Net wor k Wor ki ng Group R Fielding
Request for Comrents: 2616 UC Irvine
bsol etes: 2068 J. Gettys
Cat egory: Standards Track Conpag/ WBC
J. Mogul

Conpaq

H Frystyk

VBC/MT

L. Masinter

Xer ox

P. Leach

M crosoft

T. Berners-Lee

VBC/MT

June 1999

Hypertext Transfer Protocol -- HITP/1.1

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1999). All R ghts Reserved.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-Ileve
protocol for distributed, collaborative, hypernedia information
systens. It is a generic, statel ess, protocol which can be used for
many tasks beyond its use for hypertext, such as name servers and
di stributed obj ect managenent systems, through extension of its
request nethods, error codes and headers [47]. A feature of HITP is
the typing and negotiati on of data representation, allow ng systens
to be built independently of the data being transferred.

HTTP has been in use by the Wrld-Wde Wb gl obal information

initiative since 1990. This specification defines the protoco
referred to as "HTTP/1.1", and is an update to RFC 2068 [33].

Fi el ding, et al. St andards Track [Page 1]

RFC 2616 HTTP/ 1.1 June 1999

Tabl e of Contents

COOOUNUUNINURARARRERRNWWRWRWRWRIWIWWRWRWRWRWNNN R e

Nt rodUuCti ON ... e 7
1 PUr pOSE. . . e 7
2 ReqQUI T BIMENE S . .. e e 8
3 Term N0l OQY ..ot e 8
4 Overall Qperation e 12

Not ati onal Conventions and Generic Gammar 14
1 Augment ed BNF 14
2 BasiC RUl €S 15

Protocol Parameters 17
1 HTTP Ver Si ON ..o e e e 17
2 Uniform Resource ldentifiers 18
2.1 General Syntax 19
2.2 http URL ... 19
2.3 URI Compari SON . ..ottt e e e e e e e 20
3 Date/ Time FOrmatS e e 20
3.1 Full Date e e 20
3.2 Delta Seconds 21
4 Charact er Set S ... it 21
4.1 Mssing Charset e 22
5 Content Codi NGS i ittt e e 23
6 Transfer CodiNgS 24
6.1 Chunked Transfer Coding 25
7 MEdi @ TYPES .« ittt e 26
7.1 Canoni calization and Text Defaults 27
7.2 Mul tipart TYPEeS ..t e e 27
8 Product TOKeNS 28
9 Qual ity Values 29
10 Language TagsS . . vt vttt 29
11 ENtity Tags .. ii it e e e 30
12 Range Unit s ... 30

HTTP MBSSage . ..o e e e 31
1 MESSagEe TYPES oot 31
2 Message Headers 31
3 Message Body 32
4 Message Length 33
5 General Header Fields 34

ReqQUEST .. 35
1 Request - Li Ne 35
1.1 Met hod .. 36
1.2 Request - URL ... e 36
2 The Resource ldentified by a Request 38
3 Request Header Fields 38

RESPONSE . . 39
1 Status-Line ... 39
1.1 Status Code and Reason Phrase 39
2 Response Header Fields 41

Fielding, et al. St andards Track [Page 2]

RFC 2616 HTTP/ 1.1 June 1999
7 BNt i Ly 42
7.1 Entity Header Fields i, 42
7.2 Entity Body 43
7.2.1 TP e 43
7.2.2 Entity Length 43
8 CONNECE I ONS . ot 44
8.1 Persistent ConNNeCti ONSt 44
8.1.1 PUr pOSE .. 44
8.1.2 Overall Operation 45
8.1.3 ProOXY SBIVEI S . 46
8.1.4 Practical Considerations 46
8.2 Message Transmi ssion Requirementsc.cciiiunn.. 47
8.2.1 Persi stent Connections and Flow Control 47
8.2.2 Moni toring Connections for Error Status Messages 48
8.2.3 Use of the 100 (Continue) Statusccuiuuun.. 48
8.2. 4 Cient Behavior if Server Prematurely C oses Connection ..50
9 Method DefinitiOns e 51
9.1 Safe and Idenpotent Methods 51
9.1.1 Safe Methods e 51
9.1.2 Idenpotent Methods i 51
9.2 O ONS . L 52
9.3 GET o 53
9.4 HEAD . . 54
9.5 POST . e 54
9.6 PUT 55
9.7 DELETE . . o 56
9.8 TRACE ... 56
9.9 CONNECT . .ttt e e e 57
10 Status Code Definitions 57
10.1 Informational LIXX ... 57
10.1.1 100 ContiNUE ...t e 58
10.1.2 101 Switching Protocols i 58
10.2 Successful 2XX 58
10.2.1 200 OK Lo e 58
10.2.2 201 Created ... 59
10.2.3 202 Accepted e 59
10.2.4 203 Non-Authoritative Information 59
10.2.5 204 No Content 60
10.2.6 205 Reset Content 60
10.2.7 206 Partial Content 60
10.3 RedireCtion BXX .ttt e e e 61
10.3.1 300 Multiple ChoiCest e e 61
10.3. 2 301 Moved Permanently 62
10.3.3 302 FOUNd ... 62
10.3.4 303 See X her ... 63
10.3.5 304 Not Modified e 63
10.3.6 305 USE ProOXY ..ttt 64
10. 3.7 306 (UnuSed) 64

Fi el di ng,

et al. St andards Track [Page 3]

RFC 2616 HTTP/ 1.1 June 1999

10.3.8 307 Tenmporary Redirect iy 65
10.4 CAient Error AXX .ot e 65
10.4.1 400 Bad ReqUEeST 65
10.4.2 401 Unauthorized 66
10.4.3 402 Paynment Required 66
10.4.4 403 Forbidden 66
10.4.5 404 Not Found 66
10.4.6 405 Method Not Allowed 66
10.4.7 406 Not Acceptable 67
10.4.8 407 Proxy Authentication Required 67
10.4.9 408 Request TimBOULt 67
10.4.10 409 ConflicCt ... 67
10.4.11 410 G0N .o 68
10.4.12 411 Length Required 68
10.4.13 412 Precondition Failed 68
10.4.14 413 Request Entity Too Largeuuiiiiiena.. 69
10. 4. 15 414 Request-URI Too Long iy 69
10.4. 16 415 Unsupported Media Type ... 69
10. 4. 17 416 Requested Range Not Satisfiable 69
10. 4. 18 417 Expectation Failed i, 70
10.5 Server Error 5XX 70
10.5.1 500 Internal Server Erroriiiiiiinninin.. 70
10.5.2 501 Not Inplemented 70
10.5.3 502 Bad GateWwayot 70
10.5.4 503 Service Unavailable 70
10.5.5 504 Gateway TimBOUL it e 71
10.5.6 505 HTTP Version Not Supported, 71
11 Access Authentication i 71
12 Content Negotiati On e 71
12.1 Server-driven Negotiation 72
12.2 Agent-driven Negotiation 73
12.3 Transparent Negotiation 74
13 Caching in HITP ... e 74
13.1.1 Cache CorreCtnNesSsS e 75
13.1.2 VAN NOS o e 76
13.1.3 Cache-control Mechanisms, 77
13.1. 4 Explicit User Agent VAArningsuiiniinenen.. 78
13.1.5 Exceptions to the Rules and Warnings 78
13.1.6 Cient-controlled Behavior i, 79
13.2 Expiration Model 79
13.2.1 Server-Specified Expiration 79
13.2.2 Heuristic Expiration 80
13.2.3 Age Calculations 80
13.2. 4 Expiration Calculations 83
13.2.5 Di sanbi guating Expiration Values 84
13.2.6 Di sanbi guating Multiple Responses 84
13.3 Validation Model 85
13.3.1 Last-Modified Dates 86

Fielding, et al. St andards Track [Page 4]

RFC 2616 HTTP/ 1.1 June 1999
13.3.2 Entity Tag Cache Validators 86
13.3.3 Weak and Strong Validators 86
13.3. 4 Rul es for When to Use Entity Tags and Last-Modified Dates. 89
13.3.5 Non-validating Conditionals 90
13.4 Response Cacheability i 91
13.5 Constructing Responses FromCaches 92
13.5.1 End-t o-end and Hop-by-hop Headers 92
13.5.2 Non-nodi fiable Headers 92
13.5.3 Conbining Headers 94
13.5.4 Conmbining Byte Rangesy 95
13.6 Caching Negotiated ReSPONSESt 95
13.7 Shared and Non-Shared Caches 96
13.8 Errors or Inconplete Response Cache Behavior 97
13.9 Side Effects of GET and HEAD 97
13.10 Invalidation After Updates or Deletions 97
13.11 Wite-Through Mandatory 98
13.12 Cache Replacement, 99
13.13 History LiSts ... 99
14 Header Field Definitions 100
14, 1 ACCEPE ot e e 100
14.2 Accept-Charset e 102
14.3 Accept-Encodi Ngo e 102
14.4 Accept-Language 104
14.5 Accept-Ranges 105
14, B AGE . it 106
14,7 AL OW o 106
14.8 Authorization 107
14.9 Cache-Control 108
14.9.1 What is Cacheable 109
14.9.2 VWhat May be Stored by Caches 110
14.9.3 Modi fications of the Basic Expiration Mechanism......... 111
14.9.4 Cache Revalidation and Reload Controls 113
14.9.5 No-TransformDirective i, 115
14.9.6 Cache Control EXtensions 116
14. 10 CONNECE T ON o 117
14. 11 Content-ENcodi NGot e 118
14. 12 Content-Language 118
14. 13 Content-Length 119
14. 14 Content-Locati On 120
14.15 Content-IMD5 121
14. 16 Content-RanNge 122
14. 17 CoNt eNt - TYPE ..o 124
14.18 DAt B .. 124
14.18.1 Clockless Origin Server Operation 125
14. 19 ETag .. 126
14. 20 EX PO . 126
14. 21 EXPI F S o e 127
14. 22 I OmM 128

Fielding, et al. St andards Track [Page 5]

RFC 2616 HTTP/ 1.1 June 1999
14. 23 HOSt .o 128
14. 24 Lf-MBECh 129
14. 25 If-Modified-Since e 130
14. 26 If-None-Match e 132
14. 27 [f - RANGE . . 133
14. 28 [f-Unnodified-Since 134
14. 29 Last-Modified 134
14. 30 Locati on e e 135
14. 31 MBX- FOrwards e 136
14. 32 PragmB . . 136
14. 33 Proxy-Authenticate 137
14. 34 Proxy-Authorization i, 137
14. 35 Range 138
14.35.1 Byte Ranges 138
14.35.2 Range Retrieval Requests, 139
14. 36 Ref erer ... 140
14. 37 Retry- Af L er ... e 141
14. 38 ST Y = 141
14. 39 TE e e e 142
14. 40 Trai | er 143
14.41 Transfer-Encodi Ng. e e 143
14. 42 Upgrade e 144
14. 43 User- Agent 145
14. 44 VAl Y 145
14,45 Vi@ oo 146
14.46 VAN NG ..ot e 148
14. 47 WAM AUt henticate e 150
15 Security Considerati ONSt 150
15.1 Personal Information........ i i, 151
15.1.1 Abuse of Server Log Information 151
15.1.2 Transfer of Sensitive Information 151
15.1.3 Encoding Sensitive Information in URI's 152
15.1. 4 Privacy |ssues Connected to Accept Headers 152
15.2 Attacks Based On File and Path Nanes 153
15.3 DNS Spoofingot e e 154
15.4 Location Headers and Spoofing 154
15.5 Content-DispoSition ISSUBS iy 154
15.6 Authentication Credentials and Idle Cients 155
15.7 Proxies and Caching, 155
15.7.1 Deni al of Service Attacks on Proxies.................... 156
16 ACKNOW edgmMENt S 156
17 Ref erences 158
18 Aut hor s’ Addr 8SSeS . .. i 162
19 APPENAI CES ot 164
19.1 Internet Media Type nessage/ http and application/http 164
19.2 Internet Media Type nultipart/byteranges 165
19.3 Tolerant Applications i 166
19.4 Differences Between HITP Entities and RFC 2045 Entities167

Fielding, et al. St andards Track [Page 6]

RFC 2616 HTTP/ 1.1 June 1999

19.4.1 M ME-VEISI ON .ot e e 167
19.4.2 Conversion to Canonical Form 167
19.4.3 Conversion of Date Formats 168
19.4. 4 Introduction of Content-Encoding 168
19.4.5 No Content-Transfer-Encoding, 168
19.4.6 Introduction of Transfer-Encoding 169
19.4.7 MHTML and Line Length Limtations 169
19.5 Additional Features 169
19.5.1 Content-DiSpoSition 170
19.6 Conpatibility with Previous Versions 170
19.6.1 Changes fromHTTP/ 1.0 e 171
19.6.2 Conpatibility with HTTP/ 1.0 Persistent Connections 172
19.6.3 Changes fromRFC 2068, 172
20 I NdEX 175
21 Ful | Copyright Statement 176

1 Introduction
1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-Ileve
protocol for distributed, collaborative, hypernedia information
systenms. HITTP has been in use by the Wrld-Wde Wb gl oba
information initiative since 1990. The first version of HITP,
referred to as HTTP/ 0.9, was a sinple protocol for raw data transfer
across the Internet. HITP/ 1.0, as defined by RFC 1945 [6], inproved
the protocol by allow ng nessages to be in the format of M ME-Ii ke
nmessages, containing netainformation about the data transferred and
nodi fiers on the request/response senmantics. However, HTTP/ 1.0 does
not sufficiently take into consideration the effects of hierarchica
proxi es, caching, the need for persistent connections, or virtua
hosts. In addition, the proliferation of inconpletely-inplenmented
applications calling thensel ves "HTTP/ 1. 0" has necessitated a
protocol version change in order for two comunicating applications
to determ ne each other’s true capabilities.

This specification defines the protocol referred to as "HTTP/ 1. 1".
This protocol includes nore stringent requirements than HTTP/1.0 in
order to ensure reliable inplenentation of its features.

Practical information systens require nore functionality than sinple
retrieval, including search, front-end update, and annotation. HITP
al l ows an open-ended set of nethods and headers that indicate the
purpose of a request [47]. It builds on the discipline of reference
provi ded by the Uniform Resource Identifier (URI) [3], as a |location
(URL) [4] or nanme (URN) [20], for indicating the resource to which a

Fielding, et al. St andards Track [Page 7]

RFC 2616 HTTP/ 1.1 June 1999

method is to be applied. Messages are passed in a format simlar to
that used by Internet nmail [9] as defined by the Miltipurpose
Internet Mail Extensions (MM [7].

HTTP is al so used as a generic protocol for conmmunication between
user agents and proxi es/gateways to other Internet systens, including
those supported by the SMIP [16], NNTP [13], FTP [18], Gopher [2],
and WAI'S [10] protocols. In this way, HTTP all ows basic hypernedi a
access to resources avail able from di verse applications.

1.2 Requirenents

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [34].

An inplenentation is not conpliant if it fails to satisfy one or nore
of the MUST or REQUI RED | evel requirenments for the protocols it

i mpl enents. An inplenentation that satisfies all the MJST or REQUI RED
I evel and all the SHOULD |l evel requirenents for its protocols is said
to be "unconditionally conpliant”; one that satisfies all the MJST

| evel requirenents but not all the SHOULD | evel requirenents for its
protocols is said to be "conditionally conpliant."”

1.3 Term nol ogy

This specification uses a nunber of terns to refer to the roles
pl ayed by participants in, and objects of, the HITP comruni cati on

connection
A transport layer virtual circuit established between two prograns
for the purpose of comunication.

nessage
The basic unit of HTTP conmmuni cation, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmtted via the connection.

request
An HTTP request nessage, as defined in section 5.

response
An HTTP response nessage, as defined in section 6

Fielding, et al. St andards Track [Page 8]

RFC 2616 HTTP/ 1.1 June 1999

resource
A network data object or service that can be identified by a URI
as defined in section 3.2. Resources may be available in nultiple
representations (e.g. nultiple | anguages, data formats, size, and
resol utions) or vary in other ways.

entity
The information transferred as the payl oad of a request or
response. An entity consists of metainformation in the form of
entity-header fields and content in the formof an entity-body, as
described in section 7.

representation
An entity included with a response that is subject to content
negoti ati on, as described in section 12. There nay exist nultiple
representati ons associated with a particul ar response status.

content negotiation
The mechani sm for selecting the appropriate representati on when
servicing a request, as described in section 12. The
representation of entities in any response can be negoti at ed
(including error responses).

vari ant
A resource may have one, or nore than one, representation(s)
associated with it at any given instant. Each of these
representations is terned a ‘varriant’. Use of the term‘variant’
does not necessarily inply that the resource is subject to content
negoti ati on.

client
A program that establishes connections for the purpose of sending
requests.

user agent

The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user tools.

server
An application programthat accepts connections in order to
service requests by sending back responses. Any given program nay
be capabl e of being both a client and a server; our use of these
terns refers only to the role being performed by the programfor a
particul ar connection, rather than to the program s capabilities
in general. Likew se, any server may act as an origin server
proxy, gateway, or tunnel, swi tching behavior based on the nature
of each request.

Fielding, et al. St andards Track [Page 9]

RFC 2616 HTTP/ 1.1 June 1999

origin server
The server on which a given resource resides or is to be created.

pr oxy
An internmediary programwhich acts as both a server and a client
for the purpose of naking requests on behal f of other clients.
Requests are serviced internally or by passing themon, wth
possi ble translation, to other servers. A proxy MJST inpl enment
both the client and server requirements of this specification. A
"transparent proxy" is a proxy that does not nodify the request or
response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that nodifies
the request or response in order to provide sone added service to
the user agent, such as group annotation services, nedia type
transformati on, protocol reduction, or anonynity filtering. Except
where either transparent or non-transparent behavior is explicitly
stated, the HITP proxy requirenents apply to both types of
pr oxi es.

gat eway
A server which acts as an internediary for sonme other server
Unli ke a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is conmmunicating with a gateway.

t unnel
An internmediary programwhich is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP conmuni cation, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are cl osed.

cache
A program s | ocal store of response nmessages and the subsystem
that controls its nessage storage, retrieval, and deletion. A
cache stores cacheabl e responses in order to reduce the response
time and network bandwi dth consunption on future, equival ent
requests. Any client or server nmay include a cache, though a cache
cannot be used by a server that is acting as a tunnel

cacheabl e
A response is cacheable if a cache is allowed to store a copy of
the response nmessage for use in answering subsequent requests. The
rules for determ ning the cacheability of HITP responses are
defined in section 13. Even if a resource is cacheable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request.

Fielding, et al. St andards Track [Page 10]

RFC 2616 HTTP/ 1.1 June 1999

first-hand
A response is first-hand if it comes directly and w thout
unnecessary delay fromthe origin server, perhaps via one or nore
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.

explicit expiration tine
The tinme at which the origin server intends that an entity should
no | onger be returned by a cache without further validation

heuristic expiration tine
An expiration time assigned by a cache when no explicit expiration
time is avail abl e.

age
The age of a response is the tine since it was sent by, or
successfully validated with, the origin server

freshness lifetine
The I ength of time between the generation of a response and its
expiration tine.

fresh
A response is fresh if its age has not yet exceeded its freshness
lifetime.

stal e
A response is stale if its age has passed its freshness lifetine.

semantical ly transparent
A cache behaves in a "semantically transparent” manner, with
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to inprove
performance. When a cache is semantically transparent, the client
recei ves exactly the sane response (except for hop-by-hop headers)
that it would have received had its request been handled directly
by the origin server.

i dat or

A protocol elenent (e.g., an entity tag or a Last-Mdified tine)
that is used to find out whether a cache entry is an equi val ent
copy of an entity.

va

upst reanm downst r eam
Upstream and downstream descri be the flow of a nessage: al
messages flow from upstreamto downstream

Fielding, et al. St andards Track [Page 11]

RFC 2616 HTTP/ 1.1 June 1999

i nbound/ out bound
| nbound and out bound refer to the request and response paths for
nessages: "inbound" neans "traveling toward the origin server"”
and "out bound" neans "traveling toward the user agent”

1.4 Overall Operation

The HTTP protocol is a request/response protocol. A client sends a
request to the server in the formof a request nmethod, URI, and
protocol version, followed by a M ME-Iike nessage containing request
nodi fiers, client information, and possible body content over a
connection with a server. The server responds with a status |ine,

i ncluding the nmessage’s protocol version and a success or error code,
followed by a M Me-1ike nessage containing server information, entity
met ai nformati on, and possi ble entity-body content. The rel ationship
bet ween HTTP and M ME is described in appendi x 19. 4.

Most HTTP conmunication is initiated by a user agent and consists of
a request to be applied to a resource on sone origin server. In the
sinpl est case, this nay be acconplished via a single connection (v)

bet ween the user agent (UA) and the origin server (O.

A nore conplicated situation occurs when one or nore internediaries
are present in the request/response chain. There are three comon
forms of internediary: proxy, gateway, and tunnel. A proxy is a
forwardi ng agent, receiving requests for a URI in its absolute form
rewiting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
recei ving agent, acting as a |layer above sonme other server(s) and, if
necessary, translating the requests to the underlying server’s
protocol. A tunnel acts as a relay point between two connections

wi t hout changi ng the nessages; tunnels are used when the

conmuni cati on needs to pass through an internmediary (such as a
firewall) even when the intermedi ary cannot understand the contents
of the nessages.

The figure above shows three internediaries (A B, and C between the
user agent and origin server. A request or response nessage that
travel s the whole chain will pass through four separate connections.
This distinction is inportant because sonme HTTP conmuni cation options

Fielding, et al. St andards Track [Page 12]

RFC 2616 HTTP/ 1.1 June 1999

may apply only to the connection with the nearest, non-tunne

nei ghbor, only to the end-points of the chain, or to all connections
along the chain. Athough the diagramis |linear, each participant may
be engaged in multiple, sinultaneous conmunications. For exanple, B
may be receiving requests frommany clients other than A, and/or
forwardi ng requests to servers other than C, at the sane tine that it
is handling A s request.

Any party to the communi cati on which is not acting as a tunnel nmay
enpl oy an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the

partici pants along the chain has a cached response applicable to that
request. The following illustrates the resulting chain if B has a
cached copy of an earlier response fromO (via C for a request which
has not been cached by UA or A

request chain ---------- >
UA ----- V----- A----- V----- B------C------0
<-emem---- response chain

Not all responses are usefully cacheabl e, and sone requests may
contain nodifiers which place special requirenents on cache behavi or
HTTP requi renents for cache behavi or and cacheabl e responses are
defined in section 13.

In fact, there are a wide variety of architectures and configurations
of caches and proxies currently being experinmented with or depl oyed
across the Wrld Wde Web. These systens include national hierarchies
of proxy caches to save transoceani ¢ bandwi dth, systens that
broadcast or nulticast cache entries, organizations that distribute
subsets of cached data via CD-ROM and so on. HTTP systens are used
in corporate intranets over high-bandwi dth |inks, and for access via
PDAs with | ow power radio links and interm ttent connectivity. The
goal of HTTP/1.1 is to support the wide diversity of configurations
al ready depl oyed while introducing protocol constructs that neet the
needs of those who build web applications that require high
reliability and, failing that, at |east reliable indications of
failure.

HTTP comuni cation usual ly takes place over TCP/IP connections. The
default port is TCP 80 [19], but other ports can be used. This does
not preclude HTTP from being i npl enented on top of any other protoco
on the Internet, or on other networks. HITP only presunes a reliable
transport; any protocol that provides such guarantees can be used;
the mappi ng of the HITP/ 1.1 request and response structures onto the
transport data units of the protocol in question is outside the scope
of this specification

Fielding, et al. St andards Track [Page 13]

RFC 2616 HTTP/ 1.1 June 1999

In HTTP/ 1.0, nost inplenmentations used a new connection for each
request/response exchange. In HITP/ 1.1, a connection may be used for
one or nore request/response exchanges, although connections may be
closed for a variety of reasons (see section 8.1).

2 Not ati onal Conventions and Generic G anmar
2.1 Augnent ed BNF

Al'l of the nechanisns specified in this docunent are described in
both prose and an augnented Backus-Naur Form (BNF) simlar to that
used by RFC 822 [9]. Inplenentors will need to be famliar with the
notation in order to understand this specification. The augmented BNF
i ncludes the foll owi ng constructs:

name = definition
The nane of a rule is sinply the nane itself (w thout any
enclosing "<" and ">") and is separated fromits definition by the
equal "=" character. Wite space is only significant in that
i ndentation of continuation lines is used to indicate a rule
definition that spans nore than one line. Certain basic rules are
i n uppercase, such as SP, LW5, HI, CRLF, DIG T, ALPHA, etc. Angle
brackets are used within definitions whenever their presence wll
facilitate discerning the use of rule nanes.

"literal"

Quotation marks surround literal text. Unless stated otherw se,

the text is case-insensitive.

rulel | rule2
El enents separated by a bar ("|") are alternatives, e.g., "yes

no" will accept yes or no.

(rulel rule2)
El enents encl osed in parentheses are treated as a single el enent.
Thus, "(elem (foo | bar) elem" allows the token sequences "el em
foo elent and "elem bar elen'.

*rul e
The character "*" preceding an el enent indicates repetition. The
full formis "<n>*<npelenent” indicating at |east <n> and at nopst
<n> occurrences of elenent. Default values are 0 and infinity so
that "*(element)" allows any numnber, including zero; "1*el ement”
requires at |east one; and "1*2elenent” allows one or two.

[rul e]

Square brackets encl ose optional elenents; "[foo bar]" is
equi valent to "*1(foo bar)".

Fielding, et al. St andards Track [Page 14]

RFC 2616 HTTP/ 1.1 June 1999

N rule
Specific repetition: "<n>(elenent)" is equivalent to
"<n>*<n>(element)"; that is, exactly <n> occurrences of (elenent).
Thus 2DIGA T is a 2-digit nunmber, and 3ALPHA is a string of three
al phabetic characters.

#rul e

A construct "#" is defined, simlar to "*", for defining lists of
el enents. The full formis "<n>#<npel enent” indicating at |east
<n> and at nost <nP el enents, each separated by one or nore conmas
(",") and OPTIONAL |inear white space (LWS). This nakes the usual
formof lists very easy; a rule such as

(*LW5 elenment *(*LWS "," *LW5 el enent))
can be shown as

1#el ement
Wierever this construct is used, null elenents are allowed, but do
not contribute to the count of elenments present. That is,
"(element), , (element) " is permitted, but counts as only two
el ements. Therefore, where at |east one elenment is required, at
| east one non-null elenment MJST be present. Default values are 0
and infinity so that "#elenment" all ows any nunber, including zero;
"1#el ement” requires at |east one; and "1#2el enent” allows one or
t wo.

; comment
A sem -colon, set off sone distance to the right of rule text,
starts a conment that continues to the end of line. This is a
sinmple way of including useful notes in parallel with the
speci fications.

i mplied *LWs
The granmmar described by this specification is word-based. Except
where noted otherw se, linear white space (LW5) can be included

bet ween any two adj acent words (token or quoted-string), and
bet ween adj acent words and separators, wthout changing the
interpretation of a field. At |least one delimter (LW5 and/or

separators) MJST exist between any two tokens (for the definition
of "token" below), since they would otherwi se be interpreted as a
si ngl e token.
2.2 Basic Rules
The followi ng rules are used throughout this specification to

descri be basic parsing constructs. The US-ASCI| coded character set
is defined by ANSI X3.4-1986 [21].

Fielding, et al. St andards Track [Page 15]

RFC 2616 HTTP/ 1.1 June 1999

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCI| character (octets 0 - 127)>
UPALPHA = <any US-ASClI| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DAT = <any US-ASClII digit "0".."9">
CTL = <any US-ASCI| control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCI| CR, carriage return (13)>
LF = <US-ASClI| LF, linefeed (10)>
SP = <US-ASClI| SP, space (32)>
HT = <US-ASCI | HT, horizontal-tab (9)>
<"> = <US-ASCI | doubl e-quote nmark (34)>

HTTP/ 1.1 defines the sequence CR LF as the end-of-line marker for al

protocol elenents except the entity-body (see appendix 19.3 for

tol erant applications). The end-of-line marker within an entity-body
is defined by its associated nedia type, as described in section 3.7.

CRLF = CR LF

HTTP/ 1.1 header field values can be folded onto nultiple lines if the
continuation line begins with a space or horizontal tab. Al Iinear
white space, including folding, has the sane semantics as SP. A

reci pient MAY replace any |linear white space with a single SP before
interpreting the field value or forwarding the nessage downstream

L\WS = [CRLF] 1*(SP | HT)

The TEXT rule is only used for descriptive field contents and val ues
that are not intended to be interpreted by the nessage parser. Wrds
of *TEXT MAY contain characters fromcharacter sets other than |ISO
8859-1 [22] only when encoded according to the rules of RFC 2047

[14].

TEXT = <any OCTET except CILs
but including LWs>

A CRLF is allowed in the definition of TEXT only as part of a header
field continuation. It is expected that the folding LWs will be
replaced with a single SP before interpretation of the TEXT val ue.

Hexadeci mal numeric characters are used in several protocol elenents.

HEX ="A"| "B" | "C | "D | "E"| "“F"
| "a* | "b" | "c" | "d" | "e" | "f" | DAT

Fielding, et al. St andards Track [Page 16]

RFC 2616 HTTP/ 1.1 June 1999

Many HTTP/ 1.1 header field values consist of words separated by LWs
or special characters. These special characters MJST be in a quoted
string to be used within a paraneter value (as defined in section
3.6).

t oken = 1*<any CHAR except CTLs or separators>
separators ="Myt @

I R A S

R S A R B

| {1yl SP | HT

Comments can be included in sonme HITP header fields by surroundi ng
the conment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition
In all other fields, parentheses are considered part of the field

val ue.
conmmrent ="(" *(ctext | quoted-pair | coment) ")"
ct ext = <any TEXT excluding "(" and ")">

A string of text is parsed as a single word if it is quoted using
doubl e- quot e mar ks.

quot ed-string
gdt ext

= (<"> *(qdtext | quoted-pair) <">)

= <any TEXT except <">>

The backsl ash character ("\") MAY be used as a single-character
quoti ng mechani smonly wthin quoted-string and comment constructs.

quot ed- pai r = "\" CHAR
3 Protocol Paraneters
3.1 HTTP Version

HTTP uses a "<mmj or>.<m nor>" nunbering schene to indicate versions
of the protocol. The protocol versioning policy is intended to all ow
the sender to indicate the fornmat of a nmessage and its capacity for
under standi ng further HTTP communi cation, rather than the features
obt ai ned via that conmunication. No change is nade to the version
nunber for the addition of nessage conponents which do not affect
conmuni cati on behavi or or which only add to extensible field val ues.
The <m nor> nunber is increnented when the changes nade to the
protocol add features which do not change the general nessage parsing
al gorithm but which may add to the nessage semantics and inply
additional capabilities of the sender. The <mjor> nunber is

i ncrenented when the format of a nessage within the protocol is
changed. See RFC 2145 [36] for a fuller explanation

Fielding, et al. St andards Track [Page 17]

RFC 2616 HTTP/ 1.1 June 1999

The version of an HTTP nessage is indicated by an HTTP-Version field
inthe first Iine of the nessage.

HTTP- Ver si on = "HTTP* "/" 1*DIAT "." 1*DIAT

Note that the mmjor and minor nunbers MJST be treated as separate

i ntegers and that each MAY be increnented higher than a single digit.
Thus, HTTP/2.4 is a | ower version than HTTP/2.13, which in turn is

| ower than HTTP/ 12.3. Leading zeros MJST be ignored by recipients and
MJUST NOT be sent.

An application that sends a request or response nessage that includes
HTTP- Versi on of "HTTP/1.1" MJST be at |east conditionally conpliant
with this specification. Applications that are at |east conditionally
conpliant with this specification SHOULD use an HTTP-Version of
"HTTP/ 1.1" in their nessages, and MJST do so for any nessage that is
not conpatible with HTTP/1.0. For nore details on when to send

speci fic HTTP-Version val ues, see RFC 2145 [36].

The HTTP version of an application is the highest HTTP version for
which the application is at |least conditionally conpliant.

Proxy and gateway applications need to be careful when forwarding
nmessages in protocol versions different fromthat of the application
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MJST NOT send a nessage with a version

i ndi cator which is greater than its actual version. If a higher
version request is received, the proxy/gateway MJST either downgrade
the request version, or respond with an error, or switch to tunne
behavi or.

Due to interoperability problens with HTTP/ 1.0 proxies discovered
since the publication of RFC 2068[33], caching proxies MJST, gateways
MAY, and tunnels MUST NOT upgrade the request to the highest version
t hey support. The proxy/gateway' s response to that request MJST be in
the sane nmjor version as the request.

Not e: Converting between versions of HTTP may invol ve nodification
of header fields required or forbidden by the versions invol ved.

3.2 Uniform Resource ldentifiers

URI s have been known by many nanes: WMWV addresses, Universal Docunent
Identifiers, Universal Resource ldentifiers [3], and finally the
conbi nation of Uniform Resource Locators (URL) [4] and Nanes (URN)
[20]. As far as HITP is concerned, Uniform Resource Identifiers are
simply formatted strings which identify--via name, |ocation, or any
other characteristic--a resource.

Fielding, et al. St andards Track [Page 18]

RFC 2616 HTTP/ 1.1 June 1999

3.2.1 CGeneral Syntax

URI's in HTTP can be represented in absolute formor relative to sonme
known base URI [11], depending upon the context of their use. The two
forns are differentiated by the fact that absolute URI's al ways begin
with a schene nane followed by a colon. For definitive information on
URL syntax and semantics, see "Uniform Resource ldentifiers (URI):
CGeneric Syntax and Semantics," RFC 2396 [42] (which replaces RFCs
1738 [4] and RFC 1808 [11]). This specification adopts the
definitions of "URlI-reference", "absoluteURI", "relativeURI", "port",
"host","abs_path", "rel _path", and "authority" fromthat

speci fication.

The HTTP protocol does not place any a priori linit on the Iength of
a URI. Servers MJST be able to handle the URI of any resource they
serve, and SHOULD be able to handl e URI's of unbounded |ength if they
provi de GET-based forns that coul d generate such URIs. A server
SHOULD return 414 (Request-URl Too Long) status if a URI is |onger
than the server can handl e (see section 10.4.15).

Not e: Servers ought to be cautious about depending on URl |engths
above 255 bytes, because sonme ol der client or proxy
i mpl ement ati ons mght not properly support these |engths.

3.2.2 http URL

The "http" schene is used to |locate network resources via the HITP
protocol. This section defines the schene-specific syntax and
semantics for http URLs.

http URL = "http:" "//" host [":" port] [abs_path ["?" query]]

If the port is enpty or not given, port 80 is assunmed. The senantics
are that the identified resource is |ocated at the server |istening
for TCP connections on that port of that host, and the Request-UR
for the resource is abs path (section 5.1.2). The use of |P addresses
in URLs SHOULD be avoi ded whenever possible (see RFC 1900 [24]). |If
the abs_path is not present in the URL, it MJST be given as "/" when
used as a Request-URI for a resource (section 5.1.2). If a proxy
receives a host nane which is not a fully qualified domain name, it
MAY add its domain to the host nane it received. If a proxy receives
a fully qualified donmain nane, the proxy MJST NOT change the host
name.

Fielding, et al. St andards Track [Page 19]

RFC 2616 HTTP/ 1.1 June 1999

3.2.3 URI Conparison

When conparing two URIs to decide if they match or not, a client
SHOULD use a case-sensitive octet-by-octet conparison of the entire
URI's, with these exceptions:

- Aport that is enpty or not given is equivalent to the default
port for that URI-reference;

- Conparisons of host names MJST be case-insensitive;
- Conparisons of schene nanmes MUST be case-insensitive
- An enpty abs_path is equivalent to an abs_path of "/".

Characters other than those in the "reserved" and "unsafe" sets (see
RFC 2396 [42]) are equivalent to their ""% HEX HEX" encodi ng.

For exanple, the following three URI's are equival ent:

http://abc.com 80/ ~sm t h/ hone. ht m
http://ABC. conl %7Esmi t h/ hone. ht n
http://ABC. com /% esnit h/ hone. ht n

3.3 Date/ Tine Formats
3.3.1 Full Date

HTTP applications have historically allowed three different formats
for the representation of date/time stanps:

Sun, 06 Nov 1994 08:49:37 GMI ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMI ; RFC 850, obsol eted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctinme() format

The first format is preferred as an Internet standard and represents
a fixed-length subset of that defined by RFC 1123 [8] (an update to
RFC 822 [9]). The second format is in comon use, but is based on the
obsol ete RFC 850 [12] date format and | acks a four-digit year

HTTP/ 1.1 clients and servers that parse the date val ue MJST accept

all three formats (for conpatibility with HTTP/1.0), though they MJST
only generate the RFC 1123 format for representing HITP-date val ues
in header fields. See section 19.3 for further information

Not e: Reci pients of date val ues are encouraged to be robust in
accepting date values that may have been sent by non-HTTP
applications, as is sonetinmes the case when retrieving or posting
nmessages via proxi es/gateways to SMIP or NNTP

Fielding, et al. St andards Track [Page 20]

RFC 2616 HTTP/ 1.1 June 1999

Al'l HTTP date/tinme stanps MJST be represented in G eenwich Mean Tine
(GvIN, without exception. For the purposes of HITP, GMI is exactly
equal to UTC (Coordinated Universal Tine). This is indicated in the
first two formats by the inclusion of "GMI" as the three-letter
abbreviation for time zone, and MJST be assuned when reading the
asctime format. HTTP-date is case sensitive and MJUST NOT incl ude
addi ti onal LWS beyond that specifically included as SP in the

ascti me-date wkday SP date3 SP tinme SP4DIA T

gr anmar .
HTTP- dat e = rfcll23-date | rfc850-date | asctine-date
rfcll23-date = wkday "," SP datel SP tine SP "GVI"
rfc850-date = weekday "," SP date2 SP tine SP "GMI"
dat el = 2DIAT SP month SP 4DIGA T

; day nonth year (e.g., 02 Jun 1982)
dat e2 =2DIGAT "-" month "-" 2DIG T
; day-nonth-year (e.g., 02-Jun-82)
dat e3 = month SP (2DIGT | (SP 1IDIGAT))
; month day (e.g., Jun 2)
tine =2DGET ":" 2DGT ":" 2D T
; 00:00:00 - 23:59:59
wkday = "Mon" | "Tue" | "Wed"
| “"Thu" | "Fri" | "Sat" | "Sun"
weekday = "Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
nont h = "Jan" | "Feb" | "Mar" | "Apr"
[“May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Cct" | "Nov" | "Dec"

Note: HITP requirenents for the date/tinme stanp format apply only
to their usage within the protocol stream Cdients and servers are
not required to use these formats for user presentation, request

| oggi ng, etc.

3.3.2 Delta Seconds
Some HTTP header fields allow a tinme value to be specified as an
i nteger nunmber of seconds, represented in decinmal, after the tinme
that the nessage was received.
delta-seconds = 1*DIAT
3.4 Character Sets

HTTP uses the sane definition of the term"character set" as that
descri bed for M ME

Fielding, et al. St andards Track [Page 21]

RFC 2616 HTTP/ 1.1 June 1999

The term "character set" is used in this document to refer to a

met hod used with one or nore tables to convert a sequence of octets
into a sequence of characters. Note that unconditional conversion in
the other direction is not required, in that not all characters my
be available in a given character set and a character set nay provide
nore than one sequence of octets to represent a particular character
This definition is intended to allow various kinds of character
encodi ng, from sinple single-table mappings such as US-ASCII to
conpl ex table switching methods such as those that use | SO 2022’ s
techni ques. However, the definition associated with a M ME character
set name MUST fully specify the mapping to be perforned fromoctets
to characters. In particular, use of external profiling information
to determine the exact mapping is not permitted.

Note: This use of the term"character set" is nore conmonly
referred to as a "character encoding." However, since HTTP and

M ME share the sanme registry, it is inportant that the term nol ogy
al so be shared.

HTTP character sets are identified by case-insensitive tokens. The
conpl ete set of tokens is defined by the | ANA Character Set registry
[19].

charset = token

Al t hough HTTP allows an arbitrary token to be used as a charset

val ue, any token that has a predefined value within the | ANA
Character Set registry [19] MJST represent the character set defined
by that registry. Applications SHOULD linit their use of character
sets to those defined by the I ANA registry.

| mpl enentors shoul d be aware of | ETF character set requirenents [38]
[41].

3.4.1 Mssing Charset

Sonme HTTP/ 1.0 software has interpreted a Content-Type header wi thout
charset parameter incorrectly to nmean "recipient should guess."
Senders wi shing to defeat this behavior MAY include a charset
paraneter even when the charset is | SO 8859-1 and SHOULD do so when
it is known that it will not confuse the recipient.

Unfortunately, some older HTITP/1.0 clients did not deal properly with
an explicit charset parameter. HTTP/ 1.1 recipients MIST respect the
charset |abel provided by the sender; and those user agents that have
a provision to "guess" a charset MJUST use the charset fromthe

Fielding, et al. St andards Track [Page 22]

RFC 2616 HTTP/ 1.1 June 1999

content-type field if they support that charset, rather than the
recipient’s preference, when initially displaying a docunment. See
section 3.7.1.

3.5 Content Codings

Content codi ng val ues indicate an encoding transformation that has
been or can be applied to an entity. Content codings are primarily
used to allow a docunent to be conpressed or otherw se usefully
transformed without |losing the identity of its underlying nedia type
and without l[oss of information. Frequently, the entity is stored in
coded form transmtted directly, and only decoded by the recipient.

cont ent - codi ng = token

Al'l content-codi ng val ues are case-insensitive. HITP/ 1.1 uses
content-codi ng values in the Accept-Encoding (section 14.3) and
Cont ent - Encodi ng (section 14.11) header fields. Al though the val ue
describes the content-coding, what is nore inportant is that it

i ndi cates what decodi ng mechanismwi |l be required to renove the
encodi ng.

The Internet Assigned Nunbers Authority (1 ANA) acts as a registry for
content-codi ng value tokens. Initially, the registry contains the
foll owi ng tokens:

gzi p An encodi ng format produced by the file conpression program
"gzip" (GNU zip) as described in RFC 1952 [25]. This format is a
Lenmpel -Ziv coding (LZ77) with a 32 bit CRC

conpr ess
The encoding format produced by the conmon UNI X file conpression
program "conpress". This format is an adaptive Lenpel -Zi v-Wl ch
codi ng (LzZW.

Use of program names for the identification of encoding formats
is not desirable and is discouraged for future encodings. Their
use here is representative of historical practice, not good
design. For conpatibility with previous inplenmentations of HITP,
appl i cations SHOULD consider "x-gzip" and "x-conpress" to be
equi val ent to "gzip" and "conpress" respectively.

defl ate

The "zlib" format defined in RFC 1950 [31] in conbination with
the "defl ate" conpression nmechani smdescribed in RFC 1951 [29].

Fielding, et al. St andards Track [Page 23]

RFC 2616 HTTP/ 1.1 June 1999

identity
The default (identity) encoding; the use of no transformation
what soever. This content-coding is used only in the Accept-
Encodi ng header, and SHOULD NOT be used in the Content-Encoding
header .

New cont ent - codi ng val ue tokens SHOULD be registered; to all ow
interoperability between clients and servers, specifications of the
content coding algorithns needed to inplenment a new val ue SHOULD be
publicly avail abl e and adequate for independent inplenmentation, and
conformto the purpose of content coding defined in this section

3.6 Transfer Codings

Transfer-codi ng values are used to indicate an encodi ng
transformati on that has been, can be, or may need to be applied to an
entity-body in order to ensure "safe transport" through the network
This differs froma content coding in that the transfer-coding is a
property of the message, not of the original entity.

transfer-codi ng
t ransf er - ext ensi on

"chunked" | transfer-extension
token *(";" parameter)

Paraneters are in the formof attribute/value pairs.

par anet er = attribute "=" val ue
attribute = token
val ue = token | quoted-string

Al'l transfer-coding values are case-insensitive. HITP/ 1.1 uses
transfer-coding values in the TE header field (section 14.39) and in
the Transfer-Encodi ng header field (section 14.41).

Whenever a transfer-coding is applied to a nessage-body, the set of
transfer-codi ngs MIUST include "chunked", unless the nessage is

term nated by closing the connection. Wen the "chunked" transfer-
coding is used, it MJST be the last transfer-coding applied to the
nmessage- body. The "chunked" transfer-coding MIST NOT be applied nore
than once to a nmessage-body. These rules allow the recipient to
determ ne the transfer-length of the nessage (section 4.4).

Transfer-codi ngs are anal ogous to the Content-Transfer-Encodi ng

val ues of MME [7], which were designed to enable safe transport of

bi nary data over a 7-bit transport service. However, safe transport
has a different focus for an 8bit-clean transfer protocol. In HITP,
the only unsafe characteristic of nmessage-bodies is the difficulty in
determ ning the exact body length (section 7.2.2), or the desire to
encrypt data over a shared transport.

Fielding, et al. St andards Track [Page 24]

RFC 2616 HTTP/ 1.1 June 1999

The Internet Assigned Nunbers Authority (1 ANA) acts as a registry for
transfer-coding value tokens. Initially, the registry contains the
foll owi ng tokens: "chunked" (section 3.6.1), "identity" (section
3.6.2), "gzip" (section 3.5), "conpress" (section 3.5), and "defl ate"
(section 3.5).

New transfer-coding val ue tokens SHOULD be registered in the sane way
as new content-codi ng val ue tokens (section 3.5).

A server which receives an entity-body with a transfer-coding it does
not understand SHOULD return 501 (Uni npl enented), and close the
connection. A server MJST NOT send transfer-codings to an HTTP/ 1.0
client.

3.6.1 Chunked Transfer Coding

The chunked encoding nodifies the body of a nessage in order to
transfer it as a series of chunks, each with its own size indicator
followed by an OPTIONAL trailer containing entity-header fields. This
all ows dynam cally produced content to be transferred along with the
i nformati on necessary for the recipient to verify that it has
received the full nessage.

Chunked- Body = *chunk
| ast - chunk
trailer
CRLF
chunk = chunk-size [chunk-extension] CRLF

chunk-data CRLF
1* HEX
1*("0") [chunk-extension] CRLF

chunk-si ze
| ast - chunk

chunk-extensi on= *(";" chunk-ext-name [
chunk- ext - name t oken

chunk- ext - val token | quoted-string
chunk- dat a chunk- si ze(OCTET)
trailer *(entity-header CRLF)

chunk-ext-val])

The chunk-size field is a string of hex digits indicating the size of
the chunk. The chunked encoding is ended by any chunk whose size is
zero, followed by the trailer, which is termnated by an enpty |ine.

The trailer allows the sender to include additional HTTP header
fields at the end of the message. The Trailer header field can be
used to indicate which header fields are included in a trailer (see
section 14.40).

Fielding, et al. St andards Track [Page 25]

RFC 2616 HTTP/ 1.1 June 1999

A server using chunked transfer-coding in a response MJST NOT use the
trailer for any header fields unless at |east one of the following is
true:

a)the request included a TE header field that indicates "trailers" is
acceptable in the transfer-coding of the response, as described in
section 14.39; or,

b)the server is the origin server for the response, the trailer
fields consist entirely of optional netadata, and the recipient
could use the nessage (in a nanner acceptable to the origin server)
wi thout receiving this metadata. In other words, the origin server
iswilling to accept the possibility that the trailer fields night
be silently discarded along the path to the client.

This requirenment prevents an interoperability failure when the
message i s being received by an HTTP/1.1 (or later) proxy and
forwarded to an HTTP/ 1.0 recipient. It avoids a situation where
conpliance with the protocol woul d have necessitated a possibly
infinite buffer on the proxy.

An exanpl e process for decodi ng a Chunked-Body is presented in
appendi x 19. 4. 6.

Al'l HTTP/ 1.1 applications MJST be able to receive and decode the
"chunked" transfer-coding, and MJST ignore chunk-extensi on extensions
they do not understand.

3.7 Media Types
HTTP uses Internet Media Types [17] in the Content-Type (section

14.17) and Accept (section 14.1) header fields in order to provide
open and extensible data typing and type negotiation

medi a-type = type "/" subtype *(";" paraneter)
type = token
subt ype = token

Paraneters MAY foll ow the type/subtype in the formof attribute/val ue
pairs (as defined in section 3.6).

The type, subtype, and paraneter attribute nanmes are case-

i nsensitive. Parameter values might or might not be case-sensitive,
dependi ng on the semantics of the paraneter nane. Linear white space
(LW5) MJUST NOT be used between the type and subtype, nor between an
attribute and its value. The presence or absence of a paraneter m ght
be significant to the processing of a nedia-type, depending on its
definition within the nedia type registry.

Fielding, et al. St andards Track [Page 26]

RFC 2616 HTTP/ 1.1 June 1999

Note that sone ol der HTTP applications do not recognize nedia type
paraneters. \Wien sending data to ol der HITP applications,

i mpl enent ati ons SHOULD only use media type paraneters when they are
required by that type/subtype definition

Medi a-type values are registered with the Internet Assigned Nunber
Authority (I ANA [19]). The nedia type registration process is
outlined in RFC 1590 [17]. Use of non-registered nedia types is

di scour aged.

3.7.1 Canonicalization and Text Defaults

Internet nedia types are registered with a canonical form An
entity-body transferred via HTTP nessages MJST be represented in the
appropriate canonical formprior to its transm ssion except for
"text" types, as defined in the next paragraph

When in canonical form nedia subtypes of the "text" type use CRLF as
the text Iine break. HTTP rel axes this requirenent and all ows the
transport of text media with plain CR or LF alone representing a |line
break when it is done consistently for an entire entity-body. HTTP
applications MJST accept CRLF, bare CR, and bare LF as being
representative of a line break in text nedia received via HITP. In
addition, if the text is represented in a character set that does not
use octets 13 and 10 for CR and LF respectively, as is the case for
sonme nulti-byte character sets, HTTP allows the use of whatever octet
sequences are defined by that character set to represent the

equi val ent of CR and LF for line breaks. This flexibility regarding
line breaks applies only to text media in the entity-body; a bare CR
or LF MUST NOT be substituted for CRLF within any of the HITP control
structures (such as header fields and nmultipart boundaries).

If an entity-body is encoded with a content-coding, the underlying
data MJUST be in a form defined above prior to being encoded.

The "charset" paranmeter is used with sone nedia types to define the
character set (section 3.4) of the data. When no explicit charset
paranmeter is provided by the sender, media subtypes of the "text"
type are defined to have a default charset value of "ISO 8859-1" when
received via HITP. Data in character sets other than "I SO 8859-1" or
its subsets MJUST be | abel ed with an appropriate charset val ue. See
section 3.4.1 for conpatibility probl ens.

3.7.2 Multipart Types
M ME provides for a nunber of "multipart" types -- encapsul ations of

one or nore entities within a single nessage-body. Al nultipart
types share a comon syntax, as defined in section 5.1.1 of RFC 2046

Fielding, et al. St andards Track [Page 27]

RFC 2616 HTTP/ 1.1 June 1999

[40], and MUST include a boundary paraneter as part of the nedia type
val ue. The nessage body is itself a protocol el enent and MJST
therefore use only CRLF to represent |ine breaks between body-parts.
Unli ke in RFC 2046, the epil ogue of any multipart nmessage MJST be
enpty; HITP applications MJUST NOT transmt the epilogue (even if the
original nultipart contains an epilogue). These restrictions exist in
order to preserve the self-delimting nature of a nultipart nessage-
body, wherein the "end" of the nessage-body is indicated by the
ending nultipart boundary.

In general, HITP treats a nultipart nessage-body no differently than
any other nmedia type: strictly as payl oad. The one exception is the
"mul tipart/byteranges" type (appendix 19.2) when it appears in a 206
(Partial Content) response, which will be interpreted by sonme HITP
cachi ng nechani sns as described in sections 13.5.4 and 14.16. In al
ot her cases, an HTTP user agent SHOULD foll ow the sane or sinilar
behavior as a M ME user agent would upon receipt of a nmultipart type.
The M ME header fields within each body-part of a multipart nmessage-
body do not have any significance to HITP beyond that defined by
their MM semanti cs.

In general, an HTTP user agent SHOULD follow the sanme or sinmlar
behavi or as a M ME user agent woul d upon receipt of a nultipart type.
If an application receives an unrecogni zed multipart subtype, the
application MUST treat it as being equivalent to "nultipart/n xed"

Note: The "nultipart/formdata” type has been specifically defined
for carrying formdata suitable for processing via the POST
request nethod, as described in RFC 1867 [15].

3.8 Product Tokens

Product tokens are used to allow comuni cating applications to
identify thensel ves by software nane and version. Mst fields using
product tokens also allow sub-products which forma significant part
of the application to be |isted, separated by white space. By
convention, the products are listed in order of their significance
for identifying the application.

pr oduct
product - ver si on

token ["/" product-version]
t oken

Exanpl es:

User - Agent: CERN- Li neMbde/ 2. 15 |i bww/ 2. 17b3
Server: Apache/0.8.4

Fielding, et al. St andards Track [Page 28]

RFC 2616 HTTP/ 1.1 June 1999

Product tokens SHOULD be short and to the point. They MJUST NOT be
used for advertising or other non-essential information. Although any
t oken character MAY appear in a product-version, this token SHOULD
only be used for a version identifier (i.e., successive versions of
the sane product SHOULD only differ in the product-version portion of
t he product val ue).

3.9 Quality Val ues

HTTP content negotiation (section 12) uses short "floating point"
nunbers to indicate the relative inportance ("weight") of various
negoti abl e paraneters. A weight is nornalized to a real nunmber in
the range 0 through 1, where 0 is the nininmumand 1 the nmaxinmm
value. |If a paraneter has a quality value of 0, then content with
this paraneter is ‘not acceptable’ for the client. HITP/ 1.1
applications MJST NOT generate nore than three digits after the
deci mal point. User configuration of these values SHOULD al so be
limted in this fashion.

1)
1)

"Quality values" is a msnomer, since these values nerely represent
relative degradation in desired quality.

qval ue =("0" ["." 0*3DIGT
| ("1 [t 0v3(n0")

3. 10 Language Tags

A language tag identifies a natural |anguage spoken, witten, or

ot herwi se conveyed by human beings for conmunication of information
to other human beings. Conputer |anguages are explicitly excluded.
HTTP uses | anguage tags within the Accept-Language and Content -
Language fi el ds.

The syntax and registry of HTTP | anguage tags is the same as that
defined by RFC 1766 [1]. In summary, a | anguage tag is conposed of 1
or nore parts: A prinmary |anguage tag and a possibly enpty series of

subt ags:
| anguage-tag = prinmary-tag *("-" subtag)
prinmary-tag = 1*8ALPHA
subt ag = 1*8ALPHA

White space is not allowed within the tag and all tags are case-
i nsensitive. The name space of |anguage tags is adninistered by the
| ANA. Exanpl e tags include:

en, en-US, en-cockney, i-cherokee, x-pig-latin

Fielding, et al. St andards Track [Page 29]

RFC 2616 HTTP/ 1.1 June 1999

where any two-letter prinmary-tag is an | SO 639 | anguage abbrevi ation
and any two-letter initial subtag is an | SO 3166 country code. (The
| ast three tags above are not registered tags; all but the last are
exanpl es of tags which could be registered in future.)

3.11 Entity Tags

Entity tags are used for conparing two or nore entities fromthe sane
requested resource. HITP/ 1.1 uses entity tags in the ETag (section
14.19), If-Match (section 14.24), |f-None-Match (section 14.26), and
| f-Range (section 14.27) header fields. The definition of how they
are used and conpared as cache validators is in section 13.3.3. An
entity tag consists of an opaque quoted string, possibly prefixed by
a weakness i ndicator.

entity-tag
weak
opaque-t ag

[weak] opaque-tag
IIWII
guot ed-string

A "strong entity tag" MAY be shared by two entities of a resource
only if they are equival ent by octet equality.

A "weak entity tag," indicated by the "W" prefix, MAY be shared by
two entities of a resource only if the entities are equival ent and
could be substituted for each other with no significant change in
semantics. A weak entity tag can only be used for weak conparison

An entity tag MUST be unique across all versions of all entities
associated with a particular resource. A given entity tag val ue MAY
be used for entities obtained by requests on different URIs. The use
of the sane entity tag value in conjunction with entities obtained by
requests on different URIs does not inply the equival ence of those
entities.

3.12 Range Units

HTTP/ 1.1 allows a client to request that only part (a range of) the
response entity be included within the response. HTTP/ 1.1 uses range
units in the Range (section 14.35) and Content-Range (section 14.16)
header fields. An entity can be broken down into subranges accordi ng
to various structural units.

range- unit
byt es- uni t
ot her-range-unit

bytes-unit | other-range-unit
"byt es"
t oken

The only range unit defined by HTTP/1.1 is "bytes". HITP/1.1
i mpl ement ati ons MAY ignore ranges specified using other units.

Fielding, et al. St andards Track [Page 30]

RFC 2616 HTTP/ 1.1 June 1999

HTTP/ 1.1 has been designed to allow inplenentations of applications
that do not depend on know edge of ranges.

4 HTTP Message
4.1 Message Types

HTTP nessages consi st of requests fromclient to server and responses
fromserver to client.

HTTP- nessage = Request | Response ; HTTP/ 1.1 messages

Request (section 5) and Response (section 6) nessages use the generic
nmessage format of RFC 822 [9] for transferring entities (the payl oad
of the nessage). Both types of nmessage consist of a start-line, zero
or nore header fields (also known as "headers"), an enpty line (i.e.
a line with nothing preceding the CRLF) indicating the end of the
header fields, and possibly a nmessage-body.

start-line
*(message- header CRLF)

generi c- nessage

CRLF
[nessage- body]
start-line = Request-Line | Status-Line

In the interest of robustness, servers SHOULD i gnore any enpty
line(s) received where a Request-Line is expected. In other words, if
the server is reading the protocol stream at the beginning of a
nessage and receives a CRLF first, it should ignore the CRLF.

Certain buggy HTTP/ 1.0 client inplenmentations generate extra CRLF' s
after a POST request. To restate what is explicitly forbidden by the
BNF, an HTTP/ 1.1 client MJST NOT preface or follow a request with an
extra CRLF.

4.2 Message Headers

HTTP header fields, which include general -header (section 4.5),
request - header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields, follow the sanme generic fornmat as
that given in Section 3.1 of RFC 822 [9]. Each header field consists
of a nane followed by a colon (":") and the field value. Field nanes
are case-insensitive. The field value MAY be preceded by any anount
of LWS, though a single SP is preferred. Header fields can be
extended over nultiple lines by preceding each extra line with at

| east one SP or HT. Applications ought to follow "comon forni', where
one is known or indicated, when generating HTTP constructs, since
there might exist sonme inplenentations that fail to accept anything

Fielding, et al. St andards Track [Page 31]

RFC 2616 HTTP/ 1.1 June 1999

beyond the conmon forns.
field-name ":"
t oken

*(field-content | LWS)

<t he OCTETs nmking up the field-val ue

and consisting of either *TEXT or conbinations
of token, separators, and quoted-string>

nmessage- header
field-nane
field-val ue
fiel d-cont ent

[field-value]

The field-content does not include any leading or trailing LW
linear white space occurring before the first non-whitespace
character of the field-value or after the |last non-whitespace
character of the field-value. Such leading or trailing LWs MAY be
renoved wit hout changing the semantics of the field value. Any LWS
that occurs between field-content MAY be replaced with a single SP
before interpreting the field value or forwardi ng the nessage
downstream

The order in which header fields with differing field nanes are
received is not significant. However, it is "good practice" to send
general - header fields first, followed by request-header or response-
header fields, and ending with the entity-header fields.

Mul ti pl e nessage- header fields with the same fiel d-nane MAY be
present in a nessage if and only if the entire field-value for that
header field is defined as a comm-separated list [i.e., #(values)].
It MUST be possible to conbine the nmultiple header fields into one
"field-nane: field-value" pair, wthout changing the semantics of the
nmessage, by appendi ng each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the sane
field-name are received is therefore significant to the
interpretation of the conbined field value, and thus a proxy MJST NOT
change the order of these field values when a nessage is forwarded.

4.3 Message Body

The nmessage-body (if any) of an HTTP nessage is used to carry the
entity-body associated with the request or response. The nessage- body
differs fromthe entity-body only when a transfer-codi ng has been
applied, as indicated by the Transfer-Encodi ng header field (section
14. 41).

nmessage- body = entity-body
| <entity-body encoded as per Transfer-Encodi ng>

Transf er- Encodi ng MJUST be used to indicate any transfer-codings

applied by an application to ensure safe and proper transfer of the
nmessage. Transfer-Encoding is a property of the nmessage, not of the

Fielding, et al. St andards Track [Page 32]

RFC 2616 HTTP/ 1.1 June 1999

entity, and thus MAY be added or renoved by any application along the
request/response chain. (However, section 3.6 places restrictions on
when certain transfer-codings may be used.)

The rules for when a nessage-body is allowed in a nessage differ for
requests and responses.

The presence of a message-body in a request is signaled by the

i nclusion of a Content-Length or Transfer-Encoding header field in
the request’s nessage- headers. A nmessage-body MJST NOT be included in
a request if the specification of the request nethod (section 5.1.1)
does not allow sending an entity-body in requests. A server SHOULD
read and forward a nmessage-body on any request; if the request nethod
does not include defined semantics for an entity-body, then the
message- body SHOULD be i gnored when handling the request.

For response nessages, whether or not a message-body is included with
a nmessage i s dependent on both the request nethod and the response
status code (section 6.1.1). Al responses to the HEAD request nethod
MUST NOT include a nessage-body, even though the presence of entity-
header fields mght |lead one to believe they do. Al 1xx
(informational), 204 (no content), and 304 (not nodified) responses
MUST NOT include a nessage-body. Al other responses do include a
nmessage- body, although it MAY be of zero |ength.

4.4 Message Length

The transfer-length of a nessage is the length of the nessage-body as
it appears in the nessage; that is, after any transfer-codings have
been applied. Wien a nessage-body is included with a nessage, the
transfer-length of that body is determ ned by one of the follow ng
(in order of precedence):

1. Any response nessage which "MJST NOT" include a nmessage-body (such
as the 1xx, 204, and 304 responses and any response to a HEAD
request) is always termnated by the first enpty line after the
header fields, regardless of the entity-header fields present in
t he nessage.

2.1f a Transfer-Encodi ng header field (section 14.41) is present and
has any value other than "identity", then the transfer-length is
defined by use of the "chunked" transfer-coding (section 3.6),
unl ess the nessage is terminated by cl osing the connection

3.1f a Content-Length header field (section 14.13) is present, its
decimal value in OCTETs represents both the entity-length and the
transfer-length. The Content-Length header field MJUST NOT be sent
if these two lengths are different (i.e., if a Transfer-Encoding

Fielding, et al. St andards Track [Page 33]

RFC 2616 HTTP/ 1.1 June 1999

header field is present). If a nessage is received with both a
Transf er - Encodi ng header field and a Content-Length header field,
the latter MJST be ignored.

4.1f the nessage uses the nmedia type "nultipart/byteranges", and the
ransfer-length is not otherw se specified, then this self-
elimting nmedia type defines the transfer-length. This nedia type
UST NOT be used unl ess the sender knows that the recipient can arse
it; the presence in a request of a Range header with ultiple byte-
range specifiers froma 1.1 client inplies that the lient can parse
mul ti part/ byteranges responses.

A range header might be forwarded by a 1.0 proxy that does not
understand nul ti part/byteranges; in this case the server MJST
delimt the nessage using nmethods defined in itens 1,3 or 5 of
this section.

5.By the server closing the connection. (C osing the connection
cannot be used to indicate the end of a request body, since that
woul d | eave no possibility for the server to send back a response.)

For compatibility with HTTP/ 1.0 applications, HTTP/ 1.1 requests
cont ai ni ng a nmessage-body MJST include a valid Content-Length header
field unless the server is known to be HTTP/1.1 conpliant. If a
request contains a nessage-body and a Content-Length is not given
the server SHOULD respond with 400 (bad request) if it cannot
determ ne the length of the nessage, or with 411 (length required) if
it wishes to insist on receiving a valid Content-Length.

Al HTTP/ 1.1 applications that receive entities MJST accept the
"chunked" transfer-coding (section 3.6), thus allow ng this nmechani sm
to be used for nessages when the nmessage | ength cannot be determ ned

i n advance.

Messages MUST NOT include both a Content-Length header field and a
non-identity transfer-coding. If the nmessage does include a non-
identity transfer-coding, the Content-Length MJST be ignored.

When a Content-Length is given in a nmessage where a nmessage-body is
allowed, its field value MUST exactly match the nunber of OCTETs in
t he nmessage-body. HTTP/ 1.1 user agents MJST notify the user when an
invalid length is received and detected.

4.5 General Header Fields
There are a few header fields which have general applicability for

both request and response nessages, but which do not apply to the
entity being transferred. These header fields apply only to the

Fielding, et al. St andards Track [Page 34]

RFC 2616 HTTP/ 1.1 June 1999

message being transmtted.

gener al - header = Cache-Control ; Section 14.9
| Connection ; Section 14.10
| Date ; Section 14.18
| Pragma ; Section 14. 32
| Trailer ; Section 14. 40
| Transfer-Encoding ; Section 14.41
| Upgrade ; Section 14.42
| Via ; Section 14. 45
| Warning ; Section 14. 46

Gener al - header field nanes can be extended reliably only in
conbination with a change in the protocol version. However, new or
experimental header fields may be given the semantics of genera
header fields if all parties in the comunication recognize themto
be general - header fields. Unrecognized header fields are treated as
entity-header fields.

5 Request
A request nessage froma client to a server includes, within the

first line of that nessage, the nethod to be applied to the resource,
the identifier of the resource, and the protocol version in use.

Request = Request-Li ne ; Section 5.1
*((general - header ; Section 4.5
| request-header ; Section 5.3
| entity-header) CRLF) ; Section 7.1
CRLF
[nmessage-body] ; Section 4.3

5.1 Request-Line
The Request-Line begins with a nethod token, followed by the
Request-URI and the protocol version, and ending with CRLF. The
el ements are separated by SP characters. No CR or LF is allowed
except in the final CRLF sequence.

Request - Li ne = Method SP Request-URI SP HTTP-Version CRLF

Fielding, et al. St andards Track [Page 35]

RFC 2616 HTTP/ 1.1 June 1999

5.1.1 Method

The Method token indicates the nethod to be perfornmed on the
resource identified by the Request-URI. The nethod is case-sensitive.

ext ensi on- net hod
ext ensi on- net hod = t oken

Met hod = "OPTI ONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD' ; Section 9.4
| "POST" ; Section 9.5
| "PUT" ; Section 9.6
| " DELETE" ; Section 9.7
| " TRACE" ; Section 9.8
| " CONNECT" ; Section 9.9
|

The list of methods allowed by a resource can be specified in an
Al l ow header field (section 14.7). The return code of the response
always notifies the client whether a nmethod is currently allowed on a
resource, since the set of allowed nethods can change dynanically. An
origin server SHOULD return the status code 405 (Met hod Not All owed)
if the nethod is known by the origin server but not allowed for the
requested resource, and 501 (Not Inplenmented) if the nethod is

unr ecogni zed or not inplenmented by the origin server. The nethods GET
and HEAD MUST be supported by all general -purpose servers. Al other
met hods are OPTI ONAL; however, if the above nethods are inplenented,
they MJUST be inplenmented with the sane semantics as those specified
in section 9.

5.1. 2 Request-URl

The Request-URI is a Uniform Resource Identifier (section 3.2) and
identifies the resource upon which to apply the request.

Request - URI = "*" | absoluteURl | abs_path | authority

The four options for Request-URI are dependent on the nature of the
request. The asterisk "*" means that the request does not apply to a
particul ar resource, but to the server itself, and is only all owed
when the net hod used does not necessarily apply to a resource. One
exanpl e woul d be

OPTIONS * HTTP/ 1.1
The absol uteURI formis REQU RED when the request is being nade to a
proxy. The proxy is requested to forward the request or service it

froma valid cache, and return the response. Note that the proxy MAY
forward the request on to another proxy or directly to the server

Fielding, et al. St andards Track [Page 36]

RFC 2616 HTTP/ 1.1 June 1999

specified by the absoluteURI. In order to avoid request |oops, a
proxy MJST be able to recognize all of its server nanes, including
any aliases, local variations, and the nuneric |IP address. An exanple
Request - Li ne woul d be:

GET http://ww. w3. or g/ pub/ WMV TheProject.html HTTP/ 1.1

To allow for transition to absoluteURIs in all requests in future
versions of HITP, all HITP/ 1.1 servers MJST accept the absol ut eUR
formin requests, even though HITP/ 1.1 clients will only generate
themin requests to proxies.

The authority formis only used by the CONNECT net hod (section 9.9).

The nost common form of Request-URlI is that used to identify a
resource on an origin server or gateway. In this case the absol ute
path of the URI MJST be transmtted (see section 3.2.1, abs path) as
the Request-URI, and the network | ocation of the URI (authority) MJST
be transnmitted in a Host header field. For exanple, a client w shing
to retrieve the resource above directly fromthe origin server would
create a TCP connection to port 80 of the host "www. w3.org" and send
the lines:

GET / pub/ WAV TheProj ect. htm HITP/ 1.1
Host: www. w3. org

foll owed by the remai nder of the Request. Note that the absolute path
cannot be enpty; if none is present in the original URI, it MJST be
given as "/" (the server root).

The Request-URI is transmitted in the format specified in section
3.2.1. If the Request-URlI is encoded using the "% HEX HEX" encodi ng
[42], the origin server MUST decode the Request-URl in order to
properly interpret the request. Servers SHOULD respond to invalid
Request-URI's with an appropriate status code.

A transparent proxy MJST NOT rewite the "abs_path" part of the
recei ved Request-URI when forwarding it to the next inbound server
except as noted above to replace a null abs_path with "/".

Note: The "no rewrite" rule prevents the proxy from changing the
meani ng of the request when the origin server is inproperly using
a non-reserved URI character for a reserved purpose. |Inplenentors
shoul d be aware that sone pre-HTTP/ 1.1 proxies have been known to
rewite the Request-URI.

Fielding, et al. St andards Track [Page 37]

RFC 2616 HTTP/ 1.1 June 1999

5.2 The Resource ldentified by a Request

The exact resource identified by an Internet request is determ ned by
exani ni ng both the Request-URI and the Host header field.

An origin server that does not allow resources to differ by the
requested host MAY ignore the Host header field val ue when
determining the resource identified by an HTTP/ 1.1 request. (But see
section 19.6.1.1 for other requirements on Host support in HTTP/1.1.)

An origin server that does differentiate resources based on the host
requested (sonetimes referred to as virtual hosts or vanity host
names) MJST use the following rules for determning the requested
resource on an HTTP/ 1.1 request:

1. If Request-URlI is an absoluteURlI, the host is part of the
Request-URI. Any Host header field value in the request MJST be
i gnor ed.

2. |If the Request-URlI is not an absoluteURlI, and the request includes
a Host header field, the host is determ ned by the Host header
field val ue.

3. If the host as determined by rule 1 or 2 is not a valid host on
the server, the response MJST be a 400 (Bad Request) error nessage.

Reci pi ents of an HTTP/ 1.0 request that |acks a Host header field MAY
attenpt to use heuristics (e.g., exam nation of the URI path for
sonet hi ng unique to a particular host) in order to determ ne what
exact resource is being requested.

5.3 Request Header Fields

The request-header fields allowthe client to pass additiona
i nfornmati on about the request, and about the client itself, to the
server. These fields act as request nodifiers, with semantics
equi valent to the paraneters on a programm ng | anguage net hod

i nvocati on.

request - header = Accept ; Section 14.1
| Accept - Charset ; Section 14.2
| Accept-Encoding ; Section 14.3
| Accept-Language ; Section 14.4
| Authorization ; Section 14.8
| Expect ; Section 14.20
| From ; Section 14.22
| Host ; Section 14.23
| 1f-Match ; Section 14.24

Fielding, et al. St andards Track [Page 38]

RFC 2616 HTTP/ 1.1 June 1999

| If-Mdified-Since ; Section 14.25
| If-None-Match ; Section 14.26
| If-Range ; Section 14.27
| 1f-Unnodified-Since ; Section 14.28
| Max- Forwar ds ; Section 14. 31
| Proxy-Authorization ; Section 14.34
| Range ; Section 14.35
| Referer ; Section 14. 36
| TE ; Section 14. 39
| User-Agent ; Section 14.43

Request - header field names can be extended reliably only in
conbination with a change in the protocol version. However, new or
experinmental header fields MAY be given the semantics of request-
header fields if all parties in the comunication recognize themto
be request-header fields. Unrecognized header fields are treated as
entity-header fields.

6 Response

After receiving and interpreting a request nessage, a server responds
with an HTTP response nessage.

Response = St at us-Line ; Section 6.1
*((general - header ; Section 4.5
| response-header ; Section 6.2
| entity-header) CRLF) ; Section 7.1
CRLF
[nmessage-body] ; Section 7.2

6.1 Status-Line

The first Iine of a Response nessage is the Status-Line, consisting
of the protocol version followed by a nuneric status code and its
associ ated textual phrase, with each el enent separated by SP
characters. No CRor LF is allowed except in the final CRLF sequence.

St at us- Li ne = HTTP-Versi on SP St atus-Code SP Reason- Phrase CRLF
6.1.1 Status Code and Reason Phrase

The Status-Code elenent is a 3-digit integer result code of the
attenpt to understand and satisfy the request. These codes are fully
defined in section 10. The Reason-Phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by autonmata and the Reason-Phrase is intended for the hunan
user. The client is not required to exam ne or display the Reason-
Phr ase.

Fielding, et al. St andards Track [Page 39]

RFC 2616 HTTP/ 1.1 June 1999

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:

- 1xx: Informational - Request received, continuing process

- 2xX: Success - The action was successfully received,
under st ood, and accepted

- 3xx: Redirection - Further action nust be taken in order to
conpl ete the request

- 4xx: Client Error - The request contains bad syntax or cannot
be fulfilled

- bxx: Server Error - The server failed to fulfill an apparently
val id request

The individual values of the numeric status codes defined for

HTTP/ 1.1, and an exanpl e set of correspondi ng Reason-Phrase’s, are
presented bel ow. The reason phrases listed here are only
recommendations -- they MAY be replaced by | ocal equival ents w thout
affecting the protocol.

St at us- Code =
"100" ; Section 10.1.1: Continue
| "101" ; Section 10.1.2: Switching Protocols
| "200" ; Section 10.2.1: K
| "201" ; Section 10.2.2: Created
| "202" ; Section 10.2.3: Accepted
| "203" ; Section 10.2.4: Non-Authoritative Infornmation
| "204" ; Section 10.2.5: No Content
| "205" ; Section 10.2.6: Reset Content
| "206" ; Section 10.2.7: Partial Content
| "300" ; Section 10.3.1: Muiltiple Choices
| "301" ; Section 10.3.2: Myved Permanently
| "302" ; Section 10.3.3: Found
| "303" ; Section 10.3.4: See O her
| "304" ; Section 10.3.5: Not Modified
| "305" ; Section 10.3.6: Use Proxy
| "307" ; Section 10.3.8: Tenporary Redirect
| "400" ; Section 10.4.1: Bad Request
| "401" ; Section 10.4.2: Unauthorized
| "402" ; Section 10.4.3: Payment Required
| "403" ; Section 10.4.4: Forbidden
| "404" ; Section 10.4.5: Not Found
| "405" ; Section 10.4.6: Method Not All owed
| "406" ; Section 10.4.7: Not Acceptable

Fielding, et al. St andards Track [Page 40]

RFC 2616 HTTP/ 1.1 June 1999

| "407" ; Section 10.4.8: Proxy Authentication Required
| "408" ; Section 10.4.9: Request Tine-out

| "409" ; Section 10.4.10: Conflict

| "410" ; Section 10.4.11: Cone

| "411" ; Section 10.4.12: Length Required

| "412" ; Section 10.4.13: Precondition Failed

| "413" ; Section 10.4.14: Request Entity Too Large

| "414" ; Section 10.4.15: Request-URI Too Large

| "415" ; Section 10.4.16: Unsupported Media Type

| "416" ; Section 10.4.17: Requested range not satisfiable
| "417" ; Section 10.4.18: Expectation Failed

| "500" ; Section 10.5.1: Internal Server Error

| "501" ; Section 10.5.2: Not | nplenented

| "502" ; Section 10.5.3: Bad Gateway

| "503" ; Section 10.5.4: Service Unavail able

| "504" ; Section 10.5.5: Gateway Ti ne-out

| "505" ; Section 10.5.6: HITP Version not supported

|

ext ensi on- code

3DAT
*<TEXT, excluding CR, LF>

ext ensi on- code =
Reason- Phrase =
HTTP status codes are extensible. HTTP applications are not required
to understand the nmeaning of all registered status codes, though such
understanding i s obviously desirable. However, applications MJST
understand the class of any status code, as indicated by the first
digit, and treat any unrecogni zed response as being equivalent to the
x00 status code of that class, with the exception that an

unr ecogni zed response MJUST NOT be cached. For exanple, if an
unrecogni zed status code of 431 is received by the client, it can
safely assume that there was sonething wwong with its request and
treat the response as if it had received a 400 status code. In such
cases, user agents SHOULD present to the user the entity returned
with the response, since that entity is likely to include human-
readabl e information which will explain the unusual status.

6.2 Response Header Fields

The response-header fields allow the server to pass additiona

i nformati on about the response which cannot be placed in the Status-
Li ne. These header fields give information about the server and about
further access to the resource identified by the Request-URI

response- header = Accept - Ranges ; Section 14.5
| Age ; Section 14.6
| ETag ; Section 14.19
| Location ; Section 14.30
| Proxy-Authenticate ; Section 14.33

Fielding, et al. St andards Track [Page 41]

RFC 2616 HTTP/ 1.1 June 1999

| Retry-After ; Section 14. 37
| Server ; Section 14.38
| Vary ; Section 14. 44
| WAV Aut henti cate ; Section 14. 47

Response- header field nanes can be extended reliably only in
conbination with a change in the protocol version. However, new or
experimental header fields MAY be given the senmantics of response-
header fields if all parties in the conmmunication recognize themto
be response-header fields. Unrecognized header fields are treated as
entity-header fields.

7 Entity

Request and Response nessages MAY transfer an entity if not otherw se
restricted by the request nethod or response status code. An entity
consists of entity-header fields and an entity-body, although sone
responses will only include the entity-headers.

In this section, both sender and recipient refer to either the client
or the server, depending on who sends and who receives the entity.

7.1 Entity Header Fields

Entity-header fields define netainformation about the entity-body or
if no body is present, about the resource identified by the request.
Some of this netainformation is OPTIONAL; sonme mi ght be REQUI RED by
portions of this specification.

entity-header = Allow ; Section 14.7
| Content-Encodi ng ; Section 14.11
| Content-Language ; Section 14.12
| Content-Length ; Section 14.13
| Content-Location ; Section 14.14
| Content- M5 ; Section 14.15
| Content-Range ; Section 14.16
| Content-Type ; Section 14.17
| Expires ; Section 14.21
| Last-Modified ; Section 14.29
|

ext ensi on- header
ext ensi on- header = nmessage- header

The extensi on- header mechani sm all ows additional entity-header fields
to be defined without changing the protocol, but these fields cannot
be assuned to be recogni zabl e by the recipient. Unrecogni zed header
fields SHOULD be ignored by the recipient and MUST be forwarded by
transparent proxies.

Fielding, et al. St andards Track [Page 42]

RFC 2616 HTTP/ 1.1 June 1999

7.2 Entity Body

The entity-body (if any) sent with an HTTP request or response is in
a format and encodi ng defined by the entity-header fields.

entity-body = *OCTET

An entity-body is only present in a nmessage when a nessage-body is
present, as described in section 4.3. The entity-body is obtained
fromthe nessage-body by decodi ng any Transfer-Encodi ng that m ght
have been applied to ensure safe and proper transfer of the nessage.

7.2.1 Type

When an entity-body is included with a nessage, the data type of that
body is deternined via the header fields Content-Type and Content-
Encodi ng. These define a two-|ayer, ordered encodi ng nodel :

entity-body := Content-Encodi ng(Content-Type(data))

Content - Type specifies the nedia type of the underlying data.

Cont ent - Encodi ng may be used to indicate any additional content
codings applied to the data, usually for the purpose of data
conpression, that are a property of the requested resource. There is
no default encoding.

Any HTTP/ 1.1 nmessage containing an entity-body SHOULD i nclude a
Cont ent - Type header field defining the nedia type of that body. If
and only if the nmedia type is not given by a Content-Type field, the
reci pient MAY attenpt to guess the nedia type via inspection of its
content and/or the nane extension(s) of the URI used to identify the
resource. If the media type remai ns unknown, the recipient SHOULD
treat it as type "application/octet-streant.

7.2.2 Entity Length
The entity-length of a nessage is the length of the nessage-body

bef ore any transfer-codi ngs have been applied. Section 4.4 defines
how the transfer-length of a nessage-body is deternined.

Fielding, et al. St andards Track [Page 43]

RFC 2616 HTTP/ 1.1 June 1999

8 Connecti ons
8.1 Persistent Connections
8.1.1 Purpose

Prior to persistent connections, a separate TCP connecti on was
established to fetch each URL, increasing the | oad on HTTP servers
and causi ng congestion on the Internet. The use of inline inages and
other associated data often require a client to make multiple
requests of the sane server in a short anmpount of tine. Analysis of

t hese performance problens and results froma prototype

i npl enentation are available [26] [30]. I|nplenentation experience and
nmeasur enents of actual HTTP/ 1.1 (RFC 2068) inplenmentations show good
results [39]. Alternatives have al so been explored, for exanple,

T/ TCP [27].

Persi stent HTTP connecti ons have a nunber of advantages:

- By opening and closing fewer TCP connections, CPUtine is saved
in routers and hosts (clients, servers, proxies, gateways,
tunnels, or caches), and nenory used for TCP protocol contro
bl ocks can be saved in hosts.

- HITP requests and responses can be pipelined on a connection
Pipelining allows a client to make nultiple requests wthout
waiting for each response, allowi ng a single TCP connection to
be used nmuch nore efficiently, with nuch | ower el apsed tine.

- Network congestion is reduced by reduci ng the nunber of packets
caused by TCP opens, and by allowing TCP sufficient tine to
determ ne the congestion state of the network.

- Latency on subsequent requests is reduced since there is no tine
spent in TCP's connection openi ng handshake.

- HITP can evol ve nore gracefully, since errors can be reported
wi t hout the penalty of closing the TCP connection. Cients using
future versions of HTTP nmight optim stically try a new feature,
but if comunicating with an ol der server, retry with old
semantics after an error is reported.

HTTP i npl ement ati ons SHOULD i npl enent persi stent connecti ons.

Fielding, et al. St andards Track [Page 44]

RFC 2616 HTTP/ 1.1 June 1999

8.1.2 Overall Operation

A significant difference between HTTP/ 1.1 and earlier versions of
HTTP is that persistent connections are the default behavior of any
HTTP connection. That is, unless otherw se indicated, the client
SHOULD assume that the server will maintain a persistent connection
even after error responses fromthe server

Persi stent connections provide a nechanismby which a client and a
server can signal the close of a TCP connection. This signaling takes
pl ace using the Connection header field (section 14.10). Once a cl ose
has been signaled, the client MJUST NOT send any nore requests on that
connecti on.

8.1.2.1 Negotiation

An HTTP/ 1.1 server MAY assume that a HTTP/1.1 client intends to

mai ntain a persistent connection unless a Connection header including
t he connection-token "cl ose" was sent in the request. If the server
chooses to close the connection inmmedi ately after sending the
response, it SHOULD send a Connection header including the
connection-token cl ose.

An HTTP/ 1.1 client MAY expect a connection to remnain open, but would
decide to keep it open based on whether the response froma server
contai ns a Connecti on header with the connection-token close. In case
the client does not want to maintain a connection for nore than that
request, it SHOULD send a Connection header including the

connecti on-token cl ose.

If either the client or the server sends the close token in the
Connection header, that request becones the |ast one for the
connecti on.

Cients and servers SHOULD NOT assune that a persistent connection is
mai ntai ned for HITP versions less than 1.1 unless it is explicitly
signal ed. See section 19.6.2 for nore information on backward
conpatibility with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection MJST

have a sel f-defined nessage length (i.e., one not defined by closure
of the connection), as described in section 4. 4.

Fielding, et al. St andards Track [Page 45]

RFC 2616 HTTP/ 1.1 June 1999

8.1.2.2 Pipelining

A client that supports persistent connections MAY "pipeline" its
requests (i.e., send nultiple requests without waiting for each
response). A server MJIST send its responses to those requests in the
sane order that the requests were received.

Cients which assunme persistent connections and pipeline i mediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attenpt fails. If a client does
such a retry, it MJST NOT pipeline before it knows the connection is
persistent. Clients MJST also be prepared to resend their requests if
the server closes the connection before sending all of the
correspondi ng responses.

Cdients SHOULD NOT pipeline requests using non-idenpotent nethods or
non-i denpot ent sequences of nethods (see section 9.1.2). QGherwi se, a
premature term nation of the transport connection could lead to
indeterm nate results. A client wishing to send a non-i denpot ent
request SHOULD wait to send that request until it has received the
response status for the previous request.

8.1.3 Proxy Servers

It is especially inmportant that proxies correctly inplenment the
properties of the Connection header field as specified in section
14. 10.

The proxy server MJST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Each persistent connection applies to only one transport
Iink.

A proxy server MJST NOT establish a HTTP/ 1.1 persistent connection
with an HTTP/ 1.0 client (but see RFC 2068 [33] for information and
di scussion of the problenms with the Keep-Alive header inplenented by
many HTTP/ 1.0 clients).

8.1.4 Practical Considerations

Servers will usually have sone tine-out val ue beyond which they will
no |l onger nmaintain an inactive connection. Proxy servers m ght nake
this a higher value since it is likely that the client will be naking
nore connections through the sane server. The use of persistent
connections places no requirenents on the length (or existence) of
this time-out for either the client or the server

Fielding, et al. St andards Track [Page 46]

RFC 2616 HTTP/ 1.1 June 1999

When a client or server wishes to tinme-out it SHOULD i ssue a gracefu
close on the transport connection. Cients and servers SHOULD both
constantly watch for the other side of the transport close, and
respond to it as appropriate. If a client or server does not detect
the other side’'s close pronptly it could cause unnecessary resource
drain on the network.

A client, server, or proxy MAY cl ose the transport connection at any
time. For exanple, a client nmight have started to send a new request
at the same tine that the server has decided to close the "idle"
connection. Fromthe server’s point of view, the connection is being
closed while it was idle, but fromthe client’s point of view a
request is in progress.

This means that clients, servers, and proxies MJST be able to recover
from asynchronous close events. Cient software SHOULD reopen the
transport connection and retransmt the aborted sequence of requests
wi t hout user interaction so long as the request sequence is

i dempotent (see section 9.1.2). Non-idenpotent nethods or sequences
MUST NOT be autonatically retried, although user agents MAY offer a
human operator the choice of retrying the request(s). Confirmation by
user-agent software with semantic understanding of the application
MAY substitute for user confirmation. The automatic retry SHOULD NOT
be repeated if the second sequence of requests fails.

Servers SHOULD al ways respond to at |east one request per connection
if at all possible. Servers SHOULD NOT cl ose a connection in the

m ddl e of transmtting a response, unless a network or client failure
i s suspected.

Cients that use persistent connections SHOULD linit the nunber of

si mul t aneous connections that they maintain to a given server. A
singl e-user client SHOULD NOT naintain nmore than 2 connections with
any server or proxy. A proxy SHOULD use up to 2*N connections to
anot her server or proxy, where N is the nunber of sinultaneously
active users. These guidelines are intended to inprove HTTP response
times and avoid congesti on.

8.2 Message Transmi ssion Requirements

8.2.1 Persistent Connections and Fl ow Contro
HTTP/ 1.1 servers SHOULD nmi ntai n persistent connections and use TCP' s
flow control nechanisns to resolve tenporary overloads, rather than

term nating connections with the expectation that clients will retry.
The latter techni que can exacerbate network congestion

Fielding, et al. St andards Track [Page 47]

RFC 2616 HTTP/ 1.1 June 1999

8.2.2 Monitoring Connections for Error Status Messages

An HTTP/ 1.1 (or later) client sending a nessage-body SHOULD nonitor
the network connection for an error status while it is transnmitting
the request. If the client sees an error status, it SHOULD

i medi ately cease transmtting the body. If the body is being sent
using a "chunked" encoding (section 3.6), a zero |length chunk and
enpty trailer MAY be used to prematurely mark the end of the nessage.
I f the body was preceded by a Content-Length header, the client MJST
cl ose the connection

8.2.3 Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status (see section 10.1.1) is to
allow a client that is sending a request nessage with a request body
to determine if the origin server is willing to accept the request
(based on the request headers) before the client sends the request
body. In sone cases, it mght either be inappropriate or highly
inefficient for the client to send the body if the server will reject
the nmessage wi t hout | ooking at the body.

Requirements for HITP/ 1.1 clients:

- If aclient will wait for a 100 (Continue) response before
sendi ng the request body, it MJST send an Expect request-header
field (section 14.20) with the "100-conti nue" expectation

- Aclient MUST NOT send an Expect request-header field (section
14.20) with the "100-continue" expectation if it does not intend
to send a request body.

Because of the presence of older inplenentations, the protocol allows
anbi guous situations in which a client may send "Expect: 100-
continue" wthout receiving either a 417 (Expectation Fail ed) status
or a 100 (Continue) status. Therefore, when a client sends this
header field to an origin server (possibly via a proxy) fromwhich it
has never seen a 100 (Continue) status, the client SHOULD NOT wait
for an indefinite period before sending the request body.

Requirenments for HTTP/ 1.1 origin servers:

- Upon receiving a request which includes an Expect request-header
field with the "100-conti nue" expectation, an origin server MJST
ei ther respond with 100 (Continue) status and continue to read
fromthe input stream or respond with a final status code. The
origin server MJUST NOT wait for the request body before sending
the 100 (Continue) response. If it responds with a final status
code, it MAY close the transport connection or it MAY continue

Fielding, et al. St andards Track [Page 48]

RFC 2616 HTTP/ 1.1 June 1999

to read and discard the rest of the request. 1t MJST NOT
performthe requested nethod if it returns a final status code.

- An origin server SHOULD NOT send a 100 (Continue) response if
t he request nmessage does not include an Expect request-header
field with the "100-conti nue" expectation, and MJST NOT send a
100 (Continue) response if such a request cones froman HTTP/ 1.0
(or earlier) client. There is an exception to this rule: for
conpatibility with RFC 2068, a server MAY send a 100 (Conti nue)
status in response to an HTTP/ 1.1 PUT or POST request that does
not include an Expect request-header field with the "100-
continue" expectation. This exception, the purpose of which is
to mnimze any client processing del ays associated with an
undecl ared wait for 100 (Continue) status, applies only to
HTTP/ 1.1 requests, and not to requests with any other HITP-
versi on val ue.

- An origin server MAY onmit a 100 (Continue) response if it has
al ready received sone or all of the request body for the
correspondi ng request.

- An origin server that sends a 100 (Continue) response MJST
ultimately send a final status code, once the request body is
received and processed, unless it ternminates the transport
connection prematurely.

- If an origin server receives a request that does not include an
Expect request-header field with the "100-conti nue" expectation,
the request includes a request body, and the server responds
with a final status code before reading the entire request body
fromthe transport connection, then the server SHOULD NOT cl ose
the transport connection until it has read the entire request,
or until the client closes the connection. O herw se, the client
m ght not reliably receive the response nessage. However, this
requirenent is not be construed as preventing a server from
defendi ng itsel f agai nst denial-of-service attacks, or from
badly broken client inplenentations.

Requi rements for HTTP/ 1.1 proxies:

- If a proxy receives a request that includes an Expect request-
header field with the "100-conti nue" expectation, and the proxy
ei ther knows that the next-hop server conplies with HITP/ 1.1 or
hi gher, or does not know the HTTP version of the next-hop
server, it MJST forward the request, including the Expect header
field.

Fielding, et al. St andards Track [Page 49]

RFC 2616 HTTP/ 1.1 June 1999

- If the proxy knows that the version of the next-hop server is
HTTP/ 1.0 or lower, it MJST NOT forward the request, and it MJST
respond with a 417 (Expectation Fail ed) status.

- Proxies SHOULD maintain a cache recording the HTTP version
nunbers received fromrecently-referenced next-hop servers.

- A proxy MJST NOT forward a 100 (Continue) response if the
request nessage was received froman HTTP/1.0 (or earlier)
client and did not include an Expect request-header field with
the "100-conti nue" expectation. This requirenent overrides the
general rule for forwardi ng of 1xx responses (see section 10.1).

8.2.4 Cient Behavior if Server Prematurely C oses Connection

If an HTTP/ 1.1 client sends a request which includes a request body,
but whi ch does not include an Expect request-header field with the
"100-conti nue" expectation, and if the client is not directly
connected to an HTTP/1.1 origin server, and if the client sees the
connection close before receiving any status fromthe server, the
client SHOULD retry the request. |If the client does retry this
request, it MAY use the follow ng "binary exponential backoff"
algorithmto be assured of obtaining a reliable response:

1. Initiate a new connection to the server
2. Transmt the request-headers

3. Initialize a variable Rto the estimated round-trip tine to the
server (e.g., based on the tine it took to establish the
connection), or to a constant value of 5 seconds if the round-
trip time is not avail able.

4. Conpute T = R* (2**N), where N is the nunber of previous
retries of this request.

5. Wait either for an error response fromthe server, or for T
seconds (whichever cones first)

6. If no error response is received, after T seconds transmt the
body of the request.

7. If client sees that the connection is closed prematurely,
repeat fromstep 1 until the request is accepted, an error
response is received, or the user becones inpatient and
termnates the retry process.

Fielding, et al. St andards Track [Page 50]

RFC 2616 HTTP/ 1.1 June 1999

If at any point an error status is received, the client
- SHOULD NOT conti nue and

- SHOULD cl ose the connection if it has not conpleted sending the
request nessage.

9 Met hod Definitions

The set of common nethods for HITP/ 1.1 is defined bel ow. Although
this set can be expanded, additional nethods cannot be assuned to
share the sane senmantics for separately extended clients and servers.

The Host request-header field (section 14.23) MJST acconpany al
HTTP/ 1.1 requests.

9.1 Safe and | denpotent Methods
9.1.1 Safe Methods

| mpl enentors should be aware that the software represents the user in
their interactions over the Internet, and should be careful to allow
the user to be aware of any actions they m ght take which may have an
unexpected significance to thensel ves or others.

In particular, the convention has been established that the GET and
HEAD net hods SHOULD NOT have the significance of taking an action
other than retrieval. These methods ought to be considered "safe".
This all ows user agents to represent other nethods, such as POST, PUT
and DELETE, in a special way, so that the user is nade aware of the
fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performing a GET request; in
fact, sone dynam c resources consider that a feature. The inportant
distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them

9.1.2 Idenpotent Methods

Met hods can al so have the property of "idenpotence" in that (aside
fromerror or expiration issues) the side-effects of N> 0 identica
requests is the sane as for a single request. The nethods GET, HEAD
PUT and DELETE share this property. Al so, the methods OPTI ONS and
TRACE SHOULD NOT have side effects, and so are inherently idenpotent.

Fielding, et al. St andards Track [Page 51]

RFC 2616 HTTP/ 1.1 June 1999

However, it is possible that a sequence of several requests is non-

i denpotent, even if all of the nethods executed in that sequence are
i dempotent. (A sequence is idenpotent if a single execution of the
entire sequence always yields a result that is not changed by a
reexecution of all, or part, of that sequence.) For exanple, a
sequence i s non-idenmpotent if its result depends on a value that is
later nodified in the same sequence.

A sequence that never has side effects is idenpotent, by definition
(provided that no concurrent operations are being executed on the
sane set of resources).

9.2 OPTI ONS

The OPTI ONS net hod represents a request for information about the
conmuni cati on options avail able on the request/response chain
identified by the Request-URI. This nethod allows the client to
determine the options and/or requirements associated with a resource,
or the capabilities of a server, without inplying a resource action
or initiating a resource retrieval.

Responses to this nethod are not cacheabl e.

If the OPTIONS request includes an entity-body (as indicated by the
presence of Content-Length or Transfer-Encoding), then the nedia type
MUST be indicated by a Content-Type field. Al though this
specification does not define any use for such a body, future
extensions to HTTP m ght use the OPTIONS body to nmake nore detail ed
queries on the server. A server that does not support such an

ext ensi on MAY discard the request body.

If the Request-URlI is an asterisk ("*"), the OPTIONS request is
intended to apply to the server in general rather than to a specific
resource. Since a server’s communi cation options typically depend on
the resource, the "*" request is only useful as a "ping" or "no-op"
type of nethod; it does nothing beyond allowing the client to test
the capabilities of the server. For exanple, this can be used to test
a proxy for HTTP/ 1.1 conpliance (or |ack thereof).

If the Request-URlI is not an asterisk, the OPTIONS request applies
only to the options that are avail abl e when comruni cating with that
resource.

A 200 response SHOULD i ncl ude any header fields that indicate
optional features inplenmented by the server and applicable to that
resource (e.g., Allow), possibly including extensions not defined by
this specification. The response body, if any, SHOULD al so incl ude

i nformati on about the communication options. The format for such a

Fielding, et al. St andards Track [Page 52]

RFC 2616 HTTP/ 1.1 June 1999

body is not defined by this specification, but nmght be defined by
future extensions to HTTP. Content negotiation MAY be used to sel ect
the appropriate response format. If no response body is included, the
response MJST include a Content-Length field with a field-value of
"0".

The Max- Forwards request-header field MAY be used to target a
specific proxy in the request chain. Wen a proxy receives an OPTI ONS
request on an absoluteURl for which request forwarding is permtted,
the proxy MJUST check for a Max-Forwards field. If the Max-Forwards
field-value is zero ("0"), the proxy MJST NOT forward t he nessage;

i nstead, the proxy SHOULD respond with its own comuni cati on options.
If the Max-Forwards field-value is an integer greater than zero, the
proxy MJST decrenment the field-value when it forwards the request. |f
no Max-Forwards field is present in the request, then the forwarded
request MJST NOT include a Max-Forwards field.

9.3 GET

The GET nethod neans retrieve whatever information (in the formof an
entity) is identified by the Request-URI. If the Request-URlI refers
to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process.

The senantics of the GET method change to a "conditional GET" if the
request nessage includes an |f-Mdified-Since, |f-Unnodified-Since,

| f-Match, |f-None-Match, or |f-Range header field. A conditional GET
nmet hod requests that the entity be transferred only under the
circunstances described by the conditional header field(s). The
conditional GET nethod is intended to reduce unnecessary network
usage by allow ng cached entities to be refreshed w thout requiring
multiple requests or transferring data already held by the client.

The senantics of the GET method change to a "partial GET" if the
request message includes a Range header field. A partial GET requests
that only part of the entity be transferred, as described in section
14.35. The partial CGET method is intended to reduce unnecessary
network usage by allowing partially-retrieved entities to be

conpl eted without transferring data already held by the client.

The response to a CGET request is cacheable if and only if it neets
the requirements for HTTP caching described in section 13.

See section 15.1.3 for security considerati ons when used for forns.

Fielding, et al. St andards Track [Page 53]

RFC 2616 HTTP/ 1.1 June 1999

9.4 HEAD

The HEAD nethod is identical to GET except that the server MJST NOT
return a nmessage-body in the response. The metai nformati on contai ned
in the HTTP headers in response to a HEAD request SHOULD be identica
to the information sent in response to a GET request. This nethod can
be used for obtaining netainformation about the entity inplied by the
request without transferring the entity-body itself. This nmethod is
often used for testing hypertext links for validity, accessibility,
and recent nodification.

The response to a HEAD request MAY be cacheable in the sense that the
i nformati on contained in the response MAY be used to update a
previously cached entity fromthat resource. If the new field val ues
indicate that the cached entity differs fromthe current entity (as
woul d be indicated by a change in Content-Length, Content-M)5, ETag
or Last-Modified), then the cache MJST treat the cache entry as

stal e.

9.5 PCST

The POST nethod is used to request that the origin server accept the
entity enclosed in the request as a new subordi nate of the resource
identified by the Request-URI in the Request-Line. POST is designed
to allow a uniformnethod to cover the follow ng functions

- Annotation of existing resources;

- Posting a message to a bulletin board, newsgroup, mailing |ist,
or simlar group of articles;

- Providing a block of data, such as the result of subnmitting a
form to a data-handling process;

- Extendi ng a database through an append operati on.

The actual function performed by the POST nethod is deternined by the
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the sane way that a file is subordinate
to a directory containing it, a news article is subordinate to a
newsgroup to which it is posted, or a record is subordinate to a

dat abase.

The action perforned by the POST nmethod might not result in a
resource that can be identified by a URI. In this case, either 200
(OK) or 204 (No Content) is the appropriate response status,
dependi ng on whether or not the response includes an entity that
describes the result.

Fielding, et al. St andards Track [Page 54]

RFC 2616 HTTP/ 1.1 June 1999

If a resource has been created on the origin server, the response
SHOULD be 201 (Created) and contain an entity which describes the
status of the request and refers to the new resource, and a Location
header (see section 14.30).

Responses to this nmethod are not cacheabl e, unless the response

i ncl udes appropriate Cache-Control or Expires header fields. However
the 303 (See Ot her) response can be used to direct the user agent to
retrieve a cacheabl e resource.

POST requests MJST obey the nmessage transm ssion requirenents set out
in section 8.2.

See section 15.1.3 for security considerations.
9.6 PUT

The PUT net hod requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URlI refers to an already

exi sting resource, the enclosed entity SHOULD be considered as a

nodi fied version of the one residing on the origin server. |If the
Request - URI does not point to an existing resource, and that URl is
capabl e of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI. If a
new resource is created, the origin server MJST informthe user agent
via the 201 (Created) response. If an existing resource is nodified,
either the 200 (OK) or 204 (No Content) response codes SHOULD be sent
to indicate successful conpletion of the request. If the resource
could not be created or nmodified with the Request-URI, an appropriate
error response SHOULD be given that reflects the nature of the
problem The recipient of the entity MJUST NOT ignore any Content-*
(e.g. Content-Range) headers that it does not understand or inplenent
and MUST return a 501 (Not I|nplenmented) response in such cases.

If the request passes through a cache and the Request-URI identifies
one or nore currently cached entities, those entries SHOULD be
treated as stale. Responses to this nethod are not cacheabl e.

The fundanental difference between the POST and PUT requests is
reflected in the different neaning of the Request-URI. The URI in a
POST request identifies the resource that will handle the encl osed
entity. That resource m ght be a data-accepting process, a gateway to
sone other protocol, or a separate entity that accepts annotations.
In contrast, the URl in a PUT request identifies the entity encl osed
with the request -- the user agent knows what URlI is intended and the
server MUST NOT attenpt to apply the request to sone other resource.
If the server desires that the request be applied to a different URI,

Fielding, et al. St andards Track [Page 55]

RFC 2616 HTTP/ 1.1 June 1999

it MUST send a 301 (Moved Permanently) response; the user agent NAY
then make its own decision regarding whether or not to redirect the
request.

A single resource MAY be identified by many different URI's. For
exanple, an article nmght have a URI for identifying "the current
version" which is separate fromthe UR identifying each particul ar
version. In this case, a PUT request on a general UR night result in
several other URIs being defined by the origin server.

HTTP/ 1.1 does not define how a PUT nethod affects the state of an
origin server.

PUT requests MUST obey the nmessage transni ssion requirenents set out
in section 8.2.

Unl ess otherwi se specified for a particular entity-header, the
entity-headers in the PUT request SHOULD be applied to the resource
created or nodified by the PUT.

9.7 DELETE

The DELETE net hod requests that the origin server delete the resource
identified by the Request-URI. This nethod MAY be overridden by human
intervention (or other neans) on the origin server. The client cannot
be guaranteed that the operation has been carried out, even if the
status code returned fromthe origin server indicates that the action
has been conpl eted successfully. However, the server SHOULD NOT

i ndi cate success unless, at the tine the response is given, it
intends to delete the resource or nove it to an inaccessible

| ocati on.

A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not
yet been enacted, or 204 (No Content) if the action has been enacted
but the response does not include an entity.

If the request passes through a cache and the Request-URlI identifies
one or nore currently cached entities, those entries SHOULD be
treated as stale. Responses to this nethod are not cacheabl e.

9.8 TRACE
The TRACE nethod is used to invoke a renote, application-Ilayer |oop-
back of the request nmessage. The final recipient of the request

SHOULD refl ect the message received back to the client as the
entity-body of a 200 (OK) response. The final recipient is either the

Fielding, et al. St andards Track [Page 56]

RFC 2616 HTTP/ 1.1 June 1999

origin server or the first proxy or gateway to receive a Max- Forwards
val ue of zero (0) in the request (see section 14.31). A TRACE request
MJUST NOT include an entity.

TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic
i nformati on. The value of the Via header field (section 14.45) is of
particular interest, since it acts as a trace of the request chain.
Use of the Max-Forwards header field allows the client to limt the
| ength of the request chain, which is useful for testing a chain of
proxi es forwarding nessages in an infinite | oop

If the request is valid, the response SHOULD contain the entire
request nessage in the entity-body, with a Content-Type of
"message/ http". Responses to this nethod MUST NOT be cached.

9.9 CONNECT

10

10.

This specification reserves the nmethod nane CONNECT for use with a
proxy that can dynamically switch to being a tunnel (e.g. SSL
tunneling [44]).

St at us Code Definitions

Each Status-Code is described below, including a description of which
met hod(s) it can follow and any nmetainformation required in the
response.

1 Informational 1xx

This class of status code indicates a provisional response,
consisting only of the Status-Line and optional headers, and is
term nated by an enpty line. There are no required headers for this
class of status code. Since HTTP/1.0 did not define any 1xx status
codes, servers MJST NOT send a 1xx response to an HTTP/ 1.0 client
except under experinmental conditions.

A client MJST be prepared to accept one or nore 1xx status responses
prior to a regular response, even if the client does not expect a 100
(Continue) status nessage. Unexpected 1xx status responses MAY be

i gnored by a user agent.

Proxi es MUST forward 1xx responses, unless the connection between the
proxy and its client has been closed, or unless the proxy itself
requested the generation of the 1xx response. (For exanple, if a

Fielding, et al. St andards Track [Page 57]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

10.

proxy adds a "Expect: 100-continue" field when it forwards a request,
then it need not forward the correspondi ng 100 (Conti nue)
response(s).)

1.1 100 Conti nue

The client SHOULD continue with its request. This interimresponse is
used to informthe client that the initial part of the request has
been received and has not yet been rejected by the server. The client
SHOULD conti nue by sending the renai nder of the request or, if the
request has al ready been conpleted, ignore this response. The server
MUST send a final response after the request has been conpl eted. See
section 8.2.3 for detailed discussion of the use and handling of this
stat us code.

1.2 101 Switching Protocols

The server understands and is willing to comply with the client’s
request, via the Upgrade nessage header field (section 14.42), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response’s

Upgr ade header field imediately after the enpty line which

term nates the 101 response.

The protocol SHOULD be switched only when it is advantageous to do
so. For exanple, switching to a newer version of HITP is advant ageous
over ol der versions, and switching to a real-tinme, synchronous
protocol might be advantageous when delivering resources that use
such features.

2 Successful 2xx

This class of status code indicates that the client’s request was
successfully received, understood, and accepted.

2.1 200 &

The request has succeeded. The information returned with the response
i s dependent on the nethod used in the request, for exanple:

CET an entity corresponding to the requested resource is sent in
t he response;

HEAD the entity-header fields corresponding to the requested
resource are sent in the response w thout any nmessage-body;

POST an entity describing or containing the result of the action;

Fielding, et al. St andards Track [Page 58]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

TRACE an entity containing the request nessage as received by the
end server.

2.2 201 Created

The request has been fulfilled and resulted in a new resource being
created. The newy created resource can be referenced by the URI(S)
returned in the entity of the response, with the nost specific UR
for the resource given by a Location header field. The response
SHOULD i nclude an entity containing a |ist of resource
characteristics and | ocation(s) fromwhich the user or user agent can
choose the one nost appropriate. The entity format is specified by
the nmedia type given in the Content-Type header field. The origin
server MJST create the resource before returning the 201 status code.
If the action cannot be carried out immediately, the server SHOULD
respond with 202 (Accepted) response instead.

A 201 response MAY contain an ETag response header field indicating
the current value of the entity tag for the requested variant just
created, see section 14.19.

2.3 202 Accepted

The request has been accepted for processing, but the processing has
not been conpleted. The request mght or mi ght not eventually be
acted upon, as it mght be disallowed when processing actually takes
pl ace. There is no facility for re-sending a status code from an
asynchronous operation such as this.

The 202 response is intentionally non-commttal. Its purpose is to
all ow a server to accept a request for sone other process (perhaps a
batch-oriented process that is only run once per day) w thout
requiring that the user agent’s connection to the server persist

until the process is conpleted. The entity returned with this
response SHOULD include an indication of the request’s current status
and either a pointer to a status nonitor or sone estinmate of when the
user can expect the request to be fulfilled.

2.4 203 Non-Authoritative Infornmation

The returned nmetainfornmation in the entity-header is not the
definitive set as available fromthe origin server, but is gathered
froma local or a third-party copy. The set presented MAY be a subset
or superset of the original version. For exanple, including |oca
annotation information about the resource mght result in a superset
of the netainformation known by the origin server. Use of this
response code is not required and is only appropriate when the
response woul d ot herwi se be 200 (OK).

Fielding, et al. St andards Track [Page 59]

RFC 2616 HTTP/ 1.1 June 1999

10. 2.5 204 No Content

The server has fulfilled the request but does not need to return an
entity-body, and might want to return updated netai nformation. The
response MAY include new or updated netainformation in the form of
entity-headers, which if present SHOULD be associated with the
requested variant.

If the client is a user agent, it SHOULD NOT change its docunent view
fromthat which caused the request to be sent. This response is
primarily intended to allow input for actions to take place wi thout
causing a change to the user agent’s active docunent view, although
any new or updated netainformation SHOULD be applied to the docunent
currently in the user agent’s active view

The 204 response MJST NOT include a nessage-body, and thus is always
termnated by the first enpty line after the header fields.

10. 2.6 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset
t he docunent view which caused the request to be sent. This response
is primarily intended to allow input for actions to take place via
user input, followed by a clearing of the formin which the input is
given so that the user can easily initiate another input action. The
response MJUST NOT include an entity.

10.2.7 206 Partial Content

The server has fulfilled the partial CET request for the resource.
The request MJST have included a Range header field (section 14.35)
i ndi cating the desired range, and MAY have included an |If-Range
header field (section 14.27) to make the request conditional

The response MJUST include the foll owi ng header fields:

- Either a Content-Range header field (section 14.16) indicating
the range included with this response, or a multipart/byteranges
Cont ent - Type i ncludi ng Content-Range fields for each part. If a
Content-Length header field is present in the response, its
val ue MUST match the actual nunber of OCTETs transmitted in the
message- body.

- Date

- ETag and/or Content-Location, if the header woul d have been sent
in a 200 response to the sane request

Fielding, et al. St andards Track [Page 60]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

- Expires, Cache-Control, and/or Vary, if the field-value m ght
differ fromthat sent in any previous response for the sane
vari ant

If the 206 response is the result of an If-Range request that used a
strong cache validator (see section 13.3.3), the response SHOULD NOT
i nclude other entity-headers. If the response is the result of an

| f- Range request that used a weak validator, the response MJUST NOT

i nclude other entity-headers; this prevents inconsistencies between
cached entity-bodi es and updated headers. O herw se, the response
MUST include all of the entity-headers that would have been returned
with a 200 (OK) response to the sane request.

A cache MUST NOT conbine a 206 response with other previously cached
content if the ETag or Last-Mddified headers do not match exactly,
see 13.5.4.

A cache that does not support the Range and Content-Range headers
MJUST NOT cache 206 (Partial) responses.

3 Redirection 3xx

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request. The action
required MAY be carried out by the user agent without interaction
with the user if and only if the nethod used in the second request is
CGET or HEAD. A client SHOULD detect infinite redirection |oops, since
such | oops generate network traffic for each redirection

Not e: previous versions of this specification reconmended a

maxi mum of five redirections. Content devel opers should be aware
that there m ght be clients that inplenment such a fixed
limtation.

3.1 300 Multiple Choices

The requested resource corresponds to any one of a set of
representations, each with its own specific |ocation, and agent-
driven negotiation information (section 12) is being provided so that
the user (or user agent) can select a preferred representation and
redirect its request to that |ocation

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of resource characteristics and | ocation(s) from
whi ch the user or user agent can choose the one nobst appropriate. The
entity format is specified by the nedia type given in the Content-
Type header field. Depending upon the format and the capabilities of

Fielding, et al. St andards Track [Page 61]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

the user agent, selection of the nobst appropriate choice MAY be
perforned automatically. However, this specification does not define
any standard for such automatic sel ection

If the server has a preferred choice of representation, it SHOULD
i nclude the specific URI for that representation in the Location
field; user agents MAY use the Location field value for automatic
redirection. This response is cacheabl e unl ess indicated otherw se.

3.2 301 Moved Permanently

The requested resource has been assigned a new permanent URlI and any
future references to this resource SHOULD use one of the returned
URIs. Cdients with [ink editing capabilities ought to automatically
re-link references to the Request-URI to one or nore of the new
references returned by the server, where possible. This response is
cacheabl e unl ess indi cated otherw se.

The new permanent URI SHOULD be given by the Location field in the
response. Unl ess the request nethod was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).

If the 301 status code is received in response to a request other
than GET or HEAD, the user agent MJST NOT automatically redirect the
request unless it can be confirned by the user, since this mght
change the conditions under which the request was issued.

Note: When automatically redirecting a POST request after
receiving a 301 status code, sone existing HTTP/ 1.0 user agents
will erroneously change it into a GET request.

3.3 302 Found

The requested resource resides tenporarily under a different UR
Since the redirection mght be altered on occasion, the client SHOULD
continue to use the Request-URI for future requests. This response
is only cacheable if indicated by a Cache-Control or Expires header
field.

The tenporary URI SHOULD be given by the Location field in the
response. Unl ess the request nethod was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI (s).

Fielding, et al. St andards Track [Page 62]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

If the 302 status code is received in response to a request other
than GET or HEAD, the user agent MJST NOT automatically redirect the
request unless it can be confirmed by the user, since this mnight
change the conditions under which the request was issued.

Not e: RFC 1945 and RFC 2068 specify that the client is not allowed
to change the nethod on the redirected request. However, nost

exi sting user agent inplenentations treat 302 as if it were a 303

response, performing a GET on the Location field-value regardl ess

of the original request nethod. The status codes 303 and 307 have

been added for servers that wi sh to make unanbi guously cl ear which
kind of reaction is expected of the client.

3.4 303 See O her

The response to the request can be found under a different URl and
SHOULD be retrieved using a GET nethod on that resource. This nethod
exists primarily to allow the output of a POST-activated script to
redirect the user agent to a selected resource. The new URl is not a
substitute reference for the originally requested resource. The 303
response MJUST NOT be cached, but the response to the second
(redirected) request m ght be cacheabl e.

The different URI SHOULD be given by the Location field in the
response. Unl ess the request nmethod was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).

Note: Many pre-HTTP/ 1.1 user agents do not understand the 303
status. Wien interoperability with such clients is a concern, the
302 status code may be used instead, since nobst user agents react
to a 302 response as described here for 303.

3.5 304 Not Modified

If the client has perforned a conditional GET request and access is
al | oned, but the document has not been nodified, the server SHOULD
respond with this status code. The 304 response MJST NOT contain a
nessage- body, and thus is always term nated by the first enpty line
after the header fields.

The response MJUST include the foll owi ng header fields:

- Date, unless its omission is required by section 14.18.1

Fielding, et al. St andards Track [Page 63]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

If a clockless origin server obeys these rules, and proxies and
clients add their own Date to any response received w thout one (as
al ready specified by [RFC 2068], section 14.19), caches will operate
correctly.

- ETag and/or Content-Location, if the header woul d have been sent
in a 200 response to the sane request

- Expires, Cache-Control, and/or Vary, if the field-value m ght
differ fromthat sent in any previous response for the sane
vari ant

If the conditional GET used a strong cache validator (see section
13.3.3), the response SHOULD NOT include other entity-headers.

O herwise (i.e., the conditional GET used a weak validator), the

response MJUST NOT include other entity-headers; this prevents

i nconsi stenci es between cached entity-bodi es and updat ed headers.

If a 304 response indicates an entity not currently cached, then the
cache MUST disregard the response and repeat the request w thout the
condi ti onal

If a cache uses a received 304 response to update a cache entry, the
cache MJUST update the entry to reflect any new field values given in
t he response.

3.6 305 Use Proxy

The requested resource MJST be accessed through the proxy given by
the Location field. The Location field gives the URI of the proxy.
The recipient is expected to repeat this single request via the
proxy. 305 responses MJST only be generated by origin servers.

Not e: RFC 2068 was not clear that 305 was intended to redirect a

single request, and to be generated by origin servers only. Not
observing these limtations has significant security consequences.

3.7 306 (Unused)

The 306 status code was used in a previous version of the
specification, is no longer used, and the code is reserved.

Fielding, et al. St andards Track [Page 64]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

3.8 307 Tenporary Redirect

The requested resource resides tenporarily under a different UR
Since the redirecti on MAY be altered on occasion, the client SHOULD
continue to use the Request-URI for future requests. This response
is only cacheable if indicated by a Cache-Control or Expires header
field.

The tenporary URI SHOULD be given by the Location field in the
response. Unl ess the request nethod was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s) , since many pre-HTTP/ 1.1 user agents do not
understand the 307 status. Therefore, the note SHOULD contain the
i nformati on necessary for a user to repeat the original request on
t he new URI.

If the 307 status code is received in response to a request other
than GET or HEAD, the user agent MJST NOT automatically redirect the
request unless it can be confirmed by the user, since this mnight
change the conditions under which the request was issued.

4 dient Error 4xx

The 4xx class of status code is intended for cases in which the
client seens to have erred. Except when responding to a HEAD request,
the server SHOULD include an entity containing an expl anation of the
error situation, and whether it is a tenporary or permanent
condition. These status codes are applicable to any request nethod.
User agents SHOULD di splay any included entity to the user

If the client is sending data, a server inplenentation using TCP
SHOULD be careful to ensure that the client acknow edges receipt of

t he packet(s) containing the response, before the server closes the

i nput connection. If the client continues sending data to the server
after the close, the server’s TCP stack will send a reset packet to
the client, which may erase the client’s unacknow edged i nput buffers
before they can be read and interpreted by the HTTP application

4.1 400 Bad Request
The request coul d not be understood by the server due to nal forned

syntax. The client SHOULD NOT repeat the request wthout
nodi fi cations.

Fielding, et al. St andards Track [Page 65]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

10.

10.

4,2 401 Unaut hori zed

The request requires user authentication. The response MJST include a
WAV Aut hent i cat e header field (section 14.47) containing a challenge
applicable to the requested resource. The client MAY repeat the
request with a suitable Authorization header field (section 14.8). If
the request already included Authorization credentials, then the 401
response indicates that authorization has been refused for those
credentials. If the 401 response contains the sanme chall enge as the
prior response, and the user agent has already attenpted

aut hentication at | east once, then the user SHOULD be presented the
entity that was given in the response, since that entity ni ght

i ncl ude rel evant diagnostic information. HTTP access authentication
is explained in "HTTP Authentication: Basic and Di gest Access

Aut henti cation" [43].

4.3 402 Paynent Required
This code is reserved for future use.
4.4 403 For bi dden

The server understood the request, but is refusing to fulfill it.

Aut hori zation will not help and the request SHOULD NOT be repeated.

If the request method was not HEAD and the server wi shes to nake
public why the request has not been fulfilled, it SHOULD describe the
reason for the refusal in the entity. |If the server does not wish to
make this information available to the client, the status code 404
(Not Found) can be used instead.

4.5 404 Not Found

The server has not found anything matching the Request-URI. No
indication is given of whether the condition is tenporary or

per manent. The 410 (Gone) status code SHOULD be used if the server
knows, through sonme internally configurable nechanism that an old
resource is permanently unavail able and has no forwardi ng address.
This status code is conmonly used when the server does not wish to
reveal exactly why the request has been refused, or when no other
response is applicable.

4.6 405 Method Not All owed

The met hod specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MJST include an
Al'l ow header containing a list of valid nethods for the requested
resource.

Fielding, et al. St andards Track [Page 66]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

10.

4.7 406 Not Acceptable

The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of available entity characteristics and | ocation(s)
fromwhi ch the user or user agent can choose the one nost
appropriate. The entity format is specified by the nedia type given
in the Content-Type header field. Depending upon the fornmat and the
capabilities of the user agent, selection of the nbst appropriate
choi ce MAY be performed automatically. However, this specification
does not define any standard for such automatic sel ection

Note: HITP/ 1.1 servers are allowed to return responses which are
not acceptable according to the accept headers sent in the
request. In sonme cases, this may even be preferable to sending a
406 response. User agents are encouraged to inspect the headers of
an inconing response to determne if it is acceptable.

If the response could be unacceptable, a user agent SHOULD
tenmporarily stop receipt of nore data and query the user for a
deci sion on further actions.

4.8 407 Proxy Authentication Required

This code is simlar to 401 (Unauthorized), but indicates that the
client nust first authenticate itself with the proxy. The proxy MJST
return a Proxy-Authenticate header field (section 14.33) containing a
chal | enge applicable to the proxy for the requested resource. The
client MAY repeat the request with a suitable Proxy-Authorization
header field (section 14.34). HITP access authentication is explained
in "HTTP Aut hentication: Basic and Di gest Access Authentication”

[43].

4.9 408 Request Ti neout

The client did not produce a request within the tine that the server
was prepared to wait. The client MAY repeat the request w thout
nodi fications at any later tine.

4.10 409 Conflict

The request could not be conpleted due to a conflict with the current
state of the resource. This code is only allowed in situations where
it is expected that the user mght be able to resolve the conflict
and resubnmit the request. The response body SHOULD i ncl ude enough

Fielding, et al. St andards Track [Page 67]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem however, that mnight not be
possi ble and is not required.

Conflicts are nost likely to occur in response to a PUT request. For
exanple, if versioning were being used and the entity being PUT

i ncl uded changes to a resource which conflict with those nade by an
earlier (third-party) request, the server might use the 409 response
toindicate that it can't conplete the request. In this case, the
response entity would likely contain a |list of the differences
between the two versions in a format defined by the response
Cont ent - Type.

4.11 410 CGone

The requested resource is no |longer available at the server and no
forwardi ng address is known. This condition is expected to be

consi dered permanent. Clients with link editing capabilities SHOULD
delete references to the Request-URI after user approval. If the
server does not know, or has no facility to determ ne, whether or not
the condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cacheable unless indicated otherw se.

The 410 response is primarily intended to assist the task of web

mai nt enance by notifying the recipient that the resource is
intentionally unavail able and that the server owners desire that
renote links to that resource be renoved. Such an event is comon for
limted-tine, pronotional services and for resources belonging to

i ndi viduals no | onger working at the server’'s site. It is not
necessary to mark all permanently unavail abl e resources as "gone" or
to keep the mark for any length of tine -- that is left to the

di scretion of the server owner.

4,12 411 Length Required

The server refuses to accept the request w thout a defined Content-
Length. The client MAY repeat the request if it adds a valid
Content-Length header field containing the |l ength of the nessage-body
in the request nessage.

4,13 412 Precondition Failed

The precondition given in one or nore of the request-header fields
eval uated to false when it was tested on the server. This response
code allows the client to place preconditions on the current resource
nmet ai nformati on (header field data) and thus prevent the requested
nmet hod from being applied to a resource other than the one intended.

Fielding, et al. St andards Track [Page 68]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

10.

4.14 413 Request Entity Too Large

The server is refusing to process a request because the request
entity is larger than the server is willing or able to process. The
server MAY close the connection to prevent the client from continuing
t he request.

If the condition is temporary, the server SHOULD include a Retry-
After header field to indicate that it is tenporary and after what
tinme the client MAY try again.

4,15 414 Request-URI Too Long

The server is refusing to service the request because the Request-UR
is longer than the server is willing to interpret. This rare
condition is only likely to occur when a client has inproperly
converted a POST request to a GET request with |ong query

i nformati on, when the client has descended into a URI "black hole" of
redirection (e.g., a redirected URl prefix that points to a suffix of
itself), or when the server is under attack by a client attenpting to
exploit security holes present in sone servers using fixed-length
buffers for reading or nmanipul ati ng the Request-URI

4.16 415 Unsupported Media Type

The server is refusing to service the request because the entity of
the request is in a format not supported by the requested resource
for the requested nethod.

4.17 416 Requested Range Not Satisfiable

A server SHOULD return a response with this status code if a request

i ncl uded a Range request-header field (section 14.35), and none of
the range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an |f-Range
request - header field. (For byte-ranges, this nmeans that the first-
byte-pos of all of the byte-range-spec values were greater than the
current length of the selected resource.)

When this status code is returned for a byte-range request, the
response SHOULD include a Content-Range entity-header field
specifying the current I ength of the sel ected resource (see section
14.16). This response MJST NOT use the nultipart/byteranges content-

type.

Fielding, et al. St andards Track [Page 69]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

10.

10.

10.

10.

4.18 417 Expectation Fail ed

The expectation given in an Expect request-header field (see section
14.20) could not be net by this server, or, if the server is a proxy,
the server has unanbi guous evi dence that the request could not be net
by the next-hop server.

5 Server Error 5xx

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
perform ng the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an expl anation of the
error situation, and whether it is a tenmporary or permanent

condition. User agents SHOULD display any included entity to the
user. These response codes are applicable to any request nethod.

5.1 500 Internal Server Error

The server encountered an unexpected condition which prevented it
fromfulfilling the request.

5.2 501 Not I npl enent ed

The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recogni ze the request nethod and is not capabl e of supporting it for
any resource.

5.3 502 Bad Gat eway

The server, while acting as a gateway or proxy, received an invalid
response fromthe upstreamserver it accessed in attenpting to
fulfill the request.

5.4 503 Service Unavail abl e

The server is currently unable to handle the request due to a
tenporary overl oadi ng or maintenance of the server. The inplication
is that this is a tenporary condition which will be alleviated after
sonme delay. If known, the length of the delay MAY be indicated in a
Retry-After header. If no Retry-After is given, the client SHOULD
handl e the response as it would for a 500 response.

Not e: The exi stence of the 503 status code does not inply that a
server nust use it when beconing overl oaded. Sone servers nmay w sh
to sinply refuse the connection.

Fielding, et al. St andards Track [Page 70]

RFC 2616 HTTP/ 1.1 June 1999

10.

10.

11

12

5.5 504 Gateway Ti neout

The server, while acting as a gateway or proxy, did not receive a
timely response fromthe upstream server specified by the URI (e.g.
HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed
to access in attenpting to conplete the request.

Note: Note to inplenentors: some depl oyed proxies are known to
return 400 or 500 when DNS | ookups tine out.

5.6 505 HTTP Version Not Supported

The server does not support, or refuses to support, the HITP protoco
version that was used in the request nessage. The server is
indicating that it is unable or unwilling to conplete the request
using the sanme major version as the client, as described in section
3.1, other than with this error nessage. The response SHOULD contain
an entity describing why that version is not supported and what other
protocol s are supported by that server

Access Aut hentication

HTTP provi des several OPTI ONAL chal | enge-response aut hentication
nmechani snms whi ch can be used by a server to challenge a client
request and by a client to provide authentication information. The
general framework for access authentication, and the specification of
"basic" and "digest" authentication, are specified in "HITP

Aut henti cation: Basic and Di gest Access Authentication" [43]. This
specification adopts the definitions of "challenge" and "credential s"
fromthat specification.

Content Negotiation

Most HTTP responses include an entity which contains information for
interpretation by a human user. Naturally, it is desirable to supply
the user with the "best available"” entity corresponding to the
request. Unfortunately for servers and caches, not all users have the
sane preferences for what is "best," and not all user agents are
equal Iy capable of rendering all entity types. For that reason, HTTP
has provisions for several nechanisns for "content negotiation" --
the process of selecting the best representation for a given response
when there are multiple representations avail abl e.

Note: This is not called "format negotiati on" because the
alternate representati ons may be of the same nedia type, but use
different capabilities of that type, be in different |anguages,
etc.

Fielding, et al. St andards Track [Page 71]

RFC 2616 HTTP/ 1.1 June 1999

12.

Any response containing an entity-body MAY be subject to negotiation
i ncluding error responses.

There are two kinds of content negotiation which are possible in
HTTP: server-driven and agent-driven negotiation. These two ki nds of
negoti ati on are orthogonal and thus may be used separately or in
conbi nati on. One nethod of conbination, referred to as transparent
negoti ati on, occurs when a cache uses the agent-driven negotiation

i nformation provided by the origin server in order to provide
server-driven negotiation for subsequent requests.

1 Server-driven Negotiation

If the selection of the best representation for a response is nmade by
an algorithmlocated at the server, it is called server-driven
negoti ati on. Selection is based on the avail able representations of
the response (the dinensions over which it can vary; e.g. |anguage,
content-coding, etc.) and the contents of particular header fields in
the request nmessage or on other information pertaining to the request
(such as the network address of the client).

Server-driven negotiation is advantageous when the algorithmfor
selecting fromanong the avail able representations is difficult to
describe to the user agent, or when the server desires to send its
"best guess" to the client along with the first response (hoping to
avoid the round-trip delay of a subsequent request if the "best
guess"” is good enough for the user). In order to inprove the server’s
guess, the user agent MAY include request header fields (Accept,
Accept - Language, Accept-Encoding, etc.) which describe its
preferences for such a response.

Server-driven negotiation has di sadvant ages:

1. It is inpossible for the server to accurately deterni ne what
m ght be "best" for any given user, since that would require
conpl ete knowl edge of both the capabilities of the user agent
and the intended use for the response (e.g., does the user want
to viewit on screen or print it on paper?).

2. Having the user agent describe its capabilities in every
request can be both very inefficient (given that only a smal
percentage of responses have nultiple representations) and a
potential violation of the user’s privacy.

3. It conplicates the inplenmentation of an origin server and the
al gorithnms for generating responses to a request.

Fielding, et al. St andards Track [Page 72]

RFC 2616 HTTP/ 1.1 June 1999

12.

4, It may limt a public cache’'s ability to use the sane response
for multiple user’s requests.

HTTP/ 1.1 includes the follow ng request-header fields for enabling
server-driven negotiation through description of user agent
capabilities and user preferences: Accept (section 14.1), Accept-
Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
Language (section 14.4), and User-Agent (section 14.43). However, an
origin server is not linmted to these dinmensions and MAY vary the
response based on any aspect of the request, including infornmation
out side the request-header fields or within extension header fields
not defined by this specification

The Vary header field can be used to express the paraneters the
server uses to select a representation that is subject to server-
driven negotiation. See section 13.6 for use of the Vary header field
by caches and section 14.44 for use of the Vary header field by
servers.

2 Agent-driven Negotiation

Wth agent-driven negotiation, selection of the best representation
for a response is perforned by the user agent after receiving an
initial response fromthe origin server. Selection is based on a |ist
of the avail able representations of the response included within the
header fields or entity-body of the initial response, with each
representation identified by its own URI. Selection fromanong the
representations nmay be performed automatically (if the user agent is
capabl e of doing so) or manually by the user selecting froma

gener ated (possibly hypertext) menu.

Agent -driven negotiation is advantageous when the response woul d vary
over conmonly-used di nensi ons (such as type, |anguage, or encoding),
when the origin server is unable to deternmine a user agent’s
capabilities fromexam ning the request, and generally when public
caches are used to distribute server |oad and reduce network usage.

Agent -driven negotiation suffers fromthe di sadvantage of needing a
second request to obtain the best alternate representation. This
second request is only efficient when caching is used. In addition
this specification does not define any nechani smfor supporting
automatic selection, though it al so does not prevent any such
mechani sm f rom bei ng devel oped as an extension and used within
HTTP/ 1. 1.

Fielding, et al. St andards Track [Page 73]

RFC 2616 HTTP/ 1.1 June 1999

12.

13

HTTP/ 1.1 defines the 300 (Miultiple Choices) and 406 (Not Acceptable)
status codes for enabling agent-driven negotiation when the server is
unwi | Iing or unable to provide a varying response using server-driven
negoti ati on.

3 Transparent Negotiation

Transparent negotiation is a combination of both server-driven and
agent -driven negotiation. Wen a cache is supplied with a formof the
list of available representations of the response (as in agent-driven
negoti ati on) and the dinensions of variance are conpl etely understood
by the cache, then the cache becones capabl e of perform ng server-
driven negotiation on behalf of the origin server for subsequent
requests on that resource.

Transparent negotiati on has the advantage of distributing the
negoti ati on work that would otherw se be required of the origin
server and al so renoving the second request delay of agent-driven
negoti ati on when the cache is able to correctly guess the right
response.

This specification does not define any nechani smfor transparent
negoti ation, though it al so does not prevent any such mechani smfrom
bei ng devel oped as an extension that could be used within HTTP/1.1.

Caching in HTTP

HTTP is typically used for distributed information systenms, where
performance can be inproved by the use of response caches. The

HTTP/ 1.1 protocol includes a nunber of elenents intended to nake
caching work as well as possible. Because these el enents are

i nextricable fromother aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching
design of HITP separately fromthe detail ed descriptions of nethods,
headers, response codes, etc.

Caching would be useless if it did not significantly inprove
performance. The goal of caching in HTTP/1.1 is to elininate the need
to send requests in many cases, and to elinminate the need to send
full responses in many other cases. The forner reduces the nunber of
network round-trips required for many operations; we use an
"expiration" nmechanismfor this purpose (see section 13.2). The

| atter reduces network bandw dth requirements; we use a "validation"
nmechani smfor this purpose (see section 13.3).

Requirements for performance, availability, and di sconnected
operation require us to be able to relax the goal of semantic
transparency. The HTTP/ 1.1 protocol allows origin servers, caches,

Fielding, et al. St andards Track [Page 74]

RFC 2616 HTTP/ 1.1 June 1999

and clients to explicitly reduce transparency when necessary.
However, because non-transparent operati on may confuse non-expert
users, and might be inconpatible with certain server applications
(such as those for ordering nerchandise), the protocol requires that
transparency be rel axed

- only by an explicit protocol-level request when rel axed by
client or origin server

- only with an explicit warning to the end user when rel axed by
cache or client

Therefore, the HITP/ 1.1 protocol provides these inportant elenents

1. Protocol features that provide full semantic transparency when
this is required by all parties.

2. Protocol features that allow an origin server or user agent to
explicitly request and control non-transparent operation

3. Protocol features that allow a cache to attach warnings to
responses that do not preserve the requested approxi mation of
semanti c transparency.

A basic principle is that it nust be possible for the clients to
detect any potential relaxation of semantic transparency.

Note: The server, cache, or client inplenmentor night be faced with
desi gn decisions not explicitly discussed in this specification

If a decision mght affect senmantic transparency, the inplenentor
ought to err on the side of nmaintaining transparency unless a
careful and conplete anal ysis shows significant benefits in

br eaki ng transparency.

13. 1.1 Cache Correctness

A correct cache MJUST respond to a request with the npst up-to-date
response held by the cache that is appropriate to the request (see
sections 13.2.5, 13.2.6, and 13.12) which neets one of the follow ng
condi tions:

1. It has been checked for equival ence with what the origin server

woul d have returned by revalidating the response with the
origin server (section 13.3);

Fielding, et al. St andards Track [Page 75]

RFC 2616 HTTP/ 1.1 June 1999

13.

2. It is "fresh enough" (see section 13.2). In the default case,
this means it neets the |least restrictive freshness requirenent
of the client, origin server, and cache (see section 14.9); if
the origin server so specifies, it is the freshness requirenent
of the origin server alone.

If a stored response is not "fresh enough" by the nost
restrictive freshness requirement of both the client and the
origin server, in carefully considered circunstances the cache
MAY still return the response with the appropriate Warni ng
header (see section 13.1.5 and 14.46), unless such a response
is prohibited (e.g., by a "no-store" cache-directive, or by a
"no-cache" cache-request-directive; see section 14.9).

3. It is an appropriate 304 (Not Mdified), 305 (Proxy Redirect),
or error (4xx or 5xx) response message.

If the cache can not comunicate with the origin server, then a
correct cache SHOULD respond as above if the response can be
correctly served fromthe cache; if not it MJST return an error or
warni ng indicating that there was a conmunication failure.

If a cache receives a response (either an entire response, or a 304
(Not Modified) response) that it would nornmally forward to the
requesting client, and the received response is no longer fresh, the
cache SHOULD forward it to the requesting client w thout adding a new
Warni ng (but without renoving any existing Warni ng headers). A cache
SHOULD NOT attenpt to revalidate a response sinply because that
response becane stale in transit; this might lead to an infinite

| oop. A user agent that receives a stale response w thout a Warning
MAY di splay a warning indication to the user

1.2 Vrnings

Whenever a cache returns a response that is neither first-hand nor
"fresh enough" (in the sense of condition 2 in section 13.1.1), it
MUST attach a warning to that effect, using a Warni ng general - header
The Warni ng header and the currently defined warni ngs are descri bed
in section 14.46. The warning allows clients to take appropriate
action.

War ni ngs MAY be used for other purposes, both cache-related and
ot herwi se. The use of a warning, rather than an error status code,
di stingui sh these responses fromtrue failures.

Warni ngs are assigned three digit warn-codes. The first digit
i ndi cates whet her the Warning MJST or MUST NOT be deleted froma
stored cache entry after a successful revalidation

Fielding, et al. St andards Track [Page 76]

RFC 2616 HTTP/ 1.1 June 1999

1xx Warnings that describe the freshness or revalidation status of
the response, and so MJUST be deleted after a successfu
reval i dati on. 1XX warn-codes MAY be generated by a cache only when
validating a cached entry. It MJST NOT be generated by clients.

2xx Warnings that describe sone aspect of the entity body or entity
headers that is not rectified by a revalidation (for exanple, a
| ossy conpression of the entity bodies) and which MUST NOT be
del eted after a successful revalidation

See section 14.46 for the definitions of the codes thensel ves.

HTTP/ 1.0 caches will cache all WaArnings in responses, w thout
deleting the ones in the first category. Warnings in responses that
are passed to HTTP/ 1.0 caches carry an extra warning-date field,
whi ch prevents a future HITP/ 1.1 recipient frombelieving an
erroneously cached Warni ng.

Warnings also carry a warning text. The text MAY be in any
appropriate natural |anguage (perhaps based on the client’s Accept
headers), and include an OPTIONAL i ndication of what character set is
used.

Mul ti pl e warni ngs MAY be attached to a response (either by the origin
server or by a cache), including nmultiple warnings with the sane code
nunber. For exanple, a server mght provide the same warning with
texts in both English and Basque.

Wien nul tiple warnings are attached to a response, it nmight not be
practical or reasonable to display all of themto the user. This
versi on of HITP does not specify strict priority rules for deciding
whi ch warnings to display and in what order, but does suggest sone
heuri stics.

13. 1. 3 Cache-control Mechani sms

The basi c cache nechanisns in HITP/ 1.1 (server-specified expiration
times and validators) are inplicit directives to caches. In sone
cases, a server or client might need to provide explicit directives
to the HTTP caches. W use the Cache-Control header for this purpose.

The Cache-Control header allows a client or server to transnmt a
variety of directives in either requests or responses. These
directives typically override the default caching algorithms. As a
general rule, if there is any apparent conflict between header

val ues, the nost restrictive interpretation is applied (that is, the
one that is nost likely to preserve semantic transparency). However

Fielding, et al. St andards Track [Page 77]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

in sone cases, cache-control directives are explicitly specified as
weakeni ng the approxi mati on of semantic transparency (for exanpl e,
"max-stale" or "public").

The cache-control directives are described in detail in section 14.9.
1.4 Explicit User Agent Warnings

Many user agents nmke it possible for users to override the basic
cachi ng nechani snms. For exanple, the user agent might allow the user
to specify that cached entities (even explicitly stale ones) are
never validated. O the user agent mght habitually add "Cache-
Control : max-stal e=3600" to every request. The user agent SHOULD NOT
default to either non-transparent behavior, or behavior that results
in abnormally ineffective caching, but MAY be explicitly configured
to do so by an explicit action of the user

If the user has overridden the basic caching nechani sns, the user
agent SHOULD explicitly indicate to the user whenever this results in
the display of information that m ght not neet the server’'s
transparency requirenments (in particular, if the displayed entity is
known to be stale). Since the protocol normally allows the user agent
to determine if responses are stale or not, this indication need only
be di spl ayed when this actually happens. The indication need not be a
dial og box; it could be an icon (for exanple, a picture of a rotting
fish) or sone other indicator.

If the user has overridden the caching nechanisns in a way that woul d
abnormal |y reduce the effectiveness of caches, the user agent SHOULD
continually indicate this state to the user (for exanple, by a

di splay of a picture of currency in flames) so that the user does not
i nadvertently consune excess resources or suffer from excessive

| at ency.

1.5 Exceptions to the Rul es and Warni ngs

In sone cases, the operator of a cache MAY choose to configure it to
return stal e responses even when not requested by clients. This
deci si on ought not be made lightly, but rmay be necessary for reasons
of availability or performance, especially when the cache is poorly
connected to the origin server. Wenever a cache returns a stale
response, it MJUST nark it as such (using a Warning header) enabling
the client software to alert the user that there might be a potential
probl em

Fielding, et al. St andards Track [Page 78]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

13.

It also allows the user agent to take steps to obtain a first-hand or
fresh response. For this reason, a cache SHOULD NOT return a stale
response if the client explicitly requests a first-hand or fresh one,
unless it is inmpossible to conply for technical or policy reasons.

1.6 Cient-controll ed Behavi or

Wiile the origin server (and to a | esser extent, internediate caches,
by their contribution to the age of a response) are the primary
source of expiration information, in some cases the client m ght need
to control a cache’'s decision about whether to return a cached
response without validating it. Clients do this using severa
directives of the Cache-Control header

A client’s request MAY specify the naximumage it is willing to
accept of an unvalidated response; specifying a value of zero forces
the cache(s) to revalidate all responses. A client MAY al so specify
the mnimumtine renmai ning before a response expires. Both of these
options increase constraints on the behavior of caches, and so cannot
further relax the cache' s approxi mati on of semantic transparency.

A client MAY also specify that it will accept stale responses, up to
sonme maxi mum amount of stal eness. This | oosens the constraints on the
caches, and so night violate the origin server’s specified
constraints on senmantic transparency, but might be necessary to
support di sconnected operation, or high availability in the face of
poor connectivity.

2 Expiration Mde
2.1 Server-Specified Expiration

HTTP cachi ng works best when caches can entirely avoid maki ng
requests to the origin server. The prinmary mechani smfor avoiding
requests is for an origin server to provide an explicit expiration
tinme in the future, indicating that a response MAY be used to satisfy
subsequent requests. In other words, a cache can return a fresh
response w thout first contacting the server

Qur expectation is that servers will assign future explicit
expiration tinmes to responses in the belief that the entity is not
likely to change, in a semantically significant way, before the
expiration time is reached. This normally preserves senantic
transparency, as long as the server’s expiration tines are carefully
chosen.

Fielding, et al. St andards Track [Page 79]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

The expiration nmechani smapplies only to responses taken froma cache
and not to first-hand responses forwarded i Mmediately to the
requesting client.

If an origin server wishes to force a senantically transparent cache
to validate every request, it MAY assign an explicit expiration tine
in the past. This neans that the response is always stale, and so the
cache SHOULD validate it before using it for subsequent requests. See
section 14.9.4 for a nore restrictive way to force revalidation

If an origin server wishes to force any HITP/ 1.1 cache, no matter how
it is configured, to validate every request, it SHOULD use the "nust-
reval i date" cache-control directive (see section 14.9).

Servers specify explicit expiration tines using either the Expires
header, or the nmax-age directive of the Cache-Control header

An expiration time cannot be used to force a user agent to refresh
its display or reload a resource; its semantics apply only to caching
mechani sns, and such nechani sns need only check a resource’s
expiration status when a new request for that resource is initiated.
See section 13.13 for an explanation of the difference between caches
and hi story nechani sns.

2.2 Heuristic Expiration

Since origin servers do not always provide explicit expiration tines,
HTTP caches typically assign heuristic expiration times, enploying

al gorithms that use other header values (such as the Last-Mdified
tine) to estimate a plausible expiration tine. The HITP/ 1.1
specification does not provide specific algorithnms, but does inpose
wor st-case constraints on their results. Since heuristic expiration
times might conpromise semantic transparency, they ought to used
cautiously, and we encourage origin servers to provide explicit
expiration tinmes as nuch as possible.

2.3 Age Cal cul ations

In order to know if a cached entry is fresh, a cache needs to know if
its age exceeds its freshness lifetine. W discuss how to cal cul ate
the latter in section 13.2.4; this section describes howto calculate
the age of a response or cache entry.

In this discussion, we use the term"now' to nean "the current val ue
of the clock at the host performng the calculation.” Hosts that use
HTTP, but especially hosts running origin servers and caches, SHOULD
use NTP [28] or sone simlar protocol to synchronize their clocks to
a globally accurate tine standard.

Fielding, et al. St andards Track [Page 80]

RFC 2616 HTTP/ 1.1 June 1999

HTTP/ 1.1 requires origin servers to send a Date header, if possible,
with every response, giving the tine at which the response was
generated (see section 14.18). W use the term"date_value" to denote
the value of the Date header, in a formappropriate for arithnetic
operations.

HTTP/ 1.1 uses the Age response-header to convey the estinated age of
t he response nessage when obtained froma cache. The Age field val ue
is the cache’s estimate of the ampunt of time since the response was
generated or revalidated by the origin server

In essence, the Age value is the sumof the tinme that the response
has been resident in each of the caches along the path fromthe
origin server, plus the anount of time it has been in transit al ong
net wor k pat hs.

W use the term "age_value" to denote the value of the Age header, in
a formappropriate for arithnetic operations.

A response’s age can be calculated in two entirely independent ways:

1. now mnus date value, if the local clock is reasonably well
synchroni zed to the origin server’s clock. If the result is
negative, the result is replaced by zero.

2. age value, if all of the caches along the response path
i mpl enent HITTP/ 1. 1.

G ven that we have two i ndependent ways to conpute the age of a
response when it is received, we can conbi ne these as

corrected_recei ved_age = max(now - date_val ue, age_val ue)

and as long as we have either nearly synchronized cl ocks or all-
HTTP/ 1.1 paths, one gets a reliable (conservative) result.

Because of network-inposed del ays, sone significant interval m ght
pass between the tinme that a server generates a response and the tine
it is received at the next outbound cache or client. If uncorrected,
this delay could result in inmproperly |Iow ages.

Because the request that resulted in the returned Age val ue nust have
been initiated prior to that Age value' s generation, we can correct
for delays inposed by the network by recording the tine at which the
request was initiated. Then, when an Age value is received, it MJST
be interpreted relative to the time the request was initiated, not

Fielding, et al. St andards Track [Page 81]

RFC 2616 HTTP/ 1.1 June 1999

the tine that the response was received. This algorithmresults in
conservative behavior no matter how nuch delay is experienced. So, we
conput e:

corrected_initial _age = corrected_recei ved _age
+ (now - request _tine)

where "request _tine" is the time (according to the |ocal clock) when
the request that elicited this response was sent.

Sunmary of age cal culation algorithm when a cache receives a

response:
/*
* age_val ue
* is the value of Age: header received by the cache with
* this response.
* date_val ue
* is the value of the origin server’s Date: header
* request _tine
* is the (local) time when the cache nade the request
* that resulted in this cached response
* response_tine
* is the (local) time when the cache received the
* response
* now
* is the current (local) tine
*/

apparent _age = nax(0, response_tine - date_val ue);
corrected_recei ved _age = nmax(apparent _age, age_val ue);
response_del ay = response_tine - request _tineg;
corrected_initial _age = corrected_received_age + response_del ay;
resident _time = now - response_ti ne;

current _age = corrected_initial _age + resident _tineg;

The current_age of a cache entry is cal cul ated by addi ng the anount
of time (in seconds) since the cache entry was |ast validated by the
origin server to the corrected_initial_age. Wen a response is
generated froma cache entry, the cache MJUST include a single Age
header field in the response with a value equal to the cache entry’'s
current _age.

The presence of an Age header field in a response inplies that a

response is not first-hand. However, the converse is not true, since
the |l ack of an Age header field in a response does not inply that the

Fielding, et al. St andards Track [Page 82]

RFC 2616 HTTP/ 1.1 June 1999

13.

response is first-hand unless all caches along the request path are
compliant with HTTP/1.1 (i.e., older HTTP caches did not inplenent
the Age header field).

2.4 Expiration Calcul ations

In order to decide whether a response is fresh or stale, we need to
conpare its freshness lifetine to its age. The age is calculated as
described in section 13.2.3; this section describes howto cal cul ate
the freshness lifetinme, and to deternmine if a response has expired.
In the discussion below, the values can be represented in any form
appropriate for arithnmetic operations.

W use the term "expires_value" to denote the value of the Expires
header. We use the term "max_age_val ue" to denote an appropriate

val ue of the nunber of seconds carried by the "max-age" directive of
the Cache-Control header in a response (see section 14.9.3).

The max-age directive takes priority over Expires, so if max-age is
present in a response, the calculation is sinply:

freshness lifetime = max_age_val ue
O herwise, if Expires is present in the response, the calculation is:
freshness lifetime = expires_value - date_val ue

Note that neither of these calculations is vulnerable to clock skew,
since all of the information cones fromthe origin server.

I f none of Expires, Cache-Control: max-age, or Cache-Control: s-
maxage (see section 14.9.3) appears in the response, and the response
does not include other restrictions on caching, the cache MAY conpute
a freshness lifetine using a heuristic. The cache MJST attach Warning
113 to any response whose age is nore than 24 hours if such warning
has not al ready been added.

Also, if the response does have a Last-Mdified tine, the heuristic
expiration value SHOULD be no nore than some fraction of the interva
since that tinme. A typical setting of this fraction mght be 10%

The calculation to determne if a response has expired is quite
si nmpl e:

response_is fresh = (freshness |ifetime > current_age)

Fielding, et al. St andards Track [Page 83]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

2.5 Disanbi guating Expiration Val ues

Because expiration values are assigned optim stically, it is possible
for two caches to contain fresh values for the sane resource that are
di fferent.

If aclient performng a retrieval receives a non-first-hand response
for a request that was already fresh in its own cache, and the Date
header in its existing cache entry is newer than the Date on the new
response, then the client MAY ignore the response. If so, it MAY
retry the request with a "Cache-Control: max-age=0" directive (see
section 14.9), to force a check with the origin server

If a cache has two fresh responses for the sane representation with
different validators, it MJST use the one with the nore recent Date
header. This situation mght arise because the cache is pooling
responses from other caches, or because a client has asked for a
reload or a revalidation of an apparently fresh cache entry.

2.6 Disanbiguating Miltiple Responses

Because a client mght be receiving responses via nultiple paths, so
that some responses flow through one set of caches and ot her
responses flow through a different set of caches, a client mght
recei ve responses in an order different fromthat in which the origin
server sent them We would like the client to use the nbst recently
generated response, even if ol der responses are still apparently
fresh.

Neither the entity tag nor the expiration value can inpose an
ordering on responses, since it is possible that a |later response
intentionally carries an earlier expiration tinme. The Date val ues are
ordered to a granularity of one second.

When a client tries to revalidate a cache entry, and the response it
recei ves contains a Date header that appears to be ol der than the one
for the existing entry, then the client SHOULD repeat the request
uncondi tional ly, and include

Cache- Control : nax-age=0

to force any internedi ate caches to validate their copies directly
with the origin server, or

Cache-Control : no-cache

to force any internedi ate caches to obtain a new copy fromthe origin
server.

Fielding, et al. St andards Track [Page 84]

RFC 2616 HTTP/ 1.1 June 1999

13.

If the Date values are equal, then the client MAY use either response
(or MAY, if it is being extrenmely prudent, request a new response).
Servers MJST NOT depend on clients being able to choose
deterministically between responses generated during the sane second,
if their expiration times overl ap.

3 Validation Mde

When a cache has a stale entry that it would like to use as a
response to a client’s request, it first has to check with the origin
server (or possibly an internediate cache with a fresh response) to
see if its cached entry is still usable. W call this "validating"
the cache entry. Since we do not want to have to pay the overhead of
retransmitting the full response if the cached entry is good, and we
do not want to pay the overhead of an extra round trip if the cached
entry is invalid, the HITP/ 1.1 protocol supports the use of

condi tional nmethods.

The key protocol features for supporting conditional nethods are
those concerned with "cache validators."” Wen an origin server
generates a full response, it attaches sone sort of validator to it,
which is kept with the cache entry. Wen a client (user agent or
proxy cache) nakes a conditional request for a resource for which it
has a cache entry, it includes the associated validator in the
request.

The server then checks that validator against the current validator
for the entity, and, if they match (see section 13.3.3), it responds
with a special status code (usually, 304 (Not Modified)) and no
entity-body. Otherwise, it returns a full response (including
entity-body). Thus, we avoid transmtting the full response if the
val i dator matches, and we avoid an extra round trip if it does not
mat ch.

In HTTP/ 1.1, a conditional request |ooks exactly the sane as a nornal
request for the sane resource, except that it carries a special
header (which includes the validator) that inplicitly turns the

nmet hod (usually, GET) into a conditional

The protocol includes both positive and negative senses of cache-
validating conditions. That is, it is possible to request either that
a nmethod be perfornmed if and only if a validator matches or if and
only if no validators match

Fielding, et al. St andards Track [Page 85]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

13.

Note: a response that |acks a validator may still be cached, and
served fromcache until it expires, unless this is explicitly
prohi bited by a cache-control directive. However, a cache cannot
do a conditional retrieval if it does not have a validator for the
entity, which nmeans it will not be refreshable after it expires.

3.1 Last-Mdified Dates

The Last-Mdified entity-header field value is often used as a cache
validator. In sinple terns, a cache entry is considered to be valid
if the entity has not been nodified since the Last-Modified val ue.

3.2 Entity Tag Cache Validators

The ETag response-header field value, an entity tag, provides for an
"opaque" cache validator. This mght allow nore reliable validation
in situations where it is inconvenient to store nodification dates,
where the one-second resolution of HTTP date values is not
sufficient, or where the origin server wishes to avoid certain

par adoxes that mght arise fromthe use of nodification dates.

Entity Tags are described in section 3.11. The headers used with
entity tags are described in sections 14.19, 14.24, 14.26 and 14. 44.

3.3 Wak and Strong Validators

Since both origin servers and caches will conpare two validators to
decide if they represent the same or different entities, one normally
woul d expect that if the entity (the entity-body or any entity-
headers) changes in any way, then the associated validator would
change as well. If this is true, then we call this validator a
"strong validator."

However, there might be cases when a server prefers to change the
validator only on semantically significant changes, and not when
insignificant aspects of the entity change. A validator that does not
al ways change when the resource changes is a "weak validator."

Entity tags are normally "strong validators,” but the protoco
provides a nmechanismto tag an entity tag as "weak." One can think of
a strong validator as one that changes whenever the bits of an entity
changes, while a weak val ue changes whenever the neaning of an entity
changes. Alternatively, one can think of a strong validator as part
of an identifier for a specific entity, while a weak validator is
part of an identifier for a set of semantically equivalent entities.

Note: One exanple of a strong validator is an integer that is
increnented in stable storage every tinme an entity is changed.

Fielding, et al. St andards Track [Page 86]

RFC 2616 HTTP/ 1.1 June 1999

An entity’'s nodification tine, if represented with one-second
resol ution, could be a weak validator, since it is possible that
the resource mght be nodified twi ce during a single second.

Support for weak validators is optional. However, weak validators
all ow for nore efficient caching of equival ent objects; for
exanple, a hit counter on a site is probably good enough if it is
updat ed every few days or weeks, and any val ue during that period
is likely "good enough" to be equival ent.

A "use" of a validator is either when a client generates a request
and includes the validator in a validating header field, or when a
server conpares two validators.

Strong validators are usable in any context. Wak validators are only
usable in contexts that do not depend on exact equality of an entity.
For exanple, either kind is usable for a conditional GET of a ful
entity. However, only a strong validator is usable for a sub-range
retrieval, since otherwise the client nmight end up with an internally
i nconsi stent entity.

Cients MAY issue sinple (non-subrange) CET requests with either weak
validators or strong validators. Cients MJUST NOT use weak validators
in other forns of request.

The only function that the HTTP/ 1.1 protocol defines on validators is
conpari son. There are two validator conparison functions, depending
on whet her the conparison context allows the use of weak validators
or not:

- The strong conparison function: in order to be considered equal
both validators MJST be identical in every way, and both MJST
NOT be weak.

- The weak conparison function: in order to be considered equal
both validators MJST be identical in every way, but either or
both of them MAY be tagged as "weak" without affecting the
result.

An entity tag is strong unless it is explicitly tagged as weak.
Section 3.11 gives the syntax for entity tags.

A Last-Modified time, when used as a validator in a request, is
inmplicitly weak unless it is possible to deduce that it is strong,
using the follow ng rules:

- The validator is being conpared by an origin server to the
actual current validator for the entity and,

Fielding, et al. St andards Track [Page 87]

RFC 2616 HTTP/ 1.1 June 1999

- That origin server reliably knows that the associated entity did
not change twi ce during the second covered by the presented

val i dat or .
or
- The validator is about to be used by a client in an If-
Modi fi ed-Since or |f-Unnodified-Si nce header, because the client
has a cache entry for the associated entity, and
- That cache entry includes a Date val ue, which gives the tine
when the origin server sent the original response, and
- The presented Last-Mdified time is at |east 60 seconds before
t he Date val ue.
or

- The validator is being conpared by an intermedi ate cache to the
validator stored in its cache entry for the entity, and

- That cache entry includes a Date val ue, which gives the tine
when the origin server sent the original response, and

- The presented Last-Mddified tinme is at | east 60 seconds before
t he Date val ue.

This method relies on the fact that if two different responses were
sent by the origin server during the same second, but both had the
sanme Last-Modified tinme, then at | east one of those responses woul d
have a Date value equal to its Last-Mddified tine. The arbitrary 60-
second limt guards against the possibility that the Date and Last-
Modi fi ed values are generated fromdifferent clocks, or at sonewhat
different times during the preparation of the response. An

i mpl enentati on MAY use a value larger than 60 seconds, if it is
bel i eved that 60 seconds is too short.

If a client wishes to performa sub-range retrieval on a value for
which it has only a Last-Mdified time and no opaque validator, it
MAY do this only if the Last-Mddified time is strong in the sense
descri bed here.

A cache or origin server receiving a conditional request, other than
a full-body GET request, MJST use the strong conparison function to
eval uate the condition

These rules allow HTTP/ 1.1 caches and clients to safely perform sub-
range retrievals on values that have been obtained fromHTTP/ 1.0

Fielding, et al. St andards Track [Page 88]

RFC 2616 HTTP/ 1.1 June 1999

13.

servers.
3.4 Rules for When to Use Entity Tags and Last-Modified Dates

We adopt a set of rules and recomrendations for origin servers,
clients, and caches regardi ng when various validator types ought to
be used, and for what purposes.

HTTP/ 1.1 origin servers:

- SHOULD send an entity tag validator unless it is not feasible to
generat e one.

- MAY send a weak entity tag instead of a strong entity tag, if
perfornmance consi derations support the use of weak entity tags,
or if it is unfeasible to send a strong entity tag.

- SHOULD send a Last-Mdified value if it is feasible to send one,
unl ess the risk of a breakdown in semantic transparency that
could result fromusing this date in an |f-NMbdified-Since header
woul d | ead to serious problens.

In other words, the preferred behavior for an HITP/ 1.1 origin server
is to send both a strong entity tag and a Last-Mdified val ue.

In order to be legal, a strong entity tag MJUST change whenever the
associ ated entity value changes in any way. A weak entity tag SHOULD
change whenever the associated entity changes in a semantically
significant way.

Note: in order to provide semantically transparent caching, an
origin server nust avoid reusing a specific strong entity tag
value for two different entities, or reusing a specific weak
entity tag value for two senmantically different entities. Cache
entries mght persist for arbitrarily |ong periods, regardl ess of
expiration tinmes, so it mght be inappropriate to expect that a
cache will never again attenpt to validate an entry using a
validator that it obtained at some point in the past.

HTTP/ 1.1 clients:

- If an entity tag has been provided by the origin server, MJST
use that entity tag in any cache-conditional request (using If-
Mat ch or |f-None-Match).

- If only a Last-Mdified value has been provided by the origin
server, SHOULD use that val ue in non-subrange cache-conditiona
requests (using If-Modified-Since).

Fielding, et al. St andards Track [Page 89]

RFC 2616 HTTP/ 1.1 June 1999

13.

- If only a Last-Mdified value has been provided by an HTTP/ 1.0
origin server, MAY use that value in subrange cache-conditiona
requests (using If-Unnodified-Since:). The user agent SHOULD
provide a way to disable this, in case of difficulty.

- If both an entity tag and a Last-Mdified val ue have been
provi ded by the origin server, SHOULD use both validators in
cache-conditional requests. This allows both HTTP/ 1.0 and
HTTP/ 1.1 caches to respond appropriately.

An HTTP/ 1.1 origin server, upon receiving a conditional request that
i ncludes both a Last-Mdified date (e.g., in an |If-Mdified-Since or
| f-Unnodified-Since header field) and one or nore entity tags (e.g.
in an |f-Match, 1f-None-Match, or |f-Range header field) as cache
validators, MJST NOT return a response status of 304 (Not Mbdified)
unl ess doing so is consistent with all of the conditional header
fields in the request.

An HTTP/ 1.1 caching proxy, upon receiving a conditional request that
i ncludes both a Last-Mdified date and one or nore entity tags as
cache validators, MJST NOT return a locally cached response to the
client unless that cached response is consistent with all of the
conditional header fields in the request.

Note: The general principle behind these rules is that HTTP/ 1.1
servers and clients should transmt as nuch non-redundant
information as is available in their responses and requests.
HTTP/ 1.1 systems receiving this information will nake the nost
conservative assunptions about the validators they receive.

HTTP/ 1.0 clients and caches will ignore entity tags. Generally,

| ast-nodi fied val ues received or used by these systens wll
support transparent and efficient caching, and so HITP/1.1 origin
servers shoul d provide Last-Mdified values. In those rare cases
where the use of a Last-Mdified value as a validator by an

HTTP/ 1.0 systemcould result in a serious problem then HTITP/1.1
origin servers should not provide one.

3.5 Non-validating Conditionals

The principle behind entity tags is that only the service author
knows the semantics of a resource well enough to select an
appropriate cache validation nmechanism and the specification of any
val i dator conparison function nore conplex than byte-equality would
open up a can of worns. Thus, conparisons of any other headers
(except Last-Modified, for conpatibility with HTTP/1.0) are never
used for purposes of validating a cache entry.

Fielding, et al. St andards Track [Page 90]

RFC 2616 HTTP/ 1.1 June 1999

13. 4 Response Cacheability

Unl ess specifically constrained by a cache-control (section 14.9)
directive, a caching system MAY al ways store a successful response
(see section 13.8) as a cache entry, MAY return it w thout validation
if it is fresh, and MAY return it after successful validation. If
there is neither a cache validator nor an explicit expiration tine
associated with a response, we do not expect it to be cached, but
certain caches MAY violate this expectation (for exanple, when little
or no network connectivity is available). A client can usually detect
that such a response was taken froma cache by conparing the Date
header to the current tine.

Note: sone HTTP/ 1.0 caches are known to violate this expectation
wi t hout providi ng any Warning.

However, in some cases it mght be inappropriate for a cache to
retain an entity, or to return it in response to a subsequent
request. This might be because absol ute semantic transparency is
deened necessary by the service author, or because of security or
privacy considerations. Certain cache-control directives are
therefore provided so that the server can indicate that certain
resource entities, or portions thereof, are not to be cached
regardl ess of other considerations.

Note that section 14.8 normally prevents a shared cache from saving
and returning a response to a previous request if that request
i ncl uded an Authorizati on header

A response received with a status code of 200, 203, 206, 300, 301 or
410 MAY be stored by a cache and used in reply to a subsequent
request, subject to the expiration nmechanism unless a cache-contro
directive prohibits caching. However, a cache that does not support
t he Range and Cont ent - Range headers MJST NOT cache 206 (Parti al
Content) responses.

A response received with any other status code (e.g. status codes 302
and 307) MUST NOT be returned in a reply to a subsequent request

unl ess there are cache-control directives or another header(s) that
explicitly allowit. For exanple, these include the follow ng: an
Expi res header (section 14.21); a "nmax-age", "s-naxage", "nust-
reval i date", "proxy-revalidate", "public" or "private" cache-contro
directive (section 14.9).

Fielding, et al. St andards Track [Page 91]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

13.

5 Constructing Responses From Caches

The purpose of an HTTP cache is to store information received in
response to requests for use in responding to future requests. In
many cases, a cache sinply returns the appropriate parts of a
response to the requester. However, if the cache holds a cache entry
based on a previous response, it mght have to conbine parts of a new
response with what is held in the cache entry.

5.1 End-to-end and Hop-by-hop Headers

For the purpose of defining the behavior of caches and non-cachi ng
proxies, we divide HTTP headers into two categories:

- End-to-end headers, which are transnmitted to the ultimte
reci pient of a request or response. End-to-end headers in
responses MUST be stored as part of a cache entry and MJST be
transmitted in any response formed froma cache entry.

- Hop-by-hop headers, which are neaningful only for a single
transport-1level connection, and are not stored by caches or
forwarded by proxies.

The following HITP/ 1.1 headers are hop-by-hop headers:

- Connection

- Keep-Alive

- Proxy-Authenticate
- Proxy-Aut horization
- TE

- Trailers

- Transfer-Encodi ng

- Upgrade

Al'l other headers defined by HTTP/ 1.1 are end-to-end headers.

O her hop-by-hop headers MUST be |isted in a Connection header,
(section 14.10) to be introduced into HTTP/1.1 (or later).

5.2 Non-nodi fi abl e Headers

Sonme features of the HTTP/ 1.1 protocol, such as Digest

Aut henti cati on, depend on the value of certain end-to-end headers. A
transparent proxy SHOULD NOT nodify an end-to-end header unless the
definition of that header requires or specifically allows that.

Fielding, et al. St andards Track [Page 92]

RFC 2616 HTTP/ 1.1 June 1999

A transparent proxy MJST NOT nodify any of the following fields in a
request or response, and it MJST NOT add any of these fields if not
al ready present:

- Content-Location
- Content - MD5

- ETag

- Last-Mdified

A transparent proxy MJST NOT nodify any of the following fields in a
response:

- Expires

but it MAY add any of these fields if not already present. If an
Expires header is added, it MJST be given a field-value identical to
that of the Date header in that response.

A proxy MIST NOT nodify or add any of the following fields in a
nmessage that contains the no-transform cache-control directive, or in
any request:

- Cont ent - Encodi ng
- Cont ent - Range
- Content-Type

A non-transparent proxy MAY nodify or add these fields to a nessage
that does not include no-transform but if it does so, it MJST add a
Warning 214 (Transformation applied) if one does not already appear
in the nessage (see section 14.46).

War ni ng: unnecessary nodi fication of end-to-end headers ni ght
cause authentication failures if stronger authentication
nmechani snms are introduced in later versions of HITP. Such

aut henti cation nechani sns MAY rely on the val ues of header fields
not |isted here.

The Content-Length field of a request or response is added or del eted
according to the rules in section 4.4. A transparent proxy MJST
preserve the entity-length (section 7.2.2) of the entity-body,

al though it MAY change the transfer-length (section 4.4).

Fielding, et al. St andards Track [Page 93]

RFC 2616 HTTP/ 1.1 June 1999

13. 5. 3 Conbi ni ng Headers

When a cache makes a validating request to a server, and the server
provides a 304 (Not Mdified) response or a 206 (Partial Content)
response, the cache then constructs a response to send to the
requesting client.

If the status code is 304 (Not Modified), the cache uses the entity-
body stored in the cache entry as the entity-body of this outgoing
response. If the status code is 206 (Partial Content) and the ETag or
Last - Mbdi fi ed headers match exactly, the cache MAY conbi ne the
contents stored in the cache entry with the new contents received in
the response and use the result as the entity-body of this outgoing
response, (see 13.5.4).

The end-to-end headers stored in the cache entry are used for the
constructed response, except that

- any stored Warning headers with warn-code 1xx (see section
14. 46) MUST be deleted fromthe cache entry and the forwarded
response.

- any stored Warni ng headers w th warn-code 2xx MJST be retained
in the cache entry and the forwarded response.

- any end-to-end headers provided in the 304 or 206 response MJUST
repl ace the correspondi ng headers fromthe cache entry.

Unl ess the cache decides to renove the cache entry, it MJST al so
repl ace the end-to-end headers stored with the cache entry with
correspondi ng headers received in the inconing response, except for
War ni ng headers as described i nmedi ately above. If a header field-
name in the inconming response nmatches nore than one header in the
cache entry, all such old headers MJST be repl aced.

In other words, the set of end-to-end headers received in the

i ncom ng response overrides all correspondi ng end-to-end headers
stored with the cache entry (except for stored Warning headers with
war n- code 1xx, which are deleted even if not overridden).

Note: this rule allows an origin server to use a 304 (Not

Modi fied) or a 206 (Partial Content) response to update any header
associ ated with a previous response for the sane entity or sub-
ranges thereof, although it m ght not always be neaningful or
correct to do so. This rule does not allow an origin server to use
a 304 (Not Modified) or a 206 (Partial Content) response to
entirely delete a header that it had provided with a previous
response.

Fielding, et al. St andards Track [Page 94]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

5.4 Conbi ni ng Byte Ranges

A response might transfer only a subrange of the bytes of an entity-
body, either because the request included one or nore Range
specifications, or because a connection was broken prematurely. After
several such transfers, a cache m ght have received several ranges of
the sane entity-body.

If a cache has a stored non-enpty set of subranges for an entity, and
an inconing response transfers another subrange, the cache MAY
conbi ne the new subrange with the existing set if both the follow ng
conditions are net:

- Both the incom ng response and the cache entry have a cache
val i dat or.

- The two cache validators match using the strong conpari son
function (see section 13.3.3).

If either requirenent is not net, the cache MJUST use only the npbst
recent partial response (based on the Date values transnitted with
every response, and using the incom ng response if these values are
equal or mssing), and MJST discard the other partial information

6 Cachi ng Negoti at ed Responses

Use of server-driven content negotiation (section 12.1), as indicated
by the presence of a Vary header field in a response, alters the
conditions and procedure by which a cache can use the response for
subsequent requests. See section 14.44 for use of the Vary header
field by servers.

A server SHOULD use the Vary header field to informa cache of what
request - header fields were used to select anong nultiple
representations of a cacheabl e response subject to server-driven
negoti ati on. The set of header fields named by the Vary field val ue
is known as the "sel ecting" request-headers.

When the cache receives a subsequent request whose Request-UR
specifies one or nore cache entries including a Vary header field,
the cache MJUST NOT use such a cache entry to construct a response to
the new request unless all of the selecting request-headers present
in the new request match the correspondi ng stored request-headers in
the original request.

The sel ecting request-headers fromtwo requests are defined to match
if and only if the selecting request-headers in the first request can
be transformed to the sel ecting request-headers in the second request

Fielding, et al. St andards Track [Page 95]

RFC 2616 HTTP/ 1.1 June 1999

13.

by addi ng or renoving linear white space (LWS) at places where this
is allowed by the correspondi ng BNF, and/or conbining multiple
nessage- header fields with the same field nane followi ng the rules
about nmessage headers in section 4.2

A Vary header field-value of "*" always fails to match and subsequent
requests on that resource can only be properly interpreted by the
origin server.

If the selecting request header fields for the cached entry do not
mat ch the sel ecting request header fields of the new request, then
the cache MUST NOT use a cached entry to satisfy the request unless
it first relays the new request to the origin server in a conditiona
request and the server responds with 304 (Not Modified), including an
entity tag or Content-Location that indicates the entity to be used.

If an entity tag was assigned to a cached representation, the
forwarded request SHOULD be conditional and include the entity tags
in an | f-None-Match header field fromall its cache entries for the
resource. This conveys to the server the set of entities currently
hel d by the cache, so that if any one of these entities nmatches the
requested entity, the server can use the ETag header field in its 304
(Not Modified) response to tell the cache which entry is appropriate.
If the entity-tag of the new response matches that of an existing
entry, the new response SHOULD be used to update the header fields of
the existing entry, and the result MJST be returned to the client.

If any of the existing cache entries contains only partial content
for the associated entity, its entity-tag SHOULD NOT be included in
the |f-None-Match header field unless the request is for a range that
woul d be fully satisfied by that entry.

If a cache receives a successful response whose Content-Location
field matches that of an existing cache entry for the sane Request-
JURI, whose entity-tag differs fromthat of the existing entry, and
whose Date is nore recent than that of the existing entry, the
existing entry SHOULD NOT be returned in response to future requests
and SHOULD be deleted fromthe cache.

7 Shared and Non- Shared Caches

For reasons of security and privacy, it is necessary to nake a

di stinction between "shared" and "non-shared" caches. A non-shared
cache is one that is accessible only to a single user. Accessibility
in this case SHOULD be enforced by appropriate security nechani sns.
Al'l other caches are considered to be "shared." Oher sections of

Fielding, et al. St andards Track [Page 96]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

13.

this specification place certain constraints on the operation of
shared caches in order to prevent |oss of privacy or failure of
access controls.

8 Errors or Inconplete Response Cache Behavi or

A cache that receives an inconplete response (for exanple, with fewer
bytes of data than specified in a Content-Length header) MAY store
the response. However, the cache MJST treat this as a partial
response. Partial responses MAY be conbined as described in section
13.5.4; the result mght be a full response or nmight still be
partial. A cache MJST NOT return a partial response to a client

wi thout explicitly marking it as such, using the 206 (Parti al
Content) status code. A cache MUST NOT return a partial response
using a status code of 200 (OK).

If a cache receives a 5xx response while attenpting to revalidate an
entry, it MAY either forward this response to the requesting client,
or act as if the server failed to respond. In the latter case, it MAY
return a previously received response unl ess the cached entry

i ncludes the "nust-revalidate" cache-control directive (see section
14.9).

9 Side Effects of GET and HEAD

Unl ess the origin server explicitly prohibits the caching of their
responses, the application of GET and HEAD net hods to any resources
SHOULD NOT have side effects that would | ead to erroneous behavior if
t hese responses are taken froma cache. They MAY still have side
effects, but a cache is not required to consider such side effects in
its caching decisions. Caches are always expected to observe an
origin server's explicit restrictions on caching.

W note one exception to this rule: since some applications have
traditionally used GETs and HEADs with query URLs (those containing a
"?" in the rel _path part) to performoperations with significant side
effects, caches MJUST NOT treat responses to such URIs as fresh unl ess
the server provides an explicit expiration time. This specifically
neans that responses from HITP/ 1.0 servers for such URI's SHOULD NOT
be taken froma cache. See section 9.1.1 for related information

10 Invalidation After Updates or Del etions

The effect of certain nethods performed on a resource at the origin
server night cause one or nore existing cache entries to becone non-
transparently invalid. That is, although they nmight continue to be
"fresh," they do not accurately reflect what the origin server would
return for a new request on that resource.

Fielding, et al. St andards Track [Page 97]

RFC 2616 HTTP/ 1.1 June 1999

13.

There is no way for the HTTP protocol to guarantee that all such
cache entries are marked invalid. For exanple, the request that
caused the change at the origin server m ght not have gone through
the proxy where a cache entry is stored. However, several rules help
reduce the likelihood of erroneous behavior

In this section, the phrase "invalidate an entity" neans that the
cache will either renmove all instances of that entity fromits
storage, or will mark these as "invalid" and in need of a mandatory
reval i dation before they can be returned in response to a subsequent
request.

Sone HTTP nethods MJUST cause a cache to invalidate an entity. This is
either the entity referred to by the Request-URI, or by the Location
or Content-Location headers (if present). These nethods are:

- PUT
- DELETE
- POST

In order to prevent denial of service attacks, an invalidation based
on the URI in a Location or Content-Location header MJST only be
perfornmed if the host part is the sane as in the Request-UR

A cache that passes through requests for nethods it does not
understand SHOULD i nvalidate any entities referred to by the
Request - URI .

11 Wite-Through Mandatory

Al methods that m ght be expected to cause nodifications to the
origin server’s resources MIJST be witten through to the origin
server. This currently includes all nethods except for GET and HEAD
A cache MJUST NOT reply to such a request froma client before having
transmtted the request to the inbound server, and having received a
correspondi ng response fromthe inbound server. This does not prevent
a proxy cache from sending a 100 (Continue) response before the

i nbound server has sent its final reply.

The alternative (known as "wite-back” or "copy-back" caching) is not
allowed in HITP/ 1.1, due to the difficulty of providing consistent
updates and the problens arising fromserver, cache, or network
failure prior to wite-back.

Fielding, et al. St andards Track [Page 98]

RFC 2616 HTTP/ 1.1 June 1999

13.

13.

12 Cache Repl acenent

If a new cacheabl e (see sections 14.9.2, 13.2.5, 13.2.6 and 13.8)
response is received froma resource while any existing responses for
the sane resource are cached, the cache SHOULD use the new response
toreply to the current request. It MAY insert it into cache storage
and MAY, if it neets all other requirenents, use it to respond to any
future requests that would previously have caused the old response to
be returned. If it inserts the new response into cache storage the
rules in section 13.5.3 apply.

Note: a new response that has an ol der Date header val ue than
exi sting cached responses is not cacheabl e.

13 History Lists

User agents often have history nechani sns, such as "Back" buttons and
history lists, which can be used to redisplay an entity retrieved
earlier in a session

Hi story nechani sns and caches are different. In particular history
mechani sns SHOULD NOT try to show a semantically transparent view of
the current state of a resource. Rather, a history nechanismis neant
to show exactly what the user saw at the tinme when the resource was
retrieved.

By default, an expiration tinme does not apply to history nechani sns.
If the entity is still in storage, a history nechani sm SHOULD di spl ay
it even if the entity has expired, unless the user has specifically
configured the agent to refresh expired history docunents.

This is not to be construed to prohibit the history mechani smfrom
telling the user that a view might be stale.

Note: if history |list mechani sns unnecessarily prevent users from
viewi ng stale resources, this will tend to force service authors
to avoid using HTTP expiration controls and cache controls when
they would otherwi se |like to. Service authors may consider it

i mportant that users not be presented with error nessages or
war ni ng nessages when they use navigation controls (such as BACK)
to view previously fetched resources. Even though sonetines such
resources ought not to cached, or ought to expire quickly, user

i nterface considerations may force service authors to resort to
ot her neans of preventing caching (e.g. "once-only" URLS) in order
not to suffer the effects of inproperly functioning history
nmechani sns.

Fielding, et al. St andards Track [Page 99]

RFC 2616 HTTP/ 1.1 June 1999

14

14.

Header Field Definitions

This section defines the syntax and semantics of all standard

HTTP/ 1.1 header fields. For entity-header fields, both sender and
recipient refer to either the client or the server, depending on who
sends and who receives the entity.

1 Accept

The Accept request-header field can be used to specify certain nedia
types which are acceptable for the response. Accept headers can be
used to indicate that the request is specifically limted to a snal
set of desired types, as in the case of a request for an in-Iline
i mage.

Accept = "Accept" ":"
#(nedia-range [accept-parans |)

u*/*u

(
| (type u/u "y n)
| (type "/" subtype)
) *(";" paraneter)

accept-params = ";" "q" "=" gvalue *(accept-extension)

accept-extension = ";" token ["=" (token | quoted-string)]

nmedi a- r ange

The asterisk "*" character is used to group nedia types into ranges,
with "*/*" indicating all nedia types and "type/*" indicating al
subtypes of that type. The nedi a-range MAY include nedia type
paranmeters that are applicable to that range.

Each nedi a-range MAY be foll owed by one or nore accept-parans,
beginning with the "q" paraneter for indicating a relative quality
factor. The first "q" paraneter (if any) separates the nedi a-range
paraneter(s) fromthe accept-parans. Quality factors allow the user
or user agent to indicate the relative degree of preference for that
medi a-range, using the qvalue scale fromO to 1 (section 3.9). The
default value is g=1.

Note: Use of the "q" paraneter nanme to separate nedia type
paranmeters from Accept extension parameters is due to historica
practice. Although this prevents any nedia type paraneter naned
"q" frombeing used with a nmedia range, such an event is believed
to be unlikely given the lack of any "q" parameters in the | ANA
nmedi a type registry and the rare usage of any nedia type
paranmeters in Accept. Future nedia types are di scouraged from
regi stering any paraneter naned "q"

Fielding, et al. St andards Track [Page 100]

RFC 2616 HTTP/ 1.1 June 1999

The exanpl e
Accept: audio/*; g=0.2, audio/basic

SHOULD be interpreted as "I prefer audio/basic, but send ne any audio
type if it is the best available after an 80% mark-down in quality."”

If no Accept header field is present, then it is assuned that the
client accepts all media types. If an Accept header field is present,
and if the server cannot send a response which is acceptable
according to the conbi ned Accept field value, then the server SHOULD
send a 406 (not acceptable) response.

A nore el aborate exanmple is

Accept: text/plain; g=0.5, text/htm,
text/x-dvi; g=0.8, text/x-c

Verbally, this would be interpreted as "text/htm and text/x-c are
the preferred nedia types, but if they do not exist, then send the
text/x-dvi entity, and if that does not exist, send the text/plain
entity."”

Medi a ranges can be overridden by nore specific nedia ranges or
specific nedia types. If nore than one nedia range applies to a given
type, the nost specific reference has precedence. For exanple,

Accept: text/*, text/htm, text/htm ;level =1, */*
have the foll ow ng precedence:

1) text/htnml;level =1
2) text/htn

3) text/*

4) */*

The nmedia type quality factor associated with a given type is
determ ned by finding the nmedia range with the hi ghest precedence
whi ch mat ches that type. For exanple,

Accept: text/*;q=0.3, text/htnl;q=0.7, text/htnl;level=1
text/htm ;level =2;9=0.4, */*;g=0.5

woul d cause the foll owi ng values to be associ at ed:
text/htm ;I evel =1

text/ ht
text/plain

non
cor
W~

Fielding, et al. St andards Track [Page 101]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

i mage/ j peg
text/htm ;| evel =2
text/htm ;| evel =3

non
©oo
~N Ao

Note: A user agent nmight be provided with a default set of quality
val ues for certain nedia ranges. However, unless the user agent is
a closed system whi ch cannot interact with other rendering agents,
this default set ought to be configurable by the user

2 Accept - Char set

The Accept - Charset request-header field can be used to indicate what

character sets are acceptable for the response. This field all ows

clients capabl e of understandi ng nore conprehensive or special -

pur pose character sets to signal that capability to a server which is

capabl e of representing docunents in those character sets.
Accept - Charset = "Accept-Charset" ":"

1#((charset | "*")[";" "q" "=" qvalue])

Character set values are described in section 3.4. Each charset MAY
be given an associated quality val ue which represents the user’s
preference for that charset. The default value is g=1. An exanple is

Accept - Charset: is0-8859-5, unicode-1-1;q=0.8

The special value "*", if present in the Accept-Charset field,

mat ches every character set (including | SO 8859-1) which is not

menti oned el sewhere in the Accept-Charset field. If no "*" is present
in an Accept-Charset field, then all character sets not explicitly
mentioned get a quality value of 0, except for |1SO 8859-1, which gets
a quality value of 1 if not explicitly nentioned.

If no Accept-Charset header is present, the default is that any
character set is acceptable. If an Accept-Charset header is present,
and if the server cannot send a response which is acceptable
according to the Accept-Charset header, then the server SHOULD send
an error response with the 406 (not acceptable) status code, though
the sendi ng of an unacceptabl e response is al so all owed.

3 Accept - Encodi ng

The Accept - Encodi ng request-header field is sinmlar to Accept, but
restricts the content-codings (section 3.5) that are acceptable in
t he response.

Accept - Encodi ng = "Accept - Encodi ng"

Fielding, et al. St andards Track [Page 102]

RFC 2616 HTTP/ 1.1 June 1999

1#(codings [";" "q =" qvalue])
codi ngs = (content-coding | "*")

Exanpl es of its use are:

Accept - Encodi ng: conpress, gzip

Accept - Encodi ng:

Accept - Encodi ng: *

Accept - Encodi ng: conpress; q=0.5, gzip;qg=1.0
Accept - Encodi ng: gzip;qg=1.0, identity; g=0.5, *;q=0

A server tests whether a content-coding is acceptable, according to
an Accept-Encoding field, using these rules:

1. If the content-coding is one of the content-codings listed in
the Accept-Encoding field, then it is acceptable, unless it is
acconpani ed by a qvalue of 0. (As defined in section 3.9, a
gval ue of 0 neans "not acceptable.")

2. The special "*" synbol in an Accept-Encoding field matches any
avai | abl e content-coding not explicitly listed in the header
field.

3. If multiple content-codings are acceptable, then the acceptable
content-coding with the highest non-zero qvalue is preferred.

4. The "identity" content-coding is always acceptable, unless
specifically refused because the Accept-Encoding field includes
"identity;gq=0", or because the field includes "*;q=0" and does
not explicitly include the "identity" content-coding. If the
Accept-Encoding field-value is enpty, then only the "identity"
encodi ng i s acceptable.

If an Accept-Encoding field is present in a request, and if the
server cannot send a response which is acceptable according to the
Accept - Encodi ng header, then the server SHOULD send an error response
with the 406 (Not Acceptable) status code.

If no Accept-Encoding field is present in a request, the server MAY
assune that the client will accept any content coding. In this case,
if "identity" is one of the avail able content-codi ngs, then the
server SHOULD use the "identity" content-coding, unless it has
additional information that a different content-coding is meani ngfu
to the client.

Note: If the request does not include an Accept-Encoding field,

and if the "identity" content-coding is unavailable, then
cont ent - codi ngs commonl y understood by HTTP/1.0 clients (i.e.

Fielding, et al. St andards Track [Page 103]

RFC 2616 HTTP/ 1.1 June 1999

"gzip" and "conpress") are preferred; sone older clients

i nproperly display nessages sent with other content-codings. The
server nmight al so nake this decision based on information about
the particul ar user-agent or client.

Note: Most HITP/ 1.0 applications do not recogni ze or obey qval ues
associated with content-codings. This neans that qvalues wll not
work and are not permitted with x-gzip or x-conpress.

14. 4 Accept - Language
The Accept-Language request-header field is simlar to Accept, but

restricts the set of natural |anguages that are preferred as a
response to the request. Language tags are defined in section 3.10.

Accept - Language " Accept - Language"
1#(language-range [";" "q gvalue])

| anguage-range = ((1*8ALPHA *("-" 1*8ALPHA)) | "*")

Each | anguage-range MAY be given an associated quality val ue which
represents an estinate of the user’'s preference for the |anguages
specified by that range. The quality value defaults to "g=1". For
exanpl e,

Accept - Language: da, en-gb;qg=0.8, en;q=0.7

woul d nmean: "I prefer Danish, but will accept British English and
ot her types of English." A |anguage-range matches a | anguage-tag if
it exactly equals the tag, or if it exactly equals a prefix of the
tag such that the first tag character following the prefix is "-"
The special range "*", if present in the Accept-Language field,

mat ches every tag not matched by any other range present in the
Accept - Language fiel d.

Note: This use of a prefix matching rule does not inply that

| anguage tags are assigned to |anguages in such a way that it is

al ways true that if a user understands a | anguage with a certain

tag, then this user will also understand all |anguages with tags

for which this tag is a prefix. The prefix rule sinply allows the
use of prefix tags if this is the case.

The | anguage quality factor assigned to a | anguage-tag by the
Accept - Language field is the quality value of the |ongest |anguage-
range in the field that matches the | anguage-tag. |If no | anguage-
range in the field matches the tag, the | anguage quality factor
assigned is 0. If no Accept-Language header is present in the
request, the server

Fielding, et al. St andards Track [Page 104]

RFC 2616 HTTP/ 1.1 June 1999

SHOULD assumne that all |anguages are equally acceptable. If an
Accept - Language header is present, then all |anguages which are
assigned a quality factor greater than 0 are acceptable.

It might be contrary to the privacy expectations of the user to send
an Accept-Language header with the conplete linguistic preferences of
the user in every request. For a discussion of this issue, see
section 15.1. 4.

As intelligibility is highly dependent on the individual user, it is
recommended that client applications make the choice of linguistic
preference available to the user. If the choice is not nade
avai | abl e, then the Accept-Language header field MJUST NOT be given in
t he request.

Not e: When naki ng the choice of linguistic preference available to
the user, we remnd inmplenentors of the fact that users are not
famliar with the details of |anguage nmatching as descri bed above,
and shoul d provi de appropri ate gui dance. As an exanple, users

m ght assune that on selecting "en-gb", they will be served any
kind of English docunent if British English is not available. A
user agent m ght suggest in such a case to add "en" to get the
best matchi ng behavi or.

14. 5 Accept - Ranges

The Accept - Ranges response-header field allows the server to
indicate its acceptance of range requests for a resource:

Accept - Ranges
accept abl e-ranges

"Accept - Ranges" ":" acceptabl e-ranges
1#range-unit | "none"

Oigin servers that accept byte-range requests MAY send
Accept - Ranges: bytes

but are not required to do so. Cients MAY generate byte-range

requests w thout having received this header for the resource

i nvol ved. Range units are defined in section 3.12

Servers that do not accept any kind of range request for a
resource MAY send

Accept - Ranges: none

to advise the client not to attenpt a range request.

Fielding, et al. St andards Track [Page 105]

RFC 2616 HTTP/ 1.1 June 1999

14. 6 Age

The Age response-header field conveys the sender’s estinmate of the
amount of tine since the response (or its revalidation) was
generated at the origin server. A cached response is "fresh" if
its age does not exceed its freshness lifetine. Age val ues are

cal cul ated as specified in section 13.2. 3.

Age = "Age" ":" age-val ue
age-val ue = delta-seconds

Age val ues are non-negative decimal integers, representing time in
seconds.

If a cache receives a value larger than the |argest positive
integer it can represent, or if any of its age calcul ations
overflows, it MJST transmt an Age header with a val ue of
2147483648 (2731). An HTTP/ 1.1 server that includes a cache MJST
i nclude an Age header field in every response generated fromits
own cache. Caches SHOULD use an arithnetic type of at |east 31
bits of range.

14.7 Al ow

The Allow entity-header field |ists the set of nethods supported
by the resource identified by the Request-URI. The purpose of this
field is strictly to informthe recipient of valid nethods
associated with the resource. An All ow header field MJST be
present in a 405 (Method Not All owed) response.

Allow = "Alow ":" #Method
Exanpl e of use:
Al l ow. GET, HEAD, PUT

This field cannot prevent a client fromtrying other nethods.
However, the indications given by the Al ow header field value
SHOULD be foll owed. The actual set of allowed nethods is defined
by the origin server at the tine of each request.

The Al |l ow header field MAY be provided with a PUT request to
recommend the nmethods to be supported by the new or nodified
resource. The server is not required to support these nethods and
SHOULD i nclude an Al |l ow header in the response giving the actua
supported nethods.

Fielding, et al. St andards Track [Page 106]

RFC 2616 HTTP/ 1.1 June 1999

A proxy MJUST NOT nodify the Al ow header field even if it does not
understand all the nethods specified, since the user agent m ght
have ot her neans of conmmunicating with the origin server.

14. 8 Aut hori zation

A user agent that w shes to authenticate itself with a server--
usual 'y, but not necessarily, after receiving a 401 response--does
so by including an Authorization request-header field with the
request. The Authorization field value consists of credentials
contai ning the authentication information of the user agent for
the real mof the resource being requested.

Aut hori zation = "Authorization" ":" credentials

HTTP access authentication is described in "HTTP Authentication
Basi ¢ and Di gest Access Authentication" [43]. If a request is

aut henticated and a real mspecified, the same credentials SHOULD
be valid for all other requests within this real m (assum ng that
the aut hentication schene itself does not require otherw se, such
as credentials that vary according to a challenge val ue or using
synchroni zed cl ocks).

When a shared cache (see section 13.7) receives a request

contai ning an Authorization field, it MJUST NOT return the
correspondi ng response as a reply to any other request, unless one
of the foll ow ng specific exceptions holds:

1. If the response includes the "s-maxage" cache-contro
directive, the cache MAY use that response in replying to a
subsequent request. But (if the specified nmaxi num age has
passed) a proxy cache MJST first revalidate it with the origin
server, using the request-headers fromthe new request to all ow
the origin server to authenticate the new request. (This is the
defined behavior for s-maxage.) |If the response includes "s-
maxage=0", the proxy MJST always revalidate it before re-using
it.

2. If the response includes the "nust-revalidate" cache-contro
directive, the cache MAY use that response in replying to a
subsequent request. But if the response is stale, all caches
MUST first revalidate it with the origin server, using the
request - headers fromthe new request to allow the origin server
to authenticate the new request.

3. If the response includes the "public" cache-control directive,
it MAY be returned in reply to any subsequent request.

Fielding, et al. St andards Track [Page 107]

RFC 2616 HTTP/ 1.1 June 1999

14. 9 Cache- Contr ol

The Cache-Control general -header field is used to specify directives
that MJUST be obeyed by all cachi ng nechani sns al ong the
request/response chain. The directives specify behavior intended to
prevent caches from adversely interfering with the request or
response. These directives typically override the default caching

al gorithms. Cache directives are unidirectional in that the presence
of a directive in a request does not inply that the same directive is
to be given in the response.

Note that HTTP/ 1.0 caches m ght not inplenent Cache-Control and
nm ght only inplenent Pragma: no-cache (see section 14.32).

Cache directives MIUST be passed through by a proxy or gateway
application, regardless of their significance to that application
since the directives mght be applicable to all recipients along the
request/response chain. It is not possible to specify a cache-
directive for a specific cache.

Cache- Cont r ol = "Cache-Control"™ ":" 1#cache-directive

cache-directive = cache-request-directive
| cache-response-directive

cache-request-directive =

"no-cache" ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "nmax-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "mn-fresh" "=" delta-seconds ; Section 14.9.3
| "no-transfornt ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6

cache-response-directive =

"public" ; Section 14.9.1
| "private" ["=" <"> 1#field-name <">] ; Section 14.9.1
| "no-cache" ["=" <"> 1#field-nane <">]; Section 14.9.1
| "no-store" ; Section 14.9.2
| "no-transfornt ; Section 14.9.5
| "nust-revalidate" ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4
| "nmax-age" "=" delta-seconds ; Section 14.9.3
| "s-maxage" "=" delta-seconds ; Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["=" (token | quoted-string)]

Fielding, et al. St andards Track [Page 108]

RFC 2616 HTTP/ 1.1 June 1999

14.

When a directive appears w thout any 1#fiel d-nane paraneter, the
directive applies to the entire request or response. Wen such a
directive appears with a 1#fiel d-nane paraneter, it applies only to
the naned field or fields, and not to the rest of the request or
response. This nechani sm supports extensibility; inplenentations of
future versions of the HTTP protocol might apply these directives to
header fields not defined in HITP/ 1. 1.

The cache-control directives can be broken down into these genera
cat egori es:

- Restrictions on what are cacheabl e; these may only be inposed by
the origin server.

- Restrictions on what may be stored by a cache; these nmay be
i nposed by either the origin server or the user agent.

- Modifications of the basic expiration nmechanism these may be
i nposed by either the origin server or the user agent.

- Controls over cache revalidation and reload; these may only be
i nposed by a user agent.

- Control over transformation of entities.
- Extensions to the caching system
9.1 What is Cacheabl e

By default, a response is cacheable if the requirenents of the
request nethod, request header fields, and the response status
indicate that it is cacheable. Section 13.4 sunmarizes these defaults
for cacheability. The foll owi ng Cache-Control response directives
allow an origin server to override the default cacheability of a
response:

public
I ndi cates that the response MAY be cached by any cache, even if it
woul d nornmal |y be non-cacheabl e or cacheable only within a non-
shared cache. (See al so Authorization, section 14.8, for
additional details.)

private
Indicates that all or part of the response nessage is intended for
a single user and MJUST NOT be cached by a shared cache. This
allows an origin server to state that the specified parts of the

Fielding, et al. St andards Track [Page 109]

RFC 2616 HTTP/ 1.1 June 1999

response are intended for only one user and are not a valid
response for requests by other users. A private (non-shared) cache
MAY cache the response.

Note: This usage of the word private only controls where the
response may be cached, and cannot ensure the privacy of the
nessage content.

no- cache
If the no-cache directive does not specify a field-nane, then a
cache MUST NOT use the response to satisfy a subsequent request
wi t hout successful revalidation with the origin server. This
allows an origin server to prevent caching even by caches that
have been configured to return stale responses to client requests.

If the no-cache directive does specify one or nore field-nanes,
then a cache MAY use the response to satisfy a subsequent request,
subject to any other restrictions on caching. However, the
specified field-name(s) MJST NOT be sent in the response to a
subsequent request without successful revalidation with the origin
server. This allows an origin server to prevent the re-use of
certain header fields in a response, while still allow ng caching
of the rest of the response.

Note: Most HITP/ 1.0 caches will not recognize or obey this
directive.

14.9.2 VWhat May be Stored by Caches

no-store
The purpose of the no-store directive is to prevent the
i nadvertent release or retention of sensitive infornmation (for
exanpl e, on backup tapes). The no-store directive applies to the
entire nessage, and MAY be sent either in a response or in a
request. If sent in a request, a cache MUST NOT store any part of
either this request or any response to it. If sent in a response,
a cache MJUST NOT store any part of either this response or the
request that elicited it. This directive applies to both non-
shared and shared caches. "MJST NOT store" in this context neans
that the cache MJUST NOT intentionally store the information in
non-vol atil e storage, and MJUST nake a best-effort attenpt to
renove the information fromvolatile storage as pronptly as
possi ble after forwarding it.

Even when this directive is associated with a response, users

m ght explicitly store such a response outside of the caching
system (e.g., with a "Save As" dialog). Hi story buffers MAY store
such responses as part of their normal operation

Fielding, et al. St andards Track [Page 110]

RFC 2616 HTTP/ 1.1 June 1999

The purpose of this directive is to neet the stated requirenents
of certain users and service authors who are concerned about
accidental releases of information via unanticipated accesses to
cache data structures. Wiile the use of this directive m ght

i mprove privacy in sone cases, we caution that it is NOT in any
way a reliable or sufficient nechanismfor ensuring privacy. In
particular, malicious or conprom sed caches m ght not recognize or
obey this directive, and conmuni cations networks m ght be

vul nerabl e to eavesdroppi ng.

14.9.3 Modifications of the Basic Expiration Mechani sm

The expiration tine of an entity MAY be specified by the origin
server using the Expires header (see section 14.21). Alternatively,
it MAY be specified using the max-age directive in a response. \Wen
t he max-age cache-control directive is present in a cached response,
the response is stale if its current age is greater than the age

val ue given (in seconds) at the time of a new request for that
resource. The max-age directive on a response inplies that the
response is cacheable (i.e., "public") unless sone other, nore
restrictive cache directive is also present.

If a response includes both an Expires header and a max-age
directive, the nax-age directive overrides the Expires header, even
if the Expires header is nore restrictive. This rule allows an origin
server to provide, for a given response, a longer expiration tine to
an HTTP/ 1.1 (or later) cache than to an HTTP/ 1.0 cache. This might be
useful if certain HTTP/ 1.0 caches inproperly cal cul ate ages or
expiration tinmes, perhaps due to desynchronized cl ocks.

Many HTTP/ 1.0 cache inplenentations will treat an Expires val ue that
is less than or equal to the response Date val ue as bei ng equival ent
to the Cache-Control response directive "no-cache". If an HTTP/1.1
cache receives such a response, and the response does not include a
Cache- Control header field, it SHOULD consider the response to be
non- cacheable in order to retain conpatibility with HTTP/ 1.0 servers.

Note: An origin server might wish to use a relatively new HTTP
cache control feature, such as the "private" directive, on a
networ k including ol der caches that do not understand that
feature. The origin server will need to conbine the new feature
with an Expires field whose value is less than or equal to the
Date value. This will prevent ol der caches from i nproperly
caching the response.

Fielding, et al. St andards Track [Page 111]

RFC 2616 HTTP/ 1.1 June 1999

S- maxage
If a response includes an s-maxage directive, then for a shared
cache (but not for a private cache), the nmaxi mum age specified by
this directive overrides the maxi num age specified by either the
max-age directive or the Expires header. The s-nmaxage directive
also inmplies the semantics of the proxy-revalidate directive (see
section 14.9.4), i.e., that the shared cache nust not use the
entry after it becomes stale to respond to a subsequent request
without first revalidating it with the origin server. The s-
maxage directive is always ignored by a private cache.

Not e that nost ol der caches, not conmpliant with this specification
do not inplenent any cache-control directives. An origin server

wi shing to use a cache-control directive that restricts, but does not
prevent, caching by an HTTP/ 1. 1-conpliant cache MAY exploit the

requi renent that the max-age directive overrides the Expires header
and the fact that pre-HTTP/1.1-conpliant caches do not observe the
max- age directive.

O her directives allow a user agent to nodify the basic expiration
mechani sm These directives MAY be specified on a request:

nax- age
Indicates that the client is willing to accept a response whose
age is no greater than the specified time in seconds. Unl ess max-
stale directive is also included, the client is not willing to
accept a stal e response.

m n-fresh
Indicates that the client is willing to accept a response whose
freshness lifetinme is no less than its current age plus the
specified tine in seconds. That is, the client wants a response
that will still be fresh for at |east the specified nunber of
seconds.

max- st al e
Indicates that the client is willing to accept a response that has
exceeded its expiration time. If max-stale is assigned a val ue,
then the client is willing to accept a response that has exceeded
its expiration time by no nore than the specified nunber of
seconds. If no value is assigned to nax-stale, then the client is
willing to accept a stale response of any age.

If a cache returns a stale response, either because of a nmax-stale
directive on a request, or because the cache is configured to
override the expiration tinme of a response, the cache MJIST attach a
War ni ng header to the stale response, using Warning 110 (Response is
stale).

Fielding, et al. St andards Track [Page 112]

RFC 2616 HTTP/ 1.1 June 1999

14.

A cache MAY be configured to return stale responses w thout
validation, but only if this does not conflict with any "MJST"-| eve
requi renents concerning cache validation (e.g., a "nust-revalidate"
cache-control directive).

If both the new request and the cached entry include "nmax-age"
directives, then the |l esser of the two values is used for determ ning
the freshness of the cached entry for that request.

9.4 Cache Revalidation and Rel oad Control s

Sonetimes a user agent might want or need to insist that a cache

revalidate its cache entry with the origin server (and not just with
t he next cache along the path to the origin server), or toreload its
cache entry fromthe origin server. End-to-end revalidation mght be
necessary if either the cache or the origin server has overestinated
the expiration time of the cached response. End-to-end rel oad may be
necessary if the cache entry has become corrupted for sonme reason

End-to-end revalidation nay be requested either when the client does

not have its own | ocal cached copy, in which case we call it
"unspecified end-to-end revalidation", or when the client does have a
| ocal cached copy, in which case we call it "specific end-to-end

reval i dati on.

The client can specify these three kinds of action using Cache-
Control request directives:

End-t o- end rel oad
The request includes a "no-cache" cache-control directive or, for
conpatibility with HTTP/1.0 clients, "Pragma: no-cache". Field
names MJUST NOT be included with the no-cache directive in a
request. The server MJUST NOT use a cached copy when responding to
such a request.

Specific end-to-end revalidation
The request includes a "max-age=0" cache-control directive, which
forces each cache along the path to the origin server to
revalidate its own entry, if any, with the next cache or server
The initial request includes a cache-validating conditional wth
the client’s current validator.

Unspecified end-to-end revalidation
The request includes "nax-age=0" cache-control directive, which
forces each cache along the path to the origin server to
revalidate its own entry, if any, with the next cache or server
The initial request does not include a cache-validating

Fielding, et al. St andards Track [Page 113]

RFC 2616 HTTP/ 1.1 June 1999

conditional; the first cache along the path (if any) that holds a
cache entry for this resource includes a cache-validating
conditional with its current validator.

nmax- age
When an internedi ate cache is forced, by neans of a max-age=0
directive, to revalidate its own cache entry, and the client has
supplied its own validator in the request, the supplied validator
mght differ fromthe validator currently stored with the cache
entry. In this case, the cache MAY use either validator in making
its own request wthout affecting semantic transparency.

However, the choice of validator m ght affect performance. The
best approach is for the internmedi ate cache to use its own
val i dator when nmaking its request. If the server replies with 304
(Not Modified), then the cache can return its now validated copy
to the client with a 200 (OK) response. |If the server replies with
a new entity and cache validator, however, the intermnediate cache
can conpare the returned validator with the one provided in the
client’s request, using the strong conparison function. If the
client’s validator is equal to the origin server’'s, then the

i nternedi ate cache sinply returns 304 (Not Modified). Oherwi se,
it returns the new entity with a 200 (OK) response.

If a request includes the no-cache directive, it SHOULD NOT
i nclude mn-fresh, max-stale, or max-age.

only-if-cached
In sone cases, such as tines of extrenely poor network
connectivity, a client nmay want a cache to return only those
responses that it currently has stored, and not to rel oad or
revalidate with the origin server. To do this, the client may
i nclude the only-if-cached directive in a request. If it receives
this directive, a cache SHOULD either respond using a cached entry
that is consistent with the other constraints of the request, or
respond with a 504 (Gateway Tineout) status. However, if a group
of caches is being operated as a unified systemwi th good interna
connectivity, such a request MAY be forwarded within that group of
caches.

nust-reval i date

Because a cache MAY be configured to ignore a server’s specified
expiration time, and because a client request MAY include a nax-
stale directive (which has a sinmlar effect), the protocol also

i ncludes a nechanismfor the origin server to require revalidation
of a cache entry on any subsequent use. Wien the nust-revalidate
directive is present in a response received by a cache, that cache
MJUST NOT use the entry after it becones stale to respond to a

Fielding, et al. St andards Track [Page 114]

RFC 2616 HTTP/ 1.1 June 1999

subsequent request without first revalidating it with the origin
server. (l.e., the cache MUST do an end-to-end revalidation every
time, if, based solely on the origin server’s Expires or max-age
val ue, the cached response is stale.)

The nust-revalidate directive is necessary to support reliable
operation for certain protocol features. In all circunstances an
HTTP/ 1.1 cache MJST obey the nust-revalidate directive; in
particular, if the cache cannot reach the origin server for any
reason, it MJST generate a 504 (Gateway Ti meout) response.

Servers SHOULD send the nust-revalidate directive if and only if
failure to revalidate a request on the entity could result in

i ncorrect operation, such as a silently unexecuted financi al
transaction. Recipients MJIST NOT take any autonated action that
violates this directive, and MJST NOT automatically provide an
unval i dated copy of the entity if revalidation fails.

Al though this is not reconmended, user agents operating under
severe connectivity constraints MAY violate this directive but, if
so, MUST explicitly warn the user that an unvalidated response has
been provided. The warning MJST be provided on each unval i dat ed
access, and SHOULD require explicit user confirmation.

proxy-reval i date
The proxy-revalidate directive has the same neaning as the nust-
reval idate directive, except that it does not apply to non-shared
user agent caches. It can be used on a response to an
aut henticated request to permt the user’s cache to store and
later return the response without needing to revalidate it (since
it has already been authenticated once by that user), while stil
requiring proxies that service nany users to revalidate each tine
(in order to make sure that each user has been authenticated).
Not e that such authenticated responses also need the public cache
control directive in order to allowthemto be cached at all

14.9.5 No-Transform Directive

no-transform
| mpl enentors of internediate caches (proxies) have found it usefu
to convert the nedia type of certain entity bodies. A non-
transparent proxy mght, for exanple, convert between inage
formats in order to save cache space or to reduce the anount of
traffic on a slow link.

Serious operational problens occur, however, when these

transformations are applied to entity bodies intended for certain
ki nds of applications. For exanple, applications for nedical

Fielding, et al. St andards Track [Page 115]

RFC 2616 HTTP/ 1.1 June 1999

i magi ng, scientific data analysis and those using end-to-end
aut hentication, all depend on receiving an entity body that is bit
for bit identical to the original entity-body.

Therefore, if a nessage includes the no-transformdirective, an

i nternedi ate cache or proxy MJUST NOT change those headers that are
listed in section 13.5.2 as being subject to the no-transform
directive. This inplies that the cache or proxy MJST NOT change
any aspect of the entity-body that is specified by these headers,
including the value of the entity-body itself.

14. 9.6 Cache Control Extensions

The Cache-Control header field can be extended through the use of one
or nore cache-extension tokens, each with an optional assigned val ue.
I nf ormati onal extensions (those which do not require a change in
cache behavi or) MAY be added w thout changing the semantics of other
directives. Behavioral extensions are designed to work by acting as
nodi fiers to the existing base of cache directives. Both the new
directive and the standard directive are supplied, such that
applications which do not understand the new directive will default
to the behavior specified by the standard directive, and those that
understand the new directive will recognize it as nodifying the

requi renents associated with the standard directive. In this way,
extensions to the cache-control directives can be nade wi thout
requiring changes to the base protocol

Thi s ext ensi on mechani sm depends on an HTTP cache obeying all of the
cache-control directives defined for its native HITP-version, obeying
certain extensions, and ignoring all directives that it does not
under st and.

For exanpl e, consider a hypothetical new response directive called
comunity which acts as a nodifier to the private directive. W
define this new directive to nean that, in addition to any non-shared
cache, any cache which is shared only by nenbers of the community
naned within its value may cache the response. An origin server

wi shing to allow the UCI comunity to use an otherw se private
response in their shared cache(s) could do so by including

Cache-Control : private, comrmunity="UC"
A cache seeing this header field will act correctly even if the cache
does not understand the community cache-extension, since it will also

see and understand the private directive and thus default to the safe
behavi or.

Fielding, et al. St andards Track [Page 116]

RFC 2616 HTTP/ 1.1 June 1999

14.

Unr ecogni zed cache-directives MJST be ignored; it is assuned that any
cache-directive likely to be unrecognized by an HTTP/ 1.1 cache w ||
be conmbined with standard directives (or the response’s default
cacheability) such that the cache behavior will remain nminimlly
correct even if the cache does not understand the extension(s).

10 Connecti on

The Connection general -header field allows the sender to specify
options that are desired for that particular connection and MJST NOT
be conmuni cated by proxies over further connections.

The Connection header has the follow ng grammar:

Connecti on = "Connection"
connecti on-token = token

1#(connecti on-t oken)

HTTP/ 1.1 proxies MJST parse the Connection header field before a
nmessage i s forwarded and, for each connection-token in this field,
renove any header field(s) fromthe nessage with the sane nane as the
connecti on-token. Connection options are signaled by the presence of
a connection-token in the Connection header field, not by any
correspondi ng additional header field(s), since the additional header
field may not be sent if there are no paraneters associated with that
connection option.

Message headers listed in the Connection header MJST NOT i ncl ude
end-to-end headers, such as Cache-Control

HTTP/ 1.1 defines the "cl ose" connection option for the sender to
signal that the connection will be closed after conpletion of the
response. For exanpl e,

Connection: cl ose

in either the request or the response header fields indicates that
the connection SHOULD NOT be considered ‘persistent’ (section 8.1)
after the current request/response is conplete.

HTTP/ 1.1 applications that do not support persistent connections MJST
i nclude the "cl ose" connection option in every nessage.

A systemreceiving an HTTP/ 1.0 (or |ower-version) nmessage that

i ncl udes a Connection header MJST, for each connection-token in this
field, renobve and ignore any header field(s) fromthe nessage wth
the sane nane as the connection-token. This protects against m staken
forwardi ng of such header fields by pre-HTTP/ 1.1 proxies. See section
19. 6. 2.

Fielding, et al. St andards Track [Page 117]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

11 Content - Encodi ng

The Content-Encoding entity-header field is used as a nodifier to the
medi a-type. When present, its value indicates what additional content
codi ngs have been applied to the entity-body, and thus what decoding
mechani snms nust be applied in order to obtain the nedia-type
referenced by the Content-Type header field. Content-Encoding is
primarily used to allow a docunment to be conpressed wi thout |osing
the identity of its underlying nmedia type.

Content-Encodi ng = "Content-Encodi ng" ":" 1#content-codi ng
Content codings are defined in section 3.5. An exanple of its use is
Cont ent - Encodi ng: gzip

The content-coding is a characteristic of the entity identified by
the Request-URI. Typically, the entity-body is stored with this
encodi ng and is only decoded before rendering or anal ogous usage.
However, a non-transparent proxy MAY nodify the content-coding if the
new coding is known to be acceptable to the recipient, unless the
"no-transforni cache-control directive is present in the nessage.

If the content-coding of an entity is not "identity", then the
response MJST include a Content-Encoding entity-header (section
14.11) that lists the non-identity content-codi ng(s) used.

If the content-coding of an entity in a request nmessage is not
acceptable to the origin server, the server SHOULD respond with a
status code of 415 (Unsupported Medi a Type).

If nultiple encodi ngs have been applied to an entity, the content
codings MJUST be listed in the order in which they were appli ed.

Addi tional information about the encoding paraneters MAY be provided
by other entity-header fields not defined by this specification

12 Cont ent - Language

The Content-Language entity-header field describes the natura

| anguage(s) of the intended audience for the enclosed entity. Note
that this mght not be equivalent to all the | anguages used within
the entity-body.

Cont ent - Language = "Content-Language" ":" 1#l anguage-tag

Fielding, et al. St andards Track [Page 118]

RFC 2616 HTTP/ 1.1 June 1999

14.

Language tags are defined in section 3.10. The primary purpose of
Content-Language is to allow a user to identify and differentiate
entities according to the user’s own preferred | anguage. Thus, if the
body content is intended only for a Danish-literate audience, the
appropriate field is

Cont ent - Language: da

If no Content-Language is specified, the default is that the content
is intended for all |anguage audi ences. This mght nean that the
sender does not consider it to be specific to any natural |anguage,
or that the sender does not know for which |anguage it is intended.

Mul ti pl e anguages MAY be listed for content that is intended for
mul ti pl e audi ences. For exanple, a rendition of the "Treaty of

Wai tangi," presented sinultaneously in the original Maori and English
versions, would call for

Cont ent - Language: m, en

However, just because multiple | anguages are present within an entity
does not nean that it is intended for nultiple Iinguistic audiences.
An exanpl e woul d be a beginner’s | anguage priner, such as "A First
Lesson in Latin," which is clearly intended to be used by an
English-literate audience. In this case, the Content-Language woul d
properly only include "en".

Cont ent - Language MAY be applied to any nedia type -- it is not
limted to textual docunents.

13 Content-Length
The Content-Length entity-header field indicates the size of the
entity-body, in decimal number of OCTETs, sent to the recipient or
in the case of the HEAD net hod, the size of the entity-body that
woul d have been sent had the request been a CET.
Cont ent - Lengt h = "Content-Length" ":" 1*DIAT
An exanple is
Content - Lengt h: 3495
Applications SHOULD use this field to indicate the transfer-1ength of

t he nmessage-body, unless this is prohibited by the rules in section
4.4,

Fielding, et al. St andards Track [Page 119]

RFC 2616 HTTP/ 1.1 June 1999

Any Content-Length greater than or equal to zero is a valid val ue.
Section 4.4 describes howto determne the |length of a nessage-body
if a Content-Length is not given.

Note that the meaning of this field is significantly different from
the corresponding definition in MME, where it is an optional field
used within the "message/ external -body" content-type. In HITP, it
SHOULD be sent whenever the message’s |length can be deternined prior
to being transferred, unless this is prohibited by the rules in
section 4.4,

14. 14 Content-Location

The Content-Location entity-header field MAY be used to supply the
resource location for the entity enclosed in the nessage when t hat
entity is accessible froma location separate fromthe requested
resource’s URI. A server SHOULD provide a Content-Location for the
vari ant corresponding to the response entity; especially in the case
where a resource has nultiple entities associated with it, and those
entities actually have separate |ocations by which they m ght be

i ndi vidual |y accessed, the server SHOULD provide a Content-Location
for the particular variant which is returned.

Cont ent - Locati on = "Content-Location" ":"
(absoluteURl | relativeURl)

The val ue of Content-Location also defines the base URI for the
entity.

The Content-Location value is not a replacenent for the origina
requested URI; it is only a statenment of the | ocation of the resource
corresponding to this particular entity at the tine of the request.
Future requests MAY specify the Content-Location URl as the request-
URI if the desire is to identify the source of that particular

entity.

A cache cannot assune that an entity with a Content-Location
different fromthe URl used to retrieve it can be used to respond to
| ater requests on that Content-Location URI. However, the Content-
Location can be used to differentiate between nultiple entities
retrieved froma single requested resource, as described in section
13. 6.

If the Content-Location is arelative URI, the relative URl is
interpreted relative to the Request-URI.

The neani ng of the Content-Location header in PUT or POST requests is
undefined; servers are free to ignore it in those cases.

Fielding, et al. St andards Track [Page 120]

RFC 2616 HTTP/ 1.1 June 1999

14. 15 Cont ent - MD5

The Content-MD5 entity-header field, as defined in RFC 1864 [23], is
an MD5 di gest of the entity-body for the purpose of providing an
end-to-end nmessage integrity check (MC) of the entity-body. (Note: a
M C is good for detecting accidental nodification of the entity-body
in transit, but is not proof against nmalicious attacks.)

Cont ent - MD5 = "Content-MD5" ":" mdb5-di gest
nd5- di gest = <base64 of 128 bit MD5 digest as per RFC 1864>

The Content-MD5 header field MAY be generated by an origin server or
client to function as an integrity check of the entity-body. Only
origin servers or clients MAY generate the Content-MD5 header field
proxi es and gateways MJUST NOT generate it, as this would defeat its
val ue as an end-to-end integrity check. Any recipient of the entity-
body, includi ng gateways and proxies, MAY check that the digest val ue
in this header field matches that of the entity-body as received.

The MD5 digest is conputed based on the content of the entity-body,

i ncludi ng any content-codi ng that has been applied, but not including
any transfer-encoding applied to the nessage-body. If the nessage is
received with a transfer-encodi ng, that encodi ng MIST be renoved
prior to checking the Content-M)5 val ue agai nst the received entity.

This has the result that the digest is conputed on the octets of the
entity-body exactly as, and in the order that, they would be sent if
no transfer-encodi ng were being applied.

HTTP extends RFC 1864 to permt the digest to be conputed for MM
conposite nmedi a-types (e.g., multipart/* and nessage/rfc822), but
this does not change how the digest is conputed as defined in the
precedi ng paragraph.

There are several consequences of this. The entity-body for conposite
types MAY contain many body-parts, each with its owmn MM and HITP
headers (i ncluding Content-M5, Content-Transfer-Encodi ng, and

Cont ent - Encodi ng headers). If a body-part has a Content-Transfer-
Encodi ng or Content-Encodi ng header, it is assunmed that the content
of the body-part has had the encoding applied, and the body-part is
included in the Content-MD5 digest as is -- i.e., after the
application. The Transfer-Encoding header field is not allowed within
body- parts.

Conversion of all line breaks to CRLF MUST NOT be done before
conputing or checking the digest: the |line break convention used in
the text actually transmtted MJUST be | eft unaltered when conputing
t he digest.

Fielding, et al. St andards Track [Page 121]

RFC 2616 HTTP/ 1.1 June 1999

Note: while the definition of Content-MD5 is exactly the sanme for
HTTP as in RFC 1864 for M ME entity-bodies, there are several ways
in which the application of Content-MD5 to HTTP entity-bodies
differs fromits application to MM entity-bodies. One is that
HTTP, unlike M ME, does not use Content-Transfer-Encoding, and
does use Transfer-Encodi ng and Content-Encodi ng. Another is that
HTTP nore frequently uses binary content types than MM so it is
worth noting that, in such cases, the byte order used to conpute
the digest is the transm ssion byte order defined for the type.
Lastly, HITP allows transm ssion of text types with any of severa
line break conventions and not just the canonical form using CRLF.

14. 16 Cont ent - Range
The Content-Range entity-header is sent with a partial entity-body to
specify where in the full entity-body the partial body should be
applied. Range units are defined in section 3.12

Cont ent - Range = "Cont ent - Range" ":" content-range-spec

cont ent - r ange- spec
byt e- cont ent - r ange- spec

byt e- cont ent - r ange- spec
bytes-unit SP
byt e-range-resp-spec "/"

(instance-length | "*")
byt e-range-resp-spec = (first-byte-pos "-" |ast-byte-pos)
| "
i nstance-1ength =1*DAT

The header SHOULD indicate the total length of the full entity-body,
unless this length is unknown or difficult to deternine. The asterisk
"*" character neans that the instance-length is unknown at the tine
when t he response was gener at ed.

Unl i ke byte-ranges-specifier values (see section 14.35.1), a byte-
range-resp-spec MJST only specify one range, and MJUST contain
absol ute byte positions for both the first and | ast byte of the
range.

A byte-content-range-spec with a byte-range-resp-spec whose | ast-
byte-pos value is less than its first-byte-pos value, or whose

i nstance-length value is less than or equal to its |ast-byte-pos
value, is invalid. The recipient of an invalid byte-content-range-
spec MJST ignore it and any content transferred along with it.

A server sending a response with status code 416 (Requested range not

satisfiable) SHOULD include a Content-Range field with a byte-range-
resp-spec of "*". The instance-length specifies the current |ength of

Fielding, et al. St andards Track [Page 122]

RFC 2616 HTTP/ 1.1 June 1999

the selected resource. A response with status code 206 (Parti al
Content) MUST NOT include a Content-Range field with a byte-range-
resp-spec of "*".

Exanpl es of byte-content-range-spec val ues, assuning that the entity
contains a total of 1234 bytes:

The first 500 bytes:
bytes 0-499/1234

The second 500 bytes:
byt es 500-999/1234

Al except for the first 500 bytes:
byt es 500- 1233/ 1234

The | ast 500 bytes:
bytes 734-1233/1234

When an HTTP nmessage includes the content of a single range (for
exanmpl e, a response to a request for a single range, or to a request
for a set of ranges that overlap w thout any holes), this content is
transmitted with a Content-Range header, and a Content-Length header
showi ng the nunber of bytes actually transferred. For exanple,

HTTP/ 1.1 206 Partial content

Date: Wed, 15 Nov 1995 06: 25:24 GMI
Last - Modi fied: Wed, 15 Nov 1995 04: 58: 08 GMI
Cont ent - Range: bytes 21010-47021/ 47022
Content-Lengt h: 26012

Content - Type: inmage/gif

When an HTTP message includes the content of multiple ranges (for
exanpl e, a response to a request for nultiple non-overl appi ng
ranges), these are transmtted as a nultipart nessage. The nultipart
medi a type used for this purpose is "nultipart/byteranges" as defined
i n appendi x 19.2. See appendix 19.6.3 for a conpatibility issue.

A response to a request for a single range MUST NOT be sent using the
nmul ti part/byteranges nedia type. A response to a request for
mul ti pl e ranges, whose result is a single range, MAY be sent as a

mul ti part/byteranges nedia type with one part. A client that cannot
decode a nultipart/byteranges nessage MJUST NOT ask for multiple
byte-ranges in a single request.

When a client requests nmultiple byte-ranges in one request, the

server SHOULD return themin the order that they appeared in the
request.

Fielding, et al. St andards Track [Page 123]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

If the server ignores a byte-range-spec because it is syntactically
invalid, the server SHOULD treat the request as if the invalid Range
header field did not exist. (Normally, this neans return a 200
response containing the full entity).

If the server receives a request (other than one including an If-
Range request-header field) with an unsatisfiable Range request-
header field (that is, all of whose byte-range-spec val ues have a
first-byte-pos value greater than the current Iength of the selected
resource), it SHOULD return a response code of 416 (Requested range
not satisfiable) (section 10.4.17).

Note: clients cannot depend on servers to send a 416 (Requested
range not satisfiable) response instead of a 200 (OK) response for

an unsati sfiabl e Range request-header, since not all servers
i npl enent this request-header

17 Content-Type
The Content-Type entity-header field indicates the nedia type of the

entity-body sent to the recipient or, in the case of the HEAD net hod,
the nmedi a type that woul d have been sent had the request been a GET

Cont ent - Type = "Content - Type" nmedi a-t ype
Media types are defined in section 3.7. An exanple of the field is
Content - Type: text/htm ; charset=I SO 8859-4

Furt her discussion of nmethods for identifying the nedia type of an
entity is provided in section 7.2.1.

18 Date
The Date general -header field represents the date and tine at which
the nmessage was origi nated, having the same semantics as orig-date in
RFC 822. The field value is an HTITP-date, as described in section
3.3.1; it MIST be sent in RFC 1123 [8]-date fornat.

Date = "Date" ":" HITP-date
An exanple is

Date: Tue, 15 Nov 1994 08:12:31 GMI

Oigin servers MIST include a Date header field in all responses,
except in these cases:

Fielding, et al. St andards Track [Page 124]

RFC 2616 HTTP/ 1.1 June 1999

14.

1. If the response status code is 100 (Continue) or 101 (Swi tching
Protocols), the response MAY include a Date header field, at
the server’s option.

2. |If the response status code conveys a server error, e.g. 500
(I'nternal Server Error) or 503 (Service Unavailable), and it is
i nconveni ent or inmpossible to generate a valid Date.

3. If the server does not have a clock that can provide a
reasonabl e approxi mation of the current tine, its responses
MUST NOT include a Date header field. In this case, the rules
in section 14.18.1 MJST be fol |l owed.

A received nmessage that does not have a Date header field MJST be
assigned one by the recipient if the nessage will be cached by that
reci pient or gatewayed via a protocol which requires a Date. An HTTP
i mpl enentation without a clock MJUST NOT cache responses w t hout
reval i dating themon every use. An HTTP cache, especially a shared
cache, SHOULD use a mechani sm such as NTP [28], to synchronize its
clock with a reliable external standard.

Cients SHOULD only send a Date header field in nmessages that include
an entity-body, as in the case of the PUT and POST requests, and even
then it is optional. A client without a clock MJST NOT send a Date
header field in a request.

The HTTP-date sent in a Date header SHOULD NOT represent a date and
ti me subsequent to the generation of the nmessage. It SHOULD represent
the best avail abl e approxi mati on of the date and tine of nessage
generation, unless the inplenentation has no neans of generating a
reasonably accurate date and tine. In theory, the date ought to
represent the noment just before the entity is generated. In
practice, the date can be generated at any time during the nmessage
origination without affecting its semantic val ue.

18.1 C ockless Origin Server Qperation

Some origin server inplenmentations mght not have a cl ock avail abl e.
An origin server without a clock MJUST NOT assign Expires or Last-
Modi fi ed val ues to a response, unless these val ues were associ at ed
with the resource by a systemor user with a reliable clock. It MAY
assign an Expires value that is known, at or before server
configuration time, to be in the past (this allows "pre-expiration"
of responses w thout storing separate Expires values for each
resource).

Fielding, et al. St andards Track [Page 125]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

19 ETag

The ETag response-header field provides the current value of the
entity tag for the requested variant. The headers used with entity
tags are described in sections 14.24, 14.26 and 14.44. The entity tag
MAY be used for conparison with other entities fromthe sane resource
(see section 13.3.3).

ETag = "ETag" ":" entity-tag
Exanpl es:

ETag: "xyzzy"

ETag: W"xyzzy"

ETag: ""
20 Expect

The Expect request-header field is used to indicate that particul ar
server behaviors are required by the client.

Expect = "Expect" ":" 1#expectation

expectation = "100-continue" | expectation-extension

expectation-extension = token ["=" (token | quoted-string)
*expect - parans |

expect-params = ";" token ["=" (token | quoted-string)]

A server that does not understand or is unable to conply with any of
t he expectation values in the Expect field of a request MJST respond
with appropriate error status. The server MJST respond with a 417
(Expectation Failed) status if any of the expectations cannot be net
or, if there are other problens with the request, sonme other 4xx

st at us.

This header field is defined with extensible syntax to all ow for
future extensions. If a server receives a request containing an
Expect field that includes an expectation-extension that it does not
support, it MJST respond with a 417 (Expectation Failed) status

Conpari son of expectation values is case-insensitive for unquoted
tokens (including the 100-continue token), and is case-sensitive for
guot ed- string expectation-extensions.

Fielding, et al. St andards Track [Page 126]

RFC 2616 HTTP/ 1.1 June 1999

14.

The Expect nechanismis hop-by-hop: that is, an HITP/ 1.1 proxy MJST
return a 417 (Expectation Failed) status if it receives a request
with an expectation that it cannot neet. However, the Expect
request - header itself is end-to-end; it MJST be forwarded if the
request is forwarded.

Many ol der HTTP/ 1.0 and HTTP/ 1.1 applications do not understand the
Expect header.

See section 8.2.3 for the use of the 100 (continue) status.
21 Expires

The Expires entity-header field gives the date/tinme after which the
response is considered stale. A stale cache entry nay not normally be
returned by a cache (either a proxy cache or a user agent cache)
unless it is first validated with the origin server (or with an

i nternedi ate cache that has a fresh copy of the entity). See section
13.2 for further discussion of the expiration nodel.

The presence of an Expires field does not inply that the origina
resource will change or cease to exist at, before, or after that
tinme.

The format is an absolute date and tinme as defined by HITP-date in
section 3.3.1; it MJIST be in RFC 1123 date fornmat:

Expires = "Expires" ":" HITP-date
An exanple of its use is
Expi res: Thu, 01 Dec 1994 16:00: 00 GMI

Note: if a response includes a Cache-Control field with the max-
age directive (see section 14.9.3), that directive overrides the
Expires field.

HTTP/ 1.1 clients and caches MJST treat other invalid date fornats,
especially including the value "0", as in the past (i.e., "already
expired").

To mark a response as "already expired," an origin server sends an
Expires date that is equal to the Date header value. (See the rules
for expiration calculations in section 13.2.4.)

Fielding, et al. St andards Track [Page 127]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

To mark a response as "never expires," an origin server sends an
Expi res date approximately one year fromthe tine the response is
sent. HTTP/ 1.1 servers SHOULD NOT send Expires dates nore than one
year in the future.

The presence of an Expires header field with a date val ue of sone
time in the future on a response that otherw se would by default be
non- cacheabl e i ndi cates that the response is cacheable, unless

i ndi cated otherwi se by a Cache-Control header field (section 14.9).

22 From

The From request-header field, if given, SHOULD contain an Internet
e-nmai| address for the human user who controls the requesting user
agent. The address SHOULD be nmchi ne-usabl e, as defined by "mail box"
in RFC 822 [9] as updated by RFC 1123 [8]:

From = "From' ":" mail box
An exanple is:
From webnaster @3.org

This header field MAY be used for |oggi ng purposes and as a neans for
identifying the source of invalid or unwanted requests. It SHOULD NOT
be used as an insecure form of access protection. The interpretation
of this field is that the request is being perforned on behalf of the
person given, who accepts responsibility for the method performed. In
particul ar, robot agents SHOULD include this header so that the
person responsi ble for running the robot can be contacted if probl ens
occur on the receiving end.

The Internet e-mail address in this field MAY be separate fromthe
I nternet host which issued the request. For exanple, when a request
is passed through a proxy the original issuer’s address SHOULD be
used.

The client SHOULD NOT send the From header field w thout the user’s
approval, as it might conflict with the user’s privacy interests or
their site’'s security policy. It is strongly recommended that the
user be able to disable, enable, and nodify the value of this field
at any tine prior to a request.

23 Host
The Host request-header field specifies the Internet host and port

nunber of the resource being requested, as obtained fromthe origina
URI given by the user or referring resource (generally an HTTP URL,

Fielding, et al. St andards Track [Page 128]

RFC 2616 HTTP/ 1.1 June 1999

14.

as described in section 3.2.2). The Host field value MJST represent
the naming authority of the origin server or gateway given by the
original URL. This allows the origin server or gateway to
differentiate between internally-anbi guous URLs, such as the root "/"
URL of a server for multiple host nanes on a single |P address.

Host = "Host" ":" host [":" port] ; Section 3.2.2

A "host" without any trailing port information inplies the default
port for the service requested (e.g., "80" for an HITP URL). For
exanpl e, a request on the origin server for

<ht t p: / / www. w3. or g/ pub/ WAW > woul d properly include:

GET / pub/ WWV HTTP/ 1.1
Host: www. w3. org

A client MIST include a Host header field in all HTTP/ 1.1 request
messages . |If the requested URI does not include an Internet host
name for the service being requested, then the Host header field MJST
be given with an enpty value. An HTTP/ 1.1 proxy MJST ensure that any
request nmessage it forwards does contain an appropriate Host header
field that identifies the service being requested by the proxy. Al

I nternet-based HTTP/ 1.1 servers MJST respond with a 400 (Bad Request)
status code to any HTTP/ 1.1 request nessage which |acks a Host header
field.

See sections 5.2 and 19.6.1.1 for other requirenents relating to
Host .

24 | f-Match

The If-Match request-header field is used with a nethod to nake it
conditional. A client that has one or nore entities previously

obtai ned fromthe resource can verify that one of those entities is
current by including a list of their associated entity tags in the

| f-Match header field. Entity tags are defined in section 3.11. The
purpose of this feature is to allow efficient updates of cached
information with a mni num anbunt of transaction overhead. It is also
used, on updating requests, to prevent inadvertent nodification of
the wong version of a resource. As a special case, the value "*"

mat ches any current entity of the resource.

[f-Match = "If-Match" ":" ("*" | 1l#entity-tag)
If any of the entity tags match the entity tag of the entity that

woul d have been returned in the response to a sinilar GET request
(without the If-Match header) on that resource, or if "*" is given

Fielding, et al. St andards Track [Page 129]

RFC 2616 HTTP/ 1.1 June 1999

14.

and any current entity exists for that resource, then the server MAY
performthe requested nethod as if the If-Match header field did not
exi st.

A server MJST use the strong conparison function (see section 13.3.3)
to conpare the entity tags in If-Match

If none of the entity tags match, or if "*" is given and no current
entity exists, the server MJST NOT performthe requested nethod, and
MUST return a 412 (Precondition Fail ed) response. This behavior is
nost useful when the client wants to prevent an updating nethod, such
as PUT, fromnodifying a resource that has changed since the client
last retrieved it.

If the request would, without the If-Match header field, result in
anything other than a 2xx or 412 status, then the If-Match header
MUST be i gnor ed.

The meaning of "If-Match: *" is that the method SHOULD be perfornmed
if the representation selected by the origin server (or by a cache,
possi bly using the Vary nmechanism see section 14.44) exists, and
MUST NOT be perfornmed if the representation does not exist.

A request intended to update a resource (e.g., a PUT) MAY include an
| f-Match header field to signal that the request nethod MUST NOT be
applied if the entity corresponding to the If-Match value (a single
entity tag) is no longer a representation of that resource. This
allows the user to indicate that they do not wish the request to be
successful if the resource has been changed wi thout their know edge.
Exanpl es:

| f-Match: "xyzzy"
| f-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
| f-Match: *

The result of a request having both an |If-Match header field and
ei ther an I f-None-Match or an If-Modified-Since header fields is
undefined by this specification

25 | f-Modi fi ed-Si nce

The | f-Modified-Since request-header field is used with a nmethod to
make it conditional: if the requested variant has not been nodified
since the time specified in this field, an entity will not be
returned fromthe server; instead, a 304 (not nodified) response wll
be returned without any nessage-body.

I f-Mdified-Since = "If-Mdified-Since" ":" HITP-date

Fielding, et al. St andards Track [Page 130]

RFC 2616 HTTP/ 1.1 June 1999

An exanple of the field is:
| f-Mdified-Since: Sat, 29 Cct 1994 19:43:31 GWIT

A CGET nethod with an |f-Mdified-Since header and no Range header
requests that the identified entity be transferred only if it has
been nodified since the date given by the If-Modified-Since header
The al gorithm for determning this includes the foll owi ng cases:

a) If the request would normally result in anything other than a
200 (OK) status, or if the passed If-Mdified-Since date is
invalid, the response is exactly the sane as for a normal GET.
A date which is later than the server’s current time is
i nvalid.

b) If the variant has been nodified since the |If-Mdified-Since
date, the response is exactly the same as for a normal GCET.

c) If the variant has not been nodified since a valid If-
Modi fi ed-Si nce date, the server SHOULD return a 304 (Not
Modi fi ed) response.

The purpose of this feature is to allow efficient updates of cached
information with a mini num anount of transaction overhead.

Not e: The Range request-header field nodifies the neaning of If-
Modi fi ed- Si nce; see section 14.35 for full details.

Note: If-Modified-Since tines are interpreted by the server, whose
cl ock m ght not be synchronized with the client.

Not e: When handling an |f-Mdified-Since header field, sone
servers will use an exact date conparison function, rather than a
| ess-than function, for deciding whether to send a 304 (Not
Modi fi ed) response. To get best results when sending an If-

Modi fi ed- Si nce header field for cache validation, clients are
advised to use the exact date string received in a previous Last-
Modi fi ed header field whenever possible.

Note: If a client uses an arbitrary date in the If-Modified-Since
header instead of a date taken fromthe Last-Mdified header for
the sane request, the client should be aware of the fact that this
date is interpreted in the server’s understanding of tine. The
client should consider unsynchronized cl ocks and roundi ng probl erms
due to the different encodings of tine between the client and
server. This includes the possibility of race conditions if the
docunent has changed between the tinme it was first requested and
the 1f-Mdified-Since date of a subsequent request, and the

Fielding, et al. St andards Track [Page 131]

RFC 2616 HTTP/ 1.1 June 1999

14.

possi bility of clock-skewrelated problens if the If-Mdified-
Since date is derived fromthe client’s clock without correction
to the server’s clock. Corrections for different tinme bases
between client and server are at best approxi mte due to network
| at ency.

The result of a request having both an If-Mdified-Since header field
and either an If-Match or an |f-Unnodified-Since header fields is
undefined by this specification

26 | f-None- Mat ch

The | f-None-Match request-header field is used with a nethod to nake
it conditional. A client that has one or nore entities previously
obtained fromthe resource can verify that none of those entities is
current by including a list of their associated entity tags in the

| f-None- Match header field. The purpose of this feature is to all ow
efficient updates of cached information with a m ni num anount of
transaction overhead. It is also used to prevent a nethod (e.g. PUT)
frominadvertently nodifying an existing resource when the client
beli eves that the resource does not exist.

As a special case, the value "*" matches any current entity of the
resource.

| f-None-Match = "If-None-Match" ":" ("*" | 1#entity-tag)

If any of the entity tags match the entity tag of the entity that
woul d have been returned in the response to a similar GET request
(without the If-None-Match header) on that resource, or if "*" is
given and any current entity exists for that resource, then the
server MJST NOT performthe requested nethod, unless required to do
so because the resource’s nodification date fails to match that
supplied in an If-Modified-Since header field in the request.
Instead, if the request nethod was GET or HEAD, the server SHOULD
respond with a 304 (Not Modified) response, including the cache-

rel ated header fields (particularly ETag) of one of the entities that
mat ched. For all other request methods, the server MJST respond with
a status of 412 (Precondition Failed).

See section 13.3.3 for rules on howto determne if two entities tags
mat ch. The weak conparison function can only be used with GET or HEAD
requests.

Fielding, et al. St andards Track [Page 132]

RFC 2616 HTTP/ 1.1 June 1999

14.

If none of the entity tags match, then the server MAY performthe
requested nethod as if the If-None-Match header field did not exist,
but MUST al so ignore any |f-Mdified-Since header field(s) in the
request. That is, if no entity tags match, then the server MJST NOT
return a 304 (Not Modified) response.

If the request would, wthout the If-None-Match header field, result
in anything other than a 2xx or 304 status, then the |f-None-Match
header MJUST be ignored. (See section 13.3.4 for a discussion of
server behavior when both If-Mdified-Since and | f-None-Match appear
in the same request.)

The meaning of "If-None-Match: *" is that the nethod MJUST NOT be
performed if the representation selected by the origin server (or by
a cache, possibly using the Vary nechani sm see section 14. 44)

exi sts, and SHOULD be perforned if the representati on does not exist.
This feature is intended to be useful in preventing races between PUT
operations.

Exanpl es:

| f- None- Match: "xyzzy"

| f- None- Match: W "xyzzy"

| f-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

| f-None-Match: W"xyzzy", W"r2d2xxxx", W"c3piozzzz"
| f - None- Match: *

The result of a request having both an |f-None-Mtch header field and
either an If-Match or an If-Unnodified-Since header fields is
undefined by this specification

27 1f-Range

If a client has a partial copy of an entity in its cache, and w shes
to have an up-to-date copy of the entire entity in its cache, it
coul d use the Range request-header with a conditional GET (using
either or both of If-Unnodified-Since and If-Match.) However, if the
condition fails because the entity has been nodified, the client
woul d then have to nake a second request to obtain the entire current
entity-body.

The | f-Range header allows a client to "short-circuit" the second
request. Informally, its meaning is ‘if the entity is unchanged, send
me the part(s) that | am m ssing; otherwise, send nme the entire new
entity’.

If-Range = "If-Range" ":" (entity-tag | HTTP-date)

Fielding, et al. St andards Track [Page 133]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

If the client has no entity tag for an entity, but does have a Last-
Modi fied date, it MAY use that date in an |f-Range header. (The
server can distinguish between a valid HTTP-date and any form of
entity-tag by exanining no nore than two characters.) The |f-Range
header SHOULD only be used together with a Range header, and MJST be
ignored if the request does not include a Range header, or if the
server does not support the sub-range operation

If the entity tag given in the |f-Range header matches the current
entity tag for the entity, then the server SHOULD provide the
speci fied sub-range of the entity using a 206 (Partial content)
response. If the entity tag does not match, then the server SHOULD
return the entire entity using a 200 (OK) response.

28 | f-Unnodified-Since
The | f-Unnodified-Since request-header field is used with a nethod to
make it conditional. If the requested resource has not been nodified
since the time specified in this field, the server SHOULD performthe
requested operation as if the If-Unnodified-Since header were not
present.
If the requested variant has been nodified since the specified tine,
the server MUST NOT performthe requested operation, and MJST return
a 412 (Precondition Failed).

| f-Unnodified-Since = "If-Unnodified-Since" ":" HITP-date
An exanple of the field is:

| f-Unnodi fied-Since: Sat, 29 Cct 1994 19:43:31 GVI

If the request normally (i.e., without the |f-Unnodified-Since
header) would result in anything other than a 2xx or 412 status, the
| f-Unnodi fied-Si nce header SHOULD be i gnor ed.
If the specified date is invalid, the header is ignored.
The result of a request having both an If-Unnodified-Si nce header
field and either an |f-None-Match or an |f-Modified-Since header
fields is undefined by this specification.
29 Last-Modified

The Last-Mdified entity-header field indicates the date and tine at
which the origin server believes the variant was |ast nodified.

Last-Mddified = "Last-Mdified" ":" HITP-date

Fielding, et al. St andards Track [Page 134]

RFC 2616 HTTP/ 1.1 June 1999

14.

An exanple of its use is
Last- Modi fied: Tue, 15 Nov 1994 12:45:26 GMI

The exact neaning of this header field depends on the inplenentation
of the origin server and the nature of the original resource. For
files, it may be just the file systemlast-nodified tine. For
entities with dynamically included parts, it nmay be the nobst recent
of the set of last-nmodify tines for its conmponent parts. For database
gateways, it nmay be the last-update tine stanp of the record. For
virtual objects, it may be the last time the internal state changed.

An origin server MIST NOT send a Last-Mdified date which is later
than the server’'s time of message origination. In such cases, where
the resource’s last nodification would indicate sone tine in the
future, the server MJST replace that date with the nessage
origination date.

An origin server SHOULD obtain the Last-Mdified value of the entity
as close as possible to the tine that it generates the Date val ue of
its response. This allows a recipient to make an accurate assessnent
of the entity's nodification time, especially if the entity changes

near the time that the response i s generated.

HTTP/ 1.1 servers SHOULD send Last-Mdified whenever feasible
30 Location

The Location response-header field is used to redirect the recipient
to a location other than the Request-URI for conpletion of the
request or identification of a new resource. For 201 (Created)
responses, the Location is that of the new resource which was created
by the request. For 3xx responses, the |location SHOULD indicate the
server’'s preferred URI for automatic redirection to the resource. The
field value consists of a single absolute URI.

Location = "Location" ":" absol uteUR
An exanple is:
Location: http://ww. w3. or g/ pub/ WWV Peopl e. ht n

Note: The Content-Location header field (section 14.14) differs
fromLocation in that the Content-Location identifies the origina
| ocation of the entity enclosed in the request. It is therefore
possi ble for a response to contain header fields for both Location
and Content-Location. Al so see section 13.10 for cache

requi renents of sonme methods.

Fielding, et al. St andards Track [Page 135]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

31 Max- Forwards

The Max- Forwards request-header field provides a mechanismw th the
TRACE (section 9.8) and OPTIONS (section 9.2) nethods to linmt the
nunber of proxies or gateways that can forward the request to the
next inbound server. This can be useful when the client is attenpting
to trace a request chain which appears to be failing or looping in

nm d- chai n.

Max- For war ds = "Max- Forwards" ":" 1*DIGA T

The Max-Forwards value is a decimal integer indicating the remaining
nunber of times this request nessage may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTI ONS request

contai ning a Max- Forwards header field MJUST check and update its
value prior to forwarding the request. If the received value is zero
(0), the recipient MUST NOT forward the request; instead, it MJST
respond as the final recipient. If the received Max- Forwards value is
greater than zero, then the forwarded nessage MJST contain an updated
Max- Forwards field with a value decrenented by one (1).

The Max- Forwards header field MAY be ignored for all other nethods
defined by this specification and for any extension nethods for which
it is not explicitly referred to as part of that nethod definition

32 Pragma

The Pragma general -header field is used to include inplenentation-
specific directives that m ght apply to any recipient along the
request/response chain. Al pragma directives specify optiona
behavi or fromthe vi ewpoint of the protocol; however, sone systens
MAY require that behavior be consistent with the directives.

Pragnma = "Pragma" ":" l1#pragma-directive
pragma-directive = "no-cache" | extension-pragna
extension-pragma = token ["=" (token | quoted-string)]

When the no-cache directive is present in a request nessage, an
application SHOULD forward the request toward the origin server even
if it has a cached copy of what is being requested. This pragna
directive has the sane senmantics as the no-cache cache-directive (see
section 14.9) and is defined here for backward conpatibility with
HTTP/ 1.0. dients SHOULD i ncl ude both header fields when a no-cache
request is sent to a server not known to be HTTP/ 1.1 conpliant.

Fielding, et al. St andards Track [Page 136]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

Pragnma directives MJST be passed through by a proxy or gateway
application, regardless of their significance to that application
since the directives might be applicable to all recipients along the
request/response chain. It is not possible to specify a pragna for a
specific recipient; however, any pragna directive not relevant to a
reci pi ent SHOULD be ignored by that recipient.

HTTP/ 1.1 caches SHOULD treat "Pragma: no-cache" as if the client had
sent "Cache-Control: no-cache". No new Pragma directives will be
defined in HITP.

Not e: because the neaning of "Pragma: no-cache as a response
header field is not actually specified, it does not provide a
reliable replacenent for "Cache-Control: no-cache" in a response

33 Proxy-Aut henticate

The Proxy-Authenticate response-header field MIST be included as part
of a 407 (Proxy Authentication Required) response. The field val ue
consists of a challenge that indicates the authentication schene and
paraneters applicable to the proxy for this Request-URI.

Proxy- Aut henticate = "Proxy-Authenticate" 1#chal | enge

The HTTP access authentication process is described in "HTTP

Aut henti cation: Basic and Di gest Access Authentication" [43]. Unlike
WAV Aut henti cate, the Proxy-Authenticate header field applies only to
the current connection and SHOULD NOT be passed on to downstream
clients. However, an internediate proxy might need to obtain its own
credentials by requesting themfromthe downstreamclient, which in
sonme circunstances will appear as if the proxy is forwarding the

Pr oxy- Aut henti cat e header field.

34 Proxy-Aut hori zation

The Proxy-Authorization request-header field allows the client to
identify itself (or its user) to a proxy which requires

aut henti cation. The Proxy-Authorization field value consists of
credentials containing the authentication information of the user
agent for the proxy and/or real mof the resource being requested.

Pr oxy- Aut hori zat i on = "Proxy-Aut hori zati on" credential s
The HTTP access authentication process is described in "HTTP

Aut henti cation: Basic and Di gest Access Authentication" [43] . Unlike
Aut hori zation, the Proxy-Authorization header field applies only to

t he next outbound proxy that demanded authentication using the Proxy-
Aut henticate field. Wen nultiple proxies are used in a chain, the

Fielding, et al. St andards Track [Page 137]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

Pr oxy- Aut hori zati on header field is consuned by the first outbound
proxy that was expecting to receive credentials. A proxy MAY relay
the credentials fromthe client request to the next proxy if that is
t he nmechani sm by which the proxies cooperatively authenticate a given
request.

35 Range
35.1 Byte Ranges

Since all HITP entities are represented in HTTP nessages as sequences
of bytes, the concept of a byte range is neaningful for any HITP
entity. (However, not all clients and servers need to support byte-
range operations.)

Byte range specifications in HITP apply to the sequence of bytes in
the entity-body (not necessarily the sane as the nmessage-body).

A byte range operation MAY specify a single range of bytes, or a set
of ranges within a single entity.

ranges-speci fier = byte-ranges-specifier

byt e-ranges-specifier = bytes-unit "=" byte-range-set

byt e- range- set 1#(byte-range-spec | suffix-byte-range-spec)
byt e-range- spec first-byte-pos "-" [l ast-byte-pos]
first-byte-pos 1*DIAT

| ast - byt e- pos 1*DIAT

The first-byte-pos value in a byte-range-spec gives the byte-offset
of the first byte in a range. The | ast-byte-pos value gives the
byte-offset of the last byte in the range; that is, the byte
positions specified are inclusive. Byte offsets start at zero.

If the last-byte-pos value is present, it MJST be greater than or
equal to the first-byte-pos in that byte-range-spec, or the byte-
range-spec is syntactically invalid. The recipient of a byte-range-
set that includes one or nore syntactically invalid byte-range-spec
val ues MJST ignore the header field that includes that byte-range-
set.

If the last-byte-pos value is absent, or if the value is greater than
or equal to the current length of the entity-body, |ast-byte-pos is
taken to be equal to one less than the current | ength of the entity-
body in bytes.

By its choice of |last-byte-pos, a client can limt the nunber of
bytes retrieved w thout knowi ng the size of the entity.

Fielding, et al. St andards Track [Page 138]

RFC 2616 HTTP/ 1.1 June 1999

suffi x-byte-range-spec = "-" suffix-length
suffix-length = 1*DIA T

A suffix-byte-range-spec is used to specify the suffix of the
entity-body, of a length given by the suffix-length value. (That is,
this formspecifies the last N bytes of an entity-body.) If the
entity is shorter than the specified suffix-length, the entire
entity-body is used.

If a syntactically valid byte-range-set includes at |east one byte-
range-spec whose first-byte-pos is less than the current |ength of
the entity-body, or at |east one suffix-byte-range-spec with a non-
zero suffix-length, then the byte-range-set is satisfiable.

O herwi se, the byte-range-set is unsatisfiable. If the byte-range-set
is unsatisfiable, the server SHOULD return a response with a status
of 416 (Requested range not satisfiable). Otherw se, the server
SHOULD return a response with a status of 206 (Partial Content)
containing the satisfiable ranges of the entity-body.

Exanpl es of byte-ranges-specifier values (assum ng an entity-body of
| ength 10000):

- The first 500 bytes (byte offsets 0-499, inclusive): bytes=0-
499

- The second 500 bytes (byte offsets 500-999, inclusive):
byt es=500- 999

- The final 500 bytes (byte offsets 9500-9999, inclusive):
byt es=-500

- O byt es=9500-
- The first and last bytes only (bytes 0 and 9999): bytes=0-0,-1

- Several |egal but not canonical specifications of the second 500
bytes (byte offsets 500-999, inclusive):
byt es=500- 600, 601- 999
byt es=500- 700, 601- 999

14. 35. 2 Range Retrieval Requests

HTTP retrieval requests using conditional or unconditional GET

nmet hods MAY request one or nore sub-ranges of the entity, instead of
the entire entity, using the Range request header, which applies to
the entity returned as the result of the request:

Range = "Range" ranges-specifier

Fielding, et al. St andards Track [Page 139]

RFC 2616 HTTP/ 1.1 June 1999

14.

A server MAY ignore the Range header. However, HTTP/1.1 origin
servers and internedi ate caches ought to support byte ranges when
possi bl e, since Range supports efficient recovery frompartially
failed transfers, and supports efficient partial retrieval of |arge
entities.

If the server supports the Range header and the specified range or
ranges are appropriate for the entity:

- The presence of a Range header in an unconditional CET nodifies
what is returned if the GET is otherw se successful. In other
words, the response carries a status code of 206 (Partial
Content) instead of 200 (CK).

- The presence of a Range header in a conditional CGET (a request
usi ng one or both of If-Modified-Since and |If-None-Mtch, or
one or both of If-Unnodified-Since and If-Match) nodifies what
is returned if the GET is otherw se successful and the
condition is true. It does not affect the 304 (Not Mbdified)
response returned if the conditional is false.

In sone cases, it mght be nore appropriate to use the |f-Range
header (see section 14.27) in addition to the Range header

If a proxy that supports ranges receives a Range request, forwards
the request to an inbound server, and receives an entire entity in
reply, it SHOULD only return the requested range to its client. It
SHOULD store the entire received response in its cache if that is

consistent with its cache allocation policies.

36 Referer

The Referer[sic] request-header field allows the client to specify,
for the server’'s benefit, the address (URI) of the resource from

whi ch the Request-URI was obtained (the "referrer”, although the
header field is msspelled.) The Referer request-header allows a
server to generate lists of back-links to resources for interest,

| oggi ng, optimzed caching, etc. It also allows obsolete or nistyped
links to be traced for nmaintenance. The Referer field MJUST NOT be
sent if the Request-URI was obtained froma source that does not have
its own URI, such as input fromthe user keyboard.

Ref erer = "Referer” ":" (absoluteURl | relativeURl)
Exanpl e:

Referer: http://ww.w3. org/ hypertext/ Dat aSources/ Overvi ew. ht

Fielding, et al. St andards Track [Page 140]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

If the field value is a relative URI, it SHOULD be interpreted
relative to the Request-URI. The URI MJST NOT include a fragnent. See
section 15.1.3 for security considerations.

37 Retry-After

The Retry-After response-header field can be used with a 503 (Service
Unavai |l abl e) response to indicate how long the service is expected to
be unavailable to the requesting client. This field MAY al so be used
with any 3xx (Redirection) response to indicate the mninumtine the
user-agent is asked wait before issuing the redirected request. The
value of this field can be either an HTTP-date or an integer nunber
of seconds (in decimal) after the tine of the response.

Retry-After = "Retry-After" ":" (HITP-date | delta-seconds)
Two exanples of its use are

Retry-After: Fri, 31 Dec 1999 23:59:59 GMI
Retry-After: 120

In the latter exanple, the delay is 2 m nutes.
38 Server

The Server response-header field contains information about the
software used by the origin server to handle the request. The field
can contain multiple product tokens (section 3.8) and comments
identifying the server and any significant subproducts. The product
tokens are listed in order of their significance for identifying the
application.

Server = "Server" ":" 1*(product | comrent)
Exanpl e:
Server: CERN 3.0 |ibww/ 2.17

If the response is being forwarded through a proxy, the proxy
application MUST NOT nodify the Server response-header. Instead, it
SHOULD include a Via field (as described in section 14. 45).

Note: Revealing the specific software version of the server mght
all ow the server nachine to become nore vul nerable to attacks
agai nst software that is known to contain security holes. Server
i npl enentors are encouraged to nake this field a configurable
option.

Fielding, et al. St andards Track [Page 141]

RFC 2616 HTTP/ 1.1 June 1999

14.39 TE

The TE request-header field indicates what extension transfer-codings
it iswlling to accept in the response and whether or not it is
willing to accept trailer fields in a chunked transfer-coding. Its
val ue nay consist of the keyword "trailers" and/or a coma-separated
list of extension transfer-coding nanes with optional accept
paranmeters (as described in section 3.6).

TE
t - codi ngs

"TE" ":" #(t-codings)
"trailers" | (transfer-extension [accept-parans])

The presence of the keyword "trailers" indicates that the client is
willing to accept trailer fields in a chunked transfer-coding, as
defined in section 3.6.1. This keyword is reserved for use with
transfer-codi ng val ues even though it does not itself represent a
transf er-codi ng.

Exanpl es of its use are:

TE: deflate
TE:
TE: trailers, deflate;q=0.5

The TE header field only applies to the i nmedi ate connection
Therefore, the keyword MJUST be supplied within a Connecti on header
field (section 14.10) whenever TE is present in an HITP/ 1.1 nessage.

A server tests whether a transfer-coding is acceptable, according to
a TE field, using these rules:

1. The "chunked" transfer-coding is always acceptable. If the
keyword "trailers" is listed, the client indicates that it is
willing to accept trailer fields in the chunked response on
behal f of itself and any downstreamclients. The inplication is
that, if given, the client is stating that either al
downstreamclients are willing to accept trailer fields in the
forwarded response, or that it will attenpt to buffer the
response on behal f of downstream recipients.

Note: HTTP/ 1.1 does not define any neans to limt the size of a
chunked response such that a client can be assured of buffering
the entire response.

2. If the transfer-coding being tested is one of the transfer-
codings listed in the TE field, then it is acceptable unless it
i s acconpani ed by a qvalue of 0. (As defined in section 3.9, a
gval ue of 0 neans "not acceptable.")

Fielding, et al. St andards Track [Page 142]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

3. If multiple transfer-codi ngs are acceptable, then the
acceptabl e transfer-coding with the hi ghest non-zero gvalue is
preferred. The "chunked" transfer-coding always has a qval ue
of 1.

If the TE field-value is enpty or if no TE field is present, the only
transfer-coding is "chunked". A message with no transfer-coding is
al ways accept abl e.

40 Trailer

The Trailer general field value indicates that the given set of
header fields is present in the trailer of a message encoded with
chunked transfer-coding.

Trailer = "Trailer" 1#fi el d- nane

An HTTP/ 1.1 message SHOULD include a Trailer header field in a
nmessage using chunked transfer-coding with a non-enpty trailer. Doing
so allows the recipient to know whi ch header fields to expect in the
trailer.

If no Trailer header field is present, the trailer SHOULD NOT i ncl ude
any header fields. See section 3.6.1 for restrictions on the use of
trailer fields in a "chunked" transfer-coding.

Message header fields listed in the Trailer header field MJUST NOT
i nclude the follow ng header fields:

Tr ansf er - Encodi ng

Cont ent - Lengt h

Trailer
41 Transfer-Encodi ng
The Transfer-Encodi ng general -header field indicates what (if any)
type of transformation has been applied to the nmessage body in order
to safely transfer it between the sender and the recipient. This
differs fromthe content-coding in that the transfer-coding is a
property of the nmessage, not of the entity.

Transf er - Encodi ng = "Transfer-Encodi ng" ":" 1#transfer-coding

Transfer-codings are defined in section 3.6. An exanple is:

Tr ansf er - Encodi ng: chunked

Fielding, et al. St andards Track [Page 143]

RFC 2616 HTTP/ 1.1 June 1999

14.

If nultiple encodi ngs have been applied to an entity, the transfer-
codings MJUST be listed in the order in which they were applied.

Addi tional information about the encoding paraneters MAY be provided
by other entity-header fields not defined by this specification

Many ol der HTTP/ 1.0 applications do not understand the Transfer-
Encodi ng header.

42 Upgr ade

The Upgrade general -header allows the client to specify what
addi ti onal conmunication protocols it supports and would |ike to use
if the server finds it appropriate to switch protocols. The server
MJUST use the Upgrade header field within a 101 (Swi tching Protocols)
response to indicate which protocol (s) are being sw tched.

Upgr ade = "Upgr ade" 1#product

For exanpl e,
Upgrade: HTTP/ 2.0, SHTTP/ 1.3, IRC 6.9, RTA/ x11

The Upgrade header field is intended to provide a sinple mechanism
for transition fromHTTP/1.1 to sone other, inconpatible protocol. It
does so by allowing the client to advertise its desire to use anot her
protocol, such as a later version of HITP with a higher mmjor version
nunber, even though the current request has been made using HTTP/1.1.
This eases the difficult transition between inconpatible protocols by
allowing the client to initiate a request in the nore conmonly
supported protocol while indicating to the server that it would |ike
to use a "better" protocol if available (where "better" is deterni ned
by the server, possibly according to the nature of the nethod and/or
resource being requested).

The Upgrade header field only applies to switching application-I|ayer
protocol s upon the existing transport-|layer connection. Upgrade
cannot be used to insist on a protocol change; its acceptance and use
by the server is optional. The capabilities and nature of the
application-layer communication after the protocol change is entirely
dependent upon the new protocol chosen, although the first action
after changing the protocol MJST be a response to the initial HTTP
request containing the Upgrade header field.

The Upgrade header field only applies to the i nmedi ate connection
Therefore, the upgrade keyword MJUST be supplied within a Connection
header field (section 14.10) whenever Upgrade is present in an
HTTP/ 1. 1 nessage.

Fielding, et al. St andards Track [Page 144]

RFC 2616 HTTP/ 1.1 June 1999

14.

14.

The Upgrade header field cannot be used to indicate a switch to a
protocol on a different connection. For that purpose, it is nore
appropriate to use a 301, 302, 303, or 305 redirection response.

This specification only defines the protocol nanme "HITP" for use by
the famly of Hypertext Transfer Protocols, as defined by the HITP
version rules of section 3.1 and future updates to this

speci fication. Any token can be used as a protocol nane; however, it
will only be useful if both the client and server associate the nane
with the sanme protocol

43 User - Agent

The User - Agent request-header field contains information about the
user agent originating the request. This is for statistical purposes,
the tracing of protocol violations, and autonated recognition of user
agents for the sake of tailoring responses to avoid particul ar user
agent limtations. User agents SHOULD include this field with
requests. The field can contain nultiple product tokens (section 3.8)
and coments identifying the agent and any subproducts which forma
significant part of the user agent. By convention, the product tokens
are listed in order of their significance for identifying the
application.

User - Agent = "User-Agent" ":" 1*(product | coment)
Exanpl e:

User - Agent: CERN- Li neMbde/ 2. 15 |i bww/ 2. 17b3
44 Vary

The Vary field value indicates the set of request-header fields that
fully determ nes, while the response is fresh, whether a cache is
permtted to use the response to reply to a subsequent request

wi t hout revalidation. For uncacheabl e or stale responses, the Vary
field val ue advi ses the user agent about the criteria that were used
to select the representation. A Vary field value of "*" inplies that
a cache cannot determine fromthe request headers of a subsequent
request whether this response is the appropriate representati on. See
section 13.6 for use of the Vary header field by caches.

Vary = "Vary" ":" ("*" | 1#field-nane)

An HTTP/ 1.1 server SHOULD include a Vary header field with any
cacheabl e response that is subject to server-driven negotiation
Doi ng so allows a cache to properly interpret future requests on that
resource and informs the user agent about the presence of negotiation

Fielding, et al. St andards Track [Page 145]

RFC 2616 HTTP/ 1.1 June 1999

14.

on that resource. A server MAY include a Vary header field with a
non- cacheabl e response that is subject to server-driven negotiation
since this nmight provide the user agent with useful information about
t he di nensi ons over which the response varies at the tine of the
response.

A Vary field value consisting of a list of field-nanes signals that
the representati on selected for the response is based on a sel ection
al gorithm whi ch considers ONLY the |isted request-header field val ues
in selecting the nost appropriate representation. A cache MAY assune
that the sane selection will be made for future requests with the
sane values for the listed field nanes, for the duration of time for
whi ch the response is fresh.

The field-names given are not limted to the set of standard
request - header fields defined by this specification. Field names are
case-insensitive

A Vary field value of "*" signals that unspecified paranmeters not
limted to the request-headers (e.g., the network address of the
client), play a role in the selection of the response representation
The "*" value MJUST NOT be generated by a proxy server; it may only be
generated by an origin server.

45 Via

The Via general -header field MJST be used by gateways and proxies to
i ndicate the internmedi ate protocols and recipients between the user
agent and the server on requests, and between the origin server and
the client on responses. It is analogous to the "Received" field of
RFC 822 [9] and is intended to be used for tracking nessage forwards,
avoi di ng request |oops, and identifying the protocol capabilities of
all senders along the request/response chain.

Via = "Via" ":" 1#(received-protocol received-by [comment])
recei ved-protocol = [protocol-nane "/"] protocol-version

pr ot ocol - nane = token

protocol -version = token

recei ved- by = (host [":" port]) | pseudonym

pseudonym = token

The recei ved-protocol indicates the protocol version of the nessage
received by the server or client along each segnment of the
request/response chain. The received-protocol version is appended to
the Via field value when the nessage is forwarded so that information
about the protocol capabilities of upstream applications renains
visible to all recipients.

Fielding, et al. St andards Track [Page 146]

RFC 2616 HTTP/ 1.1 June 1999

The protocol-nane is optional if and only if it would be "HTTP'. The
received-by field is normally the host and optional port nunmber of a
reci pient server or client that subsequently forwarded the nessage.
However, if the real host is considered to be sensitive information
it MAY be replaced by a pseudonym |If the port is not given, it NMAY
be assuned to be the default port of the received-protocol

Multiple Via field values represents each proxy or gateway that has
forwarded the nessage. Each recipient MIST append its information
such that the end result is ordered according to the sequence of
forwardi ng applications.

Comments MAY be used in the Via header field to identify the software
of the recipient proxy or gateway, anal ogous to the User-Agent and
Server header fields. However, all comments in the Via field are
optional and MAY be renoved by any recipient prior to forwardi ng the
nessage.

For exanple, a request message could be sent froman HITP/ 1.0 user
agent to an internal proxy code-naned "fred", which uses HITP/1.1 to
forward the request to a public proxy at nowhere.com which conpl etes
the request by forwarding it to the origin server at ww.ics.uci.edu
The request received by wwv. i cs.uci.edu would then have the foll ow ng
Vi a header field:

Via;: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

Proxi es and gateways used as a portal through a network firewall
SHOULD NOT, by default, forward the names and ports of hosts within
the firewall region. This informati on SHOULD only be propagated if
explicitly enabled. If not enabled, the received-by host of any host
behind the firewall SHOULD be replaced by an appropriate pseudonym
for that host.

For organi zations that have strong privacy requirenents for hiding
internal structures, a proxy MAY conbi ne an ordered subsequence of
Via header field entries with identical received-protocol values into
a single such entry. For exanpl e,
Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
could be collapsed to

Via: 1.0 ricky, 1.1 nmertz, 1.0 lucy

Fielding, et al. St andards Track [Page 147]

RFC 2616 HTTP/ 1.1 June 1999

14.

Appl i cations SHOULD NOT conbine nultiple entries unless they are al
under the sanme organi zational control and the hosts have al ready been
repl aced by pseudonyns. Applicati ons MJST NOT comnbi ne entries which
have different received-protocol values.

46 \Warni ng

The Warni ng general -header field is used to carry additiona

i nformati on about the status or transformation of a nessage which

m ght not be reflected in the nessage. This information is typically
used to warn about a possible |ack of semantic transparency from
caching operations or transformations applied to the entity body of
t he nmessage.

War ni ng headers are sent with responses using:

Vr ni ng = "\War ni ng" 1#war ni ng- val ue
war ni ng- val ue = warn-code SP war n-agent SP warn-text
[SP war n- dat €]

3DIA T
(host [":" port]) | pseudonym
; the nane or pseudonym of the server adding
; the Warning header, for use in debugging
guot ed-string
<"> HITP-date <">

war n- code
war n- agent

war n-t ext
war n- dat e

A response MAY carry nore than one Warni ng header.

The warn-text SHOULD be in a natural |anguage and character set that
is nost likely to be intelligible to the human user receiving the
response. This decision MAY be based on any avail abl e know edge, such
as the location of the cache or user, the Accept-Language field in a
request, the Content-Language field in a response, etc. The default

| anguage is English and the default character set is |SO 8859-1

If a character set other than 1SO8859-1 is used, it MJST be encoded
in the warn-text using the method described in RFC 2047 [14].

War ni ng headers can in general be applied to any nessage, however
sonme specific warn-codes are specific to caches and can only be
applied to response nessages. New Warni ng headers SHOULD be added
after any existing Warning headers. A cache MJST NOT del ete any
War ni ng header that it received with a nessage. However, if a cache
successfully validates a cache entry, it SHOULD renove any Warning
headers previously attached to that entry except as specified for

Fielding, et al. St andards Track [Page 148]

RFC 2616 HTTP/ 1.1 June 1999

specific Warning codes. It MJUST then add any Warning headers received
in the validating response. In other words, Warning headers are those
that would be attached to the nost recent rel evant response.

When mul tiple Warning headers are attached to a response, the user
agent ought to informthe user of as many of them as possible, in the
order that they appear in the response. If it is not possible to
informthe user of all of the warnings, the user agent SHOULD foll ow
t hese heuristics:

- Warnings that appear early in the response take priority over
those appearing later in the response.

- Warnings in the user’s preferred character set take priority
over warnings in other character sets but with identical warn-
codes and war n- agents.

Systens that generate nultiple Warni ng headers SHOULD order themwi th
this user agent behavior in mnd

Requi rements for the behavior of caches with respect to Warnings are
stated in section 13.1.2.

This is a list of the currently-defined warn-codes, each with a
recomended warn-text in English, and a description of its neaning.

110 Response is stale
MJUST be included whenever the returned response is stale.

111 Revalidation failed
MUST be included if a cache returns a stale response because an
attenpt to revalidate the response failed, due to an inability to
reach the server.

112 Di sconnect ed operation
SHOULD be included if the cache is intentionally di sconnected from
the rest of the network for a period of tine.

113 Heuristic expiration
MUST be included if the cache heuristically chose a freshness
lifetinme greater than 24 hours and the response’s age is greater
t han 24 hours.

199 M scel | aneous war ni ng
The warning text MAY include arbitrary information to be presented
to a human user, or |ogged. A systemreceiving this warning MJST
NOT take any autonmmted action, besides presenting the warning to
t he user.

Fielding, et al. St andards Track [Page 149]

RFC 2616 HTTP/ 1.1 June 1999

14.

15

214 Transfornation applied
MUST be added by an internedi ate cache or proxy if it applies any
transformati on changi ng the content-coding (as specified in the
Cont ent - Encodi ng header) or media-type (as specified in the
Cont ent - Type header) of the response, or the entity-body of the
response, unless this Warning code already appears in the response.

299 M scel | aneous persistent warning
The warning text MAY include arbitrary information to be presented
to a human user, or |ogged. A systemreceiving this warning MJST
NOT take any automated action

If an inplenentati on sends a nessage with one or nore Wrning headers
whose version is HITP/1.0 or |lower, then the sender MJST include in
each warni ng-val ue a warn-date that natches the date in the response.

If an inplenentation receives a nessage with a warning-val ue that

i ncludes a warn-date, and that warn-date is different fromthe Date
val ue in the response, then that warning-val ue MJST be deleted from
the nmessage before storing, forwarding, or using it. (This prevents
bad consequences of naive caching of Warning header fields.) If al

of the warning-values are deleted for this reason, the Warni ng header
MUST be del eted as well.

47 \WNV Aut henti cat e

The WAM Aut henti cate response-header field MUST be included in 401
(Unaut hori zed) response nessages. The field value consists of at

| east one challenge that indicates the authentication schene(s) and
paraneters applicable to the Request-URI

WAV Aut henticate = "WWV Aut henticate" ":" 1#chall enge

The HTTP access authentication process is described in "HTTP

Aut henti cation: Basic and Di gest Access Authentication" [43]. User
agents are advised to take special care in parsing the WWW

Aut henticate field value as it mght contain nore than one chall enge,
or if nore than one WWM Aut henticate header field is provided, the
contents of a challenge itself can contain a conma-separated |ist of
aut hentication paraneters.

Security Considerations

This section is nmeant to informapplication devel opers, information
providers, and users of the security limtations in HITP/1.1 as
descri bed by this docunent. The di scussion does not include
definitive solutions to the problens reveal ed, though it does nake
sone suggestions for reducing security risks.

Fielding, et al. St andards Track [Page 150]

RFC 2616 HTTP/ 1.1 June 1999

15.

15.

15.

1 Personal |nformation

HTTP clients are often privy to |arge anmounts of personal information
(e.g. the user’s nane, |ocation, mail address, passwords, encryption
keys, etc.), and SHOULD be very careful to prevent unintentiona

| eakage of this information via the HTTP protocol to other sources.
We very strongly recommend that a convenient interface be provided
for the user to control dissem nation of such information, and that
designers and inplementors be particularly careful in this area.

Hi story shows that errors in this area often create serious security
and/ or privacy problens and generate highly adverse publicity for the
i npl enentor’ s conpany.

1.1 Abuse of Server Log Information

A server is in the position to save personal data about a user’s
requests which mght identify their reading patterns or subjects of
interest. This information is clearly confidential in nature and its
handl i ng can be constrained by lawin certain countries. People using
the HTTP protocol to provide data are responsi ble for ensuring that
such material is not distributed without the perm ssion of any

i ndividuals that are identifiable by the published results.

1.2 Transfer of Sensitive Information

Li ke any generic data transfer protocol, HTTP cannot regul ate the
content of the data that is transferred, nor is there any a priori
nmet hod of determining the sensitivity of any particul ar piece of
information within the context of any given request. Therefore,
applications SHOULD supply as nmuch control over this information as
possi ble to the provider of that information. Four header fields are
worth special mention in this context: Server, Via, Referer and From

Reveal i ng the specific software version of the server night allow the
server nachine to becone nore vul nerable to attacks agai nst software
that is known to contain security holes. |nplenmentors SHOULD nake the
Server header field a configurable option

Proxi es which serve as a portal through a network firewall SHOULD

t ake special precautions regarding the transfer of header information
that identifies the hosts behind the firewall. In particular, they
SHOULD renove, or replace with sanitized versions, any Via fields
gener ated behind the firewall

The Referer header allows reading patterns to be studied and reverse
links drawn. Although it can be very useful, its power can be abused
if user details are not separated fromthe informati on contained in

Fielding, et al. St andards Track [Page 151]

RFC 2616 HTTP/ 1.1 June 1999

15.

15.

the Referer. Even when the personal information has been renoved, the
Ref erer header mght indicate a private docunment’s UR whose
publication woul d be inappropriate.

The information sent in the Fromfield mght conflict with the user’s
privacy interests or their site's security policy, and hence it
SHOULD NOT be transmitted without the user being able to disable
enabl e, and nodify the contents of the field. The user MJST be able
to set the contents of this field within a user preference or
application defaults configuration.

We suggest, though do not require, that a convenient toggle interface
be provided for the user to enable or disable the sending of From and
Ref erer information

The User-Agent (section 14.43) or Server (section 14.38) header
fields can sonmetines be used to determine that a specific client or
server have a particular security hole which nmight be exploited.
Unfortunately, this same information is often used for other val uable
pur poses for which HTTP currently has no better mechani sm

1.3 Encoding Sensitive Information in URI's

Because the source of a link mght be private information or m ght
reveal an otherwi se private information source, it is strongly
reconmended that the user be able to select whether or not the
Referer field is sent. For exanple, a browser client could have a
toggle switch for browsing openly/anonymously, which would
respectively enabl e/ di sabl e the sending of Referer and From

i nformation.

Cients SHOULD NOT include a Referer header field in a (non-secure)
HTTP request if the referring page was transferred with a secure
pr ot ocol

Aut hors of services which use the HTTP protocol SHOULD NOT use GET
based fornms for the submission of sensitive data, because this wll
cause this data to be encoded in the Request-URI. Many existing
servers, proxies, and user agents will log the request URl in sone
pl ace where it mght be visible to third parties. Servers can use
POST- based form subm ssion instead

1.4 Privacy |ssues Connected to Accept Headers

Accept request-headers can reveal information about the user to al
servers which are accessed. The Accept-Language header in particular
can reveal information the user would consider to be of a private
nature, because the understanding of particular |anguages is often

Fielding, et al. St andards Track [Page 152]

RFC 2616 HTTP/ 1.1 June 1999

15.

strongly correlated to the nmenbership of a particular ethnic group
User agents which offer the option to configure the contents of an
Accept - Language header to be sent in every request are strongly
encouraged to let the configuration process include a nessage which
makes the user aware of the |loss of privacy involved.

An approach that Iimts the | oss of privacy would be for a user agent
to omt the sending of Accept-Language headers by default, and to ask
the user whether or not to start sendi ng Accept-Language headers to a
server if it detects, by looking for any Vary response-header fields

generated by the server, that such sending could inprove the quality

of service.

El aborate user-custom zed accept header fields sent in every request,
in particular if these include quality values, can be used by servers
as relatively reliable and long-lived user identifiers. Such user
identifiers would allow content providers to do click-trail tracking,
and woul d all ow col I aborating content providers to match cross-server
click-trails or form subm ssions of individual users. Note that for
many users not behind a proxy, the network address of the host
running the user agent will also serve as a long-lived user
identifier. In environments where proxies are used to enhance
privacy, user agents ought to be conservative in offering accept
header configuration options to end users. As an extreme privacy
measure, proxies could filter the accept headers in relayed requests.
General purpose user agents which provide a high degree of header
configurability SHOULD warn users about the |oss of privacy which can
be invol ved.

2 Attacks Based On File and Path Nanes

| mpl enent ati ons of HITP origin servers SHOULD be careful to restrict
t he docunments returned by HTTP requests to be only those that were

i ntended by the server administrators. If an HTTP server translates
HTTP URIs directly into file systemcalls, the server MJST take
special care not to serve files that were not intended to be
delivered to HTTP clients. For exanple, UNI X, M crosoft Wndows, and
ot her operating systens use ".." as a path conponent to indicate a
directory | evel above the current one. On such a system an HITP
server MJST disall ow any such construct in the Request-URl if it
woul d ot herwi se all ow access to a resource outside those intended to
be accessible via the HTTP server. Simlarly, files intended for
reference only internally to the server (such as access contro
files, configuration files, and script code) MJST be protected from
i nappropriate retrieval, since they mght contain sensitive

i nformati on. Experience has shown that m nor bugs in such HTTP server
i npl enent ati ons have turned into security risks.

Fielding, et al. St andards Track [Page 153]

RFC 2616 HTTP/ 1.1 June 1999

15.

15.

15.

3 DNS Spoofing

Clients using HTTP rely heavily on the Domain Nanme Service, and are
thus generally prone to security attacks based on the deliberate

nm s-associ ati on of I P addresses and DNS nanes. Cients need to be
cautious in assumng the continuing validity of an | P nunber/DNS nane
associ ati on.

In particular, HTTP clients SHOULD rely on their nane resolver for
confirmation of an | P nunber/DNS nane association, rather than
caching the result of previous host nane | ookups. Many pl atforns

al ready can cache host nane | ookups |ocally when appropriate, and

t hey SHOULD be configured to do so. It is proper for these | ookups to
be cached, however, only when the TTL (Time To Live) information
reported by the nane server nakes it likely that the cached
information will remain useful.

If HTTP clients cache the results of host name | ookups in order to
achi eve a performance i nprovenment, they MJST observe the TTL
i nformati on reported by DNS

If HTTP clients do not observe this rule, they could be spoofed when
a previously-accessed server’s | P address changes. As network
renunbering is expected to becone increasingly conmon [24], the
possibility of this formof attack will grow. Cbserving this

requi renent thus reduces this potential security vulnerability.

This requirenment also inproves the |oad-bal anci ng behavior of clients
for replicated servers using the same DNS nane and reduces the

i kelihood of a user’s experiencing failure in accessing sites which
use that strategy.

4 Location Headers and Spoofing

If a single server supports multiple organizations that do not trust
one another, then it MJST check the values of Location and Content-
Location headers in responses that are generated under control of
sai d organi zations to nake sure that they do not attenpt to

i nval i date resources over which they have no authority.

5 Content-Disposition |Issues

RFC 1806 [35], fromwhich the often inplenented Content-Di sposition
(see section 19.5.1) header in HITP is derived, has a nunmber of very
serious security considerations. Content-Disposition is not part of
the HTTP standard, but since it is widely inplenented, we are
docunenting its use and risks for inplementors. See RFC 2183 [49]
(whi ch updates RFC 1806) for details.

Fielding, et al. St andards Track [Page 154]

RFC 2616 HTTP/ 1.1 June 1999

15.

15.

6 Authentication Credentials and Idle Cdients

Exi sting HTTP clients and user agents typically retain authentication
information indefinitely. HTTP/1.1. does not provide a nmethod for a
server to direct clients to discard these cached credentials. This is
a significant defect that requires further extensions to HITP.
Circunst ances under which credential caching can interfere with the
application’s security nmodel include but are not limted to:

- Clients which have been idle for an extended period follow ng
which the server might wish to cause the client to repronpt the
user for credentials.

- Applications which include a session termnination indication
(such as a ‘logout’ or ‘conmit’ button on a page) after which
the server side of the application ‘knows’ that there is no
further reason for the client to retain the credentials.

This is currently under separate study. There are a number of work-
arounds to parts of this problem and we encourage the use of
password protection in screen savers, idle tinme-outs, and other

met hods which mitigate the security problens inherent in this
problem |In particular, user agents which cache credentials are
encouraged to provide a readily accessible nechanismfor discarding
cached credential s under user control

7 Proxies and Caching

By their very nature, HTTP proxies are nmen-in-the-niddle, and
represent an opportunity for man-in-the-m ddl e attacks. Conprom se of
the systens on which the proxies run can result in serious security
and privacy problens. Proxies have access to security-rel ated

i nformation, personal information about individual users and

organi zations, and proprietary information belonging to users and
content providers. A conprom sed proxy, or a proxy inplenented or
configured without regard to security and privacy consi derations,

m ght be used in the conm ssion of a wide range of potential attacks.

Proxy operators should protect the systems on which proxies run as
they woul d protect any systemthat contains or transports sensitive
information. In particular, log informati on gathered at proxies often
contains highly sensitive personal information, and/or information
about organi zations. Log information should be carefully guarded, and
appropriate guidelines for use devel oped and foll owed. (Section
15.1.1).

Fielding, et al. St andards Track [Page 155]

RFC 2616 HTTP/ 1.1 June 1999

15.

16

Caching proxies provide additional potential vulnerabilities, since
the contents of the cache represent an attractive target for
mal i ci ous exploitation. Because cache contents persist after an HITP
request is conplete, an attack on the cache can reveal infornmation

Il ong after a user believes that the information has been renoved from
the network. Therefore, cache contents should be protected as
sensitive information.

Proxy inplementors should consider the privacy and security

i mplications of their design and codi ng decisions, and of the
configuration options they provide to proxy operators (especially the
default configuration).

Users of a proxy need to be aware that they are no trustworthier than
the people who run the proxy; HITP itself cannot solve this problem

The judi ci ous use of cryptography, when appropriate, may suffice to
protect against a broad range of security and privacy attacks. Such
cryptography is beyond the scope of the HTTP/ 1.1 specification

7.1 Denial of Service Attacks on Proxies

They exist. They are hard to defend agai nst. Research conti nues.
Bewar e.

Acknowl edgnent s

Thi s specification nakes heavy use of the augnented BNF and generic
constructs defined by David H Crocker for RFC 822 [9]. Similarly, it
reuses many of the definitions provided by Nathaniel Borenstein and
Ned Freed for MME [7]. W hope that their inclusionin this
specification will help reduce past confusion over the relationship
between HTTP and Internet mail nessage fornmats.

The HTTP protocol has evolved considerably over the years. It has
benefited froma large and active devel oper comunity--the nmany
peopl e who have participated on the wwtalk mailing list--and it is
that community which has been npst responsible for the success of
HTTP and of the World-Wde Wb in general. Marc Andreessen, Robert
Cailliau, Daniel W Connolly, Bob Denny, John Franks, Jean-Francois
Goff, Phillip M Hallam Baker, Hakon W Lie, Ari Luotonen, Rob
McCool , Lou Montulli, Dave Raggett, Tony Sanders, and Marc

VanHeyni ngen deserve special recognition for their efforts in
defining early aspects of the protocol

Thi s docunent has benefited greatly fromthe comments of all those
participating in the HTTP-WG |n addition to those already nentioned
the follow ng individuals have contributed to this specification

Fielding, et al. St andards Track [Page 156]

Fi el di ng,

RFC 2616

Gary Adans

Haral d Tveit Al vestrand
Keith Ball

Bri an Behl endor f
Paul Burchard
Mauri zi o Codogno
M ke Cow i shaw
Roman Czyborra
M chael A. Dol an
David J. Fi ander
Al an Freier

Mar ¢ Hedl und
Greg Herlihy
Koen Hol t man

Al ex Hoprmann

Bob Jerni gan
Shel Kaphan
Rohit Khare
John Kl ensin
Martijn Koster

Al exei Kosut
David M Kri stol
Dani el LalLi berte
Ben Laurie

Paul J. Leach
Dani el DuBoi s

HTTP/ 1.1

Ross Patterson

Al bert Lunde

John C. Mallery
Jean- Phi lippe Martin-Flatin
Mtra

David Morris

Gavin Ni col

Bill Perry

Jeffrey Perry
Scott Powers

Onen Rees

Luigi Rizzo

Davi d Robi nson
Mar c Sal onpn

Rich Sal z

Allan M Schiffman
Ji m Sei dnman

Chuck Shotton

Eric W Sink

Si non E. Spero

Ri chard N. Tayl or
Robert S. Thau
Bill (BearHeart) Wi nman
Francoi s Yer geau
Mary Ell en Zurko
Josh Cohen

June 1999

Much of the content and presentation of the caching design is due to

suggestions and comments fromindividuals including: Shel
David Morris,

Paul Leach, Koen Hol t nan,

Most of the specification of
Luot onen and John Franks,

by Ari
Zilles.

Thanks to the "cave nen"

of Palo Alto.

and Larry Masinter.

wi th additional

You know who you are

Kaphan,

ranges i s based on work originally done
i nput from Steve

JimCettys (the current editor of this document) wi shes particularly

to thank Roy Fi el di ng,
with John Kl ensin,
Hol t man, John Franks,
Larry Masinter for their
Mogul and Scott

et al.

Paul

Lawr ence for

the previous editor of this docunent,
Jeff Mogul,
Josh Cohen,
hel p. And thanks go particularly to Jeff

performnmi ng the "MJST/ MAY/ SHOULD" audit.

Leach, Dave Kristol, Ko
Al ex Hoprmann, Scott Lawre

St andards Track

al ong
en

nce, and

[Page 157]

RFC 2616 HTTP/ 1.1 June 1999

The

Apache Group, Anselm Baird-Smth, author of Jigsaw, and Henrik

Frystyk inpl enented RFC 2068 early, and we wish to thank themfor the
di scovery of many of the problens that this document attenpts to
rectify.

17 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Alvestrand, H, "Tags for the Identification of Languages", RFC
1766, March 1995.

Ankl esaria, F., McCahill, M, Lindner, P., Johnson, D., Torrey,
D. and B. Al berti, "The Internet Gopher Protocol (a distributed
docunment search and retrieval protocol)", RFC 1436, March 1993.

Berners-Lee, T., "Universal Resource ldentifiers in WWW, RFC
1630, June 1994.

Berners-Lee, T., Masinter, L. and M MCahill, "Uniform Resource
Locators (URL)", RFC 1738, Decenber 1994.

Berners-Lee, T. and D. Connolly, "Hypertext Markup Language -
2.0", RFC 1866, Noverber 1995.

Berners-Lee, T., Fielding, R and H Frystyk, "Hypertext Transfer
Protocol -- HTTP/1.0", RFC 1945, My 1996.

Freed, N. and N. Borenstein, "Miltipurpose Internet Mil
Ext ensions (M ME) Part One: Format of I|nternet Message Bodies",
RFC 2045, Novenber 1996.

Braden, R, "Requirenents for Internet Hosts -- Conmunication
Layers", STD 3, RFC 1123, Cctober 1989.

Crocker, D., "Standard for The Format of ARPA | nternet Text
Messages", STD 11, RFC 822, August 1982.

Davis, F., Kahle, B., Morris, H, Salem J., Shen, T., Wang, R,
Sui, J., and M Ginbaum "WAIS Interface Protocol Prototype
Functional Specification,” (v1.5), Thinking Mchines
Corporation, April 1990.

Fielding, R, "Relative Uniform Resource Locators", RFC 1808,
June 1995.

Horton, M and R Adans, "Standard for |nterchange of USENET
Messages", RFC 1036, Decenber 1987.

Fielding, et al. St andards Track [Page 158]

RFC 2616 HTTP/ 1.1 June 1999

[13] Kantor, B. and P. Lapsley, "Network News Transfer Protocol", RFC
977, February 1986.

[14] Moore, K, "M ME (Miltipurpose Internet Mil Extensions) Part
Three: Message Header Extensions for Non-ASCI | Text", RFC 2047,
Novenber 1996.

[15] Nebel, E. and L. Masinter, "Formbased File Upload in HTM.", RFC
1867, Novenber 1995.

[16] Postel, J., "Sinple Mail Transfer Protocol", STD 10, RFC 821,
August 1982.

[17] Postel, J., "Media Type Registration Procedure", RFC 1590,
Novenber 1996.

[18] Postel, J. and J. Reynolds, "File Transfer Protocol"”, STD 9, RFC
959, COctober 1985.

[19] Reynolds, J. and J. Postel, "Assigned Nunbers", STD 2, RFC 1700,
COct ober 1994.

[20] Sollins, K. and L. Masinter, "Functional Requirenents for
Uni f orm Resource Names", RFC 1737, Decenber 1994.

[21] US-ASClII. Coded Character Set - 7-Bit Anerican Standard Code for
Information | nterchange. Standard ANSI X3.4-1986, ANSI, 1986.

[22] 1SO-8859. International Standard -- Information Processing --
8-bit Single-Byte Coded Graphic Character Sets --

Part 1. Latin al phabet No. 1, |SO 8859-1:1987.

Part 2: Latin al phabet No. 2, |SO 8859-2, 1987
Part 3: Latin al phabet No. 3, |SO 8859-3, 1988.
Part 4: Latin al phabet No. 4, |1SO 8859-4, 1988.
Part 5: Latin/Cyrillic al phabet, |SO 8859-5, 1988.
Part 6: Latin/Arabic al phabet, |SO 8859-6, 1987
Part 7: Latin/Geek al phabet, |SO 8859-7, 1987
Part 8: Latin/Hebrew al phabet, |SO 8859-8, 1988.
Part 9: Latin al phabet No. 5, |1SO 8859-9, 1990.

[23] Meyers, J. and M Rose, "The Content-NMD5 Header Field", RFC
1864, Cctober 1995.

[24] Carpenter, B. and Y. Rekhter, "Renunbering Needs Work", RFC
1900, February 1996.

[25] Deutsch, P., "&ZIP file format specification version 4.3", RFC
1952, May 1996.

Fielding, et al. St andards Track [Page 159]

RFC 2616 HTTP/ 1.1 June 1999

[26] Venkata N. Padmanabhan, and Jeffrey C. Mgul. "Inproving HTTP
Latency", Conputer Networks and | SDN Systens, v. 28, pp. 25-35,
Dec. 1995. Slightly revised version of paper in Proc. 2nd
I nternational WAV Conference '94: Msaic and the Wb, Oct. 1994,
which is avail able at
htt p: // ww. ncsa. ui uc. edu/ SDGE | T94/ Pr oceedi ngs/ DDay/ nogul / HTTPLat
ency. htnl .

[27] Joe Touch, John Hei denann, and Katia Obraczka. "Analysis of HTTP
Performance", <URL: http://ww.isi.edu/touch/pubs/http-perf96/>,
I SI Research Report |SI/RR-98-463, (original report dated Aug.
1996), USC/ I nformation Sciences Institute, August 1998.

[28] MIIs, D, "Network Time Protocol (Version 3) Specification,
| mpl enent ati on and Anal ysis", RFC 1305, March 1992.

[29] Deutsch, P., "DEFLATE Conpressed Data Fornmat Specification
version 1.3", RFC 1951, May 1996.

[30] S. Spero, "Analysis of HTTP Performance Problens,"
http://sunsite.unc. edu/ ndma-rel ease/ http-prob. htnl .

[31] Deutsch, P. and J. Gailly, "ZLIB Conpressed Data For nat
Speci fication version 3.3", RFC 1950, May 1996.

[32] Franks, J., Hallam Baker, P., Hostetler, J., Leach, P.,
Luotonen, A, Sink, E. and L. Stewart, "An Extension to HITP:
Di gest Access Aut hentication", RFC 2069, January 1997.

[33] Fielding, R, Gettys, J., Mgul, J., Frystyk, H and T.
Ber ners-Lee, "Hypertext Transfer Protocol -- HITP/1.1", RFC
2068, January 1997.

[34] Bradner, S., "Key words for use in RFCs to Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[35] Troost, R and Dorner, S., "Comunicating Presentation
Information in Internet Messages: The Content-Di sposition
Header", RFC 1806, June 1995.

[36] Mogul, J., Fielding, R, GCettys, J. and H Frystyk, "Use and
Interpretation of HTTP Version Nunbers", RFC 2145, May 1997.
[j 9639]

[37] Palme, J., "Common Internet Message Headers", RFC 2076, February
1997. [g640]

Fielding, et al. St andards Track [Page 160]

RFC 2616 HTTP/ 1.1 June 1999

[38] Yergeau, F., "UTF-8, a transformation format of Unicode and
| SO 10646", RFC 2279, January 1998. [g641]

[39] Nielsen, HF., Gettys, J., Baird-Snith, A, Prud honmeaux, E.,
Lie, H, and C. Lilley. "Network Performance Effects of
HTTP/ 1.1, CSS1, and PNG " Proceedi ngs of ACM SI GCOW ' 97, Cannes
France, Septenber 1997.[g642]

[40] Freed, N. and N. Borenstein, "Miltipurpose Internet Mail
Extensions (M ME) Part Two: Media Types", RFC 2046, Novenber
1996. [] g643]

[41] Alvestrand, H., "IETF Policy on Character Sets and Languages"
BCP 18, RFC 2277, January 1998. []jg644]

[42] Berners-Lee, T., Fielding, R and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax and Senmantics", RFC 2396,
August 1998. [] g645]

[43] Franks, J., Hallam Baker, P., Hostetler, J., Lawence, S.,
Leach, P., Luotonen, A, Sink, E. and L. Stewart, "HITP
Aut henti cation: Basic and Di gest Access Authentication", RFC
2617, June 1999. [g646]

[44] Luotonen, A., "Tunneling TCP based protocols through Wb proxy
servers," Work in Progress. [jg647]

[45] Pal e, J. and A. Hopmann, "M ME E-nmil Encapsul ation of
Aggr egat e Docunents, such as HTM. (MHTM.)", RFC 2110, March
1997.

[46] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, Cctober 1996.

[47] Masinter, L., "Hyper Text Coffee Pot Control Protoco
(HTCPCP/ 1.0)", RFC 2324, 1 April 1998.

[48] Freed, N. and N. Borenstein, "Miltipurpose Internet Mail
Ext ensions (M ME) Part Five: Conformance Criteria and Exanpl es",
RFC 2049, Novenber 1996.

[49] Troost, R, Dorner, S. and K. Moore, "Conmunicating Presentation

Information in Internet Messages: The Content-Di sposition Header
Field', RFC 2183, August 1997.

Fielding, et al. St andards Track [Page 161]

RFC 2616 HTTP/ 1.1 June 1999

18 Aut hors’ Addresses

Roy T. Fielding

I nformati on and Conputer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Fax: +1 (949) 824-1715
EMail: fielding@cs.uci.edu

Janmes CGettys

Wrld Wde Web Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbridge, MA 02139, USA

Fax: +1 (617) 258 8682
EMail : jg@a3.org

Jeffrey C. Mgul

Western Research Laboratory
Conpaqg Conput er Corporation

250 University Avenue

Palo Alto, California, 94305, USA

EMai | : nmogul @wl . dec.com

Henri k Frystyk Niel sen

Wrld Wde Web Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbridge, MA 02139, USA

Fax: +1 (617) 258 8682
EMai | : frystyk@?3. org

Larry Masinter

Xer ox Cor poration

3333 Coyote Hi Il Road
Palo Alto, CA 94034, USA

EMai | ; masi nt er @ar c. xer ox. com

Fielding, et al. St andards Track [Page 162]

RFC 2616 HTTP/ 1.1 June 1999

Paul J. Leach

M crosoft Corporation
1 Mcrosoft Way
Rednond, WA 98052, USA

EMai | ; paul | e@n crosoft.com

Ti m Ber ner s- Lee

Director, Wrld Wde Wb Consortium
M T Laboratory for Conputer Science
545 Technol ogy Square

Canbri dge, MA 02139, USA

Fax: +1 (617) 258 8682
EMai | ; tinbl @B.org

Fielding, et al. St andards Track [Page 163]

RFC 2616 HTTP/ 1.1 June 1999

19 Appendi ces
19.1 Internet Media Type message/http and application/http

In addition to defining the HTTP/1.1 protocol, this docunent serves
as the specification for the Internet nedia type "nessage/ http" and
"application/http". The nessage/http type can be used to enclose a
singl e HTTP request or response nessage, provided that it obeys the
M ME restrictions for all "nessage" types regarding line |length and
encodi ngs. The application/http type can be used to enclose a
pi peline of one or nore HITP request or response nessages (not
internm xed). The following is to be registered with ANA [17].

Medi a Type nane: nessage

Medi a subtype nane: http

Requi red paraneters: none

Optional paraneters: versi on, nsgtype

versi on: The HTTP-Version nunber of the encl osed nessage
(e.g., "1.1"). If not present, the version can be
determ ned fromthe first Iine of the body.

nsgtype: The nessage type -- "request" or "response". |f not

present, the type can be determned fromthe first
line of the body.
Encodi ng considerations: only "7bit", "8bit", or "binary" are
permtted
Security considerations: none

Medi a Type nane: application

Medi a subtype nane: http

Requi red paraneters: none

Optional paraneters: versi on, nsgtype

versi on: The HTTP-Version nunber of the encl osed nessages
(e.g., "1.1"). If not present, the version can be
determned fromthe first Iine of the body.

nsgtype: The nessage type -- "request" or "response". |f not

present, the type can be determned fromthe first
line of the body.

Encodi ng consi derations: HITP nmessages encl osed by this type
are in "binary" format; use of an appropriate
Content - Transfer-Encoding is required when
transmtted via E-mail.

Security considerations: none

Fielding, et al. St andards Track [Page 164]

RFC 2616 HTTP/ 1.1 June 1999

19.2 Internet Media Type multipart/byteranges

When an HTTP 206 (Partial Content) response nmessage includes the
content of nultiple ranges (a response to a request for multiple
non- overl appi ng ranges), these are transmtted as a nultipart
nmessage- body. The nedia type for this purpose is called

"mul ti part/byteranges".

The mul ti part/byteranges nedia type includes two or nore parts, each
with its own Content-Type and Content-Range fields. The required
boundary paraneter specifies the boundary string used to separate
each body-part.

Medi a Type nane: mul tipart

Medi a subtype nane: byt er anges

Requi red paraneters: boundary

Optional paraneters: none

Encodi ng considerations: only "7bit", "8bit", or "binary" are
permitted

Security considerations: none

For exanpl e:

HTTP/ 1.1 206 Partial Content

Date: Wed, 15 Nov 1995 06: 25: 24 GMI

Last-Modi fied: Wed, 15 Nov 1995 04:58:08 GMI

Content-type: multipart/byteranges; boundary=TH S _STRI NG _SEPARATES

--TH S_STRI NG_SEPARATES
Content-type: application/pdf
Cont ent -range: bytes 500-999/ 8000

...the first range...

- - THI S_STRI NG_SEPARATES
Content-type: application/pdf
Cont ent -range: bytes 7000-7999/ 8000

...the second range
--TH S_STRI NG_SEPARATES- -

Not es:

1) Additional CRLFs may precede the first boundary string in the
entity.

Fielding, et al. St andards Track [Page 165]

RFC 2616 HTTP/ 1.1 June 1999

2) Although RFC 2046 [40] permts the boundary string to be
qguot ed, some existing inplenmentations handl e a quoted boundary
string incorrectly.

3) A nunber of browsers and servers were coded to an early draft
of the byteranges specification to use a nedia type of
nmul ti part/ x-byteranges, which is al nost, but not quite
conpatible with the version docunented in HTTP/ 1. 1.

19. 3 Tol erant Applications

Al t hough this docunment specifies the requirenents for the generation
of HTTP/ 1.1 nessages, not all applications will be correct in their

i mpl enentation. We therefore recomend that operational applications
be tol erant of deviations whenever those deviations can be

i nterpreted unanbi guously.

Clients SHOULD be tolerant in parsing the Status-Line and servers
tol erant when parsing the Request-Line. In particular, they SHOULD
accept any anobunt of SP or HT characters between fields, even though
only a single SP is required.

The line termi nator for nessage-header fields is the sequence CRLF.
However, we recommend that applications, when parsing such headers,
recogni ze a single LF as a line term nator and ignore the |eading CR

The character set of an entity-body SHOULD be | abel ed as the | ownest
common denoni nator of the character codes used within that body, wth
the exception that not labeling the entity is preferred over |abeling
the entity with the |abels US-ASCII or |SO 8859-1. See section 3.7.1
and 3.4.1

Additional rules for requirements on parsing and encodi ng of dates
and ot her potential problens with date encodi ngs include:

- HTTP/ 1.1 clients and caches SHOULD assune that an RFC-850 date
whi ch appears to be nore than 50 years in the future is in fact
in the past (this hel ps solve the "year 2000" problen).

- An HTTP/ 1.1 inplenmentation MAY internally represent a parsed
Expires date as earlier than the proper value, but MJST NOT
internally represent a parsed Expires date as later than the
proper val ue.

- Al expiration-related cal cul ati ons MIUST be done in GMI. The

| ocal time zone MJST NOT influence the cal cul ation or conparison
of an age or expiration tine.

Fielding, et al. St andards Track [Page 166]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

19.

- If an HTTP header incorrectly carries a date value with a tine
zone other than GMI, it MJST be converted into GVI using the
nost conservative possi bl e conversion

4 Differences Between HTTP Entities and RFC 2045 Entities

HTTP/ 1.1 uses many of the constructs defined for Internet Mail (RFC
822 [9]) and the Multipurpose Internet Mail Extensions (MME [7]) to
allow entities to be transmitted in an open variety of
representations and with extensible nechanisns. However, RFC 2045

di scusses nmil, and HTTP has a few features that are different from
those described in RFC 2045. These differences were carefully chosen
to optimze perfornmance over binary connections, to allow greater
freedomin the use of new nedia types, to nmake date conparisons
easier, and to acknowl edge the practice of sone early HITP servers
and clients.

Thi s appendi x describes specific areas where HITP differs from RFC
2045. Proxies and gateways to strict M ME environments SHOULD be
aware of these differences and provide the appropriate conversions
where necessary. Proxies and gateways from M ME environnents to HITP
al so need to be aware of the differences because sone conversions

nm ght be required.

4,1 M ME-Version

HTTP is not a M ME-conpliant protocol. However, HITP/ 1.1 nessages MAY
i nclude a single M Me-Version general -header field to indicate what
version of the M ME protocol was used to construct the message. Use
of the M ME-Version header field indicates that the nessage is in
full conpliance with the M ME protocol (as defined in RFC 2045[7]).
Proxi es/ gat eways are responsi ble for ensuring full conpliance (where
possi bl e) when exporting HTTP nmessages to strict M ME environments.

M ME- Ver si on = "M ME-Version" ":" 1*DIGT "." 1*DIG T

M ME version "1.0" is the default for use in HTTP/1.1. However,
HTTP/ 1.1 nessage parsing and semantics are defined by this docunment
and not the M ME specification.

4.2 Conversion to Canonical Form

RFC 2045 [7] requires that an Internet mail entity be converted to
canoni cal formprior to being transferred, as described in section 4
of RFC 2049 [48]. Section 3.7.1 of this docunent describes the forns
al l owed for subtypes of the "text" nedia type when transmitted over
HTTP. RFC 2046 requires that content with a type of "text" represent
Iine breaks as CRLF and forbids the use of CR or LF outside of Iine

Fielding, et al. St andards Track [Page 167]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

19.

break sequences. HTTP allows CRLF, bare CR, and bare LF to indicate a
line break within text content when a nessage is transnmitted over
HTTP.

Where it is possible, a proxy or gateway fromHITP to a strict MM
envi ronnent SHOULD translate all line breaks within the text nedia
types described in section 3.7.1 of this docunent to the RFC 2049
canoni cal form of CRLF. Note, however, that this night be conplicated
by the presence of a Content-Encoding and by the fact that HTTP

all ows the use of some character sets which do not use octets 13 and
10 to represent CR and LF, as is the case for sone multi-byte
character sets.

| mpl enentors should note that conversion will break any cryptographic
checksuns applied to the original content unless the original content
is already in canonical form Therefore, the canonical formis
recomended for any content that uses such checksuns in HTTP.

4.3 Conversion of Date Fornmts

HTTP/ 1.1 uses a restricted set of date formats (section 3.3.1) to
simplify the process of date conparison. Proxies and gateways from

ot her protocols SHOULD ensure that any Date header field present in a
nmessage confornms to one of the HITP/1.1 formats and rewite the date
i f necessary.

4.4 Introduction of Content-Encoding

RFC 2045 does not include any concept equivalent to HTTP/1.1's

Cont ent - Encodi ng header field. Since this acts as a nodifier on the
medi a type, proxies and gateways from HTTP to M Me-conpli ant
protocol s MUST either change the value of the Content-Type header
field or decode the entity-body before forwardi ng the nmessage. (Sone
experinental applications of Content-Type for Internet mail have used
a nedi a-type paraneter of ";conversions=<content-coding>" to perform
a function equivalent to Content-Encoding. However, this paraneter is
not part of RFC 2045.)

4.5 No Content- Transfer-Encodi ng

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC
2045. Proxies and gateways from M Me-conpliant protocols to HITP MUST
renove any non-identity CTE ("quoted-printable" or "base64") encoding
prior to delivering the response nmessage to an HTTP client.

Proxi es and gateways from HTTP to M Me-conpliant protocols are
responsi ble for ensuring that the nessage is in the correct fornat
and encoding for safe transport on that protocol, where "safe

Fielding, et al. St andards Track [Page 168]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

19.

transport” is defined by the limtations of the protocol being used.
Such a proxy or gateway SHOULD | abel the data with an appropriate
Cont ent - Transfer-Encoding if doing so will inprove the likelihood of
saf e transport over the destination protocol

4.6 Introduction of Transfer-Encoding

HTTP/ 1.1 introduces the Transfer-Encodi ng header field (section
14.41). Proxies/gateways MJST renove any transfer-coding prior to
forwardi ng a message via a M Me-conpliant protocol

A process for decoding the "chunked" transfer-coding (section 3.6)
can be represented in pseudo-code as:

length := 0
read chunk-si ze, chunk-extension (if any) and CRLF
whil e (chunk-size > 0) {
read chunk-data and CRLF
append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF
}
read entity-header
while (entity-header not enpty) {
append entity-header to existing header fields
read entity-header
}
Content-Length := length
Remove "chunked" from Transfer-Encoding

4.7 MATML and Line Length Limtations

HTTP i npl ement ati ons whi ch share code with MATM. [45] inpl enmentations
need to be aware of MME line length linitations. Since HTTP does not
have this limtation, HTTP does not fold long |lines. MATM. nessages
being transported by HTTP follow all conventions of MHTM., i ncluding
line length limtations and fol ding, canonicalization, etc., since
HTTP transports all message-bodi es as payl oad (see section 3.7.2) and
does not interpret the content or any M ME header lines that night be
cont ai ned t herein.

5 Additional Features

RFC 1945 and RFC 2068 docunent protocol elenments used by sone

exi sting HTTP i npl emrentati ons, but not consistently and correctly
across nost HITP/ 1.1 applications. Inplenentors are advised to be
aware of these features, but cannot rely upon their presence in, or
interoperability with, other HTTP/1.1 applications. Sonme of these

Fielding, et al. St andards Track [Page 169]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

descri be proposed experinental features, and sone describe features
that experinental deploynent found | acking that are now addressed in
the base HTTP/ 1.1 specification

A nunber of other headers, such as Content-Disposition and Title,
from SMIP and M ME are al so often inplenented (see RFC 2076 [37]).

5.1 Content-Disposition

The Content-Di sposition response-header field has been proposed as a
means for the origin server to suggest a default filenane if the user
requests that the content is saved to a file. This usage is derived
fromthe definition of Content-Disposition in RFC 1806 [35].

content-disposition = "Content-Disposition" ":"

di sposition-type *(";" disposition-parm)
di sposition-type = "attachnment" | di sp-extension-token
di sposition-parm = fil ename-parm| disp-extension-parm
filenanme-parm= "fil ename" "=" quoted-string
di sp- ext ensi on-t oken = t oken
di sp-extensi on-parm = token "=" (token | quoted-string)

An exanple is
Content-Disposition: attachnment; fil ename="fnane. ext"

The receiving user agent SHOULD NOT respect any directory path
information present in the fil ename-parm parameter, which is the only
paranmeter believed to apply to HTTP inplenmentations at this time. The
filenane SHOULD be treated as a term nal conponent only.

If this header is used in a response with the application/octet-
stream content-type, the inplied suggestion is that the user agent
shoul d not display the response, but directly enter a ‘save response
as...’' dialog.

See section 15.5 for Content-Di sposition security issues.
6 Conpatibility with Previous Versions

It is beyond the scope of a protocol specification to nandate
conpliance with previous versions. HTTP/ 1.1 was deliberately

desi gned, however, to make supporting previous versions easy. It is
worth noting that, at the tinme of conposing this specification
(1996), we woul d expect conmmercial HTTP/ 1.1 servers to:

- recogni ze the format of the Request-Line for HITP/0.9, 1.0, and
1.1 requests;

Fielding, et al. St andards Track [Page 170]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

- understand any valid request in the format of HTTP/0.9, 1.0, or
1.1;

- respond appropriately with a nessage in the same major version
used by the client.

And we woul d expect HTTP/1.1 clients to

- recognize the format of the Status-Line for HITP/1.0 and 1.1
responses;

- understand any valid response in the format of HITTP/ 0.9, 1.0, or
1.1.

For nost inplementations of HTTP/ 1.0, each connection is established
by the client prior to the request and cl osed by the server after
sendi ng the response. Sone inplenentations inplenment the Keep-Alive
versi on of persistent connections described in section 19.7.1 of RFC
2068 [33].

6.1 Changes from HTTP/ 1.0

This section sunmmarizes major differences between versions HITP/ 1.0
and HTTP/ 1. 1.

6.1.1 Changes to Sinmplify Milti-homed Web Servers and Conserve | P
Addr esses

The requirenents that clients and servers support the Host request-
header, report an error if the Host request-header (section 14.23) is
m ssing froman HITP/ 1.1 request, and accept absolute URIs (section
5.1.2) are anbng the nost inportant changes defined by this

speci fication.

A der HTTP/ 1.0 clients assunmed a one-to-one relationship of IP
addresses and servers; there was no other established mechani smfor
di stinguishing the intended server of a request than the | P address
to which that request was directed. The changes outlined above will
all ow the Internet, once older HITP clients are no | onger common, to
support nmultiple Wb sites froma single |IP address, greatly
sinmplifying |arge operational Wb servers, where allocation of nmany

| P addresses to a single host has created serious problens. The
Internet will also be able to recover the | P addresses that have been
al l ocated for the sole purpose of allow ng special -purpose domain
nanes to be used in root-level HTTP URLs. G ven the rate of growth of
the Web, and the nunber of servers already deployed, it is extrenely

Fielding, et al. St andards Track [Page 171]

RFC 2616 HTTP/ 1.1 June 1999

19.

19.

important that all inplementations of HTTP (including updates to
existing HTTP/ 1.0 applications) correctly inplenent these
requirenents:

Both clients and servers MJST support the Host request-header
- Aclient that sends an HTTP/ 1.1 request MJST send a Host header

- Servers MJST report a 400 (Bad Request) error if an HITP/ 1.1
request does not include a Host request-header

- Servers MJST accept absolute URIs.
6.2 Conpatibility with HTTP/ 1.0 Persistent Connections

Sonme clients and servers mght wish to be conpatible with sone
previous inplenentations of persistent connections in HITP/ 1.0
clients and servers. Persistent connections in HITP/1.0 are
explicitly negotiated as they are not the default behavior. HTTP/1.0
experinmental inplenmentations of persistent connections are faulty,
and the new facilities in HITP/1.1 are designed to rectify these
probl ens. The problemwas that some existing 1.0 clients may be
sendi ng Keep-Alive to a proxy server that doesn't understand
Connection, which would then erroneously forward it to the next

i nbound server, which would establish the Keep-Alive connection and
result in a hung HTTP/ 1.0 proxy waiting for the close on the
response. The result is that HITP/1.0 clients nust be prevented from
usi ng Keep-Alive when tal king to proxies.

However, talking to proxies is the npbst inportant use of persistent
connections, so that prohibition is clearly unacceptable. Therefore,
we need sone other nechani smfor indicating a persistent connection
is desired, which is safe to use even when talking to an old proxy
that ignores Connection. Persistent connections are the default for
HTTP/ 1.1 nessages; we introduce a new keyword (Connection: close) for
decl ari ng non-persi stence. See section 14.10.

The original HTTP/ 1.0 form of persistent connections (the Connection
Keep- Al i ve and Keep-Alive header) is docunmented in RFC 2068. [33]

6.3 Changes from RFC 2068

This specification has been carefully audited to correct and

di sanbi guate key word usage; RFC 2068 had many problens in respect to
the conventions laid out in RFC 2119 [34].

Clarified which error code should be used for inbound server failures
(e.g. DNS failures). (Section 10.5.5).

Fielding, et al. St andards Track [Page 172]

RFC 2616 HTTP/ 1.1 June 1999

CREATE had a race that required an Etag be sent when a resource is
first created. (Section 10.2.2).

Cont ent - Base was deleted fromthe specification: it was not

i mpl enented widely, and there is no sinple, safe way to introduce it
wi t hout a robust extension nmechanism In addition, it is used in a
simlar, but not identical fashion in MHTM. [45].

Transfer-codi ng and nmessage lengths all interact in ways that
required fixing exactly when chunked encoding is used (to allow for
transfer encoding that may not be self delimiting); it was inportant
to strai ghten out exactly how nessage | engths are conputed. (Sections
3.6, 4.4, 7.2.2, 13.5.2, 14.13, 14.16)

A content-coding of "identity" was introduced, to solve problens
di scovered in caching. (section 3.5)

Qual ity Values of zero should indicate that "I don’t want sonething"
to allowclients to refuse a representation. (Section 3.9)

The use and interpretation of HITP versi on nunbers has been clarified
by RFC 2145. Require proxies to upgrade requests to hi ghest protoco
version they support to deal with problens discovered in HTTP/ 1.0

i mpl ement ations (Section 3.1)

Charset wildcarding is introduced to avoid expl osion of character set
nanes in accept headers. (Section 14.2)

A case was mssed in the Cache-Control nodel of HTTP/1.1; s-maxage
was introduced to add this mssing case. (Sections 13.4, 14.8, 14.9,
14.9. 3)

The Cache-Control: max-age directive was not properly defined for
responses. (Section 14.9.3)

There are situations where a server (especially a proxy) does not

know the full length of a response but is capable of serving a
byt erange request. W therefore need a nechanismto allow byteranges
with a content-range not indicating the full length of the nessage.

(Section 14.16)

Range request responses woul d becone very verbose if all neta-data
were always returned; by allowi ng the server to only send needed
headers in a 206 response, this problem can be avoi ded. (Section
10.2.7, 13.5.3, and 14.27)

Fielding, et al. St andards Track [Page 173]

RFC 2616 HTTP/ 1.1 June 1999

Fix problemw th unsatisfiable range requests; there are two cases:
syntactic problens, and range doesn’t exist in the docunent. The 416
status code was needed to resolve this anbiguity needed to indicate
an error for a byte range request that falls outside of the actua
contents of a document. (Section 10.4.17, 14.16)

Rewrite of nessage transmission requirenments to nake it nuch harder
for inplenentors to get it wong, as the consequences of errors here
can have significant inpact on the Internet, and to deal with the
foll owi ng probl ens:

1. Changing "HTTP/ 1.1 or later" to "HTTP/1.1", in contexts where
this was incorrectly placing a requirenent on the behavior of
an inplementation of a future version of HITP/1.Xx

2. Made it clear that user-agents should retry requests, not
"clients" in general

3. Converted requirenents for clients to ignore unexpected 100
(Continue) responses, and for proxies to forward 100 responses,
into a general requirenment for 1xx responses.

4. Mdified sone TCP-specific | anguage, to nake it clearer that
non- TCP transports are possible for HITP.

5. Require that the origin server MIJST NOT wait for the request
body before it sends a required 100 (Continue) response.

6. Allow, rather than require, a server to onmt 100 (Continue) if
it has already seen sone of the request body.

7. Allow servers to defend agai nst denial -of -service attacks and
broken clients.

Thi s change adds the Expect header and 417 status code. The nessage
transm ssion requirenents fixes are in sections 8.2, 10.4. 18,
8.1.2.2, 13.11, and 14.20.

Proxi es should be able to add Content-Length when appropriate.
(Section 13.5.2)

O ean up confusion between 403 and 404 responses. (Section 10.4. 4,
10. 4.5, and 10.4.11)

War ni ngs coul d be cached incorrectly, or not updated appropriately.
(Section 13.1.2, 13.2.4, 13.5.2, 13.5.3, 14.9.3, and 14.46) Warning
al so needed to be a general header, as PUT or other nethods may have
need for it in requests.

Fielding, et al. St andards Track [Page 174]

RFC 2616 HTTP/ 1.1 June 1999

Transfer-coding had significant problens, particularly with
interactions with chunked encoding. The solution is that transfer-
codi ngs becone as full fledged as content-codings. This involves
addi ng an | ANA registry for transfer-codings (separate from content
codings), a new header field (TE) and enabling trailer headers in the
future. Transfer encoding is a major perfornmance benefit, so it was
worth fixing [39]. TE al so sol ves anot her, obscure, downward
interoperability problemthat could have occurred due to interactions
bet ween authentication trailers, chunked encoding and HTTP/ 1.0
clients.(Section 3.6, 3.6.1, and 14. 39)

The PATCH, LINK, UNLINK nethods were defined but not comonly
i mpl emented in previous versions of this specification. See RFC 2068
[33].
The Alternates, Content-Version, Derived-From Link, UR, Public and
Cont ent - Base header fields were defined in previous versions of this
speci fication, but not commnly inplenmented. See RFC 2068 [33].

20 | ndex

Pl ease see the PostScript version of this RFC for the | NDEX

Fielding, et al. St andards Track [Page 175]

RFC 2616 HTTP/ 1.1 June 1999

21.

Ful I Copyright Statenent
Copyright (C The Internet Society (1999). All R ghts Reserved.

This docunent and translations of it may be copied and furnished to
others, and derivative works that conment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linmted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Fielding, et al. St andards Track [Page 176]

	Hypertext Transfer Protocol HTTP/1.1
	June 1999, RFC 2616
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Requirements
	1.3 Terminology
	1.4 Overall Operation

	2 Notational Conventions and Generic Grammar
	2.1 Augmented BNF
	2.2 Basic Rules

	3 Protocol Parameters
	3.1 HTTP Version
	3.2 Uniform Resource Identifiers
	3.2.1 General Syntax
	3.2.2 http URL
	3.2.3 URI Comparison

	3.3 Date/Time Formats
	3.3.1 Full Date
	3.3.2 Delta Seconds

	3.4 Character Sets
	3.4.1 Missing Charset

	3.5 Content Codings
	3.6 Transfer Codings
	3.6.1 Chunked Transfer Coding

	3.7 Media Types
	3.7.1 Canonicalization and Text Defaults
	3.7.2 Multipart Types

	3.8 Product Tokens
	3.9 Quality Values
	3.10 Language Tags
	3.11 Entity Tags
	3.12 Range Units

	4 HTTP Message
	4.1 Message Types
	4.2 Message Headers
	4.3 Message Body
	4.4 Message Length
	4.5 General Header Fields

	5 Request
	5.1 Request-Line
	5.1.1 Method
	5.1.2 Request-URI

	5.2 The Resource Identified by a Request
	5.3 Request Header Fields

	6 Response
	6.1 Status-Line
	6.1.1 Status Code and Reason Phrase

	6.2 Response Header Fields

	7 Entity
	7.1 Entity Header Fields
	7.2 Entity Body
	7.2.1 Type
	7.2.2 Entity Length

	8 Connections
	8.1 Persistent Connections
	8.1.1 Purpose
	8.1.2 Overall Operation
	8.1.2.1 Negotiation
	8.1.2.2 Pipelining

	8.1.3 Proxy Servers
	8.1.4 Practical Considerations

	8.2 Message Transmission Requirements
	8.2.1 Persistent Connections and Flow Control
	8.2.2 Monitoring Connections for Error Status Messages
	8.2.3 Use of the 100 (Continue) Status
	8.2.4 Client Behavior if Server Prematurely Closes Connection

	9 Method Definitions
	9.1 Safe and Idempotent Methods
	9.1.1 Safe Methods
	9.1.2 Idempotent Methods

	9.2 OPTIONS
	9.3 GET
	9.4 HEAD
	9.5 POST
	9.6 PUT
	9.7 DELETE
	9.8 TRACE
	9.9 CONNECT

	10 Status Code Definitions
	10.1 Informational 1xx
	10.1.1 100 Continue
	10.1.2 101 Switching Protocols

	10.2 Successful 2xx
	10.2.1 200 OK
	10.2.2 201 Created
	10.2.3 202 Accepted
	10.2.4 203 Non-Authoritative Information
	10.2.5 204 No Content
	10.2.6 205 Reset Content
	10.2.7 206 Partial Content

	10.3 Redirection 3xx
	10.3.1 300 Multiple Choices
	10.3.2 301 Moved Permanently
	10.3.3 302 Found
	10.3.4 303 See Other
	10.3.5 304 Not Modified
	10.3.6 305 Use Proxy
	10.3.7 306 (Unused)
	10.3.8 307 Temporary Redirect

	10.4 Client Error 4xx
	10.4.1 400 Bad Request
	10.4.2 401 Unauthorized
	10.4.3 402 Payment Required
	10.4.4 403 Forbidden
	10.4.5 404 Not Found
	10.4.6 405 Method Not Allowed
	10.4.7 406 Not Acceptable
	10.4.8 407 Proxy Authentication Required
	10.4.9 408 Request Timeout
	10.4.10 409 Conflict
	10.4.11 410 Gone
	10.4.12 411 Length Required
	10.4.13 412 Precondition Failed
	10.4.14 413 Request Entity Too Large
	10.4.15 414 Request-URI Too Long
	10.4.16 415 Unsupported Media Type
	10.4.17 416 Requested Range Not Satisfiable
	10.4.18 417 Expectation Failed

	10.5 Server Error 5xx
	10.5.1 500 Internal Server Error
	10.5.2 501 Not Implemented
	10.5.3 502 Bad Gateway
	10.5.4 503 Service Unavailable
	10.5.5 504 Gateway Timeout
	10.5.6 505 HTTP Version Not Supported

	11 Access Authentication
	12 Content Negotiation
	12.1 Server-driven Negotiation
	12.2 Agent-driven Negotiation
	12.3 Transparent Negotiation

	13 Caching in HTTP
	[13.1 Caching]
	13.1.1 Cache Correctness
	13.1.2 Warnings
	13.1.3 Cache-control Mechanisms
	13.1.4 Explicit User Agent Warnings
	13.1.5 Exceptions to the Rules and Warnings
	13.1.6 Client-controlled Behavior

	13.2 Expiration Model
	13.2.1 Server-Specified Expiration
	13.2.2 Heuristic Expiration
	13.2.3 Age Calculations
	13.2.4 Expiration Calculations
	13.2.5 Disambiguating Expiration Values
	13.2.6 Disambiguating Multiple Responses

	13.3 Validation Model
	13.3.1 Last-Modified Dates
	13.3.2 Entity Tag Cache Validators
	13.3.3 Weak and Strong Validators
	13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates
	13.3.5 Non-validating Conditionals

	13.4 Response Cacheability
	13.5 Constructing Responses From Caches
	13.5.1 End-to-end and Hop-by-hop Headers
	13.5.2 Non-modifiable Headers
	13.5.3 Combining Headers
	13.5.4 Combining Byte Ranges

	13.6 Caching Negotiated Responses
	13.7 Shared and Non-Shared Caches
	13.8 Errors or Incomplete Response Cache Behavior
	13.9 Side Effects of GET and HEAD
	13.10 Invalidation After Updates or Deletions
	13.11 Write-Through Mandatory
	13.12 Cache Replacement
	13.13 History Lists

	14 Header Field Definitions
	14.1 Accept
	14.2 Accept-Charset
	14.3 Accept-Encoding
	14.4 Accept-Language
	14.5 Accept-Ranges
	14.6 Age
	14.7 Allow
	14.8 Authorization
	14.9 Cache-Control
	14.9.1 What is Cacheable
	14.9.2 What May be Stored by Caches
	14.9.3 Modifications of the Basic Expiration Mechanism
	14.9.4 Cache Revalidation and Reload Controls
	14.9.5 No-Transform Directive
	14.9.6 Cache Control Extensions

	14.10 Connection
	14.11 Content-Encoding
	14.12 Content-Language
	14.13 Content-Length
	14.14 Content-Location
	14.15 Content-MD5
	14.16 Content-Range
	14.17 Content-Type
	14.18 Date
	14.18.1 Clockless Origin Server Operation

	14.19 ETag
	14.20 Expect
	14.21 Expires
	14.22 From
	14.23 Host
	14.24 If-Match
	14.25 If-Modified-Since
	14.26 If-None-Match
	14.27 If-Range
	14.28 If-Unmodified-Since
	14.29 Last-Modified
	14.30 Location
	14.31 Max-Forwards
	14.32 Pragma
	14.33 Proxy-Authenticate
	14.34 Proxy-Authorization
	14.35 Range
	14.35.1 Byte Ranges
	14.35.2 Range Retrieval Requests
	14.36 Referer
	14.37 Retry-After
	14.38 Server
	14.39 TE
	14.40 Trailer
	14.41 Transfer-Encoding
	14.42 Upgrade
	14.43 User-Agent
	14.44 Vary
	14.45 Via
	14.46 Warning
	14.47 WWW-Authenticate

	15 Security Considerations
	15.1 Personal Information
	15.1.1 Abuse of Server Log Information
	15.1.2 Transfer of Sensitive Information
	15.1.3 Encoding Sensitive Information in URI’s
	15.1.4 Privacy Issues Connected to Accept Headers

	15.2 Attacks Based On File and Path Names
	15.3 DNS Spoofing
	15.4 Location Headers and Spoofing
	15.5 Content-Disposition Issues
	15.6 Authentication Credentials and Idle Clients
	15.7 Proxies and Caching
	15.7.1 Denial of Service Attacks on Proxies

	16 Acknowledgments
	17 References
	18 Authors’ Addresses
	19 Appendices
	19.1 Internet Media Type message/http and application/http
	19.2 Internet Media Type multipart/byteranges
	19.3 Tolerant Applications
	19.4 Differences Between HTTP Entities and RFC 2045 Entities
	19.4.1 MIME-Version
	19.4.2 Conversion to Canonical Form
	19.4.3 Conversion of Date Formats
	19.4.4 Introduction of Content-Encoding
	19.4.5 No Content-Transfer-Encoding
	19.4.6 Introduction of Transfer-Encoding
	19.4.7 MHTML and Line Length Limitations

	19.5 Additional Features
	19.5.1 Content-Disposition

	19.6 Compatibility with Previous Versions
	19.6.1 Changes from HTTP/1.0
	19.6.1.1 Changes to Simplify Multi-homed Web Servers and Conserve IP Addresses

	19.6.2 Compatibility with HTTP/1.0 Persistent Connections
	19.6.3 Changes from RFC 2068

	20 Index
	21. Full Copyright Statement
	Acknowledgement

	
	IETF Title Page

