Net wor k Wor ki ng Group D. Kristol

Request for Comments: 2965 Bel | Laboratories, Lucent Technol ogies
bsol etes: 2109 L. Montul li
Cat egory: Standards Track Epi ni ons. com I nc.

Cct ober 2000

HTTP St ate Managerment Mechani sm
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2000). Al Rights Reserved.
| ESG Not e

The 1 ESG notes that this mechani sm nakes use of the .local top-Ievel
domain (TLD) internally when handling host names that don't contain
any dots, and that this mechani smnmight not work in the expected way
shoul d an actual .local TLD ever be registered.

Abst ract

Thi s docunent specifies a way to create a stateful session with
Hypertext Transfer Protocol (HTTP) requests and responses. |t

descri bes three new headers, Cookie, Cookie2, and Set-Cookie2, which
carry state informati on between participating origin servers and user
agents. The nmethod described here differs from Netscape's Cookie
proposal [Netscape], but it can interoperate with HTTP/ 1.0 user
agents that use Netscape's nethod. (See the H STORI CAL section.)

Thi s docurent reflects inplenmentation experience with RFC 2109 and
obsol etes it.

1. TERM NOLOGY
The ternms user agent, client, server, proxy, origin server, and
http URL have the sane neaning as in the HITP/ 1.1 specification

[ RFC2616]. The terns abs_path and absol uteURl have the same neaning
as in the URI Syntax specification [ RFC2396].

Kristol & Montulli St andards Track [ Page 1]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Host nane (HN) neans either the host donain name (HDN) or the numeric
Internet Protocol (IP) address of a host. The fully qualified donmain
nane is preferred; use of nuneric |IP addresses is strongly

di scour aged.

The terns request-host and request-URl refer to the values the client
woul d send to the server as, respectively, the host (but not port)
and abs_path portions of the absoluteURl (http_URL) of the HTTP
request line. Note that request-host is a HN

The termeffective host nane is related to host nane. |f a host nane
contains no dots, the effective host name is that nane with the
string .local appended to it. Oherwi se the effective host nane is
the sane as the host nane. Note that all effective host nanes
contain at |east one dot.

The termrequest-port refers to the port portion of the absol uteUR
(http_URL) of the HTTP request line. [|f the absoluteURl has no
explicit port, the request-port is the HITP default, 80. The
request-port of a cookie is the request-port of the request in which
a Set - Cooki e2 response header was returned to the user agent.
Host nanes can be specified either as an | P address or a HDN string.
Soneti mes we conpare one host name with another. (Such conparisons
SHALL be case-insensitive.) Host A s name domai n-matches host B's if
* their host name strings string-conpare equal; or
* Ais a HDN string and has the form NB, where Nis a non-enpty
nanme string, B has the form.B, and B is a HDN string. (So,
X.y.com donmai n- mat ches .Y.com but not Y.com)

Not e that domai n-match is not a conmutative operation: a.b.c.com
domai n- mat ches .c.com but not the reverse.

The reach R of a host name His defined as foll ows:
* | f
- His the host domain nane of a host; and,
- Hhas the formA B; and
- A has no enbedded (that is, interior) dots; and

- B has at |east one enbedded dot, or Bis the string "local"
then the reach of His .B.

Kristol & Montulli St andards Track [ Page 2]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

* (Otherwi se, the reach of His H

For two strings that represent paths, Pl and P2, Pl path-natches P2
if P2 is a prefix of P1 (including the case where P1 and P2 string-
conpare equal). Thus, the string /tec/wal do path-matches /tec.

Because it was used in Netscape's original inplementation of state
managenment, we will use the termcookie to refer to the state

i nformati on that passes between an origin server and user agent, and
that gets stored by the user agent.

1.1 Requirenents

The key words "MAY", "MJST", "MJST NOT", "OPTIONAL", "RECOMVENDED',
"REQUI RED', "SHALL", "SHALL NOT", "SHOULD', "SHOULD NOT" in this
docunment are to be interpreted as described in RFC 2119 [ RFC2119].

2. STATE AND SESSI ONS

Thi s docunent describes a way to create stateful sessions with HITP
requests and responses. Currently, HITP servers respond to each
client request without relating that request to previous or
subsequent requests; the state managenent nechanismallows clients
and servers that wi sh to exchange state information to place HITP
requests and responses within a larger context, which we terma
"session". This context night be used to create, for exanple, a
"shopping cart”, in which user selections can be aggregated before
purchase, or a nmagazi ne browsing system in which a user's previous
readi ng affects which offerings are presented.

Neither clients nor servers are required to support cookies. A
server MAY refuse to provide content to a client that does not return
the cookies it sends.

3. DESCRI PTI ON

We describe here a way for an origin server to send state information
to the user agent, and for the user agent to return the state
information to the origin server. The goal is to have a ninina

i mpact on HTTP and user agents.

3.1 Syntax: Cenera
The two state nanagenent headers, Set-Cookie2 and Cooki e, have comn

syntactic properties involving attribute-value pairs. The follow ng
granmar uses the notation, and tokens DIG T (decinmal digits), token

Kristol & Montulli St andards Track [ Page 3]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

(informally, a sequence of non-special, non-white space characters),
and http URL fromthe HTTP/ 1.1 specification [ RFC2616] to describe
their syntax.

av-pairs = av-pair *(";" av-pair)

av-pair = attr ["=" val ue] ; optional val ue
attr = t oken

val ue = token | quoted-string

Attributes (names) (attr) are case-insensitive. White space is
permtted between tokens. Note that while the above syntax
description shows value as optional, nost attrs require them

NOTE: The syntax above all ows whitespace between the attribute and
the = sign.

3.2 Oigin Server Role

3.2.1 GCeneral The origin server initiates a session, if it so
desires. To do so, it returns an extra response header to the
client, Set-Cookie2. (The details follow |later.)

A user agent returns a Cookie request header (see below) to the
origin server if it chooses to continue a session. The origin server
MAY ignore it or use it to determine the current state of the

session. It MAY send back to the client a Set-Cookie2 response
header with the same or different information, or it MAY send no
Set - Cooki e2 header at all. The origin server effectively ends a

session by sending the client a Set-Cookie2 header with Mux- Age=0.

Servers MAY return Set-Cooki e2 response headers with any response
User agents SHOULD send Cooki e request headers, subject to other
rul es detail ed below, with every request.

An origin server MAY include nultiple Set-Cookie2 headers in a

response. Note that an intervening gateway could fold nultiple such
headers into a single header

Kristol & Montulli St andards Track [ Page 4]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000
3.2.2 Set-Cookie2 Syntax The syntax for the Set-Cookie2 response
header is

set - cooki e " Set - Cooki e2: " cooki es

cooki es = 1#cooki e
cooki e = NAME "=" VALUE *(";" set-cookie-av)
NAME = attr
VALUE = val ue
set - cooki e- av = "Comment" "=" val ue
| "Commrent URL" "=" <"> http_URL <">
| "Di scard"
| "Domai n" "=" val ue
| " Max- Age" "=" val ue
| "Path" "=" val ue
| "Port" [ "=" <"> portlist <">]
| " Secure"
| "Version" "=" 1*DIAT
portli st = 1#port num
port num = I*DIA T

Informal |y, the Set-Cookie2 response header conprises the token Set -
Cooki e2:, followed by a commma-separated |ist of one or nore cookies.
Each cookie begins with a NAVE=VALUE pair, followed by zero or nore
sem -col on-separated attribute-value pairs. The syntax for
attribute-value pairs was shown earlier. The specific attributes and
the semantics of their values follows. The NAVE=VALUE attri bute-

val ue pair MJST cone first in each cookie. The others, if present,
can occur in any order. |If an attribute appears nore than once in a
cookie, the client SHALL use only the value associated with the first
appearance of the attribute; a client MJST ignore values after the
first.

The NAME of a cookie MAY be the same as one of the attributes in this
speci fication. However, because the cookie's NAME nust cone first in
a Set-Cooki e2 response header, the NAME and its VALUE cannot be
confused with an attribute-value pair.

NAVE=VALUE
REQUI RED. The nane of the state information ("cookie") is NAME
and its value is VALUE. NAMEs that begin with $ are reserved and
MUST NOT be used by applications.

The VALUE is opaque to the user agent and may be anything the
origin server chooses to send, possibly in a server-sel ected
printable ASCI| encoding. "Opaque" inplies that the content is of
interest and relevance only to the origin server. The content
may, in fact, be readable by anyone that exam nes the Set- Cookie2
header .

Kristol & Montulli St andards Track [ Page 5]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Comment =val ue
OPTI ONAL. Because cookies can be used to derive or store private
i nformation about a user, the value of the Comrent attribute
allows an origin server to docunment how it intends to use the
cookie. The user can inspect the information to deci de whether to
initiate or continue a session with this cookie. Characters in
val ue MUST be in UTF-8 encodi ng. [ RFC2279]

Comment URL="ht t p_URL"
OPTI ONAL. Because cooki es can be used to derive or store private
i nformation about a user, the Conment URL attribute allows an
origin server to document how it intends to use the cookie. The
user can inspect the infornation identified by the URL to decide
whet her to initiate or continue a session with this cookie.

Di scard
OPTIONAL. The Discard attribute instructs the user agent to
di scard the cookie unconditionally when the user agent term nates.

Domai n=val ue
OPTI ONAL. The value of the Domain attribute specifies the domain
for which the cookie is valid. |If an explicitly specified val ue
does not start with a dot, the user agent supplies a |eading dot.

Max- Age=val ue
OPTI ONAL. The value of the Max-Age attribute is delta-seconds,
the lifetinme of the cookie in seconds, a deci mal non-negative
integer. To handl e cached cookies correctly, a client SHOULD
cal cul ate the age of the cookie according to the age cal cul ation
rules in the HITP/ 1.1 specification [ RFC2616]. When the age is
greater than delta-seconds seconds, the client SHOULD discard the
cookie. A value of zero means the cookie SHOULD be di scarded
i mredi ately.

Pat h=val ue
OPTI ONAL. The value of the Path attribute specifies the subset of
URLs on the origin server to which this cookie applies.

Port[="portlist"]
OPTIONAL. The Port attribute restricts the port to which a cookie
may be returned in a Cookie request header. Note that the syntax
REQUI REs quot es around the OPTIONAL portlist even if there is only
one portnumin portlist.

Kristol & Montulli St andards Track [ Page 6]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Secure
OPTI ONAL. The Secure attribute (with no value) directs the user
agent to use only (unspecified) secure neans to contact the origin
server whenever it sends back this cookie, to protect the
confidentially and authenticity of the information in the cookie.

The user agent (possibly with user interaction) MAY detern ne what
| evel of security it considers appropriate for "secure" cookies.
The Secure attribute should be considered security advice fromthe
server to the user agent, indicating that it is in the session's
interest to protect the cookie contents. Wen it sends a "secure"
cooki e back to a server, the user agent SHOULD use no | ess than
the sane | evel of security as was used when it received the cookie
fromthe server.

Ver si on=val ue
REQUI RED. The val ue of the Version attribute, a decinmal integer
identifies the version of the state nanagenent specification to
whi ch the cookie conforms. For this specification, Version=1
applies.

3.2.3 Controlling Caching An origin server nust be cogni zant of the
ef fect of possible caching of both the returned resource and the

Set - Cooki e2 header. Caching "public" documents is desirable. For
exanple, if the origin server wants to use a public docunent such as
a "front door" page as a sentinel to indicate the beginning of a
session for which a Set-Cooki e2 response header nust be generated,

t he page SHOULD be stored in caches "pre-expired" so that the origin
server will see further requests. "Private docunents”, for exanple
those that contain information strictly private to a session, SHOULD
NOT be cached in shared caches.

If the cookie is intended for use by a single user, the Set-Cookie2
header SHOULD NOT be cached. A Set-Cookie2 header that is intended
to be shared by nultiple users MAY be cached

The origin server SHOULD send the foll owi ng additional HTTP/1.1
response headers, dependi ng on circunstances:

* To suppress caching of the Set-Cookie2 header
Cache-control: no-cache="set - cooki e2"
and one of the follow ng:
* To suppress caching of a private docunent in shared caches:

Cache-control: private

Kristol & Montulli St andards Track [ Page 7]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

* To allow caching of a docunment and require that it be validated
before returning it to the client:

Cache-Control : nust-revalidate, max-age=0

* To allow caching of a docunent, but to require that proxy
caches (not user agent caches) validate it before returning it
to the client:

Cache-Control: proxy-revalidate, nmax-age=0

* To allow caching of a docunment and request that it be validated
before returning it to the client (by "pre-expiring" it):

Cache-control : max-age=0
Not all caches will revalidate the docunent in every case.

HTTP/ 1.1 servers MJST send Expires: ol d-date (where old-date is a
date long in the past) on responses containing Set-Cooki e2 response
headers unl ess they know for certain (by out of band neans) that
there are no HTTP/ 1.0 proxies in the response chain. HITP/ 1.1
servers MAY send ot her Cache-Control directives that permit caching
by HTTP/ 1.1 proxies in addition to the Expires: old-date directive;
the Cache-Control directive will override the Expires: old-date for
HTTP/ 1.1 proxies.

3.3 User Agent Role

3.3.1 Interpreting Set-Cookie2 The user agent keeps separate track
of state information that arrives via Set-Cookie2 response headers
from each origin server (as distinguished by name or | P address and
port). The user agent MJST ignore attribute-value pairs whose
attribute it does not recognize. The user agent applies these
defaults for optional attributes that are m ssing:

Di scard The default behavior is dictated by the presence or absence
of a Max-Age attribute.

Domain Defaults to the effective request-host. (Note that because
there is no dot at the beginning of effective request-host,
the default Domain can only domain-match itself.)

Max- Age The default behavior is to discard the cookie when the user
agent exits.

Pat h Defaults to the path of the request URL that generated the
Set - Cooki e2 response, up to and including the right-nost /.

Kristol & Montulli St andards Track [ Page 8]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Por t The default behavior is that a cookie MAY be returned to any
request - port.

Secure |f absent, the user agent MAY send the cookie over an
i nsecure channel

3.3.2 Rejecting Cookies To prevent possible security or privacy
viol ations, a user agent rejects a cookie according to rul es bel ow.
The goal of the rules is to try tolimt the set of servers for which
a cookie is valid, based on the values of the Path, Domain, and Port
attributes and the request-URlI, request-host and request-port.

A user agent rejects (SHALL NOT store its information) if the Version
attribute is missing. Myreover, a user agent rejects (SHALL NOT
store its information) if any of the following is true of the
attributes explicitly present in the Set-Cookie2 response header

* The value for the Path attribute is not a prefix of the
request - URI .

*  The value for the Donmmin attribute contains no enbedded dots,
and the value is not .l ocal

* The effective host nane that derives fromthe request-host does
not domai n-match the Donmain attribute.

* The request-host is a HDN (not | P address) and has the form HD
where D is the value of the Domain attribute, and His a string
that contains one or nore dots.

* The Port attribute has a "port-list", and the request-port was
not in the list.

Exampl es:

* A Set-Cookie2 fromrequest-host y.x.foo.comfor Donmai n=.fo0.com
woul d be rejected, because His y.x and contains a dot.

* A Set-Cookie2 fromrequest-host x.foo.comfor Domai n=.fo00.com
woul d be accept ed.

* A Set-Cookie2 with Domai n=.com or Domai n=.com, w |l always be
rejected, because there is no enbedded dot.

* A Set-Cookie2 with Domai n=aj ax.comwi || be accepted, and the

value for Domain will be taken to be .ajax.com because a dot
gets prepended to the val ue.

Kristol & Montulli St andards Track [ Page 9]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

* A Set-Cookie2 with Port="80,8000" will be accepted if the
request was made to port 80 or 8000 and will be rejected
ot herwi se.

* A Set-Cookie2 fromrequest-host exanple for Dommin=.local wll
be accepted, because the effective host name for the request-
host is exanple.local, and exanple.local domai n-nmatches .| ocal

3.3.3 Cookie Managenent |f a user agent receives a Set-Cookie?2
response header whose NAME is the sane as that of a cookie it has
previously stored, the new cookie supersedes the old when: the old
and new Domain attribute val ues conpare equal, using a case-
insensitive string-conpare; and, the old and new Path attribute

val ues string-conpare equal (case-sensitive). However, if the Set-
Cooki e2 has a value for Max-Age of zero, the (old and new) cookie is
di scarded. Oherw se a cookie persists (resources permtting) unti
whi chever happens first, then gets discarded: its Max-Age lifetime is
exceeded; or, if the Discard attribute is set, the user agent

term nates the session.

Because user agents have finite space in which to store cookies, they
MAY al so di scard ol der cookies to nmake space for newer ones, using,
for exanple, a least-recently-used algorithm along with constraints
on the maxi mum nunber of cookies that each origin server may set.

I f a Set-Cookie2 response header includes a Corment attribute, the
user agent SHOULD store that information in a human-readable form
wi th the cookie and SHOULD di splay the coment text as part of a
cooki e i nspection user interface.

I f a Set-Cookie2 response header includes a ComrentURL attribute, the
user agent SHOULD store that information in a human-readable form
with the cookie, or, preferably, SHOULD allow the user to follow the
http_ URL |link as part of a cookie inspection user interface.

The cooki e inspection user interface may include a facility whereby a
user can decide, at the tine the user agent receives the Set-Cookie2
response header, whether or not to accept the cookie. A potentially
confusing situation could arise if the foll owi ng sequence occurs:

* the user agent receives a cookie that contains a Comrent URL
attribute

* the user agent's cookie inspection interface is configured so

that it presents a dialog to the user before the user agent
accepts the cookie;

Kristol & Montulli St andards Track [ Page 10]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

* the dialog allows the user to follow the Comrent URL |ink when
t he user agent receives the cookie; and,

* when the user follows the Corment URL [ink, the origin server
(or another server, via other links in the returned content)
returns another cookie.

The user agent SHOULD NOT send any cookies in this context. The user
agent MAY discard any cookie it receives in this context that the
user has not, through some user agent mechani sm deened acceptabl e.

User agents SHOULD al |l ow the user to control cookie destruction, but

they MUST NOT extend the cookie's lifetine beyond that controlled by

the Discard and Max-Age attributes. An infrequently-used cookie my

function as a "preferences file" for network applications, and a user
my wish to keep it even if it is the |east-recently-used cookie. One
possi bl e inplenentation would be an interface that allows the

per manent storage of a cookie through a checkbox (or, conversely, its
i medi at e destruction).

Privacy considerations dictate that the user have considerable
control over cookie managenent. The PRI VACY section contains nore
i nformation.
3.3.4 Sending Cookies to the Origin Server When it sends a request
to an origin server, the user agent includes a Cookie request header
if it has stored cookies that are applicable to the request, based on
* the request-host and request-port;
* the request-URl;

* the cookie's age.

The syntax for the header is:

cooki e = "Cookie:" cookie-version 1*((";" | ",") cookie-val ue)
cooki e-val ue = NAME "=" VALUE [";" path] [";" domain] [";" port]
cooki e-version = "$Version" "=" val ue

NANVE = attr

VALUE = val ue

pat h = "$Path" "=" val ue

donai n = "$Donmmin" "=" val ue

port = "$Port" [ "=" <"> value <"> ]

The val ue of the cookie-version attribute MJST be the value fromthe
Version attribute of the correspondi ng Set-Cooki e2 response header
O herwi se the value for cookie-version is 0. The value for the path

Kristol & Montulli St andards Track [ Page 11]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

attribute MIST be the value fromthe Path attribute, if one was
present, of the correspondi ng Set-Cooki e2 response header. O herw se
the attribute SHOULD be onmtted fromthe Cookie request header. The
value for the domain attribute MJST be the value fromthe Domain
attribute, if one was present, of the correspondi ng Set- Cooki e2
response header. O herwise the attribute SHOULD be onmitted fromthe
Cooki e request header

The port attribute of the Cookie request header MJUST mirror the Port
attribute, if one was present, in the correspondi ng Set- Cooki e2
response header. That is, the port attribute MJST be present if the
Port attribute was present in the Set-Cookie2 header, and it MJST
have the sane value, if any. Oherwise, if the Port attribute was
absent fromthe Set-Cookie2 header, the attribute |ikewi se MIST be
omtted fromthe Cookie request header

Note that there is neither a Conment nor a CommrentURL attribute in

t he Cooki e request header corresponding to the ones in the Set-
Cooki e2 response header. The user agent does not return the coment
information to the origin server.

The user agent applies the following rules to choose applicable
cooki e-values to send in Cookie request headers from anong all the
cookies it has received.

Domai n Sel ecti on
The origin server's effective host nane MJUST domai n-mat ch the
Domain attri bute of the cookie.

Port Sel ection
There are three possi bl e behaviors, depending on the Port
attribute in the Set-Cookie2 response header

1. By default (no Port attribute), the cookie MAY be sent to any
port.

2. If the attribute is present but has no value (e.g., Port), the
cookie MJUST only be sent to the request-port it was received
from

3. If the attribute has a port-list, the cookie MJST only be
returned if the new request-port is one of those listed in
port-1Iist.

Pat h Sel ecti on
The request-URI MJIST path-match the Path attribute of the cookie.

Kristol & Montulli St andards Track [ Page 12]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Max- Age Sel ection
Cooki es that have expired should have been discarded and thus are
not forwarded to an origin server

If nultiple cookies satisfy the criteria above, they are ordered in
t he Cooki e header such that those with nmore specific Path attributes
precede those with |ess specific. Odering with respect to other
attributes (e.g., Donmin) is unspecified.

Not e: For backward conpatibility, the separator in the Cookie header
is senm-colon (;) everywhere. A server SHOULD al so accept conmma (,)
as the separator between cookie-values for future conmpatibility.

3.3.5 ldentifying What Version is Understood: Cookie2 The Cookie2
request header facilitates interoperation between clients and servers
t hat understand different versions of the cookie specification. Wen
the client sends one or nore cookies to an origin server, if at |east
one of those cookies contains a $Version attribute whose value is
different fromthe version that the client understands, then the
client MIUST al so send a Cooki e2 request header, the syntax for which
is

cooki e2 = "Cooki e2:" cooki e-version

Here the value for cookie-version is the highest version of cookie
specification (currently 1) that the client understands. The client
needs to send at nost one such request header per request.

3.3.6 Sending Cookies in Unverifiable Transactions Users MJST have
control over sessions in order to ensure privacy. (See PRIVACY
section below.) To sinplify inplenmentation and to prevent an

addi tional |ayer of conplexity where adequate safeguards exist,
however, this docunent distinguishes between transactions that are
verifiable and those that are unverifiable. A transaction is
verifiable if the user, or a user-designated agent, has the option to
review the request-URlI prior to its use in the transaction. A
transaction is unverifiable if the user does not have that option
Unverifiable transactions typically arise when a user agent
automatically requests inlined or enbedded entities or when it
resolves redirection (3xx) responses froman origin server.
Typically the origin transaction, the transaction that the user
initiates, is verifiable, and that transaction may directly or
indirectly induce the user agent to nake unverifiable transactions.

An unverifiable transaction is to a third-party host if its request-

host U does not domain-nmatch the reach R of the request-host Oin the
origin transaction.

Kristol & Montulli St andards Track [ Page 13]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

When it nakes an unverifiable transaction, a user agent MJST disabl e
all cookie processing (i.e., MJST NOT send cookies, and MJST NOT
accept any received cookies) if the transaction is to a third-party
host .

This restriction prevents a nalicious service author from using
unverifiable transactions to induce a user agent to start or continue
a session with a server in a different domain. The starting or
continuation of such sessions could be contrary to the privacy
expectations of the user, and could also be a security problem

User agents MAY offer configurable options that all ow the user agent,
or any autononous programs that the user agent executes, to ignore
t he above rule, so long as these override options default to "off".

(N.B. Mechanisns nay be proposed that will automate overriding the
third-party restrictions under controlled conditions.)

Many current user agents already provide a review option that would
render many |inks verifiable. For instance, sone user agents display
the URL that would be referenced for a particular |ink when the nouse
pointer is placed over that Iink. The user can therefore determne
whet her to visit that site before causing the browser to do so.
(Though not inplemented on current user agents, a sinilar technique
could be used for a button used to subnit a form-- the user agent
could display the action to be taken if the user were to select that
button.) However, even this would not nake all links verifiable; for
exanple, links to automatically | oaded i mages woul d not nornally be
subject to "nouse pointer" verification

Many user agents also provide the option for a user to view the HTM
source of a docunent, or to save the source to an external file where
it can be viewed by another application. Wile such an option does
provi de a crude review nechani sm sone users mght not consider it
acceptable for this purpose.

3.4 How an Oigin Server Interprets the Cooki e Header

A user agent returns much of the information in the Set-Cookie2
header to the origin server when the request-URI path-matches the
Path attribute of the cookie. Wen it receives a Cookie header, the
origin server SHOULD treat cookies with NAMEs whose prefix is $
specially, as an attribute for the cookie.

Kristol & Montulli St andards Track [ Page 14]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

3.5 Caching Proxy Role
One reason for separating state information fromboth a URL and
docunent content is to facilitate the scaling that caching permts.
To support cookies, a caching proxy MJST obey these rules already in
the HTTP specification:

* Honor requests fromthe cache, if possible, based on cache
validity rules

* Pass along a Cookie request header in any request that the
proxy must nmeke of another server

* Return the response to the client. |Include any Set- Cookie2
response header.

* Cache the received response subject to the control of the usua
headers, such as Expires,

Cache-control : no-cache
and
Cache-control: private

* Cache the Set-Cookie2 subject to the control of the usua
header,

Cache-control: no-cache="set-cooki e2"
(The Set- Cooki e2 header should usually not be cached.)

Proxi es MJUST NOT introduce Set-Cooki e2 (Cookie) headers of their own
i n proxy responses (requests).

4. EXAMPLES
4.1 Example 1

Most detail of request and response headers has been omitted. Assune
t he user agent has no stored cooki es.

1. User Agent -> Server

POST /acne/login HITP/ 1.1
[ form dat a]

User identifies self via a form

Kristol & Montulli St andards Track [ Page 15]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

2. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e2: Custoner="WLE E COYOTE"; Version="1"; Path="/acne"

Cookie reflects user's identity.
3. User Agent -> Server
POST /acne/ pickitem HTTP/ 1.1
Cooki e: $Version="1"; Customer="WLE E COYOTE"; $Path="/acne"
[ form dat a]
User selects an item for "shopping basket".
4. Server -> User Agent
HTTP/ 1.1 200 K
Set - Cooki e2: Part _Nunber="Rocket Launcher_0001"; Version="1";
Pat h="/acmne"
Shoppi ng basket contains an item
5. User Agent -> Server
POST /acne/ shipping HITP/ 1.1
Cooki e: $Version="1";
Custonmer="W LE _E COYOTE"; $Pat h="/acne";
Part Nunber ="Rocket Launcher 0001"; $Pat h="/acne"
[form dat a]
User sel ects shipping method fromform

6. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e2: Shi ppi ng="FedEx"; Version="1"; Path="/acne"

New cooki e refl ects shipping mnethod.
7. User Agent -> Server

POST /acne/ process HTITP/ 1.1

Cooki e: $Version="1";
Cust onmer ="W LE_E COYOTE"; $Pat h="/acne";
Part _Nunber ="Rocket Launcher_0001"; $Pat h="/acme";
Shi ppi ng="FedEx"; $Path="/acne"

[ form dat a]

Kristol & Montulli St andards Track [ Page 16]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

User chooses to process order
8. Server -> User Agent

HTTP/ 1.1 200 K

Transaction is conplete.

The user agent mekes a series of requests on the origin server, after
each of which it receives a new cookie. All the cookies have the
same Path attribute and (default) donmamin. Because the request-URls
all path-match /acne, the Path attribute of each cookie, each request
contains all the cookies received so far

4.2 Example 2

This exanple illustrates the effect of the Path attribute. All
detail of request and response headers has been omtted. Assune the
user agent has no stored cooki es.

| magi ne the user agent has received, in response to earlier requests,
t he response headers

Set - Cooki e2: Part _Nunber="Rocket Launcher_0001"; Version="1"
Pat h="/acme"

and

Set - Cooki e2: Part_Nunber ="Ri di ng_Rocket _0023"; Version="1"
Pat h="/acme/ anmp"

A subsequent request by the user agent to the (sane) server for URLs
of the form/acne/amvo/... would include the follow ng request
header:

Cooki e: $Version="1";
Part_Nunber="Ri di ng_Rocket 0023"; $Path="/acne/amp";
Part Nunber ="Rocket Launcher _0001"; $Pat h="/acne"

Not e that the NAME=VALUE pair for the cookie with the nore specific
Path attribute, /acnme/ammo, conmes before the one with the | ess
specific Path attribute, /acme. Further note that the sanme cookie
name appears nore than once.

A subsequent request by the user agent to the (sanme) server for a URL
of the form/acne/parts/ would include the follow ng request header

Kristol & Montulli St andards Track [ Page 17]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

Cooki e: $Version="1"; Part_Number ="Rocket _Launcher_0001"
$Pat h="/ acrne"

Here, the second cookie's Path attribute /acne/amp is not a prefix
of the request URL, /acne/parts/, so the cookie does not get
forwarded to the server.

5. | MPLEMENTATI ON CONSI DERATI ONS

Here we provide guidance on likely or desirable details for an origin
server that inplenents state managenent.

5.1 Set-Cooki e2 Content

An origin server's content should probably be divided into disjoint
application areas, sone of which require the use of state
informati on. The application areas can be distinguished by their
request URLs. The Set-Cooki e2 header can incorporate infornmation
about the application areas by setting the Path attribute for each
one.

The session informati on can obviously be clear or encoded text that
descri bes state. However, if it grows too large, it can becone
unwi el dy. Therefore, an inplementor m ght choose for the session
information to be a key to a server-side resource. O course, using
a dat abase creates sone problens that this state managenent
specification was neant to avoid, nanely:

1. keeping real state on the server side

2. how and when to garbage-coll ect the database entry, in case the
user agent terninates the session by, for exanple, exiting.

5.2 Statel ess Pages

Caching benefits the scalability of WAV Therefore it is inportant
to reduce the nunmber of documents that have state enbedded in them

i nherently. For exanple, if a shopping-basket-style application

al ways di splays a user's current basket contents on each page, those
pages cannot be cached, because each user's basket's contents woul d
be different. On the other hand, if each page contains just a link
that allows the user to "Look at My Shoppi ng Basket", the page can be
cached.

Kristol & Montulli St andards Track [ Page 18]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

5.3 Inplementation Limts

Practical user agent inplenentations have lints on the nunber and
size of cookies that they can store. |In general, user agents' cookie
support should have no fixed limits. They should strive to store as
many frequently-used cooki es as possible. Furthernore, general-use
user agents SHOULD provide each of the follow ng mnimum capabilities
i ndi vidually, although not necessarily sinultaneously:

* at | east 300 cookies

* at |east 4096 bytes per cookie (as neasured by the characters
that conprise the cookie non-terminal in the syntax description
of the Set-Cookie2 header, and as received in the Set-Cookie2
header)

* at |east 20 cookies per unique host or donmmi n nane

User agents created for specific purposes or for linmited-capacity
devi ces SHOULD provi de at |east 20 cookies of 4096 bytes, to ensure
that the user can interact with a session-based origin server

The information in a Set-Cookie2 response header MJST be retained in
its entirety. |If for some reason there is inadequate space to store
the cookie, it MJIST be discarded, not truncated.

Applications should use as few and as small cooki es as possible, and
t hey shoul d cope gracefully with the |oss of a cookie.

5.3.1 Denial of Service Attacks User agents MAY choose to set an
upper bound on the nunber of cookies to be stored froma given host
or domai n name or on the size of the cookie information. O herw se a
mal i ci ous server could attenpt to flood a user agent w th many

cooki es, or |arge cookies, on successive responses, which would force
out cookies the user agent had received from other servers. However,
the m nima specified above SHOULD still be supported.

6. PRI VACY

I nformed consent shoul d gui de the design of systems that use cooki es.
A user should be able to find out how a web site plans to use
information in a cookie and should be able to choose whether or not
those policies are acceptable. Both the user agent and the origin
server nust assist informed consent.

Kristol & Montulli St andards Track [ Page 19]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

6.1 User Agent Control

An origin server could create a Set-Cookie2 header to track the path
of a user through the server. Users may object to this behavior as
an intrusive accunul ation of information, even if their identity is
not evident. (ldentity might beconme evident, for exanple, if a user
subsequently fills out a formthat contains identifying information.)
This state nanagenent specification therefore requires that a user
agent give the user control over such a possible intrusion, although
the interface through which the user is given this control is left
unspeci fied. However, the control nechanisns provided SHALL at | east
al |l ow t he user

* to conpletely disable the sending and savi ng of cookies.
* to determ ne whether a stateful session is in progress.

* to control the saving of a cookie on the basis of the cookie's
Domai n attribute

Such control could be provided, for exanple, by nechanisns
* to notify the user when the user agent is about to send a

cookie to the origin server, to offer the option not to begin a
sessi on.

*

to display a visual indication that a stateful session is in
progress.

* to let the user decide which cookies, if any, should be saved
when the user concludes a wi ndow or user agent session

* to |l et the user exam ne and delete the contents of a cookie at
any time.

A user agent usually begins execution with no remenbered state
information. |t SHOULD be possible to configure a user agent never
to send Cooki e headers, in which case it can never sustain state with
an origin server. (The user agent would then behave |ike one that is
unawar e of how to handl e Set- Cooki e2 response headers.)

When the user agent terminates execution, it SHOULD | et the user
discard all state information. Alternatively, the user agent MAY ask
the user whether state information should be retained; the default
should be "no". If the user chooses to retain state information, it
woul d be restored the next tine the user agent runs.

Kristol & Montulli St andards Track [ Page 20]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

NOTE: User agents should probably be cautious about using files to
store cookies long-term |If a user runs nore than one instance of
t he user agent, the cookies could be comm ngled or otherw se
corrupt ed.

6.2 Oigin Server Role

An origin server SHOULD pronote inforned consent by addi ng Conment URL
or Comment information to the cookies it sends. CommentURL is
preferred because of the opportunity to provide richer information in
a nmultiplicity of |anguages.

6.3 Clear Text

7.

7.

The information in the Set-Cookie2 and Cooki e headers is unprotected.
As a consequence:

1. Any sensitive information that is conveyed in themis exposed
to intruders.

2. Amalicious internediary could alter the headers as they trave
in either direction, with unpredictable results.

These facts inmply that information of a personal and/or financial
nature should only be sent over a secure channel. For |ess sensitive
i nformati on, or when the content of the header is a database key, an
origin server should be vigilant to prevent a bad Cookie val ue from
causing failures.

A user agent in a shared user environnent poses a further risk.
Using a cookie inspection interface, User B could exani ne the
contents of cookies that were saved when User A used the machi ne.

SECURI TY CONSI DERATI ONS
1 Protocol Design

The restrictions on the value of the Domain attribute, and the rules
concerning unverifiable transactions, are nmeant to reduce the ways
that cookies can "leak" to the "wong" site. The intent is to
restrict cookies to one host, or a closely related set of hosts.
Therefore a request-host is limted as to what values it can set for
Domain. W consider it acceptable for hosts hostl.foo.com and

host 2. f oo. comto share cookies, but not a.com and b.com

Similarly, a server can set a Path only for cookies that are related
to the request-URI

Kristol & Montulli St andards Track [ Page 21]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

7.2 Cooki e Spoofing

Proper application design can avoid spoofing attacks fromrel ated
dormai ns. Consi der:

1. User agent nekes request to victimcracker.edu, gets back
cooki e session_id="1234" and sets the default donmain
vi ctimcracker. edu.

2. User agent makes request to spoof.cracker.edu, gets back cookie
session-id="1111", with Dommi n=".cracker. edu"

3. User agent nmakes request to victimcracker.edu again, and
passes

Cooki e: $Version="1"; session_id="1234",
$Version="1"; session_id="1111"; $Donmmi n=".cracker.edu"

The server at victimcracker. edu should detect that the second
cookie was not one it originated by noticing that the Donmain
attribute is not for itself and ignore it.

7.3 Unexpected Cookie Sharing

A user agent SHOULD make every attenpt to prevent the sharing of
session informati on between hosts that are in different domains.
Enbedded or inlined objects nay cause particularly severe privacy
problenms if they can be used to share cooki es between disparate
hosts. For exanple, a nualicious server could enbed cookie

i nformati on for host a.comin a URl for a CAd on host b.com User
agent inplementors are strongly encouraged to prevent this sort of
exchange whenever possible.

7.4 Cookies For Account Information

VWhile it is common practice to use themthis way, cookies are not
designed or intended to be used to hold authentication information
such as account nanes and passwords. Unless such cookies are
exchanged over an encrypted path, the account infornmation they
contain is highly vulnerable to perusal and theft.

8. OTHER, SIM LAR, PROPOSALS
Apart from RFC 2109, three other proposals have been made to
accomplish simlar goals. This specification began as an amal gam of

Kristol's State-Info proposal [DMK95] and Netscape's Cookie proposa
[ Net scape] .

Kristol & Montulli St andards Track [ Page 22]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

9.

Bri an Behl endorf proposed a Session-1D header that would be user-
agent-initiated and could be used by an origin server to track
"clicktrails". It would not carry any origin-server-defined state,
however. Phillip Hallam Baker has proposed another client-defined
session I D nechani smfor sinilar purposes.

Wil e both session I Ds and cookies can provide a way to sustain
stateful sessions, their intended purpose is different, and,
consequently, the privacy requirenents for themare different. A
user initiates session IDs to allow servers to track progress through
them or to distinguish nmultiple users on a shared machi ne. Cooki es
are server-initiated, so the cookie mechani sm described here gives
users control over sonething that woul d otherw se take place w thout
t he users' awareness. Furthernore, cookies convey rich, server-

sel ected information, whereas session |IDs conprise user-sel ected,
sinmpl e i nformati on.

HI STORI CAL

9.1 Conpatibility with Existing |nplenentations

Exi sting cookie inplementations, based on the Netscape specification
use the Set-Cookie (not Set-Cookie2) header. User agents that
receive in the same response both a Set-Cookie and Set- Cookie2
response header for the sane cookie MJST discard the Set- Cookie

i nformation and use only the Set-Cookie2 information. Furthernore, a
user agent MJST assune, if it received a Set-Cooki e2 response header
that the sending server conplies with this docunent and will
under st and Cooki e request headers that also follow this

speci fication.

New cooki es MJUST repl ace both equi val ent ol d- and new styl e cookies.
That is, if a user agent that follows both this specification and
Net scape's original specification receives a Set-Cookie2 response
header, and the NAME and the Domain and Path attributes match (per

t he Cooki e Managenent section) a Netscape-style cookie, the

Net scape-styl e cooki e MUST be discarded, and the user agent MJST
retain only the cookie adhering to this specification

O der user agents that do not understand this specification, but that
do understand Netscape's original specification, will not recognize

t he Set - Cooki e2 response header and will receive and send cookies
according to the ol der specification

Kristol & Montulli St andards Track [ Page 23]



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

A user agent that supports both this specification and Netscape-style
cooki es SHOULD send a Cooki e request header that foll ows the ol der
Net scape specification if it received the cookie in a Set-Cookie
response header and not in a Set-Cookie2 response header. However,

it SHOULD send the follow ng request header as well:

Cooki e2: $Version="1"

The Cooki e2 header advises the server that the user agent understands
new styl e cookies. |If the server understands new styl e cookies, as
wel I, it SHOULD continue the stateful session by sending a Set-
Cooki e2 response header, rather than Set-Cookie. A server that does
not understand new style cookies will sinply ignore the Cookie2
request header.

9.2 Caching and HTTP/ 1.0

10.

Sone caches, such as those conforming to HTTP/ 1.0, will inevitably
cache the Set-Cooki e2 and Set - Cooki e headers, because there was no
mechani smto suppress caching of headers prior to HITP/1.1. This
caching can lead to security problens. Docunents transmitted by an
origin server along with Set-Cookie2 and Set-Cooki e headers usually
either will be uncachable, or will be "pre-expired'. As |long as
caches obey instructions not to cache docunments (follow ng Expires:
<a date in the past> or Pragma: no-cache (HTTP/1.0), or Cache-
control: no-cache (HTTP/1.1)) uncachabl e docunents present no
problem However, pre-expired docunents may be stored in caches.
They require validation (a conditional GET) on each new request, but
sone cache operators |oosen the rules for their caches, and sonetines
serve expired docunments without first validating them This

conbi nati on of factors can lead to cookies neant for one user |ater
bei ng sent to another user. The Set-Cooki e2 and Set-Cooki e headers
are stored in the cache, and, although the docunment is stale
(expired), the cache returns the document in response to |ater
requests, including cached headers.

ACKNOWN_EDGEMENTS

Thi s docurnent really represents the collective efforts of the HITP
Working Group of the | ETF and, particularly, the follow ng people, in
addition to the authors: Roy Fielding, Yaron CGol and, Marc Hedl und,
Ted Hardi e, Koen Holtman, Shel Kaphan, Rohit Khare, Foteos Macrides,
David W Morris.

Kristol & Montulli St andards Track [ Page 24]



RFC 2965

11. AUTHORS

HTTP State Managenment Mechani sm Cct ober 2000

ADDRESSES

David M Kristo

Bel | Laboratories, Lucent Technol ogi es
600 Mountain Ave. Room 2A-333

Miurray Hill, NJ 07974

Phone: (908) 582-2250
Fax: (908) 582-1239
EMai | : dnk@el | -1 abs. com

Lou Montul li

Epi ni ons. com I nc.

2037 Landi ngs Dr.
Mountain View, CA 94301

EMai |l : |l ou@montulli.org

12. REFERENCES

[ DVK95]

[ Net scape]

[ RFC2109]

[ RFC2119]

[ RFC2279]

[ RFC2396]

[ RFC2616]

Kristol & Montulli St andards Track [ Page 25]

Kristol, D.M, "Proposed HTTP State-Info Mechanisni
avai |l abl e at <http://portal.research. bell -
| abs. com ~dnk/ state-info. htm > Septenber, 1995.

"Persistent Client State -- HITP Cookies", avail able at
<ht t p: // ww. net scape. conl newsr ef / st d/ cooki e_spec. ht m >,
undat ed.

Kristol, D. and L. Montulli, "HTTP State Managenent
Mechani sni', RFC 2109, February 1997.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Yergeau, F., "UTF-8, a transformation format of Unicode
and | SO 10646", RFC 2279, January 1998

Berners-Lee, T., Fielding, R and L. Masinter, "Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396,
August 1998.

Fielding, R, Cettys, J., Mgul, J., Frystyk, H and T.
Ber ners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2616, June 1999.



RFC 2965 HTTP State Managenment Mechani sm Cct ober 2000

13. Full Copyright Statenent
Copyright (C The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
others, and derivative works that conment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
document itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the infornation contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Kristol & Montulli St andards Track [ Page 26]



	HTTP State Management Mechanism
	Oct 2000, RFC 2965
	Status of this Memo
	IESG Note
	Abstract
	1. TERMINOLOGY
	1.1 Requirements

	2. STATE AND SESSIONS
	3. DESCRIPTION
	3.1 Syntax: General
	3.2 Origin Server Role
	3.2.1 General
	3.2.2 Set-Cookie2 Syntax
	3.2.3 Controlling Caching

	3.3 User Agent Role
	3.3.1 Interpreting Set-Cookie2
	3.3.2 Rejecting Cookies
	3.3.3 Cookie Management
	3.3.4 Sending Cookies to the Origin Server
	3.3.5 Identifying What Version is Understood: Cookie2
	3.3.6 Sending Cookies in Unverifiable Transactions

	3.4 How an Origin Server Interprets the Cookie Header
	3.5 Caching Proxy Role

	4. EXAMPLES
	4.1 Example 1
	4.2 Example 2

	5. IMPLEMENTATION CONSIDERATIONS
	5.1 Set-Cookie2 Content
	5.2 Stateless Pages
	5.3 Implementation Limits
	5.3.1 Denial of Service Attacks


	6. PRIVACY
	6.1 User Agent Control
	6.2 Origin Server Role
	6.3 Clear Text

	7. SECURITY CONSIDERATIONS
	7.1 Protocol Design
	7.2 Cookie Spoofing
	7.3 Unexpected Cookie Sharing
	7.4 Cookies For Account Information

	8. OTHER, SIMILAR, PROPOSALS
	9. HISTORICAL
	9.1 Compatibility with Existing Implementations
	9.2 Caching and HTTP/1.0

	10. ACKNOWLEDGEMENTS
	11. AUTHORS' ADDRESSES
	12. REFERENCES
	13. Full Copyright Statement

	 
	IETF Title Page

