Net wor kK Wor ki ng G oup P. Leach

Request for Comrents: 4122 M crosof t
Cat egory: Standards Track M Meal |l ing
Ref act ored Networks, LLC

R Sal z

Dat aPower Technol ogy, Inc.

July 2005

A Universally Unique IDentifier (UU D) URN Nanespace
Status of This Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet comunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2005).
Abst ract

This specification defines a Uniform Resource Name nanespace for

UUI Ds (Universally Unique IDentifier), also knowmn as GUIDs (d obally
Unique IDentifier). A UUDIs 128 bits | ong, and can guarantee

uni queness across space and time. UU Ds were originally used in the
Apoll o Network Conputing Systemand later in the Cpen Software
Foundation's (OSF) Distributed Conputing Environment (DCE), and then
in Mcrosoft Wndows platforns.

This specification is derived fromthe DCE specification with the

ki nd perm ssion of the OSF (now known as The Open G oup).
Information fromearlier versions of the DCE specification have been
i ncorporated into this docunent.

Leach, et al. St andards Track [Page 1]

RFC 4122 A UUI D URN Nanmespace July 2005

Tabl e of Contents

1. Introduction . 2

2. Mdtivation . 3

3. Nanespace Reglstratlon Tenplate 3

4. Specification . 5

4.1. Format. oo 5

4.1.1. Variant. . . 6

4.1.2. Layout and Byte Crder 6

4.1.3. Version. e 7

4.1.4. Tinmestanp. oo 8

4.1.5. dock Sequence . 8

4.1.6. Node . . . 9

4.1.7. Nl UWID. . 9

4.2. Algorithms for Creatlng a Tlne Based UUID |

4.2.1. Basic Algorithm10

4.2.2. Ceneration Details . . . e

4.3. Algorithmfor Creating a Name- Based UUID Coe .. . 13
4.4, Algorithms for Creating a WU D from Truly Randontor

Pseudo- Random Nunbers . . . P

4.5. Node IDs that Do Not Identify the Fbst. 15

5. Comunity Considerations15

6. Security Considerations 16

7. Acknowl edgnents . 16

8. Normative References . . e 1 ¢

A. Appendix A - Sanple Inplenentatlon T <

B. Appendix B - Sanple Qutput of utest 29

C. Appendix C - Sone Name Space IDs 30

1. Introduction

This specification defines a Uniform Resource Name nanespace for

UUI Ds (Universally Unique IDentifier), also knowmn as GUIDs (d obally
Unique IDentifier). A UUDIs 128 bits long, and requires no centra
regi stration process.

The information here is neant to be a conci se guide for those w shing
to inplenment services using UJUDs as URNs. Nothing in this docunent
shoul d be construed to override the DCE standards that defined UU Ds.

There is an | TU-T Recommendati on and I SO I EC Standard [3] that are
derived fromearlier versions of this docunent. Both sets of

speci fications have been aligned, and are fully technically
conmpatible. In addition, a global registration function is being
provi ded by the Tel ecomruni cati ons Standardi sation Bureau of |TUT;
for details see <http://ww.itu.int/lITU T/asnl/uuid. htm >

Leach, et al. St andards Track [Page 2]

RFC 4122 A UUI D URN Nanmespace July 2005

2. Mot i vati on

One of the main reasons for using WU Ds is that no centralized
authority is required to adm nister them (although one format uses

| EEE 802 node identifiers, others do not). As a result, generation
on demand can be conpletely automated, and used for a variety of

pur poses. The UU D generation algorithm described here supports very
high allocation rates of up to 10 nmillion per second per machine if
necessary, so that they could even be used as transaction |Ds.

UUIDs are of a fixed size (128 bits) which is reasonably snal
conmpared to other alternatives. This lends itself well to sorting,
ordering, and hashing of all sorts, storing in databases, sinple

al l ocation, and ease of programming in general.

Since UU Ds are unique and persistent, they make excellent Uniform
Resource Nanes. The unique ability to generate a new UU D without a
registration process allows for UWIDs to be one of the URNs with the
| owest mnting cost.

3. Namespace Regi stration Tenpl ate

Namespace |D: UU D
Regi stration | nformation:
Regi stration date: 2003-10-01

Decl ared regi strant of the nanmespace:
JTC 1/ SC6 (ASN. 1 Rapporteur G oup)

Decl aration of syntactic structure:
A UUDIs an identifier that is unique across both space and tine,
with respect to the space of all UUDs. Since a UUDis a fixed
size and contains atine field, it is possible for values to
rollover (around A D. 3400, depending on the specific algorithm
used). A UU D can be used for multiple purposes, fromtagging
objects with an extrenely short lifetine, to reliably identifying
very persistent objects across a network.

The internal representation of a UUDis a specific sequence of
bits in nenory, as described in Section 4. To accurately
represent a UUID as a URN, it is necessary to convert the bit
sequence to a string representation.

Each field is treated as an integer and has its value printed as a
zero-filled hexadecinmal digit string with the nost significant
digit first. The hexadecimal values "a" through "f" are output as
| ower case characters and are case insensitive on input.

Leach, et al. St andards Track [Page 3]

RFC 4122 A UU D URN Namespace July 2005

The formal definition of the WU D string representation is
provided by the followi ng ABNF [7]:

uuJl D =tinme-low "-" time-md "-"
ti me- hi gh-and-version "-"
cl ock- seq-and-reserved

cl ock-seq-l1ow "-" node
time-1ow = 4hexCct et
time-md = 2hexCct et
ti me- hi gh-and-version = 2hexCct et
cl ock-seq- and-reserved = hexCct et
cl ock-seq-1 ow = hexCct et
node = 6hexCct et
hexCct et = hexDigit hexDigit
hexDigit =

o/ ™1 (™2" ["3" ["4" | “5" ["e" ["7 ["8 ["9" [
“a" ["b" ["c" ["d" ["e" ["f" [
"A"/ "B/ "C [/ "D/ "E" /] "F"

The following is an exanple of the string representation of a UU D as
a URN:

urn: uui d: f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 6

Re

evant ancillary docunentation:

[1][2]

I dentifier uniqueness considerations:

This docunent specifies three algorithns to generate UU Ds: the
first | everages the unique values of 802 MAC addresses to

guar ant ee uni queness, the second uses pseudo-random nunber
generators, and the third uses cryptographic hashing and
application-provided text strings. As a result, the UU Ds
generated according to the nmechani snms here will be unique from al
other UUI Ds that have been or will be assigned.

Identifier persistence considerations:

UUI Ds are inherently very difficult to resolve in a global sense.
This, coupled with the fact that UUI Ds are tenporally unique
within their spatial context, ensures that UUDs will renain as
persi stent as possible.

Process of identifier assignment:

Leach,

Generating a UUID does not require that a registration authority
be contacted. One algorithmrequires a unique val ue over space
for each generator. This value is typically an | EEE 802 MAC
address, usually already avail abl e on networ k-connect ed hosts.

The address can be assigned from an address bl ock obtained from
the | EEE registration authority. |f no such address is avail able,

et al. St andards Track [Page 4]

RFC 4122 A UUI D URN Nanmespace July 2005

or privacy concerns nake its use undesirable, Section 4.5
specifies two alternatives. Another approach is to use version 3
or version 4 UUI Ds as defined bel ow.

Process for identifier resolution:
Since UUIDs are not globally resolvable, this is not applicable.

Rul es for Lexical Equivalence:
Consi der each field of the UUD to be an unsigned integer as shown
inthe table in section Section 4.1.2. Then, to conpare a pair of
UUI Ds, arithmetically conpare the corresponding fields fromeach
UUID in order of significance and according to their data type.
Two UUIDs are equal if and only if all the corresponding fields
are equal .

As an inplementation note, equality conparison can be performed on
many systens by doing the appropriate byte-order canonicali zation,
and then treating the two UU Ds as 128-bit unsigned integers.

UUl Ds, as defined in this docunent, can al so be ordered

| exi cographically. For a pair of UUDs, the first one follows the
second if the nost significant field in which the UUDs differ is
greater for the first UUD. The second precedes the first if the
nmost significant field in which the UUIDs differ is greater for

t he second UU D

Conf ormance with URN Synt ax:
The string representation of a WU D is fully conpatible with the
URN syntax. When converting froma bit-oriented, in-nenory
representation of a UUD into a URN, care must be taken to
strictly adhere to the byte order issues nentioned in the string
representati on section

Val i dati on nechani sm
Apart from determ ning whether the timestanp portion of the UU D
is in the future and therefore not yet assignable, there is no
mechani sm for determ ning whether a UUIDis "valid'.

Scope:
UUI Ds are global in scope.

4., Specification
4.1. Format

The UUD format is 16 octets; sonme bits of the eight octet variant
field specified below deternine finer structure.

Leach, et al. St andards Track [Page 5]

RFC 4122 A UUI D URN Nanmespace July 2005

4.

4.

1.1. Vari ant

The variant field determines the |ayout of the UUD. That is, the
interpretation of all other bits in the UU D depends on the setting
of the bits in the variant field. As such, it could nore accurately
be called a type field; we retain the original termfor
conmpatibility. The variant field consists of a variable nunber of
the nost significant bits of octet 8 of the UU D

The following table lists the contents of the variant field, where
the letter "x" indicates a "don't-care" val ue.

MsbO Msbl Msb2 Description

0 X X Reserved, NCS backward conpatibility.
1 0 X The variant specified in this docunent.
1 1 0 Reserved, M crosoft Corporation backward

conmpatibility
1 1 1 Reserved for future definition

Interoperability, in any form wth variants other than the one
defined here is not guaranteed, and is not likely to be an issue in
practice.

1.2. Layout and Byte Order

To minimze confusion about bit assignnments within octets, the UU D
record definition is defined only in terns of fields that are

i ntegral nunbers of octets. The fields are presented with the nost
significant one first.

Field Data Type Cctet Note
#
time_| ow unsi gned 32 0-3 The low field of the
bit integer timestanp
time_md unsi gned 16 4-5 The middle field of the
bit integer ti mestanp

tinme_hi _and_version unsi gned 16 6-7 The high field of the
bit integer ti mestanmp nul tipl exed
wi th the version nunber

Leach, et al. St andards Track [Page 6]

RFC 4122 A UUI D URN Nanmespace July 2005

clock_seq _hi _and rese wunsigned 8 8 The high field of the
rved bit integer cl ock sequence
mul ti plexed with the
vari ant
clock_seq_| ow unsi gned 8 9 The low field of the
bit integer cl ock sequence
node unsi gned 48 10-15 The spatially unique
bit integer node identifier

In the absence of explicit application or presentation protocol
specification to the contrary, a UU D is encoded as a 128-bit object,
as foll ows:

The fields are encoded as 16 octets, with the sizes and order of the
fields defined above, and with each field encoded with the Mst
Significant Byte first (known as network byte order). Note that the
field names, particularly for nmultiplexed fields, follow historical
practice.

0 1 2 3
01234567890123456789012345678901
s T T i S o T T S I S
| time_| ow |
s T T i S o T T S I S
| time_md | time_hi _and_version |
Tl s o S S S S S T S T S S I S SR S i T S N I S
|clk_seq hi _res | clk seq |low | node (0-1) |
Tl s o S S S S S T S T S S I S SR S i T S N I S
| node (2-5) |
Tl s o S S S S S T S T S S I S SR S i T S N I S

4.1.3. Version

The version nunber is in the nost significant 4 bits of the tinme
stanp (bits 4 through 7 of the time_hi_and_version field).

The following table lists the currently-defined versions for this
UU D vari ant.

MsbO Msbl Msb2 Msb3 Version Description

0 0 0 1 1 The tine-based version
specified in this docunent.

0 0 1 0 2 DCE Security version, with
enmbedded PCSI X Ul Ds.

Leach, et al. St andards Track [Page 7]

RFC 4122 A UUI D URN Nanmespace July 2005

0 0 1 1 3 The name-based version
specified in this docunent
that uses MD5 hashi ng.

0 1 0 0 4 The randomy or pseudo-
random y generated version
specified in this docunent.

0 1 0 1 5 The name- based version
specified in this docunent
that uses SHA-1 hashi ng.

The version is nore accurately a sub-type; again, we retain the term
for compatibility.

4.1.4. Tinmestanp

The timestanp is a 60-bit value. For UUID version 1, this is
represented by Coordinated Universal Tine (UTC) as a count of 100-
nanosecond intervals since 00:00:00.00, 15 Cctober 1582 (the date of
Gregorian reformto the Christian cal endar).

For systens that do not have UTC avail abl e, but do have the | ocal
time, they may use that instead of UTC, as long as they do so

consi stently throughout the system However, this is not recomended
since generating the UTC fromlocal tine only needs a tinme zone

of f set.

For UU D version 3 or 5, the tinmestanp is a 60-bit value constructed
froma nane as described in Section 4. 3.

For UU D version 4, the timestanp is a randomy or pseudo-randoniy
generated 60-bit value, as described in Section 4.4.

4.1.5. dock Sequence

For UU D version 1, the clock sequence is used to help avoid
duplicates that could arise when the clock is set backwards in tine
or if the node |ID changes.

If the clock is set backwards, or m ght have been set backwards
(e.g., while the systemwas powered off), and the UU D generator can
not be sure that no UUIDs were generated with tinestanps |arger than
the value to which the clock was set, then the clock sequence has to
be changed. |If the previous value of the clock sequence is known, it
can just be increnented; otherwise it should be set to a random or

hi gh-qual ity pseudo-random val ue.

Leach, et al. St andards Track [Page 8]

RFC 4122 A UUI D URN Nanmespace July 2005

Simlarly, if the node ID changes (e.g., because a network card has
been noved between machi nes), setting the clock sequence to a random
nunber mnimzes the probability of a duplicate due to slight
differences in the clock settings of the machines. |If the value of
cl ock sequence associated with the changed node I D were known, then
the clock sequence could just be increnmented, but that is unlikely.

The clock sequence MJST be originally (i.e., once in the lifetine of
a system initialized to a random nunber to minimze the correlation
across systenms. This provides nmaxinmum protection agai nst node
identifiers that may nove or switch fromsystemto systemrapidly.
The initial value MJST NOT be correlated to the node identifier.

For UU D version 3 or 5, the clock sequence is a 14-bit val ue
constructed froma nanme as described in Section 4.3.

For UU D version 4, clock sequence is a randomy or pseudo-randomy
generated 14-bit value as described in Section 4. 4.

4.1.6. Node

For UUI D version 1, the node field consists of an | EEE 802 MAC
address, usually the host address. For systens with nmultiple | EEE
802 addresses, any avail able one can be used. The |owest addressed
octet (octet nunber 10) contains the global/local bit and the

uni cast/nulticast bit, and is the first octet of the address
transmtted on an 802. 3 LAN.

For systens with no | EEE address, a randomy or pseudo-randony

gener ated val ue may be used; see Section 4.5. The multicast bit nust
be set in such addresses, in order that they will never conflict with
addresses obtai ned from network cards.

For UU D version 3 or 5, the node field is a 48-bit val ue constructed
froma nane as described in Section 4. 3.

For UU D version 4, the node field is a randomy or pseudo-randomy
generated 48-bit value as described in Section 4. 4.

4.1.7. N1 UUD

The nil UUIDis special formof UUDthat is specified to have al
128 bits set to zero.

4.2. Agorithns for Creating a Tinme-Based UU D
Various aspects of the algorithmfor creating a version 1 UUID are

discussed in the follow ng sections.

Leach, et al. St andards Track [Page 9]

RFC 4122 A UUI D URN Nanmespace July 2005

4.2.1. Basic Al gorithm
The following algorithmis sinmple, correct, and inefficient:
0o Obtain a systemw de gl obal | ock
0 Froma systemw de shared stable store (e.g., a file), read the
UUI D generator state: the values of the tinmestanp, clock sequence,

and node I D used to generate the |ast UU D

0 Cet the current tinme as a 60-bit count of 100-nanosecond intervals
si nce 00:00: 00. 00, 15 Cctober 1582.

0 Get the current node |D.
o If the state was unavailable (e.g., non-existent or corrupted), or
the saved node IDis different than the current node |ID, generate

a random cl ock sequence val ue.

o If the state was available, but the saved tinestanp is later than
the current tinmestanp, increnent the clock sequence val ue.

0 Save the state (current tinestanp, clock sequence, and node | D)
back to the stable store.

0 Release the global |ock

o Format a UU D fromthe current tinestanp, clock sequence, and node
I D val ues according to the steps in Section 4.2.2.

If UUI Ds do not need to be frequently generated, the above al gorithm
may be perfectly adequate. For higher performance requirenents,
however, issues with the basic algorithminclude:

0 Reading the state fromstable storage each tine is inefficient.

0 The resolution of the systemclock may not be 100-nanoseconds.

0 Witing the state to stable storage each tinme is inefficient.

0 Sharing the state across process boundaries may be inefficient.
Each of these issues can be addressed in a nodul ar fashion by | ocal

i nprovenments in the functions that read and wite the state and read

the clock. W address each of themin turn in the follow ng
sections.

Leach, et al. St andards Track [Page 10]

RFC 4122 A UUI D URN Nanmespace July 2005

4.2.1.1. Reading Stable Storage

The state only needs to be read from stable storage once at boot
time, if it is read into a systemw de shared volatile store (and
updat ed whenever the stable store is updated).

If an inplenmentati on does not have any stable store avail able, then
it can always say that the values were unavailable. This is the

| east desirable inplementati on because it will increase the frequency
of creation of new clock sequence nunbers, which increases the
probability of duplicates.

If the node I D can never change (e.g., the net card is inseparable
fromthe system), or if any change also reinitializes the clock
sequence to a random val ue, then instead of keeping it in stable
store, the current node ID nmay be returned.

4.2.1.2. System Cl ock Resolution

The timestanp is generated fromthe systemtine, whose resolution nmay
be less than the resolution of the UU D tinestanp.

If WU Ds do not need to be frequently generated, the tinmestanp can
sinmply be the systemtine nultiplied by the nunber of 100-nanosecond
intervals per systemtinme interval

If a system overruns the generator by requesting too many UUl Ds
within a single systemtine interval, the UUI D service MJST either
return an error, or stall the UUI D generator until the system cl ock
cat ches up.

A high resolution tinmestanp can be sinulated by keeping a count of
the nunmber of UU Ds that have been generated with the sane val ue of
the systemtinme, and using it to construct the |ow order bits of the
timestanp. The count will range between zero and the nunber of

100- nanosecond intervals per systemtine interval.

Note: |If the processors overrun the UU D generation frequently,
additional node identifiers can be allocated to the system which
will permt higher speed allocation by making nmultiple UU Ds
potentially available for each tinme stanp val ue.

4.2.1.3. Witing Stable Storage
The state does not always need to be witten to stable store every
time a UUDis generated. The tinestanp in the stable store can be

periodically set to a value larger than any yet used in a U D. As
Il ong as the generated UUI Ds have tinestanps | ess than that val ue, and

Leach, et al. St andards Track [Page 11]

RFC 4122 A UUI D URN Nanmespace July 2005

the clock sequence and node ID renain unchanged, only the shared

vol atile copy of the state needs to be updated. Furthernore, if the
timestanp value in stable store is in the future by I ess than the
typical tine it takes the systemto reboot, a crash will not cause a
reinitialization of the clock sequence.

4.2.1.4. Sharing State Across Processes

If it is too expensive to access shared state each tine a UUID is
generated, then the systemw de generator can be inplenented to
allocate a block of tine stanps each tinme it is called; a per-
process generator can allocate fromthat block until it is exhausted.

4.2.2. Ceneration Details
Version 1 UUIDs are generated according to the foll owi ng al gorithm

0 Determne the values for the UTC based tinmestanp and cl ock
sequence to be used in the UWID, as described in Section 4.2.1.

o For the purposes of this algorithm consider the tinestanp to be a
60-bit unsigned integer and the clock sequence to be a 14-bit
unsigned integer. Sequentially nunber the bits in a field,
starting with zero for the least significant bit.

0 Set the time low field equal to the least significant 32 bits
(bits zero through 31) of the tinestanp in the same order of
si gni ficance.

0o Set the time_md field equal to bits 32 through 47 fromthe
timestanp in the sane order of significance.

0 Set the 12 least significant bits (bits zero through 11) of the
time_hi _and_version field equal to bits 48 through 59 fromthe
timestanp in the sane order of significance.

0 Set the four nost significant bits (bits 12 through 15) of the
time_hi _and version field to the 4-bit versi on nunber
corresponding to the UU D version being created, as shown in the
tabl e above

0 Set the clock seq low field to the eight least significant bits

(bits zero through 7) of the clock sequence in the sane order of
si gni ficance.

Leach, et al. St andards Track [Page 12]

RFC 4122 A UUI D URN Nanmespace July 2005

4. 3.

Lea

0 Set the 6 least significant bits (bits zero through 5) of the
cl ock_seq_hi _and_reserved field to the 6 nost significant bits
(bits 8 through 13) of the clock sequence in the sane order of
si gni ficance.

0 Set the two npst significant bits (bits 6 and 7) of the
cl ock_seq_hi _and_reserved to zero and one, respectively.

0 Set the node field to the 48-bit | EEE address in the sane order of
significance as the address.

Al gorithm for Creating a Name-Based UU D

The version 3 or 5 UUIDis neant for generating UU Ds from "nanmes”
that are drawn from and uni que within, sone "name space". The
concept of nanme and nane space shoul d be broadly construed, and not
limted to textual names. For exanple, sonme name spaces are the
domai n name system URLs, SO hject IDs (A Ds), X 500 Distinguished
Nanes (DNs), and reserved words in a programm ng | anguage. The
mechani snms or conventions used for allocating nanes and ensuri ng
their uni queness within their name spaces are beyond the scope of
this specification.

The requirenents for these types of UUIDs are as foll ows:

0 The UUI Ds generated at different tines fromthe sane nane in the
same namespace MUST be equal

0 The UU Ds generated fromtwo different names in the sane nanespace
should be different (with very high probability).

0 The UUI Ds generated fromthe sanme nanme in two different nanespaces
should be different with (very high probability).

o If two UU Ds that were generated from nanmes are equal, then they
were generated fromthe sane nane in the sane nanmespace (with very
hi gh probability).

The algorithmfor generating a UU D froma nane and a nane space are
as foll ows:

0 Alocate a UUDto use as a "nanme space ID" for all UU Ds
generated fromnanes in that nane space; see Appendi x C for sone
pre-defi ned val ues.

0 Choose either MD5 [4] or SHA-1 [8] as the hash algorithm If
backward conpatibility is not an issue, SHA-1 is preferred.

ch, et al. St andards Track [Page 13]

RFC 4122 A UUI D URN Nanmespace July 2005

4. 4.

Convert the name to a canonical sequence of octets (as defined by
the standards or conventions of its nane space); put the nanme
space IDin network byte order.

Conput e the hash of the nanme space |ID concatenated with the nane.

Set octets zero through 3 of the tine_lowfield to octets zero
t hrough 3 of the hash.

Set octets zero and one of the time_md field to octets 4 and 5 of
t he hash.

Set octets zero and one of the time_hi_and version field to octets
6 and 7 of the hash.

Set the four nost significant bits (bits 12 through 15) of the
time_hi _and version field to the appropriate 4-bit version nunber
from Section 4.1.3.

Set the clock _seq hi_and reserved field to octet 8 of the hash.

Set the two nost significant bits (bits 6 and 7) of the
cl ock_seq_hi _and_reserved to zero and one, respectively.

Set the clock_seq lowfield to octet 9 of the hash

Set octets zero through five of the node field to octets 10
t hrough 15 of the hash.

Convert the resulting UUD to |ocal byte order

Al gorithnms for Creating a UU D from Truly Random or
Pseudo- Random Nunber s

The version 4 UU D is neant for generating UU Ds fromtruly-random or
pseudo- r andom nunbers.

The algorithmis as foll ows:

(0]

Leach,

Set the two nost significant bits (bits 6 and 7) of the
cl ock_seq_hi _and_reserved to zero and one, respectively.

Set the four nost significant bits (bits 12 through 15) of the
time_hi_and _version field to the 4-bit version number from
Section 4.1. 3.

Set all the other bits to randomy (or pseudo-random y) chosen
val ues.

et al. St andards Track [Page 14]

RFC 4122 A UUI D URN Nanmespace July 2005

See Section 4.5 for a discussion on random nunbers.
4.5. Node IDs that Do Not ldentify the Host

This section describes howto generate a version 1 UWUD if an | EEE
802 address is not available, or its use is not desired.

One approach is to contact the | EEE and get a separate bl ock of
addresses. At the tinme of witing, the application could be found at
<http://standards.ieee.org/regauth/oui/pilot-ind. htm> and the cost
was US$550.

A better solution is to obtain a 47-bit cryptographic quality random
nunber and use it as the low 47 bits of the node ID, with the |east
significant bit of the first octet of the node ID set to one. This
bit is the unicast/nulticast bit, which will never be set in | EEE 802
addr esses obtai ned fromnetwork cards. Hence, there can never be a
conflict between UU Ds generated by machines with and wi thout network
cards. (Recall that the I EEE 802 spec tal ks about transm ssion
order, which is the opposite of the in-nmenory representation that is
di scussed in this docunent.)

For conpatibility with earlier specifications, note that this
docunent uses the unicast/nulticast bit, instead of the arguably nore
correct |ocal/global bit.

Advi ce on generating cryptographic-quality random nunbers can be
found in RFCL750 [5].

In addition, itenms such as the conputer's name and the name of the
operating system while not strictly speaking random wll help
differentiate the results fromthose obtained by other systens.

The exact algorithmto generate a node ID using these data is system
speci fic, because both the data available and the functions to obtain
themare often very systemspecific. A generic approach, however, is
to accunul ate as many sources as possible into a buffer, use a
message digest such as MD5 [4] or SHA-1 [8], take an arbitrary 6
bytes fromthe hash value, and set the nmulticast bit as descri bed
above.

5. Community Considerations
The use of UUIDs is extrenely pervasive in conputing. They conprise
the core identifier infrastructure for many operating systens

(Mcrosoft Wndows) and applications (the Mzilla browser) and in
many cases, becone exposed to the Wb in nmany non-standard ways.

Leach, et al. St andards Track [Page 15]

RFC 4122 A UUI D URN Nanmespace July 2005

6.

This specification attenpts to standardi ze that practice as openly as
possible and in a way that attenpts to benefit the entire Internet.

Security Considerations

Do not assune that UUI Ds are hard to guess; they should not be used
as security capabilities (identifiers whose nmere possession grants
access), for exanple. A predictable random nunber source will
exacerbate the situation

Do not assune that it is easy to deternmine if a UU D has been
slightly transposed in order to redirect a reference to another
object. Humans do not have the ability to easily check the integrity
of a UUD by sinply glancing at it.

Distributed applications generating UU Ds at a variety of hosts nust
be willing to rely on the random nunber source at all hosts. |If this
is not feasible, the namespace variant shoul d be used.

Acknowl edgnent s

Thi s docunment draws heavily on the OSF DCE specification for UU Ds.
Ted Ts' o provided hel pful comrents, especially on the byte ordering
section which we nostly plagiarized froma proposed wordi ng he
supplied (all errors in that section are our responsibility,
however) .

We are also grateful to the careful reading and bit-tw ddling of Ralf
S. Engel schall, John Larnmouth, and Paul Thorpe. Professor Larnouth
was al so invaluable in achieving coordination with ISQ I EC.

Nor mati ve Ref erences

[1] Zahn, L., Dineen, T., and P. Leach, "Network Computi ng
Architecture", |1SBN 0-13-611674-4, January 1990

[2] "DCE: Renmpte Procedure Call", Open Goup CAE Specification C309,
| SBN 1-85912-041-5, August 1994.

[3] |1SOIEC 9834-8:2004 | nformation Technol ogy, "Procedures for the
operation of OSI Registration Authorities: Generation and
regi stration of Universally Unique ldentifiers (UJ Ds) and their
use as ASN. 1 (bject ldentifier components” |ITUT Rec. X 667,
2004.

[4] R vest, R, "The MD5 Message-Digest Algorithm", RFC 1321, Apri
1992.

Leach, et al. St andards Track [Page 16]

RFC 4122 A UUI D URN Narmespace July 2005
[5] Eastlake, D., 3rd, Schiller, J., and S. Crocker, "Randommess
Requi renents for Security", BCP 106, RFC 4086, June 2005.
[6] Mbats, R, "URN Syntax", RFC 2141, May 1997.

[7] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Specifications: ABNF', RFC 2234, Novemnber 1997.

[8] National Institute of Standards and Technol ogy, "Secure Hash

St andard", FIPS PUB 180-1, April 1995,
<http://ww.itl.nist.gov/fipspubs/fipl80-1.htnp.

Leach, et al. St andards Track [Page 17]

RFC 4122 A UUI D URN Nanmespace July 2005

Appendi x A. Appendix A - Sanpl e |nplenmentation

This inplenentation consists of 5 files: uuid.h, uuid.c, sysdep.h,
sysdep.c and utest.c. The uuid.* files are the system i ndependent

i npl emrentation of the UU D generation algorithns descri bed above,
with all the optinzations described above except efficient state
shari ng across processes included. The code has been tested on Linux
(Red Hat 4.0) with GCC (2.7.2), and Wndows NT 4.0 with VC++ 5.0.

The code assumes 64-bit integer support, which makes it nuch clearer.

Al the follow ng source files should have the foll owi ng copyri ght
notice included:

copyrt.h

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.
Copyright (c) 1989 by Hew ett-Packard Conpany, Palo Alto, Ca. &

Di gi tal Equi prrent Corporation, Maynard, Mass.

Copyright (c) 1998 M crosoft.

To anyone who acknow edges that this file is provided "AS | S"

wi t hout any express or inplied warranty: perm ssion to use, copy,
modi fy, and distribute this file for any purpose is hereby

granted without fee, provided that the above copyright notices and
this notice appears in all source code copies, and that none of

t he names of Open Software Foundation, Inc., Hew ett-Packard
Conpany, Mcrosoft, or Digital Equipnent Corporation be used in
advertising or publicity pertaining to distribution of the software
wi t hout specific, witten prior perm ssion. Neither Open Software
Foundation, Inc., Hew ett-Packard Conpany, M crosoft, nor Digita
Equi prrent Cor porati on makes any representations about the
suitability of this software for any purpose.

uui d. h

#i ncl ude "copyrt.h"
#undef uui d_t
t ypedef struct {

unsi gned32 tine_|ow,

unsi gned16 tine_m d;

unsi gned16 time_hi_and_versi on;

unsi gned8 cl ock_seq_hi _and_reserved,;
unsi gned8 cl ock_seq_| ow,

byt e node[6] ;

} uuid t;

Leach, et al. St andards Track [Page 18]

RFC 4122 A UUI D URN Nanmespace July 2005

/* uuid _create -- generate a UU D */
int uuid_create(uuid_t * uuid);

/[* uuid _create nmd5 fromnane -- create a version 3 (MD5) UU D using a
"nane” froma "nane space" */
void uuid _create nd5 from nanme(

uui d_t *uuid, /[* resulting UU D */
uuid_t nsid, /* WU D of the nanmespace */
voi d *narme, /* the name from which to generate a UU D */
i nt nanel en /* the length of the nane */
)
/* uuid_create_shal fromnane -- create a version 5 (SHA-1) UU D

using a "nane" froma "name space" */
voi d uuid _create _shal _from namg(

uuid_t *uuid, /[* resulting UU D */
uuid_t nsid, /* WU D of the namespace */
voi d *narme, /[* the name from which to generate a UU D */
i nt nanel en /* the length of the nane */
)
[* uuid_conpare -- Conpare two UUD s "lexically" and return
-1 ul is lexically before u2
0 ul is equal to u2
1 ul is lexically after u2
Note that |l exical ordering is not tenporal ordering!
*/

int uuid _conpare(uuid t *ul, uuid t *u2);

uuid. c

#i ncl ude "copyrt.h"
#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <ti me. h>

#i ncl ude "sysdep. h"
#i ncl ude "uuid. h"

/* various forward declarations */

static int read_state(unsignedl6 *clockseq, uuid_tinme_t *tinestanp,
uui d_node_t *node);

static void wite_state(unsignedl6 clockseq, uuid tine t tinestanp,
uui d_node_t node);

static void format_uuid vi(uuid_ t *uuid, unsignedl6 cl ockseq,
uuid_time_t timestanp, uuid_node_t node);

Leach, et al. St andards Track [Page 19]

RFC 4122 A UUI D URN Nanmespace July 2005

static void format _uuid v3or5(uuid_ t *uuid, unsigned char hash[16],
int v);

static void get_current_tinme(uuid_time_t *tinestanp);

static unsignedl6 true_random(void);

/* uuid_create -- generator a UU D */
int uuid_create(uuid_t *uuid)
{
uuid_time_t tinmestanmp, last_tine;
unsi gned16 cl ockseq;
uui d_node_t node;
uui d node t | ast _node;
int f;

/* acquire systemw de |ock so we're al one */

LOCK;

/* get tinme, node ID, saved state fromnon-volatile storage */
get _current _tinme(&t i nestanp);

get _i eee_node_i dentifi er(&node);

f = read_state(&cl ockseq, & ast_tinme, & ast _node);

/* if no NV state, or if clock went backwards, or node ID
changed (e.g., new network card) change cl ockseq */

if (!f || mencnp(&node, & ast node, sizeof node))
cl ockseq = true_random();

else if (timestanp < last_tine)
cl ockseq++;

/* save the state for next tinme */
wite_state(clockseq, timnmestanp, node);

UNLOCK

[* stuff fields into the UUID */
format _uuid v1(uuid, clockseq, tinestanp, node);
return 1;

}

[* format_uuid_vl -- nake a UUD fromthe tinestanp, clockseq,
and node ID */

void format _uuid_vil(uuid_t* uuid, unsignedl6 cl ock_seq,
uuid time_ t tinmestanp, uuid _node_ t node)

{

/* Construct a version 1 uuid with the information we' ve gathered
plus a few constants. */

uuid->tinme_l ow = (unsigned |long)(timestanp & OXFFFFFFFF);

uuid->time_md = (unsigned short) ((tinmestanp >> 32) & OxXFFFF);

uui d->time_hi _and version =

Leach, et al. St andards Track [Page 20]

RFC 4122 A UUI D URN Nanmespace July 2005

(unsi gned short) ((timestanp >> 48) & OxOFFF);
uui d->time_hi _and_version |= (1 << 12);
uui d->cl ock_seq_| ow = cl ock_seq & OxFF;
uui d->cl ock_seq_hi _and reserved = (cl ock_seq & 0x3F00) >> 8§;
uui d->cl ock_seq_hi _and_reserved | = 0x80;
mencpy(&uui d- >node, &node, si zeof uui d->node);

}

[* data type for UU D generator persistent state */
t ypedef struct {

uuid tinme t ts; /* saved tinestamp */
uui d _node_t node; /* saved node ID */
unsi gned16 CS; /* saved cl ock sequence */

} uuid_state;
static uuid state st;

/* read_state -- read UU D generator state fromnon-volatile store */
int read_state(unsignedl6 *cl ockseq, uuid_time_t *tinestanp,

uui d_node_t *node)
{

static int inited = 0;
FILE *fp

/* only need to read state once per boot */
if (!linited) {
fp = fopen("state", "rb");
if (fp == NULL)
return O;
fread(&st, sizeof st, 1, fp);
fclose(fp);
inited = 1;
}
*cl ockseq = st.cs;
*timestanp = st.ts;
*node = st.node;
return 1,

}

/* wite_state -- save UU D generator state back to non-vol atile
storage */
void wite state(unsignedl6 clockseq, uuid_time_t tinestanp,
uui d_node_t node)
{

static int inited = 0;

static uuid_ tine_ t next_ save;
FI LE* fp;

Leach, et al. St andards Track [Page 21]

RFC 4122 A UUI D URN Nanmespace July 2005

if (linited) {
next _save = tinestanp;
inited = 1;

/* always save state to volatile shared state */
st.cs = cl ockseq;
st.ts = tinestanp;
st.node = node;
if (tinestanp >= next_save) {
fp = fopen("state", "wh");
fwite(&st, sizeof st, 1, fp);
fclose(fp);
/* schedul e next save for 10 seconds from now */
next save = tinmestanp + (10 * 10 * 1000 * 1000);

}

[* get-current_tinme -- get tinme as 60-bit 100ns ticks since UU D epoch.
Conpensate for the fact that real clock resolution is
| ess than 100ns. */
void get _current tine(uuid_ tinme_t *tinestanp)
{
static int inited = 0;
static uuid tine t tine |ast;
static unsignedl6 uuids_this tick;
uuid tinme_t tinme_now,

if (linited) {
get _systemtine(&inme_now);
uui ds_this_tick = UU DS_PER TI CK;
inited = 1;

for (; ;) {

get _systemtine(&ime_now;

/* if clock reading changed since last UU D generated, */
if (tinme_last !'=time_now) {
/* reset count of uuids gen'd with this clock reading */
uuids this tick = 0;
time_last = tine_now
br eak;

}
if (uuids_this tick < UU DS PER TICK) {

uuids this tick++;
br eak;

Leach, et al. St andards Track [Page 22]

RFC 4122 A UUI D URN Nanmespace July 2005

/* going too fast for our clock; spin */
}
/* add the count of uuids to | ow order bits of the clock reading */
*timestanp = tine_now + uuids_this_tick;

}

/[* true_random-- generate a crypto-quality random nunber.
This sanple doesn't do that. */
static unsignedl6 true_randon(voi d)
{
static int inited = 0;
uuid tinme_t tinme_now

if (linited) {
get _systemtine(&inme_now;
tinme_now = tinme_now / UU DS PER Tl CK
srand((unsi gned int)
(((time_now >> 32) ~ time_now) & Oxffffffff));
inited = 1;
}

return rand();

}

[* uuid_create_md5 fromnane -- create a version 3 (M)5) UU D using a
"nane" froma "nane space" */
void uuid create nd5 fromnane(uuid_ t *uuid, uuid_t nsid, void *nane,
i nt nanel en)

{
MD5 CTX c;
unsi gned char hash[16];
uuid t net _nsid;
/* put name space IDin network byte order so it hashes the sane
no matter what endian nachine we're on */
net _nsid = nsid;
net_nsid.tinme_low = htonl (net_nsid.tinme_|ow);
net nsid.tinme_md = htons(net_nsid.tine_md);
net _nsid.tinme_hi _and_version = htons(net_nsid.tine_hi_and_version);
MD5I ni t (&c);
MD5Updat e(&, &net _nsid, sizeof net _nsid);
MD5Updat e(&, nane, nanel en);
MD5Fi nal (hash, &c);
/* the hash is in network byte order at this point */
format _uui d_v3or5(uui d, hash, 3);
}

Leach, et al. St andards Track [Page 23]

RFC 4122 A UUI D URN Nanmespace July 2005

void uuid create shal fromname(uuid t *uuid, uuid t nsid, void *nane,
i nt nanel en)

{
SHA CTX c;
unsi gned char hash[20];
uuid_t net _nsid;
/* put name space IDin network byte order so it hashes the sane
no matter what endi an machine we're on */
net _nsid = nsid;
net nsid.tine_low = htonl(net_nsid.tine_|ow;
net_nsid.tinme_md = htons(net_nsid.tinme_md);
net nsid.tinme_hi_and version = htons(net_nsid.tine_hi_and version);
SHAL I nit(&c);
SHA1 Updat e(&c, &net_nsid, sizeof net_nsid);
SHA1 Updat e(&, nane, nanel en);
SHA1 Fi nal (hash, &c);
/* the hash is in network byte order at this point */
format _uui d_v3or5(uui d, hash, 5);
}
/* format_uuid_v3or5 -- nake a UUID froma (pseudo)random 128-bit

nunber */
void format _uuid v3or5(uuid t *uuid, unsigned char hash[16], int v)
{
/* convert UUDto local byte order */
mencpy(uui d, hash, sizeof *uuid);
uui d->time_| ow = ntohl (uuid->tinme_| ow);
uuid->tinme_md = ntohs(uuid->tinme_md);
uui d->ti me_hi _and_version = ntohs(uuid->tinme_hi _and_version);

/* put in the variant and version bits */
uui d->time_hi _and_version & OxOFFF

uuid->time_hi _and version |= (v << 12);
uui d->cl ock_seq_hi _and_reserved &= 0x3F;
uui d->cl ock_seq_hi _and_reserved | = 0x80;
}
[* uuid_conmpare -- Conpare two UUD s "lexically" and return */

#define CHECK(f1, f2) if (f1!=1f2) returnfl <f2 ? -1: 1;
int uuid_conpare(uuid_t *ul, uuid_t *u2)
o

int i;

CHECK(ul->time_|low, u2->tinme_|ow;

CHECK(ul->tinme_md, u2->tinme_md);

Leach, et al. St andards Track [Page 24]

RFC 4122 A UUI D URN Nanmespace July 2005

CHECK(ul->tinme_hi_and version, u2->tinme_hi_and_version);
CHECK(ul->cl ock_seq_hi _and_reserved, u2->clock_seq_hi _and_reserved);
CHECK(ul->cl ock_seq_I| ow, u2->cl ock_seq_| ow)
for (i =0; i <6; i++) {
if (ul->node[i] < u2->node[i])

return -1;
if (ul->node[i] > u2->node[i])
return 1;
}
return O;

}
#undef CHECK

sysdep. h

#i ncl ude "copyrt.h"
/* renpove the following define if you aren't running WN32 */
#define WNI NC O

#i fdef W NI NC

#i ncl ude <wi ndows. h>

#el se

#i ncl ude <sys/types. h>
#i ncl ude <sys/tinme. h>

#i ncl ude <sys/sysinfo. h>
#endi f

#i ncl ude "gl obal . h"

/* change to point to where MD5 .h's live; RFC 1321 has sanpl e
i npl erentation */

#i ncl ude "nd5. h"

/* set the following to the nunber of 100ns ticks of the actual
resol uti on of your system s clock */
#define UU DS_PER TI CK 1024

/* Set the following to a calls to get and rel ease a global |ock */
#defi ne LOCK
#def i ne UNLOCK

t ypedef unsigned | ong unsi gned32;
typedef unsigned short unsignedl6;
typedef unsigned char unsi gneds;
t ypedef unsigned char byt e;

/* Set this to what your conpiler uses for 64-bit data type */
#i fdef W NI NC

Leach, et al. St andards Track [Page 25]

RFC 4122 A UUI D URN Nanmespace

#def i ne unsi gned64_t unsigned __int64
#define 164(C) C

#el se

#def i ne unsi gned64_t unsigned | ong | ong
#define 164(C) CH#LL

#endi f

typedef unsigned64 t uuid tine t;
typedef struct ({

char nodel D] 6] ;
} uuid _node t;

voi d get ieee _node_identifier(uuid node t *node);
void get_systemtinme(uuid_tine_t *uuid_tine);
voi d get _random.info(char seed[16]);

sysdep. c

#i ncl ude "copyrt.h"
#i ncl ude <stdio. h>
#i ncl ude "sysdep. h"

/* system dependent call to get | EEE node ID
This sanple inplenentati on generates a random node ID. */
voi d get ieee _node_identifier(uuid node_t *node)
{
static inited = 0;
static uuid node_t saved_node;
char seed[16];
FILE *fp

if (linited) {
fp = fopen("nodeid", "rb");
it (fp) {
fread(&saved_node, sizeof saved_node, 1, fp);

fclose(fp);
}
el se {
get _random.i nfo(seed);
seed[0] |= 0x01
mencpy(&aved_node, seed, sizeof saved node);
fp = fopen("nodei d', "wh");
it (fp) {
fwrite(&aved node, sizeof saved node, 1, fp);
fclose(fp);
}
}
Leach, et al. St andards Track

July 2005

[Page 26]

RFC 4122 A UUI D URN Nanmespace July 2005

inited = 1;
}

*node = saved_node;

}

/* system dependent call to get the current systemtine. Returned as
100ns ticks since UU D epoch, but resolution may be | ess than
100ns. */

#i fdef _W NDOWS_

void get_systemtinme(uuid_tine_t *uuid_tine)
ULARGE_| NTEGER ti ne;

/* NT keeps tine in FILETIME format which is 100ns ticks since
Jan 1, 1601. UU Ds use tine in 100ns ticks since COct 15, 1582.
The difference is 17 Days in Oct + 30 (Nov) + 31 (Dec)

+ 18 years and 5 | eap days. */

CGet Syst enTi neAsFi | eTi me((FI LETI ME *) &t i nme) ;

ti me. QuadPart +=

(unsigned __int64) (1000*1000*10) /1 seconds
* (unsigned __int64) (60 * 60 * 24) /1 days
* (unsigned __int64) (17+30+31+365*18+5); // # of days
*uuid tinme = tinme. QuadPart;

}

/* Sanpl e code, not for use in production; see RFC 1750 */
voi d get _random.i nfo(char seed[16])
{
MD5 CTX c;
struct {
MEMORYSTATUS m
SYSTEM | NFO s;
FI LETI ME t;
LARGE_| NTEGER pc;
DWORD tc;
DWORD | ;
char host nane[MAX_COVPUTERNAME LENGTH + 1];

b

MD5I ni t (&c);

A obal MenoryStatus(& . m;

Get System nfo(& . s);

Cet Syst enTi neAsFi l eTime(&r.t);
Quer yPer f or manceCount er (&r . pc) ;
r.tc = GetTickCount();

Leach, et al. St andards Track [Page 27]

RFC 4122 A UUI D URN Nanmespace

r.l = MAX_COVPUTERNAME_LENGTH + 1;
CGet Conmput er Nane(r. host nanme, &r.l);
MD5Updat e(&, &r, sizeof r);
MD5Fi nal (seed, &c);

}

#el se
void get_systemtinme(uuid_tinme_t *uuid_tine)
{

struct tinmeval tp;

gettinmeof day(&t p, (struct timezone *)0);

July 2005

[* OFfset between UUID formatted tines and Unix formatted ti nes.

UU D UTC base tine is October 15, 1582.
Uni x base tinme is January 1, 1970.*/

*uuid_tinme = ((unsigned64)tp.tv_sec * 10000000)

+ ((unsigned64)tp.tv_usec * 10)
+ 164(0x01B21DD213814000) ;
}

[* Sanpl e code, not for use in production; see RFC 1750 */

voi d get _random.info(char seed[16])
{
MD5 CTX c;
struct {
struct sysinfo s;
struct tineval t;
char host nane[257] ;

}ors

MD5I ni t (&c);
sysinfo(&.s);
gettinmeofday(&r .t, (struct tinezone *)0);
get host nane(r. host nane, 256);
MD5Updat e(&, &r, sizeof r);
MD5Fi nal (seed, &c);

}

#endi f

utest.c

#i ncl ude "copyrt.h"
#i ncl ude "sysdep. h"

#i ncl ude <stdi o. h>
#i ncl ude "uui d. h"

Leach, et al. St andards Track

[Page 28]

RFC 4122 A UUI D URN Nanmespace July 2005

uui d_t NanmeSpace DNS = { /* 6ba7b810- 9dad- 11d1- 80b4- 00c04f d430c8 */
Ox6ba7b810,
Ox9dad,
Ox11d1,
0x80, Oxb4, 0x00, OxcO, Ox4f, 0xd4, 0x30, 0xc8

b

[* puid -- print a UUD */
void puid(uuid_t u)

-
Int 1;
printf("%8.8x-%l. 4x- %. 4x-9R2. 2x%2. 2x-", u.time_low, u.time_md,
u.tinme_hi _and_version, u.clock_seq_hi_and_reserved,
u. cl ock_seq_| ow);
for (i =0; i < 6; i++)
printf("%.2x", u.nodel[i]);
printf("\n");
}

[* Sinple driver for UU D generator */
void main(int argc, char **argv)

{
uuid_t u;
int f;
uui d_creat e(&u)
printf("uuid_create(): "); puid(u);
f = uuid_compare(&u, &u);
printf("uuid conpare(u,u): %\n", f); /* should be 0 */
f = uui d_conmpare(&u, &NaneSpace_ DNS);
printf("uuid _conpare(u, NameSpace DNS): %\ n", f); /* s.b. 1 */
f = uui d_compar e(&NanmeSpace_DNS, &u);
printf("uuid _conpare(NaneSpace DNS, u): %l\n", f); /* s.b. -1 */
uuid_create nmd5 from nane(&u, NaneSpace DNS, "ww. wi dgets.conl, 15);
printf("uuid_create_md5 fromnanme(): "); puid(u);
}

Appendi x B. Appendix B - Sanple Qutput of utest

uui d_create(): 7d444840-9dc0-11d1-b245-5ffdce74fad2

uui d_conmpare(u,u): O

uui d_conmpare(u, NaneSpace_DNS): 1

uui d_conpar e(NameSpace DNS, u): -1

uui d_create_md5_fromnanme(): e902893a-9d22- 3c7e-a7b8-d6e313b71d9f

Leach, et al. St andards Track [Page 29]

RFC 4122 A UU D URN Namespace July 2005

Appendi x C. Appendix C - Sone Nane Space |Ds

This appendix lists the nane space | Ds for sonme potentially
i nteresting name spaces, as initialized C structures and in the
string representation defined above.

/* Nane string is a fully-qualified domain nanme */
uui d_t NameSpace_DNS = { /* 6ba7b810- 9dad- 11d1- 80b4- 00c04f d430c8 */
0x6ba7b810,
0Ox9dad,
0x11d1,
0x80, Oxb4, 0x00, OxcO, Ox4f, O0Oxd4, 0x30, 0xc8

H

/* Nanme string is a URL */
uui d_t NameSpace URL = { /* 6ba7b811-9dad- 11d1- 80b4-00c04f d430c8 */
Ox6ba7hb811,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, 0xcO, Ox4f, 0Oxd4, 0x30, 0xc8

H

/[* Nane string is an SO QD */
uui d_t NameSpace_ O D = { /* 6ba7b812-9dad- 11d1- 80b4- 00c04f d430c8 */
0x6ba7b812,
0Ox9dad,
0x11d1,
0x80, Oxb4, 0x00, OxcO, Ox4f, Oxd4, 0x30, 0xc8

H

/* Nanme string is an X.500 DN (in DER or a text output format) */
uui d_t NameSpace X500 = { /* 6ba7b814-9dad- 11d1- 80b4- 00c04f d430c8 */
Ox6ba7hb814,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, OxcO, Ox4f, Oxd4, 0x30, Oxc8

Leach, et al. St andards Track [Page 30]
RFC 4122 A UU D URN Namespace July 2005

Aut hors' Addr esses

Paul J. Leach

M crosoft

1 Mcrosoft Wy
Rednond, WA 98052
Us

Phone: +1 425-882-8080
EMai | : paul | e@ri crosoft.com

M chael Mealling

Ref act ored Networks, LLC
1635 A d Hw 41

Suite 112, Box 138
Kennesaw, GA 30152

Us

Phone: +1-678-581-9656
EMai | : m chael @ ef act or ed- net wor ks. com
URI: http://ww.refactored-networks. com

Rich Sal z

Dat aPower Technol ogy, Inc.
1 Alewife Center
Canbridge, MA 02142

us

Phone: +1 617-864-0455
EMai | . rsal z@lat apower. com
URI : http://ww. dat apower. com

Leach, et al. St andards Track [Page 31]
RFC 4122 A UU D URN Namespace July 2005

Ful | Copyright Statenent
Copyright (C The Internet Society (2005).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docurment and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSCRED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED

| NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

| NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that mght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunment or the extent to which any license under such rights

m ght or might not be available; nor does it represent that it has
made any i ndependent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of |IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be made available, or the result of an
attenpt nade to obtain a general license or perm ssion for the use of
such proprietary rights by inplementers or users of this

speci fication can be obtained fromthe IETF on-line IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Leach, et al. St andards Track [Page 32]

	A Universally Unique IDentifier (UUID) URN Namespace
	RFC 4122 Jul 2005 P. Leach, M. Mealling, and R. Salz. Internet Engineering Task Force
	Abstract
	Table of Contents
	1. Introduction
	2. Motivation
	3. Namespace Registration Template
	4. Specification
	5. Community Considerations
	6. Security Considerations
	7. Acknowledgments
	8. Normative References
	Appendix A. Appendix A - Sample Implementation
	Appendix B. Appendix B - Sample Output of utest
	Appendix C. Appendix C - Some Name Space IDs

	
	IETF Title Page

