

Network Working Group H. Nielsen
Request for Comments: 2774 P. Leach
Category: Experimental Microsoft
 S. Lawrence
 Agranat Systems
 February 2000

 An HTTP Extension Framework

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

IESG Note

 This document was originally requested for Proposed Standard status.
 However, due to mixed reviews during Last Call and within the HTTP
 working group, it is being published as an Experimental document.
 This is not necessarily an indication of technical flaws in the
 document; rather, there is a more general concern about whether this
 document actually represents community consensus regarding the
 evolution of HTTP. Additional study and discussion are needed before
 this can be determined.

 Note also that when HTTP is used as a substrate for other protocols,
 it may be necessary or appropriate to use other extension mechanisms
 in addition to, or instead of, those defined here. This document
 should therefore not be taken as a blueprint for adding extensions to
 HTTP, but it defines mechanisms that might be useful in such
 circumstances.

Nielsen, et al. Experimental [Page 1]

RFC 2774 An HTTP Extension Framework February 2000

Abstract

 A wide range of applications have proposed various extensions of the
 HTTP protocol. Current efforts span an enormous range, including
 distributed authoring, collaboration, printing, and remote procedure
 call mechanisms. These HTTP extensions are not coordinated, since
 there has been no standard framework for defining extensions and
 thus, separation of concerns. This document describes a generic
 extension mechanism for HTTP, which is designed to address the
 tension between private agreement and public specification and to
 accommodate extension of applications using HTTP clients, servers,
 and proxies. The proposal associates each extension with a globally
 unique identifier, and uses HTTP header fields to carry the extension
 identifier and related information between the parties involved in
 the extended communication.

Table of Contents

 1. Introduction ...3
 2. Notational Conventions3
 3. Extension Declarations4
 3.1 Header Field Prefixes5
 4. Extension Header Fields6
 4.1 End-to-End Extensions7
 4.2 Hop-by-Hop Extensions7
 4.3 Extension Response Header Fields8
 5. Mandatory HTTP Requests8
 5.1 Fulfilling a Mandatory Request10
 6. Mandatory HTTP Responses11
 7. 510 Not Extended ..11
 8. Publishing an Extension11
 9. Caching Considerations12
 10. Security Considerations13
 11. References ..13
 12. Acknowledgements ..14
 13. Authors' Addresses ..14
 14. Summary of Protocol Interactions15
 15. Examples ..16
 15.1 User Agent to Origin Server16
 15.2 User Agent to Origin Server via HTTP/1.1 Proxy17
 15.3 User Agent to Origin Server via HTTP/1.0 Proxy18
 Full Copyright Statement20

Nielsen, et al. Experimental [Page 2]

RFC 2774 An HTTP Extension Framework February 2000

1. Introduction

 This proposal is designed to address the tension between private
 agreement and public specification; and to accommodate dynamic
 extension of HTTP clients and servers by software components. The
 kind of extensions capable of being introduced range from:

 o extending a single HTTP message;

 o introducing new encodings;

 o initiating HTTP-derived protocols for new applications; to...

 o switching to protocols which, once initiated, run independent
 of the original protocol stack.

 The proposal is intended to be used as follows:

 o Some party designs and specifies an extension; the party
 assigns the extension a globally unique URI, and makes one or
 more representations of the extension available at that address
 (see section 8).

 o An HTTP client or server that implements this extension
 mechanism (hereafter called an agent) declares the use of the
 extension by referencing its URI in an extension declaration in
 an HTTP message (see section 3).

 o The HTTP application which the extension declaration is
 intended for (hereafter called the ultimate recipient) can
 deduce how to properly interpret the extended message based on
 the extension declaration.

 The proposal uses features in HTTP/1.1 but is compatible with
 HTTP/1.0 applications in such a way that extended applications can
 coexist with existing HTTP applications. Applications implementing
 this proposal MUST be based on HTTP/1.1 (or later versions of HTTP).

2. Notational Conventions

 This specification uses the same notational conventions and basic
 parsing constructs as RFC 2068 [5]. In particular the BNF constructs
 "token", "quoted-string", "Request-Line", "field-name", and
 "absoluteURI" in this document are to be interpreted as described in
 RFC 2068 [5].

Nielsen, et al. Experimental [Page 3]

RFC 2774 An HTTP Extension Framework February 2000

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [6].

 This proposal does not rely on particular features defined in URLs
 [8] that cannot potentially be expressed using URNs (see section 8).
 Therefore, the more generic term URI [8] is used throughout the
 specification.

3. Extension Declarations

 An extension declaration can be used to indicate that an extension
 has been applied to a message and possibly to reserve a part of the
 header namespace identified by a header field prefix (see 3.1). This
 section defines the extension declaration itself; section 4 defines a
 set of header fields using the extension declaration.

 This specification does not define any ramifications of applying an
 extension to a message nor whether two extensions can or cannot
 logically coexist within the same message. It is simply a framework
 for describing which extensions have been applied and what the
 ultimate recipient either must or may do in order to properly
 interpret any extension declarations within that message.

 The grammar for an extension declaration is as follows:

 ext-decl = <"> (absoluteURI | field-name) <">
 [namespace] [decl-extensions]

 namespace = ";" "ns" "=" header-prefix
 header-prefix = 2*DIGIT

 decl-extensions = *(decl-ext)
 decl-ext = ";" token ["=" (token | quoted-string)]

 An extension is identified by an absolute, globally unique URI or a
 field-name. A field-name MUST specify a header field uniquely defined
 in an IETF Standards Track RFC [3]. A URI can unambiguously be
 distinguished from a field-name by the presence of a colon (":").

 The support for header field names as extension identifiers provides
 a transition strategy from decentralized extensions to extensions
 defined by IETF Standards Track RFCs until a mapping between the
 globally unique URI space and features defined in IETF Standards
 Track RFCs has been defined according to the guidelines described in
 section 8.

Nielsen, et al. Experimental [Page 4]

RFC 2774 An HTTP Extension Framework February 2000

 Examples of extension declarations are

 "http://www.company.com/extension"; ns=11
 "Range"

 An agent MAY use the decl-extensions mechanism to include optional
 extension declaration parameters but cannot assume these parameters
 to be recognized by the recipient. An agent MUST NOT use decl-
 extensions to pass extension instance data, which MAY be passed using
 header field prefix values (see section 3.1). Unrecognized decl-ext
 parameters SHOULD be ignored and MUST NOT be removed by proxies when
 forwarding the extension declaration.

3.1 Header Field Prefixes

 The header-prefix is a dynamically generated string. All header
 fields in the message that match this string, using string prefix-
 matching, belong to that extension declaration. Header field prefixes
 allow an extension declaration to dynamically reserve a subspace of
 the header space in a protocol message in order to prevent header
 field name clashes and to allow multiple declarations using the same
 extension to be applied to the same message without conflicting.

 Header fields using a header-prefix are of the form:

 prefixed-header = prefix-match field-name
 prefix-match = header-prefix "-"

 Linear white space (LWS) MUST NOT be used between the header-prefix
 and the dash ("-") or between the prefix-match and the field-name.
 The string prefix matching algorithm is applied to the prefix-match
 string.

 The format of the prefix using a combination of digits and the dash
 ("-") guarantees that no extension declaration can reserve the whole
 header field name space. The header-prefix mechanism was preferred
 over other solutions for exchanging extension instance parameters
 because it is header based and therefore allows for easy integration
 of new extensions with existing HTTP features.

 Agents MUST NOT reuse header-prefix values in the same message unless
 explicitly allowed by the extension (see section 4.1 for a discussion
 of the ultimate recipient of an extension declaration).

 Clients SHOULD be as consistent as possible when generating header-
 prefix values as this facilitates use of the Vary header field in
 responses that vary as a function of the request extension
 declaration(s) (see [5], section 13.6).

Nielsen, et al. Experimental [Page 5]

RFC 2774 An HTTP Extension Framework February 2000

 Servers including prefixed-header header fields in a Vary header
 field value MUST also include the corresponding extension declaration
 field-name as part of that value. For example, if a response depends
 on the value of the 16-use-transform header field defined by an
 optional extension declaration in the request, the Vary header field
 in the response could look like this:

 Vary: Opt, 16-use-transform

 Note, that header-prefix consistency is no substitute for including
 an extension declaration in the message: header fields with header-
 prefix values not defined by an extension declaration in the same
 message are not defined by this specification.

 Examples of header-prefix values are

 12
 15
 23

 Old applications may introduce header fields independent of this
 extension mechanism, potentially conflicting with header fields
 introduced by the prefix mechanism. In order to minimize this risk,
 prefixes MUST contain at least 2 digits.

4. Extension Header Fields

 This proposal introduces two types of extension declaration strength:
 mandatory and optional, and two types of extension declaration scope:
 hop-by-hop and end-to-end (see section 4.1 and 4.2).

 A mandatory extension declaration indicates that the ultimate
 recipient MUST consult and adhere to the rules given by the extension
 when processing the message or reporting an error (see section 5 and
 7).

 An optional extension declaration indicates that the ultimate
 recipient of the extension MAY consult and adhere to the rules given
 by the extension when processing the message, or ignore the extension
 declaration completely. An agent may not be able to distinguish
 whether the ultimate recipient does not understand an extension
 referred to by an optional extension or simply ignores the extension
 declaration.

Nielsen, et al. Experimental [Page 6]

RFC 2774 An HTTP Extension Framework February 2000

 The combination of the declaration strength and scope defines a 2x2
 matrix which is distinguished by four new general HTTP header fields:
 Man, Opt, C-Man, and C-Opt. (See sections 4.1 and 4.2; also see
 appendix 14, which has a table of interactions with origin servers
 and proxies.)

 The header fields are general header fields as they describe which
 extensions actually are applied to an HTTP message. Optional
 declarations MAY be applied to any HTTP message if appropriate (see
 section 5 for how to apply mandatory extension declarations to
 requests and section 6 for how to apply them to responses).

4.1 End-to-End Extensions

 End-to-end declarations MUST be transmitted to the ultimate recipient
 of the declaration. The Man and the Opt general header fields are
 end- to-end header fields and are defined as follows:

 mandatory = "Man" ":" 1#ext-decl
 optional = "Opt" ":" 1#ext-decl

 For example

 HTTP/1.1 200 OK
 Content-Length: 421
 Opt: "http://www.digest.org/Digest"; ns=15
 15-digest: "snfksjgor2tsajkt52"
 ...

 The ultimate recipient of a mandatory end-to-end extension
 declaration MUST handle that extension declaration as described in
 section 5 and 6.

4.2 Hop-by-Hop Extensions

 Hop-by-hop extension declarations are meaningful only for a single
 HTTP connection. In HTTP/1.1, C-Man, C-Opt, and all header fields
 with matching header-prefix values defined by C-Man and C-Opt MUST be
 protected by a Connection header field. That is, these header fields
 are to be included as Connection header field directives (see [5],
 section 14.10). The two header fields have the following grammar:

 c-mandatory = "C-Man" ":" 1#ext-decl
 c-optional = "C-Opt" ":" 1#ext-decl

Nielsen, et al. Experimental [Page 7]

RFC 2774 An HTTP Extension Framework February 2000

 For example

 M-GET / HTTP/1.1
 Host: some.host
 C-Man: "http://www.digest.org/ProxyAuth"; ns=14
 14-Credentials="g5gj262jdw@4df"
 Connection: C-Man, 14-Credentials

 The ultimate recipient of a mandatory hop-by-hop extension
 declaration MUST handle that extension declaration as described in
 section 5 and 6.

4.3 Extension Response Header Fields

 Two extension response header fields are used to indicate that a
 request containing mandatory extension declarations has been
 fulfilled by the ultimate recipient as described in section 5.1. The
 extension response header fields are exclusively intended to serve as
 extension acknowledgements, and can not carry any other information.

 The Ext header field is used to indicate that all end-to-end
 mandatory extension declarations in the request were fulfilled:

 ext = "Ext" ":"

 The C-Ext response header field is used to indicate that all hop-by-
 hop mandatory extension declarations in the request were fulfilled.

 c-ext = "C-Ext" ":"

 In HTTP/1.1, the C-Ext header fields MUST be protected by a
 Connection header (see [5], section 14.10).

 The Ext and the C-Ext header fields are not mutually exclusive; they
 can both occur within the same message as described in section 5.1.

5. Mandatory HTTP Requests

 An HTTP request is called a mandatory request if it includes at least
 one mandatory extension declaration (using the Man or the C-Man
 header fields). The method name of a mandatory request MUST be
 prefixed by "M-". For example, a client might express the binding
 rights- management constraints in an HTTP PUT request as follows:

Nielsen, et al. Experimental [Page 8]

RFC 2774 An HTTP Extension Framework February 2000

 M-PUT /a-resource HTTP/1.1
 Man: "http://www.copyright.org/rights-management"; ns=16
 16-copyright: http://www.copyright.org/COPYRIGHT.html
 16-contributions: http://www.copyright.org/PATCHES.html
 Host: www.w3.org
 Content-Length: 1203
 Content-Type: text/html

 <!doctype html ...

 An ultimate recipient conforming to this specification receiving a
 mandatory request MUST process the request by performing the
 following actions in the order listed below:

 1. Identify all mandatory extension declarations (both hop-by-hop
 and end-to-end); the server MAY ignore optional declarations
 without affecting the result of processing the HTTP message;

 2. Examine all extensions identified in 1) and determine if they
 are supported for this message. If not, respond with a 510 (Not
 Extended) status-code (see section 7);

 3. If 2) did not result in a 510 (Not Extended) status code, then
 process the request according to the semantics of the
 extensions and of the existing HTTP method name as defined in
 HTTP/1.1 [5] or later versions of HTTP. The HTTP method name
 can be obtained by ignoring the "M-" method name prefix.

 4. If the evaluation in 3) was successful and the mandatory
 request fulfilled, the server MUST respond as defined in
 section 5.1. A server MUST NOT fulfill a request without
 understanding and obeying all mandatory extension
 declaration(s) in a request.

 A proxy that does not act as the ultimate recipient of a mandatory
 extension declaration MUST NOT remove the extension declaration or
 the "M-" method name prefix when forwarding the message (see section
 5.1 for how to detect when a mandatory extension has been fulfilled).

 A server receiving an HTTP/1.0 (or earlier versions of HTTP) message
 that includes a Connection header MUST, for each connection-token in
 this field, remove and ignore any header field(s) from the message
 with the same name as the connection-token.

 A server receiving a mandatory request including the "M-" method name
 prefix without any mandatory extension declarations to follow MUST
 return a 510 (Not Extended) response.

Nielsen, et al. Experimental [Page 9]

RFC 2774 An HTTP Extension Framework February 2000

 The "M-" prefix is reserved by this proposal and MUST NOT be used by
 other HTTP extensions.

5.1 Fulfilling a Mandatory Request

 A server MUST NOT claim to have fulfilled any mandatory request
 unless it understood and obeyed all the mandatory extension
 declarations in the request. This section defines a mechanism for
 conveying this information to the client in such a way that it
 interoperates with existing HTTP applications and prevents broken
 servers from giving the false impression that an extended request was
 fulfilled by responding with a 200 (Ok) response without
 understanding the method.

 If any end-to-end mandatory extension declarations were among the
 fulfilled extensions then the server MUST include an Ext response
 header field in the response. In order to avoid that the Ext header
 field inadvertently is cached in an HTTP/1.1 cache, the response MUST
 contain a no-cache cache-control directive. If the response is
 otherwise cachable, the no-cache cache-control directive SHOULD be
 limited to only affect the Ext header field:

 HTTP/1.1 200 OK
 Ext:
 Cache-Control: no-cache="Ext"
 ...

 If the mandatory request has been forwarded by an HTTP/1.0
 intermediary proxy then this is indicated either directly in the
 Request-Line or by the presence of an HTTP/1.1 Via header field. In
 this case, the server MUST include an Expires header field with a
 date equal to or earlier than the value of the Date header field (see
 section 9 for a discussion on caching considerations):

 HTTP/1.1 200 OK
 Date: Sun, 25 Oct 1998 08:12:31 GMT
 Expires: Sun, 25 Oct 1998 08:12:31 GMT
 Ext:
 Cache-Control: no-cache="Ext", max-age=3600
 ...

 If any hop-by-hop mandatory extension declarations were among the
 fulfilled extensions then the server MUST include a C-Ext response
 header field in the response. The C-Ext header field MUST be
 protected by a Connection header field (see [5], section 14.10).

Nielsen, et al. Experimental [Page 10]

RFC 2774 An HTTP Extension Framework February 2000

 HTTP/1.1 200 OK
 C-Ext:
 Connection: C-Ext

 Note, that the Ext and C-Ext header fields are not mutually
 exclusive; they can be both be present in a response when fulfilling
 mandatory request containing both hop-by-hop as well as end-to-end
 mandatory extension declarations.

6. Mandatory HTTP Responses

 A server MUST NOT include mandatory extension declarations in an HTTP
 response unless it is responding to a mandatory HTTP request whose
 definition allowed for the mandatory response or the server has some
 a priori knowledge that the recipient can handle the extended
 response. A server MAY include optional extension declarations in
 any HTTP response (see section 4).

 If a client is the ultimate recipient of a mandatory HTTP response
 containing mandatory extension declarations that either the client
 does not understand or does not want to use, then it SHOULD discard
 the complete response as if it were a 500 (Internal Server Error)
 response.

7. 510 Not Extended

 The policy for accessing the resource has not been met in the
 request. The server should send back all the information necessary
 for the client to issue an extended request. It is outside the scope
 of this specification to specify how the extensions inform the
 client.

 If the 510 response contains information about extensions that were
 not present in the initial request then the client MAY repeat the
 request if it has reason to believe it can fulfill the extension
 policy by modifying the request according to the information provided
 in the 510 response. Otherwise the client MAY present any entity
 included in the 510 response to the user, since that entity may
 include relevant diagnostic information.

8. Publishing an Extension

 While the protocol extension definition should be published at the
 address of the extension identifier, this specification does not
 require it. The only absolute requirement is that extension
 identifiers MUST be globally unique identifiers, and that distinct
 names be used for distinct semantics.

Nielsen, et al. Experimental [Page 11]

RFC 2774 An HTTP Extension Framework February 2000

 Likewise, applications are not required to attempt resolving
 extension identifiers included in an extension declaration. The only
 absolute requirement is that an application MUST NOT claim
 conformance with an extension that it does not recognize (regardless
 of whether it has tried to resolve the extension identifier or not).
 This document does not provide any policy for how long or how often
 an application may attempt to resolve an extension identifier.

 The association between the extension identifier and the
 specification might be made by distributing a specification, which
 references the extension identifier.

 It is strongly recommended that the integrity and persistence of the
 extension identifier be maintained and kept unquestioned throughout
 the lifetime of the extension. Care should be taken not to distribute
 conflicting specifications that reference the same name. Even when an
 extension specification is made available at the address of the URI,
 care must be taken that the specification made available at that
 address does not change over time. One agent may associate the
 identifier with the old semantics, while another might associate it
 with the new semantics.

 The extension definition may be made available in different
 representations ranging from

 o a human-readable specification defining the extension semantics
 (see for example [7]),

 o downloadable code which implements the semantics defined by the
 extension,

 o a formal interface description provided by the extension, to

 o a machine-readable specification defining the extension
 semantics.

 For example, a software component that implements the specification
 may reside at the same address as a human-readable specification
 (distinguished by content negotiation). The human-readable
 representation serves to document the extension and encourage
 deployment, while the software component would allow clients and
 servers to be dynamically extended.

9. Caching Considerations

 Use of extensions using the syntax defined by this document may have
 additional implications on the cachability of HTTP response messages
 other than the ones described in section 5.1.

Nielsen, et al. Experimental [Page 12]

RFC 2774 An HTTP Extension Framework February 2000

 The originator of an extended message should be able to determine
 from the semantics of the extension whether or not the extension's
 presence impacts the caching constraints of the response message. If
 an extension does require tighter constraints on the cachebility of
 the response, the originator MUST include the appropriate combination
 of cache header fields (Cache-Control, Vary, Expires) corresponding
 to the required level of constraints of the extended semantics.

10. Security Considerations

 Dynamic installation of extension facilities as described in the
 introduction involves software written by one party (the provider of
 the implementation) to be executed under the authority of another
 (the party operating the host software). This opens the host party to
 a variety of "Trojan horse" attacks by the provider, or a malicious
 third party that forges implementations under a provider's name. See,
 for example RFC2046 [4], section 4.5.2 for a discussion of these
 risks.

11. References

 [1] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [2] Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [3] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
 9, RFC 2026, October 1996.

 [4] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

 [5] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
 2068, January 1997.

 [6] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [7] Masinter, L., "Hyper Text Coffee Pot Control Protocol
 (HTCPCP/1.0)", RFC 2324, 1 April 1998.

 [8] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

Nielsen, et al. Experimental [Page 13]

RFC 2774 An HTTP Extension Framework February 2000

 [9] Nielsen, H., Connolly, D. and R. Khare, "PEP - an extension
 mechanism for HTTP", Work in Progress.

12. Acknowledgements

 Roy Fielding, Rohit Khare, Yaron Y. Goland, and Koen Holtman, deserve
 special recognition for their efforts in commenting in all phases of
 this specification. Also thanks to Josh Cohen, Ross Patterson, Jim
 Gettys, Larry Masinter, and to the people involved in PEP [9].

 The contribution of World Wide Web Consortium (W3C) staff is part of
 the W3C HTTP Activity (see "http://www.w3.org/Protocols/Activity").

13. Authors' Addresses

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052, USA

 EMail: frystyk@microsoft.com

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052, USA

 EMail: paulle@microsoft.com

 Scott Lawrence
 Agranat Systems, Inc.
 5 Clocktower Place, Suite 400
 Maynard, MA 01754, USA

 EMail: lawrence@agranat.com

Nielsen, et al. Experimental [Page 14]

RFC 2774 An HTTP Extension Framework February 2000

Appendices

14. Summary of Protocol Interactions

 The following tables summarize the outcome of strength and scope rules
 of the mandatory proposal of compliant and non-compliant HTTP proxies
 and origin servers. The summary is intended as a guide and index to
 the text, but is necessarily cryptic and incomplete. This summary
 should never be used or referenced separately from the complete
 specification.

 Table 1: Origin Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Standard 501 (Not Standard 501 (Not
 unsupported processing Implemented) processing Implemented)

 Extension Standard 510 (Not Standard 510 (Not
 unsupported processing Extended) processing Extended)
 Extension Extended Extended Extended Extended
 supported processing processing processing processing

 Table 2: Proxy Server

 Scope Hop-by-hop End-to-end

 Strength Optional Required Optional Required
 (may) (must) (may) (must)

 Mandatory Strip 501 (Not Forward 501 (Not
 unsupported extension Implemented) extension Implemented)
 or tunnel or tunnel

 Extension Strip 510 (Not Forward Forward
 unsupported extension Extended) extension extension

 Extension Extended Extended Extended Extended
 supported processing processing processing, processing,
 and strip and strip may strip may strip

Nielsen, et al. Experimental [Page 15]

RFC 2774 An HTTP Extension Framework February 2000

15. Examples

 The following examples show various scenarios using mandatory in
 HTTP/1.1 requests and responses. Information not essential for
 illustrating the examples is left out (referred to as "...")

15.1 User Agent to Origin Server

 Table 3: User Agent directly to origin server

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and Opt: "http://www.my.com/tracking"
 one mandatory extension Man: "http://www.foo.com/privacy"
 ...

 Origin server accepts HTTP/1.1 200 OK
 the mandatory extension Ext:
 but ignores the Cache-Control: max-age=120, no-cache="Ext"
 optional one. The ...
 client can not see in
 this case that the
 optional extension was
 ignored.

 Table 4: Origin server with Vary header field

 Client issues a request M-GET /p/q HTTP/1.1
 with one mandatory Man: "http://www.x.y/transform"; ns=16
 extension 16-use-transform: xyzzy
 ...

 Origin server accepts HTTP/1.1 200 OK
 the mandatory but Ext:
 indicates that the Vary: Man, 16-use-transform
 response varies on the Date: Sun, 25 Oct 1998 08:12:31 GMT
 request extension Expires: Sun, 25 Oct 1998 08:12:31 GMT
 declaration Cache-Control: no-cache="Ext", max-age=1000
 ...

Nielsen, et al. Experimental [Page 16]

RFC 2774 An HTTP Extension Framework February 2000

15.2 User Agent to Origin Server via HTTP/1.1 Proxy

 These two examples show how an extended request interacts with an
 HTTP/1.1 proxy.

 Table 5: HTTP/1.1 Proxy forwards extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and C-Opt: "http://www.meter.org/hits"
 one mandatory hop-by- C-Man: "http://www.copy.org/rights"
 hop extension Connection: C-Opt, C-Man
 ...

 HTTP/1.1 proxy forwards M-GET /some-document HTTP/1.1
 the request and takes Via: 1.1 new
 out the connection ...
 headers

 Origin server fails as HTTP/1.1 510 Not Extended
 the request does not ...
 contain any information
 belonging to the M-GET
 method

 Table 6: HTTP/1.1 Proxy does not forward extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one optional and C-Opt: "http://www.meter.org/hits"
 one mandatory hop-by- C-Man: "http://www.copy.org/rights"
 hop extension Connection: C-Opt, C-Man
 ...

 HTTP/1.1 proxy refuses HTTP/1.1 501 Not Implemented
 to forward the M-GET ...
 method and returns an
 error

 Origin server never
 sees the extended
 request

Nielsen, et al. Experimental [Page 17]

RFC 2774 An HTTP Extension Framework February 2000

15.3 User Agent to Origin Server via HTTP/1.0 Proxy

 These two examples show how an extended request interacts with an
 HTTP/1.0 proxy in the message path

 Table 7: HTTP/1.0 Proxy forwards extended request

 Client issues a request M-GET /some-document HTTP/1.1
 with one mandatory Man: "http://www.price.com/sale"
 extension ...

 HTTP/1.0 proxy forwards M-GET /some-document HTTP/1.0
 the request as a Man: "http://www.price.com/sale"
 HTTP/1.0 request ...
 without changing the
 method

 Origin server accepts HTTP/1.1 200 OK
 declaration and returns Ext:
 a 200 response and an Date: Sun, 25 Oct 1998 08:12:31 GMT
 extension Expires: Sun, 25 Oct 1998 08:12:31 GMT
 acknowledgement. The Cache-Control: no-cache="Ext", max-age=600
 response can be cached ...
 by HTTP/1.1 caches for
 10 minutes.

 Table 8: HTTP/1.0 and HTTP/1.1 Proxy Chain

 Client issues request M-GET /some-document HTTP/1.1
 with one mandatory and Man: "http://www.copy.org/rights"
 one hop-by-hop optional C-Opt: "http://www.ads.org/noads"
 extension Connection: C-Opt
 ...

 HTTP/1.0 proxy forwards M-GET /some-document HTTP/1.0
 request as HTTP/1.0 Man: "http://www.copy.org/rights"
 request without C-Opt: "http://www.ads.org/noads"
 changing the method and Connection: C-Man
 without honoring the ...
 Connection directives

 HTTP/1.1 proxy deletes M-GET /some-document HTTP/1.1
 (and ignores) optional Man: "http://www.copy.org/rights"
 extension and forwards C-Man: "http://www.ads.org/givemeads"
 the rest including a Connection: C-Man
 via header field. It Via: 1.0 new
 also add a hop-by-hop ...
 mandatory extension

Nielsen, et al. Experimental [Page 18]

RFC 2774 An HTTP Extension Framework February 2000

 Origin server accepts HTTP/1.1 200 OK
 both mandatory Ext:
 extensions. The C-Ext
 response is not Connection: C-Ext
 cachable by the Date: Sun, 25 Oct 1998 08:12:31 GMT
 HTTP/1.0 cache but can Expires: Sun, 25 Oct 1998 08:12:31 GMT
 be cached for 1 hour by Cache-Control: no-cache="Ext", max-age=3600
 HTTP/1.1 caches. ...

 HTTP/1.1 proxy removes HTTP/1.1 200 OK
 the hop-by-hop Ext:
 extension Date: Sun, 25 Oct 1998 08:12:31 GMT
 acknowledgement and Expires: Sun, 25 Oct 1998 08:12:31 GMT
 forwards the remainder Cache-Control: no-cache="Ext", max-age=3600
 of the response. ...

Nielsen, et al. Experimental [Page 19]

RFC 2774 An HTTP Extension Framework February 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Nielsen, et al. Experimental [Page 20]

	An HTTP Extension Framework
	February 2000, Internet Engineering Task Force, RFC 2774
	IESG Note
	Abstract
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Extension Declarations
	3.1 Header Field Prefixes

	4. Extension Header Fields
	4.1 End-to-End Extensions
	4.2 Hop-by-Hop Extensions
	4.3 Extension Response Header Fields

	5. Mandatory HTTP Requests
	5.1 Fulfilling a Mandatory Request

	6. Mandatory HTTP Responses
	7. 510 Not Extended
	8. Publishing an Extension
	9. Caching Considerations
	10. Security Considerations
	11. References
	12. Acknowledgements
	13. Authors' Addresses
	14. Summary of Protocol Interactions
	15. Examples
	15.1 User Agent to Origin Server
	15.2 User Agent to Origin Server via HTTP/1.1 Proxy
	15.3 User Agent to Origin Server via HTTP/1.0 Proxy

	
	IETF Title Page

