid only over a designated tine interval
intervals can be enforced only when participating servers and clients
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are reliably synchronized to UTC. In addition, the NTP subnet is
hi erarchi cal by nature, so time and trust flow fromthe primry
servers at the root through secondary servers to the clients at the
| eaves.

An NTP client can claimto have authentic tinme to dependent
applications only if all servers on the path to the primary servers

are authenticated. |In NTP each server authenticates the next | ower
stratum servers and authenticates by induction the | owest stratum
(primary) servers. It is inportant to note that authentication in

the context of NTP does not necessarily inply the time is correct.
An NTP client nobilizes a number of concurrent associations with
different servers and uses a crafted agreenent algorithmto pluck
truechimers fromthe popul ati on possibly including fal setickers.

The NTP specification assunes that the goal of the intruder is to
inject false tine values, disrupt the protocol, or clog the network,
servers, or clients with spurious packets that exhaust resources and
deny service to legitinate applications. There are a nunber of

def ense mechani sms already built in the NTP architecture, protocol
and algorithnms. The on-wire tinmestanp exchange schene is inherently
resistant to spoofing, packet-loss, and replay attacks. The

engi neered clock filter, selection and clustering algorithns are
designed to defend against evil cliques of Byzantine traitors. Wile
not necessarily designed to defeat determ ned intruders, these

al gorithnms and acconpanyi ng sanity checks have functioned well over
the years to deflect inproperly operating but presumably friendly
scenarios. However, these nechanisns do not securely identify and
authenticate servers to clients. Wthout specific further
protection, an intruder can inject any or all of the follow ng

att acks:

1. An intruder can intercept and archive packets forever, as well as
all the public values ever generated and transnitted over the
net .

2. An intruder can generate packets faster than the server, network
or client can process them especially if they require expensive
crypt ographi ¢ conput ati ons.

3. In awretap attack, the intruder can intercept, nodify, and
replay a packet. However, it cannot permanently prevent onward
transm ssion of the original packet; that is, it cannot break the
wire, only tell lies and congest it. Generally, the nodified
packet cannot arrive at the victimbefore the original packet,
nor does it have the server private keys or identity paraneters.

MIlls, et al. St andards Track [ Page 56]



RFC 5905 NTPv4 Specification June 2010

4. In a mddl eman or masquerade attack, the intruder is positioned
bet ween the server and client, so it can intercept, nodify and
replay a packet and prevent onward transm ssion of the origina
packet. However, the m ddl enan does not have the server private
keys.

The NTP security nodel assunmes the follow ng possible Iimitations:

1. The running tines for public key algorithns are relatively |ong
and highly variable. In general, the performance of the tine
synchroni zation function is badly degraded if these algorithns
nmust be used for every NTP packet.

2. In sonme nodes of operation, it is not feasible for a server to
retain state variables for every client. It is however feasible
to regenerated themfor a client upon arrival of a packet from
that client.

3. The lifetine of cryptographic values nust be enforced, which
requires a reliable systemclock. However, the sources that
synchroni ze the system cl ock nmust be trusted. This circul ar
i nt erdependence of the tinekeeping and authentication functions
requi res special handling.

4. dient security functions must involve only public val ues
transmitted over the net. Private values nust never be discl osed
beyond the machi ne on which they were created, except in the case
of a special trusted agent (TA) assigned for this purpose.

Unli ke the Secure Shell (SSH) security nodel, where the client nust
be securely authenticated to the server, in NIP the server nust be
securely authenticated to the client. |In SSH, each different
interface address can be bound to a different nane, as returned by a
reverse-DNS query. In this design, separate public/private key pairs
may be required for each interface address with a distinct nane. A
percei ved advantage of this design is that the security conpart nent

can be different for each interface. This allows a firewall, for
instance, to require sone interfaces to authenticate the client and
ot hers not.

In the case of NTP as specified herein, NTP broadcast clients are

vul nerabl e to disruption by nisbehaving or hostile SNTP or NTP
broadcast servers el sewhere in the Internet. Such disruption can be
m nim zed by several approaches. Filtering can be enployed to lint
the access of NIP clients to known or trusted NTP broadcast servers.
Such filtering will prevent nalicious traffic fromreaching the NTP
clients. Cryptographic authentication at the client will only allow
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16.

timng information from properly signed NTP nessages to be utilized
in synchronizing its clock. Higher levels of authentication may be
gai ned by the use of the Autokey nechani sm[ RFC5906] .

Section 8 describes a potential security concern with the replay of
client requests. Followi ng the reconmendations in that section
provi des protection agai nst such attacks.

It should be noted that this specification is describing an existing
i nplementation. While the security shortfalls of the MD5 al gorithm
are well-known, its use in the NTP specification is consistent with

wi descal e depl oynent in the Internet comunity.

| ANA Consi der ati ons

UDP/ TCP Port 123 was previously assigned by | ANA for this protocol
The | ANA has assigned the | Pv4 nmulticast group address 224.0.1.1 and
the 1Pv6 multicast address ending :101 for NTP. This docunent

i ntroduces NTP extension fields allowi ng for the devel opment of
future extensions to the protocol, where a particular extension is to
be identified by the Field Type sub-field within the extension field.
| ANA has established and will nmaintain a registry for Extension Field
Types associated with this protocol, populating this registry with no
initial entries. As future needs arise, new Extension Field Types
may be defined. Followi ng the policies outlined in [RFC5226], new
val ues are to be defined by | ETF Revi ew.

The 1 ANA has created a new registry for NTP Reference ldentifier
codes. This includes the current codes defined in Section 7.3, and
may be extended on a First-Cone-First-Serve (FCFS) basis. The fornmat
of the registry is:

| GOES | Geosynchronous Orbit Environnent Satellite |
| GPS | dobal Position System |

Fi gure 32: Reference ldentifier Codes

The | ANA has created a new registry for NTP Kiss-o0' -Death codes.
This includes the current codes defined in Section 7.4, and may be
extended on a FCFS basis. The format of the registry is:
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17.

18.

18.

18.

| ACST | The association belongs to a unicast server. [
| AUTH | Server authentication fail ed. |

Fi gure 33: Kiss Codes

For both Reference Identifiers and Kiss-o' -Death codes, IANA is
requested to never assign a code beginning with the character "X', as
this is reserved for experinmentation and devel oprent.
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Appendi x A.  Code Skel eton

This appendix is intended to describe the protocol and al gorithns of
an inplenmentation in a general way using what is called a code

skel eton program This consists of a set of definitions, structures,
and code fragnents that illustrate the protocol operations w thout
the conplexities of an actual inplementation of the protocol. This
programis not an executable and is not designed to run in the

ordi nary sense

Most of the features of the reference inplenentation are included
here, with the foll owi ng exceptions: there are no provisions for

ref erence cl ocks or public key (Autokey) cryptography. There is no
huff-n'-puff filter, anti-clockhop hysteresis, or nonitoring

provi sions. Many of the values that can be tinkered in the reference
i npl ementation are assuned constants here. There are only m ninma
provisions for the kiss-0'-death packet and no respondi ng code.

The programis not intended to be fast or conpact, just to
demonstrate the algorithms with sufficient fidelity to understand how
they work. The code skel eton consists of eight segments, a header
segnment included by each of the other segnments, plus a code segnent
for the main program kernel I/0O and system clock interfaces, and
peer, system clock adjust, and poll processes. These are presented
in order below along with definitions and variabl es specific to each
process.

A.1. dobal Definitions

Al 1. Definitions, Constants, Paraneters

#i ncl ude <math. h> [ * avoids conplaints about sqrt() */

#i ncl ude <sys/tine. h> [* for gettimeofday() and friends */

#i ncl ude <stdlib. h> [* for malloc() and friends */

#i ncl ude <string. h> [* for nmenset() */

/*

* Data types

* This program assunes the int data type is 32 bits and the long data
* type is 64 bits. The native data type used in nost calculations is
* floating double. The data types used in sone packet header fields
* require conversion to and fromthis representation. Sone header

* fields involve partitioning an octet, here represented by individua
* octets.

* The 64-bit NTP tinestanp format used in tinestanp calculations is

unsi gned seconds and fraction with the decimal point to the left of

MIlls, et al. St andards Track [ Page 61]



RFC 5905 NTPv4 Specification June 2010

bit 32. The only operation permitted with these values is
subtraction, yielding a signed 31-bit difference. The 32-bit NIP
short format used in delay and di spersion calculations is seconds and
fraction with the decimal point to the left of bit 16. The only
operations permtted with these values are addition and

mul tiplication by a constant.

The 1 Pv4 address is 32 bits, while the IPv6 address is 128 bits. The
message digest field is 128 bits as constructed by the MD5 al gorithm
The precision and poll interval fields are signed | 0og2 seconds.

L S T T I

*

*/

t ypedef unsigned | ong | ong tstanp; [* NTP timestanp format */
typedef unsigned int tdist; /* NTP short format */
typedef unsigned | ong i paddr; [* I Pv4d or | Pv6 address */
typedef unsigned | ong di gest; /* md5 di gest */

typedef signed char s_char; [* precision and poll interval (log2) */
/*

* Timestanp conversi on macron

*/

#define FRIC 65536. [* 2716 as a double */
#def i ne D2FP(r) ((tdist)((r) * FRIO) [* NTP short */

#def i ne FP2D(r) ((double)(r) / FRIQ

#defi ne FRAC 4294967296. /* 2732 as a double */
#def i ne D2LFP(a) ((tstamp)((a) * FRAC)) /* NITP tinestanp */
#def i ne LFP2D( a) ((double)(a) / FRAQ
#def i ne U2LFP( a) (((unsigned long long) \
((a).tv_sec + JAN 1970) << 32) +\
(unsigned long long) \
((a).tv_usec / 1le6 * FRAQ))

/*
* Arithmetic conversions
*/
#def i ne LOXRD( a) ((a) <0?21. / (1L << -(a)) : \
1L << (a)) /* poll, etc. */
#def i ne SQUARE( x) (x * x)
#def i ne SQRT(x) (sqgrt(x))
/*

* d obal constants. Sone of these night be converted to variables
* that can be tinkered by configuration or conputed on-the-fly. For
* instance, the reference inplenmentation conmputes PRECI SION on-the-fly
* and provides performance tuning for the defines marked with % bel ow.
*/
#def i ne VERSI ON 4 /* version nunber */
#defi ne M NDI SP .01 [* % m ni mum di spersion (s) */
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#defi ne
#defi ne
#defi ne
#def i ne
#def i ne
#defi ne
#defi ne
#defi ne
#defi ne
#def i ne

MAXDI SP
MAXDI ST
NCSYNC
MAXSTRAT
M NPOLL
MAXPOLL
M NCLOCK
MAXCLOCK
TTLMAX
BEACON

#defi ne PHI
#defi ne NSTAGE
#defi ne NVAX
#def i ne NSANE
#define NM N

/*
* d oba
*/
#defi ne TRUE
#def i ne FALSE

return val ues

/*

* Local
*/

#defi ne
#def i ne
#def i ne
#defi ne

| GNORE
SLEW
STEP
PANI C

/*

* System fl ags

*/

#define S _FLAGS
#def i ne S_BCSTENAB

/*

* Peer
* [

#def i ne
#defi ne
#defi ne
#defi ne
#defi ne
#def i ne
#def i ne

flags

P_FLAGS
P_EPHEM
P_BURST
P_| BURST
P_NOTRUST
P_NOPEER
P_MANY
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16

0x3
16

17

10

15

15e-6

50

WNEFO

Ox1

0x01
0x02
0x04
0x08
0x10
0x20

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*

cl ock process return codes

/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*
/*

maxi mum di spersion (s) */
% di stance threshold (s) */
| eap unsync */
maxi mum stratum (infinity metric) */
(64 s)*/
(36.4 h) */
ni ni mum manycast survivors */

maxi mum manycast candi dates */

% m ni mum pol
% maxi mum pol

max ttl

max i nterva

i nterval
i nterval

manycast */

June 2010

bet ween beacons */

% frequency tol erance (15 ppm */

clock register stages */

maxi mum nunber of peers */
% m ni mum i ntersection survivors */
% m ni mum cl uster survivors */

bool ean true */
bool ean fal se */

i gnore */

sl ew adj ustment */
step adjustnment */

panic -

no adjustment */

any systemflags */

enabl e broadcast client

any peer flags */

associ ation is epheneral

burst enable */

intial

burst enable */
aut henti cated access */

*/

*/

aut henti cated nobilization */
manycast client */
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/*

* Aut hentication codes

*

/
#defi ne A _NONE 0 /* no authentication */
#define A K 1 /* authentication K */
#defi ne A_ERROR 2 /* authentication error */
#defi ne A _CRYPTO 3 [* crypto-NAK */
/*

* Associ ation state codes

*

/
#define X_INIT 0 /* initialization */
#defi ne X_STALE 1 /* tinmeout */
#defi ne X_STEP 2 /[* time step */
#defi ne X ERROR 3 /* authentication error */
#defi ne X _CRYPTO 4 [* crypto-NAK received */
#def i ne X_NKEY 5 /* untrusted key */
/*

* Protocol node definitions

*

/
#def i ne M _RSVD 0 /* reserved */
#defi ne M _SACT 1 /* symetric active */
#def i ne M _PASV 2 /[* symetric passive */
#define M _CLNT 3 /* client */
#defi ne M SERV 4 /* server */
#define M BCST 5 /* broadcast server */
#defi ne M BCLN 6 /* broadcast client */
/*

* Clock state definitions

*/
#def i ne NSET 0 /* clock never set */
#defi ne FSET 1 /* frequency set fromfile */
#def i ne SPI K 2 /* spi ke detected */
#def i ne FREQ 3 /* frequency node */
#defi ne SYNC 4 /* cl ock synchronized */

#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) < (b) ? (b) : (a))
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Al 2. Packet Data Structures

/*
* The receive and transmt packets may contain an optional nessage
* aut hentication code (MAC) consisting of a key identifier (keyid) and
* message digest (mac in the receive structure and dgst in the transmt
* structure). NTPv4 supports optional extension fields that
* are inserted after the header and before the MAC, but these are
* not described here.
*
* Recei ve packet
*
* Note the dst timestanp is not part of the packet itself. It is
* captured upon arrival and returned in the receive buffer along with
* the buffer length and data. Note that some of the char fields are
* packed in the actual header, but the details are omtted here.
*/
struct r {
i paddr srcaddr; /* source (renote) address */
i paddr dst addr; /* destination (local) address */
char versi on; /* version number */
char | eap; /* leap indicator */
char node; /* nmode */
char stratum /* stratum */
char pol I ; /* poll interval */
s_char precision; /* precision */
tdi st r oot del ay; /* root delay */
tdist r oot di sp; /* root dispersion */
char refid; /* reference ID */
tstanp reftine; /* reference tinme */
tstamp org; [* origin timestanmp */
tstamp rec; /* receive tinestanp */
tstamp xnt; [* transmt timestanp */
i nt keyi d; [* key ID*/
di gest nmc; /* nmessage digest */
tstanmp dst; /* destination timestanp */
Por;
/*
* Transnmit packet
*/
struct x {
i paddr dst addr; /* source (local) address */
i paddr srcaddr; /* destination (renote) address */
char versi on; /* version number */
char | eap; /* leap indicator */
char node; /* nmode */
char stratum /* stratum */
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char
s_char
tdi st
t di st
char
tstanp
tstanmp
tstanp
tstanp
i nt

di gest

}ox

A 1.3.

/*

* Filter stage structure.
* structures refers to process tine, not
* increments by one second for every el apsed second of

pol I ;
preci si on;
r oot del ay;
r oot di sp;
refid;
reftine;
org;

rec;

xnt ;
keyi d;
dgst;

NTPv4 Specification

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Associ ation Data Structures

Note the t nenber

This is

pol |l interval */
precision */

root delay */

root dispersion */
reference ID */
reference time */
origin timestanp */
receive tinmestanp */
transmt tinestanp */
key ID */

message di gest */

real tine.

/* update tinme */
/* clock ofset */
[* roundtrip delay */
[* dispersion */

* Variabl es set by configuration

June 2010

in this and ot her
Process tine

tine.

shared between the peer process

/* source (renote) address */
/* destination (local) address */

/* version nunber */
/* host node */

/* key identifier */
/* option flags */

* Variabl es set by received packet

*/
struct f {
tstanp t;
doubl e offset;
doubl e del ay;
doubl e di sp;
P
/*
* Associ ation structure.
* and pol |l process.
*/
struct p {
/*
*/
i paddr srcaddr;
i paddr dst addr;
char versi on;
char hnode;
i nt keyi d;
i nt flags;
/*
*/
char | eap;
char prode

MIls, et al

/* leap indicator */
/* peer node */
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char stratum /* stratum */

char ppol | ; [* peer poll interval */

doubl e rootdel ay; /* root delay */

doubl e rootdisp; /* root dispersion */

char refid; /* reference ID */

tstanp reftine; /* reference tinme */
#defi ne begin_clear org /* begi nning of clear area */

tstamp org; /[* originate timestanmp */

tstamp rec; /* receive tinestanp */

tstanmp xnt; [* transmit tinmestanp */

/*

* Comput ed data

*/

double t; [* update time */

struct f f[NSTAGE]; /[* clock filter */

doubl e offset; /* peer offset */

doubl e del ay; [ * peer delay */

doubl e di sp; [ * peer dispersion */

double jitter; [* RVS jitter */

/*

* Poll process variabl es

*/

char hpol I ; /* host poll interval */

i nt bur st ; /* burst counter */

i nt reach; /* reach register */

i nt ttl; /[* ttl (manycast) */
#defi ne end_cl ear unreach /* end of clear area */

i nt unr each; /* unreach counter */

i nt out dat e; /[* last poll time */

i nt next dat e; /* next poll time */

}ops
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A 1.4, System Data Structures

/*
* Chinme list. This is used by the intersection algorithm
*/
struct m{ /* mis for Marzullo */
struct p *p; /* peer structure pointer */
i nt type; /* high +1, md 0, low-1 */
doubl e edge; /* correctness interval edge */
}om
/*
* Survivor list. This is used by the clustering algorithm
*/
struct v {
struct p *p; /* peer structure pointer */
double netric; /* sort metric */
P,
/*
* System structure
*/
struct s {
tstamp t; /* update time */
char | eap; /* leap indicator */
char stratum [* stratum */
char pol | ; /[* poll interval */
char pr eci si on; [* precision */
doubl e rootdel ay; /* root delay */
doubl e rootdisp; /* root dispersion */
char refid; /* reference ID */
tstamp reftine; /* reference time */
struct m n{ NVAX] ; [* chime list */
struct v v[NVAX]; [* survivor list */
struct p *p; /* association ID */
doubl e offset; /* conbined of fset */
double jitter; /* conbined jitter */
i nt fl ags; /[* option flags */
i nt n; /* nunmber of survivors */
} s,
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A.1.5. Local dock Data Structures

/*
* Local clock structure
*
/
struct c {
tstamp t; /[* update time */
i nt state; /* current state */
doubl e offset; /* current offset */
doubl e |ast; [* previous offset */
i nt count; /* jiggle counter */
double freq; /* frequency */
double jitter; [* RVS jitter */
doubl e wander; /* RMS wander */
}oc
A.1.6. Function Prototypes
/*
* Peer process
*/
voi d receive(struct r *); /* receive packet */
voi d packet (struct p *, struct r *); /* process packet */
voi d clock filter(struct p *, double, double, double); /* filter */
double root _dist(struct p *); [* calculate root distance */
i nt fit(struct p *); /* determ ne fitness of server */
voi d clear(struct p *, int); /* clear association */
i nt access(struct r *); /* determ ne access restrictions */
/*
* System process
*/
i nt mai n() ; /* main program */
voi d clock_select(); /[* find the best clocks */
voi d clock_update(struct p *); /* update the systemclock */
voi d cl ock_conbi ne(); /* conbine the offsets */
/*
* Local clock process
*
/
i nt | ocal _clock(struct p *, double); /* clock discipline */
voi d rstclock(int, double, double); /* clock state transition */
/*
* O ock adjust process
*
/
voi d cl ock_adjust(); /* one-second tiner process */
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/*

* Poll process

*/
voi d pol |l (struct p *); [* poll process */
voi d pol | update(struct p *, int); /* update the poll interval */
voi d peer_xmt(struct p *); [/* transnmit a packet */

voi d fast _xmit(struct r *, int, int); /* transnit a reply packet */
/*

* Utility routines

*/

di gest nmd5(int); /* generate a nessage di gest */

struct p *nobilize(i paddr,

struct p *find_assoc(struct

/*
* Ker nel
* [

struct

voi d

voi d

voi d

tstanp

interface

r *recv_packet ();
step_ti me(doubl e);
get _time();

A 2.

/*
* Definitions
* [

#defi ne

#defi ne

#defi ne

#defi ne

PRECI SI ON
| PADDR
MODE
KEYI D

oo !

/*

* main() -
*/

i nt

mai n()

mai n program

struct p *p;
struct r *r;

MIls, et al

xmt _packet (struct x *);

adj ust _ti me(doubl e);

i paddr,
r *);

int, int, int, int); /* nobilize */
/* search the association table */

/* wait for packet */

/* send packet */

[* step time */

/[* adjust (slew) tine */
/* read time */

Main Programand Utility Routines

/* precision (log2 s) */
/[* any | P address */

[* any NTP node */

/[* any key identifier */

/* peer structure pointer */
/* receive packet pointer */
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/*

* Read command line options and initialize systemvari abl es.

* The reference inplenentati on nmeasures the precision specific
* to each machi ne by neasuring the clock increments to read the
* system cl ock.

*/

menset (&s, sizeof(s), 0);

s.l eap = NOSYNC

s. stratum = MAXSTRAT;

s.poll = M NPQOLL;

s. preci sion = PRECI SI ON

s.p = NULL;

/*

* Initialize local clock variables
* [

menset (&c, sizeof(c), 0);
if (/* frequency file */ 0) {
c.freq =/* freq */ 0;
rstcl ock(FSET, 0, 0);
} else {
rstcl ock(NSET, 0, 0);
}

c.jitter = LOXD(s. precision);

/*
* Read the configuration file and nobilize persistent
* associations with specified addresses, version, node, key ID
* and fl ags.
*/
while (/* nmobilize configurated associations */ 0) {
p = nobilize(l PADDR, |PADDR, VERSION, MODE, KEYID
P_FLAGS);
}

/*
* Start the systemtiner, which ticks once per second. Then
* read packets as they arrive, strike receive tinestanp, and
* call the receive() routine.
*/
while (0) {

r = recv_packet ();

r->dst = get_tine();

receive(r);

}

return(0);
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/*
* mobilize() - nobilize and initialize an association
*/
struct p
*mobi | i ze(
i paddr srcaddr, /* | P source address */
i paddr dstaddr, /* | P destination address */
i nt versi on, /* version */
i nt nmode, /* host node */
i nt keyi d, /* key identifier */
i nt fl ags /* peer flags */
)
{
struct p *p; /* peer process pointer */
/*
* Allocate and initialize association nenory
*/
p = mall oc(sizeof (struct p));
p- >srcaddr = srcaddr;
p- >dst addr = dstaddr;
p- >versi on = version
p- >hnode = node;
p- >keyi d = keyi d;
p->hpol | = M NPOLL;
clear(p, X INT);
p->flags = fl ags;
return (p);
}
/*
* find_assoc() - find a matching association
*/
struct p [ * peer structure pointer or NULL */
*find_assoc(
struct r *r /* receive packet pointer */
)
{
struct p *p; /* dummy peer structure pointer */
/*

* Search association table for matching source
* address, source port and node.

*/
while (/* all associations */ 0) {
if (r->srcaddr == p->srcaddr && r->npde == p->hnode)
return(p);
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return (NULL);

}
/*
* md5() - conpute nessage digest
*/
di gest
md5(
i nt keyi d /* key identifier */
)
{
/*
* Compute a keyed cryptographic nessage digest. The key
* identifier is associated with a key in the |ocal key cache.
* The key is prepended to the packet header and extension fields
* and the result hashed by the MD5 algorithm as described in
* RFC 1321. Return a MAC consisting of the 32-bit key ID
* concatenated with the 128-bit digest.
*

/
return (/* MD5 digest */ 0);

A.3. Kernel Input/Qutput Interface

* Kernel interface to transnmt and receive packets. Details are
* deliberately vague and depend on the operating system

* recv_packet - receive packet from network
*/
struct r /* receive packet pointer*/
*recv_packet () {
return (/* receive packet r */ 0);

}
/*
* xmt_packet - transmt packet to network
*/
voi d
xmt _packet (
struct x *x /* transmit packet pointer */
)
/* send packet x */
}
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A. 4. Kernel System O ock Interface

/*

* Systemclock utility functions

*

* There are three tinme formats: native (Unix), NTP, and floating

* double. The get_tine() routine returns the time in NTP long fornmat.
* The Uni x routines expect arguments as a structure of two signed

* 32-bit words in seconds and mcroseconds (tineval) or nanoseconds

* (timespec). The step tine() and adjust _tinme() routines expect signed
* argunents in floating double. The sinplified code shown here is for
* jllustration only and has not been verified.

*/
#define JAN_ 1970 2208988800UL /* 1970 - 1900 in seconds */
/*

* get tine - read systemtinme and convert to NTP fornat
*/

tstanp
get _tinme()
struct tineval unix_tine;
/*
* There are only two calls on this routine in the program One
* when a packet arrives fromthe network and the other when a
* packet is placed on the send queue. Call the kernel tinme of
* day routine (such as gettineofday()) and convert to NTP
* format.
*/
getti meof day(&uni x_time, NULL);
return (WRLFP(unix_tinme));
}
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/*
* step_time() - step systemtinme to given offset val ue
*/

voi d
step_time(
doubl e of fset /* clock offset */
)
{
struct timeval unix_tine;
tstanp ntp_tine;
/*
* Convert fromdouble to native format (signed) and add to the
* current time. Note the addition is done in native format to
* avoid overflow or |oss of precision.
*/
getti nmeof day(&uni x_tinme, NULL);
ntp_time = D2LFP(of fset) + U2LFP(uni x_time);
uni x_tine.tv_sec = ntp_time >> 32
uni x_tine.tv_usec = (long)(((ntp_time - unix_time.tv_sec) <<
32) /| FRAC * 1e6);
settineof day(&uni x_tinme, NULL);
}
/*

* adjust_tine() - slew systemclock to given offset val ue
*/

voi d
adj ust _tine(
doubl e of fset /* clock offset */
)
{
struct tineval unix_tine;
tstanp ntp_tine;
/*
* Convert fromdouble to native format (signed) and add to the
* current tinme.
*/
ntp_tinme = D2LFP(of fset);
uni x_tine.tv_sec = ntp_time >> 32
uni x_tine.tv_usec = (long)(((ntp_tine - unix_tine.tv_sec) <<
32) / FRAC * 1le6);
adj time(&uni x_time, NULL);
}
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A crypt o- NAK packet
consisting only of the key identifier with value zero.
the receiver that a prior request could not be properly
aut henti cated, but the NTP header fields are correct.
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A ki ss-0’ -deat h packet
stratum 16 ( MAXSTRAT).
drastic has happened, as revealed by the kiss code in the refid
The NTP header fields nmay or may not be correct.
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i ncludes the NTP header followed by a MAC

It tells

is an NTP header with | eap 0x3 (NOSYNC) and
It tells the receiver that sonething

* Peer process parameters and constants

*/
#def i
#def i

/*

ne
ne

SGATE
BDELAY

* Di spatch codes

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

Di spatch matri x

ne
ne
ne
ne
ne
ne
ne
ne

ERR
DSCRD
PRCC
BCST
FXM T
MANY
NEWPS
NEVBC

int table[7][5]
/* nopeer */
/* active */

[ * passv

*/

[* client */
/* server */

/* bcast

*/

[* bclient */

H
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active

e e e P e ||
)

NEWPS,
PRCC,

PRCC,

DSCRD,
DSCRD,
DSCRD,
DSCRD,

3

OO, wWNEFLO!

p

/* spike gate (clock filter */
. 004 /* broadcast delay (s) */

[

/* error */

/* discard packet */
/* process packet */

/* broadcast packet */

/* client packet */
/* manycast packet */
/* new symmetric passive client */

/* new broadcast client

assv client server bcast */

DSCRD, FXM T, MANY, NEWBC },

PRCC, DSCRD, DSCRD
ERR DSCRD, DSCRD,
DSCRD, DSCRD, PROC,
DSCRD, DSCRD, DSCRD,
DSCRD, DSCRD, DSCRD,
DSCRD, DSCRD, DSCRD,

St andards Track

DSCRD },
DSCRD },
DSCRD },
DSCRD },
DSCRD },
PROC}
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/*

* M scel | aneous nacron

* This macro defines the authentication state. If x is O,

* authentication is optional; otherwise, it is required.

*/

#def i ne AUTH(x, vy) ((x) 2 (y) == AX: (y) == AX|] \
(y) == A _NONE)

/*

* These are used by the clear() routine

*/

#defi ne BEG N _CLEAR(p) ((char *)&((p)->begin_clear))

#def i ne END_CLEAR( p) ((char *)&((p)->end_clear))

#defi ne LEN_CLEAR (END_CLEAR((struct p *)0) - \
BEA N CLEAR((struct p *)0))

A.5.1. receive()

/*
* receive() - receive packet and decode nobdes
*/
voi d
recei ve(
struct r *r /* receive packet pointer */
)
{
struct p *p; /* peer structure pointer */
i nt aut h; /* authentication code */
i nt has_mac; /* size of MAC */
i nt synch; /* synchroni zed switch */
/*
* Check access control lists. The intent here is to inplenent
* a whitelist of those | P addresses specifically accepted
* and/or a blacklist of those |IP addresses specifically
*

rejected. There could be different lists for authenticated
* clients and unauthenticated clients.

*/
if (laccess(r))

return; /* access denied */
/*

* The version must not be in the future. Format checks include
* packet length, MAC |l ength and extension field Iengths, if

* present.

*/
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if (r->version > VERSION /* or format error */)
return; /[* format error */

Aut hentication is conditioned by two switches that can be
specified on a per-client basis.

P_NOPEER do not nobilize an associ ation unl ess
aut henti cat ed.
P_NOTRUST do not allow access unl ess authenticated

(inplies P_NOPEER).

There are four outcones:

A _NONE t he packet has no MAC.

A XK the packet has a MAC and aut hentication
succeeds.

A _ERROR t he packet has a MAC and authentication fails.

A CRYPTO crypto-NAK.  The MAC has four octets only.

Note: The AUTH (x, y) macro is used to filter outconmes. |If x

is zero, acceptable outcones of y are NONE and OK.  If x is

one, the only acceptable outcone of y is K

L S T T T S N T T I R R

~

has mac = /* length of MAC field */ O;
if (has_mac == 0) {

auth = A NONE; /* not required */
} else if (has_mac == 4) {
auth = A CRYPTQ, [* crypto-NAK */

} else {
if (r->mac !'= md5(r->keyid))
auth = A ERROR;, /* auth error */

el se
auth = A O /[* auth OK */
}
/*
* Find association and dispatch code. |If there is no
* association to match, the value of p->hnode is assumed NULL.
*/

p = find assoc(r);
swi tch(tabl e[ (unsi gned int) (p->hnode)][ (unsigned int)(r->nmode)])
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Client packet and no association. Send server reply wthout

* saving state.

*/

case FXM T

E I

/*
I f unicast destination address, send server packet.
If authentication fails, send a crypto- NAK packet.
*/

/* not nulticast dstaddr */
if (0) {
i f (AUTH(p->flags & P_NOTRUST, auth))
fast_xmt(r, MSERV, auth);
else if (auth == A ERROR)
fast xmit(r, MSERV, A CRYPTO;
return; /* M SERV packet sent */
}

/*
* This nust be nmanycast. Do not respond if we are not
* synchronized or if our stratumis above the
* manycaster.
*/
if (s.leap == NOSYNC || s.stratum > r->stratum
return;

/*
* Respond only if authentication is OK Note that the
* uni cast address is used, not the nulticast.
*/
if (AUTH(p->flags & P_NOTRUST, auth))
fast _xmt(r, MSERV, auth);
return;

New manycast client ephenmeral association. It is nmobilized
in the same version as in the packet. |If authentication
fails, ignore the packet. Verify the server packet by
conparing the r->org tinmestanp in the packet with the p->xnt
timestanp in the nulticast client association. |If they

mat ch, the server packet is authentic. Details onitted.
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case MNANY:
if (VAUTH(p->flags & (P_NOTRUST | P_NOPEER), auth))
return; /* authentication error */

p = nobilize(r->srcaddr, r->dstaddr, r->version, M CLNT,
r->keyid, P_EPHEM;

br eak;
/*
* New symmetric passive association. It is nobilized in the
* same version as in the packet. |If authentication fails,
* send a crypto-NAK packet. |If restrict no-noblize, send a
* symretric active packet instead.
*/
case NEWPS:
if (!AUTH(p->flags & P_NOTRUST, auth)) {
if (auth == A ERROR)
fast _xmit(r, MSACT, A CRYPTO;
return; [ * crypto-NAK packet sent */
}
if (! AUTH(p->flags & P_NOPEER, auth)) {
fast _xmt(r, M SACT, auth);
return; /* M SACT packet sent */
p = nobilize(r->srcaddr, r->dstaddr, r->version, M PASY,
r->keyid, P_EPHEM ;
br eak;
/*
* New broadcast client association. It is mobilized in the
* same version as in the packet. |If authentication fails,

* jgnore the packet. Note this code does not support the
* initial volley feature in the reference inplenentation.
*/
case NEWBC:
if (VAUTH(p->flags & (P_NOTRUST | P_NOPEER), auth))
return; /* authentication error */

if (!(s.flags & S BCSTENAB))
return; /* broadcast not enabled */

p = nobilize(r->srcaddr, r->dstaddr, r->version, M BCLN,

r->keyid, P_EPHEM;
br eak; /* processing continues */
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/*
* Process packet. Placeholdler only.
*/
case PROCC:
br eak; /* processing continues */
/*

* Invalid node combination. W get here only in case of
* epheneral associations, so the correct action is sinply to

* toss it.
*/
case ERR
clear(p, X ERROR);
return; /* invalid node conbination */
/*
* No match; just discard the packet.
*/
case DSCRD:
return; /* orphan abandoned */
}
/*
* Next cones a rigorous schedule of tinmestanp checking. |If the
* transnit tinestanp is zero, the server is horribly broken
*/
if (r->xnt == 0)
return; [* invalid tinestanp */
/*

* |f the transnit tinmestanp duplicates a previous one, the
* packet is a replay.

*/
if (r->xmt == p->xnt)

return; /* duplicate packet */
/*

* |f this is a broadcast node packet, skip further checking.

* |f the origin timestanp is zero, the sender has not yet heard
* fromus. QOherwise, if the origin tinmestanp does not natch

* the transmit tinmestanp, the packet is bogus.

*/

MIlls, et al. St andards Track [ Page 81]



RFC 5905 NTPv4 Specification June 2010

synch = TRUE;
if (r->npde !'= MBCST) {
if (r->org == 0)
synch = FALSE; /* unsynchronized */

else if (r->org != p->xnt)
synch = FALSE;, /* bogus packet */
}

/*

* Update the origin and destination tinmestanps. |f
* unsynchroni zed or bogus, abandon ship.

*/

p->org = r->xnt;

p->rec = r->dst;

if (!synch)
return; /* unsynch */
/*
* The tinmestanps are valid and the receive packet matches the
* last one sent. |If the packet is a crypto-NAK, the server

* m ght have just changed keys. W denobilize the association
* and wait for better tines.
*/
if (auth == A CRYPTO {
cl ear(p, X _CRYPTO;
return; [* crypto-NAK */

* |f the association is authenticated, the key IDis nonzero
* and received packets nmust be authenticated. This is designed
* to avoid a bait-and-switch attack, which was possible in past
* versions.
*/
if (!AUTH(p->keyid || (p->flags & P_NOTRUST), auth))

return; /* bad auth */
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/*
* Everythi ng possible has been done to validate the
* and prevent bad guys fromdisrupting the protocol
* injecting bogus data. Earn sone revenue.
*/
packet (p, r);

}

A.5.1.1. packet()

/*
* packet() - process packet and conpute offset, delay, and
* di spersi on.

June 2010

ti mest anps
or

*/
voi d
packet (
struct p *p, /* peer structure pointer */
struct r *r /* receive packet pointer */
)
{
doubl e offset; /* sanple of fsset */
doubl e del ay; [* sanple delay */
doubl e di sp; /* sanpl e dispersion */
/*
* By golly the packet is valid. Light up the remaining header
* fields. Note that we map stratum O (unspecified) to MAXSTRAT
* to make stratum conparisons sinpler and to provide a natura
* interface for radio clock drivers that operate for
* conveni ence at stratumO
*/
p->leap = r->leap
if (r->stratum == 0)
p- >stratum = MAXSTRAT
el se
p->stratum = r->stratum
p- >pnode = r->node;
p->ppol | = r->pol |
p- >r oot del ay = FP2D(r->r oot del ay) ;
p->rootdi sp = FP2D(r->rootdi sp);
p->refid = r->refid;
p->reftime = r->refting;
/*
* Verify the server is synchronized with valid stratum and
* reference time not later than the transmt tine.
*/
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if (p->leap == NOSYNC || p->stratum >= MAXSTRAT)

return; /* unsynchroni zed */
/*
* Verify valid root distance.
*/
if (r->rootdelay / 2 + r->rootdisp >= MAXDISP || p->reftime >
r->xnt)
return; /* invalid header val ues */

pol | _update(p, p->hpoll);
p->reach | = 1;

/
Cal cul ate offset, delay and di spersion, then pass to the
clock filter. Note carefully the inplied processing. The
first-order difference is done directly in 64-bit arithnetic,
then the result is converted to floating double. Al further
processing is in floating-double arithnetic with rounding
done by the hardware. This is necessary in order to avoid
overfl ow and preserve precision.

The delay calculation is a special case. In cases where the
server and client clocks are running at different rates and
with very fast networks, the delay can appear negative. In
order to avoid violating the Principle of Least Astonishnent,
the delay is clanped not | ess than the system precision

L I S . T T .

*

*/
i f (p->pnode == M BCST) {
of fset = LFP2D(r->xnmt - r->dst);
del ay = BDELAY;
disp = LO&D(r->precision) + LOXRD(s.precision) + PH *
2 * BDELAY;
} else {
of fset = (LFP2D(r->rec - r->org) + LFP2D(r->dst -
r->xnt)) / 2
delay = max(LFP2D(r->dst - r->org) - LFP2D(r->rec -
r->xm), LORD(s.precision));
di sp = LO&D(r->precision) + LOXRD(s.precision) + PH *
LFP2D(r->dst - r->org);

}
clock filter(p, offset, delay, disp);
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A.5.2. clock_filter()

/*
* clock _filter(p, offset, delay, dispersion) - select the best fromthe
* |atest eight delay/offset sanples.

*/
voi d
clock _filter(
struct p *p, /* peer structure pointer */
doubl e offset, /* clock offset */
doubl e del ay, [* roundtrip delay */
doubl e disp /* dispersion */
)
{
struct f f[NSTAGE]; /* sorted list */
doubl e dtenp;
i nt i
/*
* The clock filter contents consist of eight tuples (offset,
* delay, dispersion, tine). Shift each tuple to the left,
* discarding the |l eftnost one. As each tuple is shifted,
* increase the dispersion since the last filter update. At the
* same time, copy each tuple to a tenporary list. After this,
*

pl ace the (offset, delay, disp, tinme) in the vacated
* rightnost tuple.
*/
for (i = 1; i < NSTAGE, i++) {
p->f[i] = p->f[i - 1];
p->f[i].disp += PH * (c.t - p->t);
fli] = p->f[i];

}

p->f[0].t = c.t;
p->f[0].of fset = offset;
p->f[0].del ay = del ay;
p->f[0].disp = disp;
f[0] = p->f[0O];

/*
* Sort the tenporary list of tuples by increasing f[].delay.
* The first entry on the sorted |ist represents the best
* sanple, but it might be old.
*/
dtenp = p->offset;
p->of fset = f[0]. of fset;
p->delay = f[0]. del ay;
for (i = 0; i < NSTAGE, i++) {
p->disp += f[i].disp / (2~ (i + 1));

MIlls, et al. St andards Track [ Page 85]



RFC 5905 NTPv4 Specification June 2010

p->jitter += SQUARE(f[i].offset - f[0].offset);

}
p->jitter = max(SQRT(p->jitter), LOXRD(s.precision));

/*

* Prime directive: use a sanple only once and never a sanple
* ol der than the | atest one, but anything goes before first
* synchroni zed.

*/
if (f[0].t - p->t <= 0 && s.leap != NOSYNC)
return;
/*
* Popcorn spi ke suppressor. Conpare the difference between the
* last and current offsets to the current jitter. |If greater
* than SGATE (3) and if the interval since the last offset is
* less than twice the systempoll interval, dunp the spike.
* OGherwise, and if not in a burst, shake out the truechiners.

*/
if (fabs(p->offset - dtenp) > SGATE * p->jitter & (f[0].t -
p->t) < 2 * s.poll)
return;

p->t = f[0].t;
if (p->burst == 0)
cl ock_sel ect();

return;
}
/*
* fit() - test if association p is acceptable for synchronization
*/
i nt
fit(
struct p *p /* peer structure pointer */
{ "

* A stratumerror occurs if (1) the server has never been
* synchroni zed, (2) the server stratumis invalid.
*/
if (p->leap == NOSYNC || p->stratum >= MAXSTRAT)
return (FALSE);
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/*
* ¢l ear
* for e
* [
voi d
cl ear (

MIls, e
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/*
* A distance error occurs if the root distance exceeds the
* di stance threshold plus an increnent equal to one pol
* interval
*/
if (root_dist(p) > MAXDIST + PH * LOXRD(s.poll))
return (FALSE)

/*
* A loop error occurs if the renote peer is synchronized to the
* | ocal peer or the renpote peer is synchronized to the current
* systempeer. Note this is the behavior for |Pv4; for |IPv6
* the MD5 hash is used instead.
*/
if (p->refid == p->dstaddr || p->refid == s.refid)
return (FALSE)

/*
* An unreachable error occurs if the server is unreachabl e.
*/
if (p->reach == 0)
return (FALSE)

return (TRUE)

() - reinitialize for persistent association, denobilize
pheneral association.

struct p *p, /* peer structure pointer */
i nt ki ss /* Kiss code */

)
int i;

/
The first thing to do is return all resources to the bank
Typical resources are not detailed here, but they include
dynanically allocated structures for keys, certificates, etc.
I f an epheneral association and not initialization, return

* the association nmenory as well.

* %k Ok *

*/
{* return resources */
if (s.p ==p)

S.p = NULL;
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if (kiss != XINT & (p->flags & P_EPHEM) {
free(p);
return;

}

/*
* Initialize the association fields for general reset.
*/

nmenset (BEG N_CLEAR(p), LEN CLEAR, 0);

p- >l eap = NOSYNC,

p- >stratum = MAXSTRAT,

p- >ppol | MAXPCLL;

p- >hpol | M NPCLL;

p->di sp = MAXDI SP;

p->jitter = LOXD(s. precision);

p->refid = kiss;

for (i = 0; i < NSTACE, i++)

p->f[i].disp = MAXDI SP;

/*

* Randomi ze the first poll just in case thousands of broadcast
* clients have just been stirred up after a | ong absence of the
* broadcast server.

*/

p->outdate = p->t = c.t;

p- >nextdate = p->outdate + (randonm() & ((1 << M NPCLL) - 1));

}
A.5.3. fast_xnit()
/*
* fast_xmt() - transmt a reply packet for receive packet r
*/
voi d
fast _xmt(
struct r *r, /* receive packet pointer */
i nt node, /* associ ation node */
i nt aut h /* authentication code */
)
{
struct x Xx;
/*
* Initialize header and transmt tinmestanp. Note that the
* transmt version is copied fromthe receive version. This is
* for backward conpatibility.
*/
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.version = r->version;
.srcaddr = r->dstaddr;
= r->srcaddr;

eap = s.leap;

. nmode = node;

X
X
X. dst addr
X
X
i

f (s.stratum == MAXSTRAT)
X.stratum = O;
el se
X.stratum = s.stratum
x.poll = r->poll;
X. precision = s.precision;
X.rootdel ay = D2FP(s. root del ay);
x.rootdi sp = D2FP(s. rootdi sp);
x.refid = s.refid;
x.reftime = s.reftimne;
X.0rg = r->xnt;
X.rec = r->dst;
X.Xxm = get _tine();

~
*

*
*

*

*/
i f

If the authentication code is A NONE,

June 2010

i nclude only the

header; if A CRYPTO send a crypto-NAK; if A OK send a valid
MAC. Use the key IDin the received packet and the key in
* the | ocal key cache.

(auth '= A NONE) {
if (auth == A CRYPTO {
X. keyid = 0;
} else {
x. keyid = r->keyid;
x.dgst = md5(x. keyi d);

}
b
xmt_packet ( &x);
}
A.5.4. access()
/*
* access() - determine access restrictions
*/
i nt
access(
struct r *r /* receive packet pointer */
)
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{
/*
* The access control list is an ordered set of tuples
* consisting of an address, nmask, and restrict word containing
* defined bits. The list is searched for the first match on
* the source address (r->srcaddr) and the associated restrict
* word is returned.
*/
return (/* access bits */ 0);
}
A.5.5. System Process
A.5.5.1. clock_select()
/*
* clock _select() - find the best clocks
*/
voi d
clock_select() {
struct p *p, *osys; /* peer structure pointers */
doubl e 1ow, high; /* correctness interval extents */
i nt all ow, found, chine; /* used by intersection algorithm?*/
i nt n, i, j;
/*
* W first cull the falsetickers fromthe server popul ation
* |l eaving only the truechiners. The correctness interval for
* association pis the interval fromoffset - root _dist() to
* offset + root_dist(). The object of the gane is to find a
* mapjority clique; that is, an intersection of correctness
* intervals nunbering nore than half the server popul ation
*
* First, construct the chine list of tuples (p, type, edge) as
* shown below, then sort the list by edge fromlowest to
* hi ghest.
*/
0SysS = s.p;
S.p = NULL;
n = 0;
while (fit(p)) {
s.n{n].p = p;
s.nin].type = +1;
s.n n].edge = p->offset + root_dist(p);
n++;
s.n{n].p = p;
s.nin].type = 0;
s.nin].edge = p->of fset;
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n++;
s.nmn].p = p;
s.nn].type
s.ni n].edge
n++;

p—;offset - root_dist(p);

Find the |l argest contiguous intersection of correctness
intervals. Allowis the nunber of allowed falsetickers;
found is the nunber of midpoints. Note that the edge val ues
are limted to the range +-(2 » 30) < +-2e9 by the tinestanp
cal cul ations

ow = 2e9; high = -2e9;

for (allow=10; 2 * allow < n; allowt+) {

et al.

/*
* Scan the chime list fromlowest to highest to find
* the | ower endpoint.

*/
found = 0;
chime = 0;
for (i =0; i <n; i++) {
chime -= s.nfi].type
if (chime >= n - found) {
low = s.nfi].edge
br eak;
}
if (s.nfi].type == 0)
f ound++;
}
/*

* Scan the chinme list fromhighest to |l owest to find
* the upper endpoint.
*/
chime = 0;
for (i =n- 1; i >=0; i--) {
chime += s.nfi].type
if (chine >= n - found) {
high = s.nfi].edge
br eak;

}
if (s.ni].type == 0)
f ound++;
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/*

* | f the nunber of nmidpoints is greater than the nunber
* of allowed fal setickers, the intersection contains at
* | east one truechiner with no mdpoint. |[f so,

* increnent the nunber of allowed fal setickers and go

* around again. |If not and the intersection is

* non-enpty, declare success.

*/

if (found > all ow)

conti nue;

if (high > 1ow)

br eak;
}
/*
* Clustering algorithm Construct a |ist of survivors (p,
* metric) fromthe chime list, where netric is dominated first
* by stratum and then by root distance. Al other things being
* equal, this is the order of preference
*/
s.n = 0;
for (i =0; i <n; i++) {
if (s.ni].edge <low || s.n{i].edge > high)
conti nue;
p =s.nfi].p;
s.v[n].p = p; _
s.v[n].metric = MAXDI ST * p->stratum + root_dist(p);
S. n++;
}
/*

* There nust be at |east NSANE survivors to satisfy the

* correctness assertions. Odinarily, the Byzantine criteria
* require four survivors, but for the denonstration here, one
* is acceptable.

*/
if (s.n < NSANE)
return;
/*
* For each association p in turn, calculate the selection
* jitter p->sjitter as the square root of the sum of squares
* (p->offset - g->offset) over all q associations. The idea is
* to repeatedly discard the survivor with maxi nrum sel ection
* jitter until a termination condition is net.
*/
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while (1) {
struct p *p, *q, *gmax; /* peer structure pointers */
double rmax, min, dtenp;

max = -2e9; mn = 2e9;
for (i =0; i <s.n; i++) {

p =s.v[i].p;
if (p->jitter < min)
mn = p->jitter;
dtenmp = 0;
for (j =0; j <n; j++) {
q=s.v[jl.p;
dtenmp += SQUARE(p->offset - g->offset);

}
dtenp = SQRT(dtenp);
if (dtenp > max) {

max = dtenp;
gmax = q;
}
}
/*
* | f the maxi num selection jitter is less than the
* mninum peer jitter, then tossing out nore survivors
* will not lower the mnimmpeer jitter, so we night
* as well stop. To make sure a few survivors are |eft
* for the clustering algorithmto chew on, we al so stop
* if the nunber of survivors is less than or equal to
* NMN (3).
*/
if (mx <nmn||] n<=NMN)
br eak;
/*
* Delete survivor gnax fromthe list and go around
* again.
*/
s.n--;
}
/*
* Pick the best clock. If the old systempeer is on the |ist

* and at the sanme stratumas the first survivor on the list,
* then don't do a clock hop. Oherw se, select the first
* survivor on the list as the new system peer.
*/
if (osys->stratum == s.v[0].p->stratum
S.p = 0SYys;
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el se
s.p =s.v[0].p;
cl ock_update(s. p);

}
A.5.5.2. root _dist()
/*
* root _dist() - calculate root distance
*/
doubl e
root _di st (
struct p *p /* peer structure pointer */
{
/*
* The root synchronization distance is the maxi mumerror due to
* all causes of the local clock relative to the primary server
* |t is defined as half the total delay plus total dispersion
* plus peer jitter.
*/
return (max(M NDI SP, p->rootdelay + p->delay) / 2 +
p->rootdisp + p->disp + PH * (c.t - p->t) + p->jitter);
}

A.5.5.3. accept()

/*
* accept() - test if association p is acceptable for synchronization
*/

i nt

accept (
struct p *p /* peer structure pointer */
)

{
/*

* A stratumerror occurs if (1) the server has never been
* synchroni zed, (2) the server stratumis invalid.
*/
if (p->leap == NOSYNC || p->stratum >= MAXSTRAT)
return (FALSE)

/*

* A distance error occurs if the root di stance exceeds the
* di stance threshold plus an increnent equal to one pol

* interval

* [
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if (root_dist(p) > MAXDI ST + PH * LO&D(s. poll))
return (FALSE)

* A loop error occurs if the renote peer is synchronized to the
* | ocal peer or the renpte peer is synchronized to the current
* systempeer. Note this is the behavior for |Pv4; for |IPv6
* the MD5 hash is used instead.
*/
if (p->refid == p->dstaddr || p->refid == s.refid)

return (FALSE)

/*
* An unreachable error occurs if the server is unreachabl e.
* [
if (p->reach == 0)
return (FALSE)

return (TRUE)

}
A.5.5.4. clock update()
/*
* clock_update() - update the system cl ock
*/
voi d
cl ock_updat ¢(
struct p *p /* peer structure pointer */
{
doubl e dt enp;
/*

* |f this is an old update, for instance, as the result of a
* system peer change, avoid it. W never use an old sanple or
* the sane sanple twice
*/
if (s.t >= p->t)

return;

/*

* Combi ne the survivor offsets and update the system cl ock; the
* local _clock() routine will tell us the good or bad news.

*/

s.t = p->t;

cl ock_conbi ne();

switch (local _clock(p, s.offset)) {
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The offset is too |large and probably bogus. Conplain to the
system | og and order the operator to set the clock nmanually
within PANIC range. The reference inplenentation includes a
command |line option to disable this check and to change the
panic threshold fromthe default 1000 s as required.

/

case PANI C

exit (0);

* %k k F F *

The offset is nore than the step threshold (0.125 s by
default). After a step, all associations now have

i nconsistent tine values, so they are reset and started
fresh. The step threshold can be changed in the reference

i npl ementation in order to | essen the chance the cl ock ni ght
be stepped backwards. However, there nmay be serious
consequences, as noted in the white papers at the NTP project
site.

L

*

*/
case STEP:
while (/* all associations */ 0)
clear(p, X_STEP)
s.stratum = MAXSTRAT;

s.poll = M NPCLL
br eak;
/*
* The offset was | ess than the step threshold, which is the
* normal case. Update the systemvariables fromthe peer
* variables. The lower clanp on the dispersion increase is to
* avoid timng | oops and cl ockhoppi ng when hi ghly precise
* sources are in play. The clanp can be changed fromthe
* default .01 s in the reference inplenentation
*/
case SLEW
s.leap = p->l eap;
s.stratum = p->stratum + 1;
s.refid = p->refid,
s.reftime = p->reftineg;

(7]

.rootdel ay = p->rootdelay + p->del ay;

dtenp = SQRT(SQUARE(p->jitter) + SQUARE(s.jitter));

dtenmp += max(p->disp + PH * (c.t - p->t) +
fabs(p->offset), M NDI SP)

s.rootdi sp = p->rootdisp + dtenp;

br eak;
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/*
* Some sanples are discarded while, for instance, a direct
* frequency measurenent is being nmade.

*/
case | GNORE:
br eak;
}
}
A.5.5.5. clock _conbine()
/*
* cl ock_conbi ne() - conmbine offsets
*/
voi d
cl ock_conbi ne()
{
struct p *p; /* peer structure pointer */
double x, vy, z, w
i nt i;
/*
* Conbi ne the offsets of the clustering al gorithm survivors
* using a wei ghted average with wei ght deternined by the root
* distance. Conpute the selection jitter as the weighted RVS
* difference between the first survivor and the renaining
* survivors. In sone cases, the inherent clock jitter can be
* reduced by not using this algorithm especially when frequent
* ¢l ockhopping is involved. The reference inplenentation can
* be configured to avoid this algorithm by designating a
* preferred peer.
*/
y =z =w=0;
for (i = 0; s.v[i].p !'= NULL; i++) {
p =s.v[i].p;
X = root_dist(p);
y += 1/ x;
z += p->offset / x;
w += SQUARE(p->offset - s.v[0].p->offset) / x;
s.offset =z /| vy;
s.jitter = SQRT(wW / vy);
}
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A.5.5.6. local _clock()

/*
* O ock discipline paraneters and constants
*/
#def i ne STEPT . 128 /* step threshold (s) */
#def i ne WATCH 900 /* stepout threshold (s) */
#defi ne PANI CT 1000 /* panic threshold (s) */
#defi ne PLL 65536 /* PLL | oop gain */
#defi ne FLL MAXPCLL + 1 /* FLL | oop gain */
#def i ne AVG 4 /* paraneter averaging constant */
#def i ne ALLAN 1500 [* conpromi se Allan intercept (s) */
#define LIMT 30 /* poll-adjust threshold */
#def i ne MAXFREQ 500e-6 /* frequency tol erance (500 ppn) */
#def i ne PGATE 4 /* poll-adjust gate */
/*
* local clock() - discipline the local clock
*/
i nt /* return code */
| ocal _cl ock(
struct p *p, /* peer structure pointer */
doubl e of fset /* clock offset from conbine() */
)
{
i nt state; /* clock discipline state */
double freq; /* frequency */
double nmu; /* interval since |ast update */
i nt rval ;

doubl e etenp, dtenp;

/*
* |f the offset is too large, give up and go hone.
*/
if (fabs(offset) > PAN CT)
return (PANI O ;

* Clock state machine transition function. This is where the
* action is and defines how the systemreacts to large tine

* and frequency errors. There are two main regi nes: when the
* of fset exceeds the step threshold and when it does not.

*/

rval = SLEW

mi = p->t - s.t;
freq = 0;

if (fabs(offset) > STEPT) {
switch (c.state) {
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/*
* |n S_SYNC state, we ignore the first outlier and
* switch to S SPIK state.

* [
case SYNC.
state = SPIK;
return (rval);
/*

* |n S FREQ state, we ignore outliers and inliers. At
* the first outlier after the stepout threshold,

* conmpute the apparent frequency correction and step
* the tine.

*/
case FREQ
if (mu < WATCH)
return (1 GNORE)
freq = (offset - c.offset) / nu;
[* fall through to S SPIK */
/*

* |n S SPIK state, we ignhore succeeding outliers unti
* either an inlier is found or the stepout threshold is
* exceeded.
*/
case SPI K
if (mu < WATCH)
return (1 GNORE)

[* fall through to default */

We get here by default in S NSET and S FSET states
and fromabove in S FREQ state. Step the tine and
clanp down the poll interval

In S NSET state, an initial frequency correction is
not avail abl e, usually because the frequency file has
not yet been witten. Since the tinme is outside the
capture range, the clock is stepped. The frequency
will be set directly follow ng the stepout interval

In S FSET state, the initial frequency has been set
fromthe frequency file. Since the time is outside
the capture range, the clock is stepped i mediately,
rather than after the stepout interval. Quys get

nervous if it takes 17 minutes to set the clock for

L S T T T I R R
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* the first tine.

*

* |n S_SPIK state, the stepout threshold has expired
* and the phase is still above the step threshol d.

* Note that a single spike greater than the step

* threshold is al ways suppressed, even at the |onger
* poll intervals.

*/

defaul t:

/*
* This is the kernel set tine function, usually
* inplemented by the Unix settinmeofday() system
* call.
*/
step_time(offset);
c.count = O;
s.poll = M NPCLL
rval = STEP;
if (state == NSET)
rstcl ock(FREQ p->t, 0)
return (rval);

}

br eak;

}
rstcl ock(SYNC, p->t, 0);
} else {

/*

* Conmpute the clock jitter as the RVS of exponentially
* weighted offset differences. This is used by the

* pol | -adjust code.

*/
etenp = SQUARE(c.jitter);
dtenmp = SQUARE(max(fabs(offset - c.last),

LO&RD(s. precision)));
c.jitter = SQRT(etenp + (dtenmp - etenp) / AVG;
switch (c.state) {

* |n S _NSET state, this is the first update received
* and the frequency has not been initialized. The
* first thing to do is directly neasure the oscillator
* frequency.
*/
case NSET:
rstcl ock(FREQ p->t, offset)
return (1 GNORE)
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/*

* |n S_FSET state, this is the first update and the

* frequency has been initialized. Adjust the phase,

* but don't adjust the frequency until the next update.

*/

case FSET:
rstcl ock(SYNC, p->t, offset);
br eak;

/*

* |n S_FREQ state, ignore updates until the stepout
* threshold. After that, correct the phase and
* frequency and switch to S _SYNC state.
*/
case FREQ
if (c.t - s.t < WATCH)
return (1 GNORE);

freq = (offset - c.offset) / nu;
br eak;

/*

* W get here by default in S SYNC and S SPIK st at es.
* Here we conpute the frequency update due to PLL and
* FLL contributions.

*/

defaul t:

The FLL and PLL frequency gain constants
dependi ng on the poll interval and Allan
intercept. The FLL is not used bel ow one
half the Allan intercept. Above that the
| oop gain increases in steps to 1/ AVG

* % % X X

*

*/
if (LOR2D(s.poll) > ALLAN/ 2) {
etemp = FLL - s.poll;
if (etenp < AVG
etemp = AVG
freq += (offset - c.offset) / (max(mnu,
ALLAN) * etenp);
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/*
* For the PLL the integration interval
* (numerator) is the mnimum of the update
* interval and poll interval. This allows
* oversanpling, but not undersanpling.
*/
etenp = min(nmu, LOXRD(s.poll));
dtemp = 4 * PLL * LO&RD(s. poll);
freq += offset * etenp / (dtenp * dtenp);
rstcl ock(SYNC, p->t, offset);
br eak;
}
}
/*
* Cal cul ate the new frequency and frequency stability (wander).
* Conmpute the clock wander as the RMS of exponentially weighted
* frequency differences. This is not used directly, but can,
* along with the jitter, be a highly useful nonitoring and
* debuggi ng t ool .

/

freq += c.freq;

c.freq = max(m n( MAXFREQ freq), - MAXFREQ) ;
etenp = SQUARE(c. wander);

dtenmp = SQUARE(freq);

c.wander = SQRT(etenp + (dtenmp - etenp) / AVG;

/
Here we adjust the poll interval by conparing the current
offset with the clock jitter. |If the offset is less than the
clock jitter times a constant, then the averaging interval is
i ncreased; otherwise, it is decreased. A bit of hysteresis
* hel ps cal mthe dance. Works best using burst node.
*/
if (fabs(c.offset) < PGATE * c.jitter) {
c.count += s.poll;
if (c.count > LIMT) {
c.count = LIMT,
if (s.poll < MAXPOLL) {
c.count = 0;

* % kX *

s. pol | ++;
}
} else {
c.count -= s.poll << 1;
if (c.count < -LIMT) {
c.count = -LIMT;
if (s.poll > MNPOLL) {
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c.count = O;

s.poll--;
}
}
}
return (rval);
}
A.5.5.7. rstclock()
/*
* rstclock() - clock state nachine
*/
voi d
rstcl ock(
i nt state, /* new state */
doubl e offset, /[* new of fset */
double t /* new update tine */
)
{
/*
* Enter new state and set state variables. Note, we use the
* time of the last clock filter sanple, which nust be earlier
* than the current tine.
*/
c.state = state;
c.last = c.offset = offset;
s.t =1t;
}

A.5.6. dock Adjust Process
A.5.6.1. clock_adjust()

/*
* clock _adjust() - runs at one-second intervals
*/
voi d
clock_adjust() {
doubl e dtenp;

/
Update the process tine c.t. Al so increase the dispersion
since the last update. |In contrast to NTPv3, NTPv4 does not
decl are unsynchroni zed after one day, since the dispersion
threshold serves this function. Wen the dispersion exceeds
MAXDI ST (1 s), the server is considered unfit for
synchroni zati on.

* %k Ok Ok k%
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*/
C.t++;
s.rootdisp += PH;

/
| mpl enent the phase and frequency adjustnments. The gain
factor (denominator) is not allowed to increase beyond the
Allan intercept. It doesn’t nake sense to average phase

noi se beyond this point and it hel ps to danp residual offset
* at the longer poll intervals.

*/

dtenmp = c.offset / (PLL * m n(LOXD(s.poll), ALLAN));

c.of fset -= dtenp;

L I

/*

* This is the kernel adjust tinme function, usually inplenented
* by the Unix adjtine() system call

*/

adjust _tine(c.freq + dtenp);

/*

* Peer tinmer. Call the poll() routine when the poll tiner

* expires.

*/

while (/* all associations */ 0) {
struct p *p; /* dummy peer structure pointer */
if (c.t >= p->nextdate)

pol I (p);
}
/*

* Once per hour, wite the clock frequency to a file.
*/
/*

*if (c.t %3600 == 3599)

* wite c.freq to file

*/

Pol | Process

* Poll process paraneters and constants

*/
#def i
#def i
#def i

ne UNREACH 12 /* unreach counter threshold */
ne BCOUNT 8 /* packets in a burst */
ne BTI ME 2 /* burst interval (s) */
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A 5.7.1. poll()

/*
* poll () - determ ne when to send a packet for association p->
*/

voi d

pol I (
struct p *p /* peer structure pointer */
)

{ .
i nt hpol | ;
i nt or each;
/*
* This routine is called when the current tinme c.t catches up
* to the next poll tine p->nextdate. The value p->outdate is
* the last tinme this routine was executed. The poll _update()
* routine determines the next execution tine p->nextdate.
*
* | f broadcasting, just do it, but only if we are synchroni zed.
*

/

hpol | = p->hpol | ;

i f (p->hnode == M BCST) {

p->outdate = c.t;

if (s.p !'= NULL)
peer_xmt(p);

pol | _update(p, hpoll);

return;

~

* Ok Ok Ok

I f manycasting, start with ttl = 1. The ttl is increased by
one for each poll until MAXCLOCK servers have been found or
ttl reaches TTLMAX. If reaching MAXCLOCK, stop polling until
t he nunber of servers falls bel ow M NCLOCK, then start all
* over.
*/
if (p->hmode == M CLNT && p->flags & P_MANY) {
p->outdate = c.t;
i f (p->unreach > BEACON) {

p- >unreach = 0;

p->ttl = 1;

peer _xmit(p);
} else if (s.n < MNCLOCK) {

if (p->ttl < TTLMAX)

p->ttl ++;
peer _xmt(p);
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p- >unr each++;
pol | _update(p, hpoll);
return;

}
if (p->burst == 0) {

* W are not in a burst. Shift the reachability
* register to the left. Hopefully, some time before
* the next poll a packet will arrive and set the
* rightnost bit.
*/
oreach = p->reach;
p->outdate = c.t;
p->reach = p->reach << 1;
if (!(p->reach & 0x7))
clock filter(p, 0, 0, MAXD SP)
if (!p->reach) {

to mninze wasted network traffic. Send a
burst only if enabled and the unreach
* threshold has not been reached.
*/
if (p->flags & P_IBURST && p->unreach == 0) {
p- >bur st = BCOUNT;
} else if (p->unreach < UNREACH)
p- >unr each++;

/*

* The server is unreachable, so bunp the

* unreach counter. |f the unreach threshold
* has been reached, double the poll interva
*

*

el se
hpol | ++;
p- >unr each++;
} else {
/*
* The server is reachable. Set the pol
* interval to the systempoll interval. Send a
* burst only if enabled and the peer is fit.
*/
p- >unreach = 0;
hpol | = s. poll

if (p->flags & P_BURST && fit(p))
p->burst = BCOUNT;

} else {
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/*
* If in a burst, count it down. Wen the reply cones
* back the clock_filter() routine will cal
* clock _select() to process the results of the burst.
*/
p- >bur st - -;
}
/*
* Do not transmit if in broadcast client node.
*/
i f (p->hnode !'= M BCLN)
peer _xmt(p);
pol | _update(p, hpoll);

}
A.5.7.2. poll _update()
/*
* poll _update() - update the poll interval for association p
*
* Note: This routine is called by both the packet() and poll () routine.
* Since the packet() routine is executed when a network packet arrives
* and the poll () routine is executed as the result of tinmeout, a
* potential race can occur, possibly causing an incorrect interval for
* the next poll. This is considered so unlikely as to be negligible.
*/
voi d
pol | _updat e(
struct p *p, /* peer structure pointer */
i nt pol | [* poll interval (log2 s) */
)
{
/*
* This routine is called by both the poll () and packet ()
* routines to deternine the next poll time. |If within a burst
* the poll interval is two seconds. Oherwise, it is the
* mni num of the host poll interval and peer poll interval, but
* not greater than MAXPCOLL and not |ess than M NPCLL. The
* design ensures that a |longer interval can be preenpted by a
* shorter one if required for rapid response.
*

/
p- >hpol | = max(m n( MAXPOLL, poll), M NPOLL);
if (p->burst > 0) {
if (p->nextdate !'=c.t)
return;
el se
p- >next date += BTI MVE
} else {
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}
A 5.7.3.

/*
* trans
*/
voi d
peer _xm

MIls, e

NTPv4 Specification June 2010
/*
* While not shown here, the reference inplenentation
* random zes the poll interval by a small factor.
*/
p- >nextdate = p->outdate + (1 << max(m n(p->ppoll,
p->hpol 1), M NPOLL));
}
/*
* |t mght happen that the due tine has already passed. |If so,
* make it one second in the future.
*/

if (p->nextdate <= c.t)
p->nextdate = c.t + 1;

peer _xmt()

mt() - transmt a packet for association p

t(

struct p *p /* peer structure pointer */
struct x x; /[* transmt packet */

/*

* |nitialize header and transmt tinestanp

*/

X. srcaddr = p->dstaddr;

X.dstaddr = p->srcaddr;

X.leap = s. | eap;

X.Vversion = p->version;

X. mode = p->hnode;

if (s.stratum == MAXSTRAT)
X.stratum = 0;

el se
X.stratum = s.stratum

x.poll = p->hpol|;

X. precision = s.precision;

X. root del ay = D2FP(s. rootdel ay);
x.rootdi sp = D2FP(s. rootdi sp);
x.refid = s.refid,

x.reftime = s.refting;

X.0rg = p->org;

X.rec = p->rec;
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X.xnt = get _tinme();
p->xnt = x.xmt

/
If the key IDis nonzero, send a valid MAC using the key ID
of the association and the key in the |ocal key cache. |If
somet hing breaks, like a nissing trusted key, don't send the
packet; just reset the association and stop until the problem
* is fixed.
*/
if (p->keyid)
if (/* p->keyid invalid */ 0) {
clear(p, X_NKEY);
return;

* % kX F

}
x. dgst = nmd5(p->keyid);
xmt _packet (&x);
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