Net wor k Wor ki ng Group Y. CGol and
Request for Comments: 2518 M crosoft
Cat egory: Standards Track E. Wi tehead
UC Irvine

A Faizi

Net scape

S. Carter

Novel |

D. Jensen

Novel |

February 1999

HTTP Extensions for Distributed Authoring -- WEBDAV
Status of this Meno
Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for
i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this nmeno is unlimnted.
Copyri ght Notice
Copyright (C The Internet Society (1999). Al R ghts Reserved.
Abst ract
This docunent specifies a set of methods, headers, and content-types
ancillary to HTTP/ 1.1 for the managenent of resource properties,
creation and managerment of resource collections, nanmespace

mani pul ation, and resource | ocking (collision avoidance).

Tabl e of Contents

ABS T RACT . . . 1
1 INTRODUCTE ON ..ot e e e e e e e e e e e e 5
2 NOTATIONAL CONVENTI ONS . .o e e 7
3 TERM NOLOGY . ottt e e e 7
4 DATA MODEL FOR RESOURCE PROPERTIES i 8
4.1 The Resource Property Mddel 8
4.2 Existing Metadata Proposals i 8
4.3 Properties and HTITP Headers 9
4.4 Property Val UeS e 9
4.5 Property NamBS ... 10
4.6 Media Independent Links 10
5 COLLECTIONS OF WEB RESOURCES\ttt ittt e e e e 11

Gol and, et al. St andards Track [Page 1]

RFC 2518 V\EBDAV February 1999

5.1 HTTP URL Nanmespace Model 11
5.2 Collection RESOUIMCES ...ttt e e e e e e 11
5.3 Creation and Retrieval of Collection Resources 12
5.4 Source Resources and Qutput Resources 13
B LOCKI NG . oo 14
6.1 Exclusive Vs. Shared Locks 14
6.2 Required SUPPOrt 16
6.3 LoCK TOKENS ... 16
6.4 opaquel ockt oken Lock Token URI Scheme 16
6.4.1 Node Field Generation Wthout the | EEE 802 Address 17
6.5 Lock Capability DiSCOVEIYt e 19
6.6 AcCtive LOCK DiSCOVEIY ... e e e 19
6.7 Usage Considerati Onst 19
7 VR TE LOCK ..ot e e e e 20
7.1 Methods Restricted by Wite Locks 20
7.2 Wite Locks and Lock Tokens 20
7.3 Wite Locks and Properties, 20
7.4 Wite Locks and Null Resources, 21
7.5 Wite Locks and Collections 21
7.6 Wite Locks and the If Request Header 22
7.6.1 Example - Wite Lock 22
7.7 Wite Locks and COPY/ MOVEttt 23
7.8 Refreshing Wite Locks 23
8 HITP METHODS FOR DI STRIBUTED AUTHORING i i 23
8.1 PROPFIND ... 24
8.1.1 Exanmple - Retrieving Nanmed Properties 25
8.1.2 Exanmple - Using allprop to Retrieve All Properties 26
8.1.3 Example - Using propnanme to Retrieve all Property Nanes ...29
8.2 PROPPATCH ... e 31
8.2.1 Status Codes for use with 207 (Multi-Status) 31
8.2.2 Exanple - PROPPATCH e 32
8.3 IMKCOL Method e 33
8.3. 1 ReqUest 33
8.3.2 Status CodesS it e 33
8.3.3 Exanple - MKOOLt e 34
8.4 GET, HEAD for Collections 34
8.5 POST for Collections 35
8.6 DELETE 35
8.6.1 DELETE for Non-Collection Resources 35
8.6.2 DELETE for Collections 36
8. 7 PUT L 36
8.7.1 PUT for Non-Collection Resourcescouiiiunnn. 36
8.7.2 PUT for Collections, 37
8.8 COPY Method e e 37
8.8.1 COPY for HITP/ 1.1 r€SOUICES .. v vttt ettt et e 37
8.8.2 COPY for Properti @S e e 38
8.8.3 COPY for Collections, 38
8.8.4 COPY and the Overwrite Header 39

ol and, et al. St andards Track [Page 2]

RFC 2518 V\EBDAV February 1999
8.8.5 Status CodesSt 39
8.8.6 Exanple - COPY with OQverwrite 40
8.8.7 Exanple - COPY with No Overwrite 40
8.8.8 Example - COPY of a Collection 41

8.9 MOVE Method 42
8.9.1 MOVE for Properti @S 42
8.9.2 MOE for Collections i 42
8.9.3 MOVE and the Overwite Header 43
8.9.4 Status CoUesS 43
8.9.5 Exanmple - MOVE of a Non-Collection 44
8.9.6 Example - MOVE of a Collection 44

8.10 LOCK Method e e 45
8.10.1 Operati ON 46
8.10.2 The Effect of Locks on Properties and Collections 46
8.10.3 Locking Replicated ResOUrCesiiiiiiuinnnnnan. 46
8.10.4 Depth and Locking e 46
8.10.5 Interaction with other Methods 47
8.10.6 Lock Conpatibility Table 47
8.10.7 Status CoUeSt 48
8.10.8 Exanple - Sinmple Lock Request 48
8.10.9 Exanple - Refreshing a Wite Lock 49
8.10. 10 Exanple - Multi-Resource Lock Request 50

8.11 UNLOCK Method e e e e 51
8.11.1 Exanple - UNLOCK e 52

9 HTTP HEADERS FOR DI STRIBUTED AUTHORINGt 52

9.1 DAV Header 52

9.2 Depth Header e 52

9.3 Destination Header 54

9.4 If Header 54
9.4.1 No-tag-list Production 0. 55
9.4.2 Tagged-list Production0 iiiiinnan. 55
9.4.3 not ProducCtion 56
9.4.4 NMatching Function 56
9.4.5 |f Header and Non-DAV Conpliant Proxies 57

9.5 Lock-Token Header i 57

9.6 Overwite Header i e 57

9.7 Status-URI Response Header 57

9.8 Tineout Request Header 58

10 STATUS CODE EXTENSIONS TO HTTP/ 1.1 i 59

10.1 102 ProCesSSi N .ot i ittt e et e e e e e e e e e 59

10.2 207 Multi-Status ... 59

10.3 422 Unprocessable Entity i, 60

10.4 423 Locked ... 60

10.5 424 Failed DependencCyt 60

10.6 507 Insufficient Storage i, 60

11 MULTI - STATUS RESPONSE e 60

12 XML ELEMENT DEFINITIONS ... e e e 61

12.1 activelock XML Elenment 61

ol and, et al. St andards Track [Page 3]

RFC 2518 V\EBDAV February 1999

12. 1.1 depth XML El ement e 61
12.1.2 locktoken XML Element 61
12.1.3 timeout XM Element 61
12.2 collection XML Elenment 62
12.3 href XM El ement ... 62
12.4 1ink XM El @mBent ..o 62
12.4.1 dst XML Element 62
12.4.2 src XML El ement ... 62
12.5 lockentry XML Element 63
12.6 lockinfo XML El ement 63
12.7 lockscope XML El emENnt i e 63
12.7.1 exclusive XML Element 63
12.7.2 shared XML El enment 63
12.8 locktype XM El ement 64
12.8.1 wite XML Element 64
12.9 multistatus XML Element i 64
12.9.1 response XML Element e 64
12.9. 2 responsedescription XM. Elenment 65
12.10 owner XML El ement e 65
12.11 prop XM el emBnt e 66
12. 12 propertybehavior XM. element i, 66
12.12.1 keepalive XM. element e 66
12.12.2 omit XM el ement 67
12.13 propertyupdate XML element 67
12.13.1 remove XM el ement 67
12.13.2 set XM el @MBNt ... 67
12.14 propfind XML El ement e 68
12.14.1 allprop XMo Element 68
12.14.2 propnanme XML Elenment 68
13 DAV PROPERTIES e e 68
13.1 creationdate Property e 69
13.2 displayname Property 69
13. 3 getcontentl anguage Property 69
13.4 getcontentlength Property 69
13.5 getcontenttype Property 70
13.6 getetag Property 70
13.7 getlastnmodified Property i, 70
13.8 lockdiscovery Property 71
13.8.1 Exanple - Retrieving the |ockdi scovery Property 71
13.9 resourcetype Property 72
13. 10 soUrce Property ... e 72
13.10.1 Exanple - A source Propertyy 72
13. 11 supportedl ock Property 73
13.11.1 Exanple - Retrieving the supportedl ock Property 73
14 I NSTRUCTIONS FOR PROCESSING XML IN DAV i 74
15 DAV COWPLI ANCE CLASSES it e e 75
15. 1 Qass L ..t 75
15, 2 CasSS 2 oot 75
ol and, et al. St andards Track [Page 4]

RFC 2518 V\EBDAV February 1999
16 | NTERNATI ONALI ZATI ON CONSIDERATIONS i 76
17 SECURITY CONSIDERATIONS e 77
17.1 Authentication of Cients 77
17.2 Denial of Service 78
17.3 Security through Qbscurity i, 78
17.4 Privacy Issues Connected to Locks 78
17.5 Privacy Issues Connected to Properties 79
17.6 Reduction of Security due to Source Link 79
17.7 Inplications of XML External Entities 79
17.8 Risks Connected with Lock Tokens 80
18 TANA CONSI DERATI ONS ... e e 80
19 INTELLECTUAL PROPERTY . ..ttt e e e 81
20 ACKNOWLEDGEMENTS . ..ottt e e e e e e e 82
21 REFERENCES 82
21.1 Normative References i 82
21.2 Informational References i, 83
22 AUTHORS' ADDRESSES ittt e e e e e e 84
23 APPENDI CES 86
23.1 Appendix 1 - WeDbDAV Docunent Type Definition 86
23.2 Appendix 2 - 1SO 8601 Date and Tine Profile 88
23.3 Appendix 3 - Notes on Processing XML Elenents 89

23.3.1 Notes on Enpty XML Elenments 89
23.3.2 Notes on Illegal XML ProcesSsSingouuiiiinnenn.. 89
23.4 Appendi x 4 -- XM. Nanespaces for WebDAV 92
23.4.0 IntroduCti ON ... 92
23.4.2 Meaning of Qualified Names 92
24 FULL COPYRI GHT STATEMENT e e 94

1 Introduction

Thi s docunent describes an extension to the HTTP/ 1.1 protocol that

allows clients to performrenote web content authoring operations.

Thi s

ext ensi on provi des a coherent set of nethods, headers, request

entity body formats, and response entity body formats that provide

oper

Prop

ations for:

erties: The ability to create, renove, and query information

about Web pages, such as their authors, creation dates, etc. Also,

t he
Col |

a hi
syst

Col and,

ability to link pages of any nedia type to rel ated pages.

ections: The ability to create sets of documents and to retrieve
erarchi cal nenbership listing (like a directory listing in a file

em.

et al. St andards Track [Page 5]

RFC 2518 V\EBDAV February 1999

Locking: The ability to keep nore than one person fromworking on a
docunent at the same time. This prevents the "l ost update problem"”
in which nodi fications are |lost as first one author then another
writes changes w thout nmerging the other author’s changes.

Namespace Operations: The ability to instruct the server to copy and
nove Wb resources.

Requi rements and rationale for these operations are described in a
conpani on docunment, "Requirenents for a Distributed Authoring and
Versi oning Protocol for the Wrld Wde Wb" [RFC2291].

The sections bel ow provide a detailed introduction to resource
properties (section 4), collections of resources (section 5), and
| ocki ng operations (section 6). These sections introduce the
abstractions nmani pul ated by the WebDAV-specific HTTP net hods
described in section 8, "HITTP Methods for Distributed Authoring”

In HTTP/ 1.1, nethod paranmeter information was exclusively encoded in
HTTP headers. Unlike HTTP/ 1.1, WbDAV encodes net hod paraneter
information either in an Extensible Markup Language (XM.) [REC XM]
request entity body, or in an HTTP header. The use of XM. to encode
nmet hod paranmeters was notivated by the ability to add extra XM

el ements to existing structures, providing extensibility; and by
XM.'s ability to encode information in | SO 10646 character sets,
providing internationalization support. As a rule of thunb,
paraneters are encoded in XM. entity bodi es when they have unbounded
I ength, or when they may be shown to a human user and hence require
encoding in an |1 SO 10646 character set. Oherw se, paraneters are
encoded wi thin HTTP headers. Section 9 describes the new HTTP
headers used wi th WebDAV net hods.

In addition to encoding method paranmeters, XM is used in WbDAV to
encode t he responses from met hods, providing the extensibility and

i nternationalization advantages of XM. for nethod output, as well as
i nput .

XML el enents used in this specification are defined in section 12.

The XM. nanespace extension (Appendix 4) is also used in this
specification in order to allow for new XM. el enents to be added
wi thout fear of colliding with other el enent nanes.

Wiile the status codes provided by HTTP/1.1 are sufficient to
descri be nost error conditions encountered by WbDAV net hods, there
are sone errors that do not fall neatly into the existing categories.
New st atus codes devel oped for the WebDAV net hods are defined in
section 10. Since sonme WebDAV nethods nay operate over many

ol and, et al. St andards Track [Page 6]

RFC 2518 V\EBDAV February 1999

resources, the Milti-Status response has been introduced to return
status information for nmultiple resources. The Milti-Status response
is described in section 11

WebDAV enpl oys the property nechanismto store infornation about the
current state of the resource. For exanple, when a lock is taken out
on a resource, a lock information property describes the current
state of the lock. Section 13 defines the properties used within the
WebDAV speci fication.

Fi nishing off the specification are sections on what it neans to be
compliant with this specification (section 15), on

i nternationalization support (section 16), and on security (section
17).

2 Notational Conventions

Since this docunent describes a set of extensions to the HITP/ 1.1
protocol, the augmented BNF used herein to describe protocol elenents
is exactly the same as described in section 2.1 of [RFC2068]. Since
this augnented BNF uses the basic production rules provided in
section 2.2 of [RFC2068], these rules apply to this docunment as well.

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

3 Terminol ogy

URI/URL - A Uniform Resource ldentifier and Uni form Resource Locator
respectively. These terns (and the distinction between then) are
defined in [RFC2396] .

Collection - A resource that contains a set of URI's, termed nenber
URI's, which identify nmenber resources and neets the requirenents in
section 5 of this specification.

Member URI - A URI which is a nmenber of the set of URIs contained by
a collection.

Internal Menber URI - A Menber URI that is imediately relative to
the URI of the collection (the definition of inmmediately relative is
given in section 5.2).

Property - A nanme/value pair that contains descriptive information
about a resource.

ol and, et al. St andards Track [Page 7]

RFC 2518 V\EBDAV February 1999

4

Live Property - A property whose semantics and syntax are enforced by
the server. For exanple, the live "getcontentlength" property has
its value, the length of the entity returned by a GET request,
automatically cal cul ated by the server

Dead Property - A property whose semantics and syntax are not
enforced by the server. The server only records the value of a dead
property; the client is responsible for nmaintaining the consistency
of the syntax and semantics of a dead property.

Nul I Resource - A resource which responds with a 404 (Not Found) to
any HTTP/ 1.1 or DAV nethod except for PUT, MKCOL, OPTIONS and LOCK
A NULL resource MJST NOT appear as a nenber of its parent collection

Dat a Mbdel for Resource Properties

4.1 The Resource Property Mde

Properties are pieces of data that describe the state of a resource.
Properties are data about data.

Properties are used in distributed authoring environnents to provide
for efficient discovery and managenent of resources. For exanple, a
"subj ect’ property might allow for the indexing of all resources by
their subject, and an 'author’ property mght allow for the discovery
of what authors have witten which docunents.

The DAV property nodel consists of name/value pairs. The name of a
property identifies the property’'s syntax and semantics, and provides
an address by which to refer to its syntax and senanti cs.

There are two categories of properties: "live" and "dead". A live
property has its syntax and semantics enforced by the server. Live
properties include cases where a) the value of a property is read-
only, maintained by the server, and b) the value of the property is
mai ntai ned by the client, but the server perforns syntax checking on
submitted values. Al instances of a given live property MJST conply
with the definition associated with that property nane. A dead
property has its syntax and semantics enforced by the client; the
server nerely records the value of the property verbatim

4.2 Existing Metadata Proposals

Properties have |ong played an essential role in the naintenance of
| arge docunent repositories, and many current proposals contain sone
notion of a property, or discuss web netadata nore generally. These
include PICS [REC-PICS], PICS-NG XM.,, Wb Collections, and severa
proposal s on representing relationships within HTM.. Wrk on Pl CS- NG

ol and, et al. St andards Track [Page 8]

RFC 2518 V\EBDAV February 1999

and Web Col | ecti ons has been subsunmed by the Resource Description
Franework (RDF) netadata activity of the Wrld Wde Wb Consortium
RDF consists of a network-based data nodel and an XM. representation
of that nodel.

Some proposals cone froma digital library perspective. These

i nclude the Dublin Core [RFC2413] netadata set and the Warwi ck
Framework [WF], a container architecture for different netadata
schemas. The literature includes many exanpl es of netadata,

i ncludi ng MARC [USMARC], a bibliographic netadata format, and a
techni cal report bibliographic format enpl oyed by the D enst system

[RFC1807]. Additionally, the proceedings fromthe first | EEE Metadata
conference describe nmany comunity-specific netadata sets.

Participants of the 1996 Metadata Il Wrkshop in Warw ck, UK [W],
noted that "new netadata sets will develop as the networked
infrastructure matures" and "different communities will propose,
design, and be responsible for different types of netadata." These
observati ons can be corroborated by noting that many comunity-
specific sets of netadata already exist, and there is significant
notivation for the devel opnent of new fornms of netadata as nany
conmunities increasingly nmake their data available in digital form
requiring a netadata fornat to assist data |ocation and catal ogi ng.

4.3 Properties and HTTP Headers

Properties already exist, in alimted sense, in HITP nessage
headers. However, in distributed authoring environments a relatively
| arge nunber of properties are needed to describe the state of a
resource, and setting/returning themall through HTTP headers is
inefficient. Thus a nechanismis needed which allows a principal to
identify a set of properties in which the principal is interested and
to set or retrieve just those properties.

4.4 Property Val ues
The val ue of a property when expressed in XM. MUST be wel |l forned.

XML has been chosen because it is a flexible, self-describing,
structured data format that supports rich schema definitions, and
because of its support for nmultiple character sets. XM.'s self-
descri bing nature allows any property’'s value to be extended by
addi ng new el enents. O der clients will not break when they
encount er extensions because they will still have the data specified
in the original schema and will ignore elenents they do not
understand. XM.'s support for nultiple character sets allows any
human-readabl e property to be encoded and read in a character set
famliar to the user. XM's support for nultiple human | anguages,

ol and, et al. St andards Track [Page 9]

RFC 2518 V\EBDAV February 1999

using the "xm:lang" attribute, handl es cases where the sane
character set is enployed by multiple human | anguages.

4.5 Property Nanmes

A property name is a universally unique identifier that is associated
with a schenma that provides information about the syntax and
semantics of the property.

Because a property’s name is universally unique, clients can depend
upon consi stent behavior for a particular property across nultiple
resources, on the sanme and across different servers, so |long as that
property is "live" on the resources in question, and the

i mpl ementation of the live property is faithful to its definition

The XML nanespace nechani sm which is based on URIs [RFC2396], is
used to nane properties because it prevents nanespace collisions and
provi des for varying degrees of adm nistrative control

The property nanespace is flat; that is, no hierarchy of properties
is explicitly recognized. Thus, if a property A and a property A/B
exi st on a resource, there is no recognition of any rel ationship
between the two properties. It is expected that a separate
specification will eventually be produced which will address issues
relating to hierarchical properties.

Finally, it is not possible to define the sane property twice on a
single resource, as this would cause a collision in the resource’s
property nanespace.

4.6 Medi a | ndependent Links

Al t hough HTML resources support links to other resources, the Wb
needs nore general support for |inks between resources of any nedia
type (nedia types are al so known as M ME types, or content types).
WebDAV provides such links. A WbDAV link is a special type of
property value, fornmally defined in section 12.4, that allows typed
connections to be established between resources of any nedia type.
The property val ue consists of source and destination Uniform
Resource ldentifiers (URIS); the property nane identifies the I|ink
type.

ol and, et al. St andards Track [Page 10]

RFC 2518 V\EBDAV February 1999

5 Collections of Wb Resources

This section provides a description of a new type of Wb resource,
the collection, and discusses its interactions with the HITP URL
nanespace. The purpose of a collection resource is to nodel
collection-like objects (e.g., file systemdirectories) within a
server’s nanespace

Al'l DAV conpliant resources MJST support the HTTP URL nanespace nodel
speci fied herein.

5.1 HITP URL Nanmespace Mode

The HTTP URL namespace is a hierarchical nanmespace where the
hierarchy is delimted with the "/" character

An HTTP URL nanespace is said to be consistent if it neets the
followi ng conditions: for every URL in the HTTP hierarchy there
exists a collection that contains that URL as an internal menber
The root, or top-level collection of the namespace under
consideration is exenpt fromthe previous rule.

Nei ther HTTP/ 1.1 nor WebDAV require that the entire HTTP URL
nanespace be consistent. However, certain WbDAV nethods are
prohi bited from producing results that cause nanespace

i nconsi st enci es.

Al though inplicit in [RFC2068] and [RFC2396], any resource, including
col l ection resources, MAY be identified by nore than one URI. For
exanpl e, a resource could be identified by nmultiple HITP URLs.

5.2 Coll ecti on Resources

A collection is a resource whose state consists of at least a list of
internal nmenber URIs and a set of properties, but which may have
additional state such as entity bodies returned by GET. An interna
menber URI MJST be immediately relative to a base URI of the
collection. That is, the internal nmenber URI is equal to a
containing collection's URI plus an additional segment for non-
collection resources, or additional segnment plus trailing slash "/"
for collection resources, where segnent is defined in section 3.3 of
[RFC2396] .

Any given internal menber URI MUST only belong to the collection
once, i.e., it isillegal to have nmultiple instances of the sane URI
in a collection. Properties defined on collections behave exactly as
do properties on non-collection resources.

ol and, et al. St andards Track [Page 11]

RFC 2518 V\EBDAV February 1999

For all WebDAV conpliant resources A and B, identified by URIs U and
V, for which Uis immediately relative to V, B MJST be a collection
that has U as an internal menmber URI. So, if the resource with URL
http://foo.confbar/blah is WbDAV conpliant and if the resource with
URL http://foo.combar/ is WbDAV conpliant then the resource with
URL http://foo.com bar/ mnmust be a collection and nmust contain URL
http://foo.conf bar/blah as an internal nenber.

Col I ection resources MAY |ist the URLs of non-WbDAV conpli ant
children in the HTTP URL nanmespace hierarchy as internal nenbers but
are not required to do so. For exanple, if the resource with URL
http://foo.conf bar/blah is not WebDAV conpliant and the URL
http://foo.com bar/ identifies a collection then URL

http://foo.conm bar/blah may or may not be an internal menber of the
collection with URL http://foo.conibar/.

If a WebDAV conpliant resource has no WebDAV conpliant children in
the HTTP URL namespace hierarchy then the WebDAV conpliant resource
is not required to be a collection.

There is a standing convention that when a collection is referred to
by its name without a trailing slash, the trailing slash is
automatically appended. Due to this, a resource nmay accept a UR
without a trailing "/" to point to a collection. In this case it
SHOULD return a content-location header in the response pointing to
the URI ending with the "/". For exanple, if a client invokes a

met hod on http://foo.bar/blah (no trailing slash), the resource
http://foo.bar/blah/ (trailing slash) may respond as if the operation
were invoked on it, and should return a content-location header with
http://foo.bar/blah/ init. 1In general clients SHOULD use the "/"
formof collection nanes.

A resource MAY be a collection but not be WbDAV conpliant. That is,
the resource may conply with all the rules set out in this
specification regarding how a collection is to behave w thout
necessarily supporting all nethods that a WebDAV conpliant resource
is required to support. In such a case the resource may return the
DAV: resourcetype property with the val ue DAV: coll ection but MJST NOT
return a DAV header containing the value "1" on an OPTI ONS response.

5.3 Creation and Retrieval of Collection Resources
Thi s docunent specifies the MKCOL nethod to create new coll ection

resources, rather than using the existing HTTP/ 1.1 PUT or POST
met hod, for the foll ow ng reasons:

ol and, et al. St andards Track [Page 12]

RFC 2518 V\EBDAV February 1999

In HTTP/ 1.1, the PUT nethod is defined to store the request body at
the | ocation specified by the Request-URI. Wile a description
format for a collection can readily be constructed for use with PUT
the inplications of sending such a description to the server are
undesirable. For exanple, if a description of a collection that
omtted some existing resources were PUT to a server, this mght be
interpreted as a conmand to renove those nenbers. This would extend
PUT to perform DELETE functionality, which is undesirable since it
changes the semantics of PUT, and makes it difficult to contro
DELETE functionality with an access control schene based on nethods.

While the POST nethod is sufficiently open-ended that a "create a
col l ection" POST comand coul d be constructed, this is undesirable
because it would be difficult to separate access control for
collection creation from other uses of POST.

The exact definition of the behavior of GET and PUT on collections is
defined later in this docunent.

5.4 Source Resources and Qutput Resources

For nmany resources, the entity returned by a GET nethod exactly

mat ches the persistent state of the resource, for exanple, a GF file
stored on a disk. For this sinple case, the URI at which a resource
is accessed is identical to the URI at which the source (the

persi stent state) of the resource is accessed. This is also the case
for HTML source files that are not processed by the server prior to
transm ssi on.

However, the server can sonetinmes process HTM. resources before they
are transnmtted as a return entity body. For exanple, a server-
side-include directive within an HTM. file might instruct a server to
replace the directive with another value, such as the current date.
In this case, what is returned by GET (HTML plus date) differs from
the persistent state of the resource (HTM. plus directive).

Typically there is no way to access the HTM. resource containing the
unprocessed directive.

Sonetimes the entity returned by GET is the output of a data-
produci ng process that is described by one or nore source resources
(that may not even have a location in the URI nanespace). A single
dat a- produci ng process may dynam cally generate the state of a
potentially |arge nunber of output resources. An exanple of this is
a CE script that describes a "finger" gateway process that maps part
of the nanespace of a server into finger requests, such as

http: //ww. f 0o. bar. org/ fi nger _gat eway/ user @ost.

ol and, et al. St andards Track [Page 13]

RFC 2518 V\EBDAV February 1999

In the absence of distributed authoring capabilities, it is
acceptabl e to have no mappi ng of source resource(s) to the UR
nanespace. |In fact, preventing access to the source resource(s) has
desirabl e security benefits. However, if remote editing of the
source resource(s) is desired, the source resource(s) should be given
a location in the URI nanmespace. This source |ocation should not be
one of the locations at which the generated output is retrievable,
since in general it is inpossible for the server to differentiate
requests for source resources fromrequests for process output
resources. There is often a many-to-many rel ationship between source
resources and out put resources.

On WebDAV conpliant servers the URI of the source resource(s) nay be
stored in a link on the output resource with type DAV:source (see
section 13.10 for a description of the source |ink property).
Storing the source URIs in links on the output resources places the
burden of discovering the source on the authoring client. Note that
the value of a source link is not guaranteed to point to the correct
source. Source links may break or incorrect values may be entered.
Al'so note that not all servers will allowthe client to set the
source link value. For exanple a server which generates source |inks
on the fly for its CA files will nost likely not allowa client to
set the source |ink val ue.

6 Locking

The ability to lock a resource provides a nmechanismfor serializing
access to that resource. Using a |lock, an authoring client can
provi de a reasonabl e guarantee that another principal will not nodify
a resource while it is being edited. In this way, a client can
prevent the "l ost update" problem

This specification allows |ocks to vary over two client-specified
paraneters, the nunmber of principals involved (exclusive vs. shared)
and the type of access to be granted. This docunment defines | ocking
for only one access type, wite. However, the syntax is extensible,
and pernits the eventual specification of |ocking for other access

types.
6.1 Exclusive Vs. Shared Locks

The nost basic formof lock is an exclusive lock. This is a |ock
where the access right in question is only granted to a single
principal. The need for this arbitration results froma desire to
avoid having to nerge results.

ol and, et al. St andards Track [Page 14]

RFC 2518 V\EBDAV February 1999

However, there are tines when the goal of a lock is not to exclude
others from exercising an access right but rather to provide a
mechani smfor principals to indicate that they intend to exercise
their access rights. Shared |ocks are provided for this case. A
shared lock allows multiple principals to receive a |lock. Hence any
principal with appropriate access can get the |ock

Wth shared | ocks there are two trust sets that affect a resource.
The first trust set is created by access permnissions. Principals who
are trusted, for exanple, may have permission to wite to the
resource. Anmpong those who have access pernmission to wite to the
resource, the set of principals who have taken out a shared | ock al so
nmust trust each other, creating a (typically) smaller trust set
within the access pernmission wite set.

Starting with every possible principal on the Internet, in nost
situations the vast npjority of these principals will not have wite
access to a given resource. O the small nunber who do have wite
access, sone principals may decide to guarantee their edits are free
fromoverwite conflicts by using exclusive wite |locks. Ohers may
decide they trust their collaborators will not overwite their work
(the potential set of collaborators being the set of principals who
have write perm ssion) and use a shared | ock, which inforns their

col l aborators that a principal nmay be working on the resource.

The WebDAV extensions to HTTP do not need to provide all of the
conmuni cati ons paths necessary for principals to coordinate their
activities. Wien using shared | ocks, principals nay use any out of
band conmuni cati on channel to coordinate their work (e.g., face-to-
face interaction, witten notes, post-it notes on the screen

t el ephone conversation, Email, etc.) The intent of a shared lock is
to l et collaborators know who el se may be working on a resource.

Shared | ocks are included because experience fromweb distributed
aut horing systens has indicated that exclusive |ocks are often too
rigid. An exclusive lock is used to enforce a particular editing
process: take out an exclusive lock, read the resource, perform
edits, wite the resource, release the lock. This editing process
has the problemthat |ocks are not always properly released, for
exanpl e when a program crashes, or when a | ock owner |eaves wi thout
unl ocking a resource. Wile both tineouts and admi nistrative action
can be used to renobve an offending | ock, neither nechani sm may be
avai | abl e when needed; the tinmeout nmay be long or the adninistrator
may not be avail abl e.

ol and, et al. St andards Track [Page 15]

RFC 2518 V\EBDAV February 1999

6.2 Required Support

A WebDAV conpliant server is not required to support |ocking in any
form |If the server does support locking it may choose to support
any conbi nation of exclusive and shared | ocks for any access types.

The reason for this flexibility is that |ocking policy strikes to the
very heart of the resource nanagenent and versioning systenms enpl oyed
by various storage repositories. These repositories require contro
over what sort of locking will be nade available. For exanple, sone
repositories only support shared wite | ocks while others only
provi de support for exclusive wite |locks while yet others use no
locking at all. As each systemis sufficiently different to nerit
exclusion of certain |ocking features, this specification |eaves

| ocking as the sole axis of negotiation wthin WbDAV.

6.3 Lock Tokens

A lock token is a type of state token, represented as a URI, which
identifies a particular lock. A lock token is returned by every
successful LOCK operation in the | ockdi scovery property in the
response body, and can al so be found through | ock discovery on a
resource.

Lock token URI's MUST be uni que across all resources for all tine.
Thi s uni queness constraint allows |ock tokens to be subnmtted across
resources and servers w thout fear of confusion

This specification provides a | ock token URI schenme called
opaquel ockt oken that neets the uni queness requirenents. However
resources are free to return any URI schene so long as it neets the
uni queness requirenents.

Havi ng a | ock token provides no special access rights. Anyone can
find out anyone else’'s | ock token by perform ng | ock discovery.
Locks MJST be enforced based upon whatever authenticati on nechani sm
is used by the server, not based on the secrecy of the token val ues.

6. 4 opaquel ockt oken Lock Token URI Schene

The opaquel ockt oken URI scheme is designed to be uni que across al
resources for all time. Due to this uniqueness quality, a client nay
submit an opaque | ock token in an If header on a resource other than
the one that returned it.

Al'l resources MJST recogni ze t he opaquel ockt oken schene and, at

m ni mum recogni ze that the | ock token does not refer to an
out standi ng | ock on the resource.

ol and, et al. St andards Track [Page 16]

RFC 2518 V\EBDAV February 1999

In order to guarantee uniqueness across all resources for all tine
t he opaquel ockt oken requires the use of the Universal Unique
Identifier (UU D) mechanism as described in [1SO 11578].

Opaquel ockt oken generators, however, have a choice of how they create
these tokens. They can either generate a new UUI D for every | ock
token they create or they can create a single UU D and then add

ext ension characters. |If the second nethod is selected then the
program generating the extensions MJST guarantee that the sane
extension will never be used twice with the associated UU D.

OpaquelLockToken- URI = "opaquel ockt oken:" UU D [Extension] ; The UU D
production is the string representation of a UUI D, as defined in
[1SO11578]. Note that white space (LW5) is not allowed between

el ements of this production

Extension = path ; path is defined in section 3.2.1 of RFC 2068
[RFC2068]

6.4.1 Node Field Generation Wthout the | EEE 802 Address

UUI Ds, as defined in [ISO 11578], contain a "node" field that
contai ns one of the | EEE 802 addresses for the server nachine. As
noted in section 17.8, there are several security risks associated
wi th exposing a nachine’'s | EEE 802 address. This section provides an
al ternate mechani smfor generating the "node" field of a UU D which
does not enploy an | EEE 802 address. WDbDAV servers MAY use this
algorithmfor creating the node field when generating UU Ds. The
text in this section is originally froman Internet-Draft by Pau
Leach and Rich Salz, who are noted here to properly attribute their
wor k.

The ideal solution is to obtain a 47 bit cryptographic quality random
nunber, and use it as the low 47 bits of the node ID, with the npst
significant bit of the first octet of the node ID set to 1. This bit
is the unicast/nmulticast bit, which will never be set in | EEE 802
addr esses obtai ned from network cards; hence, there can never be a
conflict between UU Ds generated by nmachines with and wi thout network
cards.

If a system does not have a primtive to generate cryptographic

qual ity random nunbers, then in nost systens there are usually a
fairly large nunber of sources of randommess avail abl e from which one
can be generated. Such sources are system specific, but often

i ncl ude:

ol and, et al. St andards Track [Page 17]

RFC 2518 V\EBDAV February 1999

- the percent of nenory in use

- the size of main menory in bytes

- the anpbunt of free main nmenory in bytes

- the size of the paging or swap file in bytes

- free bytes of paging or swap file

- the total size of user virtual address space in bytes

- the total avail able user address space bytes

- the size of boot disk drive in bytes

- the free disk space on boot drive in bytes

- the current tinme

- the anpbunt of time since the system booted

- the individual sizes of files in various systemdirectories

- the creation, last read, and nodification tines of files in
various systemdirectories

- the utilization factors of various systemresources (heap, etc.)

- current nouse cursor position

- current caret position

- current nunber of running processes, threads

- handl es or IDs of the desktop wi ndow and the active w ndow

- the value of stack pointer of the caller

- the process and thread ID of caller

- various processor architecture specific performance counters
(instructions executed, cache nisses, TLB nisses)

(Note that it is precisely the above kinds of sources of randomess
that are used to seed cryptographic quality random nunber generators
on systens wi thout special hardware for their construction.)

In addition, itens such as the conputer’s nanme and the nane of the
operating system while not strictly speaking random wll help
differentiate the results fromthose obtained by other systens.

The exact algorithmto generate a node I D using these data is system
specific, because both the data available and the functions to obtain
them are often very system specific. However, assumi ng that one can
concatenate all the values fromthe randomess sources into a buffer
and that a cryptographic hash function such as MD5 is available, then
any 6 bytes of the MD5 hash of the buffer, with the multicast bit
(the high bit of the first byte) set will be an appropriately random
node I D

O her hash functions, such as SHA-1, can al so be used. The only
requirenent is that the result be suitably random _ in the sense that
the outputs froma set uniformy distributed inputs are thensel ves
uniformy distributed, and that a single bit change in the input can
be expected to cause half of the output bits to change.

ol and, et al. St andards Track [Page 18]

RFC 2518 V\EBDAV February 1999

6.5 Lock Capability Discovery

Si nce server |lock support is optional, a client trying to lock a
resource on a server can either try the Iock and hope for the best,

or performsone formof discovery to deternine what | ock capabilities
the server supports. This is known as |ock capability discovery.
Lock capability discovery differs fromdiscovery of supported access
control types, since there may be access control types w thout
corresponding lock types. A client can deternine what | ock types the
server supports by retrieving the supportedl ock property.

Any DAV conpliant resource that supports the LOCK nmet hod MJST support
t he supportedl ock property.

6.6 Active Lock Discovery

I f another principal |ocks a resource that a principal w shes to
access, it is useful for the second principal to be able to find out
who the first principal is. For this purpose the |ockdiscovery
property is provided. This property lists all outstanding | ocks,
describes their type, and where available, provides their |ock token

Any DAV conpliant resource that supports the LOCK met hod MJST support
t he | ockdi scovery property.

6.7 Usage Consi derations

Al t hough the | ocking nechani sns specified here provide sonme help in
preventing | ost updates, they cannot guarantee that updates will
never be lost. Consider the foll ow ng scenario:

Two clients A and B are interested in editing the resource ’
index.htm’. dient Ais an HITP client rather than a WbDAV client,
and so does not know how to performl ocking.

Cient A doesn’t |ock the docunent, but does a GET and begins

edi ting.

Cient B does LOCK, perforns a GET and begi ns editing.

Client B finishes editing, perfornms a PUT, then an UNLOCK

Client A perforns a PUT, overwiting and losing all of B s changes.

There are several reasons why the WebDAV protocol itself cannot
prevent this situation. First, it cannot force all clients to use

| ocki ng because it mnmust be conpatible with HTTP clients that do not
conprehend | ocking. Second, it cannot require servers to support

| ocki ng because of the variety of repository inplenentations, sone of
which rely on reservations and nerging rather than on | ocking.
Finally, being stateless, it cannot enforce a sequence of operations
li ke LOCK / GET / PUT / UNLOCK.

ol and, et al. St andards Track [Page 19]

RFC 2518 V\EBDAV February 1999

WebDAV servers that support |ocking can reduce the Iikelihood that
clients will accidentally overwite each other’s changes by requiring
clients to lock resources before nodifying them Such servers woul d
effectively prevent HTTP 1.0 and HTTP 1.1 clients from nodifying
resour ces.

WebDAV clients can be good citizens by using a lock / retrieve /
write /unlock sequence of operations (at |east by default) whenever
they interact with a WebDAV server that supports | ocking.

HTTP 1.1 clients can be good citizens, avoiding overwiting other
clients’ changes, by using entity tags in If-Match headers with any
requests that woul d nodify resources.

I nformati on managers nay attenpt to prevent overwites by
i npl enenting client-side procedures requiring |ocking before
nodi fyi ng WebDAV r esour ces.

7 Wite Lock

This section describes the semantics specific to the wite lock type.
The wite lock is a specific instance of a lock type, and is the only
| ock type described in this specification

7.1 Methods Restricted by Wite Locks

A wite |lock MIST prevent a principal without the lock from
successful ly executing a PUT, POST, PROPPATCH, LOCK, UNLOCK, MOVE,
DELETE, or MKCOL on the | ocked resource. Al other current nethods,
CGET in particular, function independently of the |ock

Not e, however, that as new nethods are created it will be necessary
to specify how they interact with a wite |ock.

7.2 Wite Locks and Lock Tokens

A successful request for an exclusive or shared wite | ock MJST
result in the generation of a unique |ock token associated with the
requesting principal. Thus if five principals have a shared wite
| ock on the same resource there will be five | ock tokens, one for
each pri nci pal

7.3 Wite Locks and Properties
While those without a wite |ock may not alter a property on a

resource it is still possible for the values of live properties to
change, even while |ocked, due to the requirenents of their schenas.

ol and, et al. St andards Track [Page 20]

RFC 2518 V\EBDAV February 1999

Only dead properties and |ive properties defined to respect |ocks are
guaranteed not to change while wite | ocked.

7.4 Wite Locks and Null Resources

It is possible to assert a wite lock on a null resource in order to
| ock the nane.

A wite |locked null resource, referred to as a |l ock-null resource,
MUST respond with a 404 (Not Found) or 405 (Method Not Al lowed) to
any HTTP/ 1.1 or DAV nethods except for PUT, MKCOL, OPTIONS, PROPFI ND,
LOCK, and UNLOCK. A lock-null resource MJIST appear as a nenber of
its parent collection. Additionally the |ock-null resource MIST have
defined on it all mandatory DAV properties. Mst of these
properties, such as all the get* properties, will have no value as a
| ock-null resource does not support the GET nethod. Lock- Nul
resources MUST have defined values for | ockdi scovery and
supportedl ock properties.

Until a method such as PUT or MKCOL is successfully executed on the
| ock-null resource the resource MJST stay in the |ock-null state.
However, once a PUT or MKCOL is successfully executed on a | ock-nul
resource the resource ceases to be in the lock-null state.

If the resource is unlocked, for any reason, w thout a PUT, MCOL, or
sim | ar nethod having been successfully executed upon it then the
resource MJUST return to the null state.

7.5 Wite Locks and Coll ections

A wite lock on a collection, whether created by a "Depth: 0" or
"Depth: infinity" |ock request, prevents the addition or renoval of
menber URIs of the collection by non-lock owers. As a consequence,
when a principal issues a PUT or POST request to create a new
resource under a URlI which needs to be an internal nmenber of a wite
| ocked collection to maintain HTTP namespace consi stency, or issues a
DELETE to renove a resource which has a URI which is an existing
internal menmber URI of a wite |ocked collection, this request MJST
fail if the principal does not have a wite lock on the collection

However, if a wite lock request is issued to a collection containing
menber URIs identifying resources that are currently | ocked in a
manner which conflicts with the wite |ock, the request MJST fai

with a 423 (Locked) status code.

If a |lock owmer causes the URI of a resource to be added as an

internal nmenber URI of a | ocked collection then the new resource MJST
be autonmatically added to the lock. This is the only mechani smthat

ol and, et al. St andards Track [Page 21]

RFC 2518 V\EBDAV February 1999

all ows a resource to be added to a wite lock. Thus, for exanple, if
the collection /a/b/ is wite |ocked and the resource /c is noved to
/albl/c then resource /a/b/c will be added to the wite | ock.

7.6 Wite Locks and the If Request Header

If a user agent is not required to have know edge about a | ock when
requesting an operation on a | ocked resource, the foll owi ng scenario
m ght occur. Program A, run by User A takes out a wite lock on a
resource. Program B, also run by User A has no know edge of the

| ock taken out by Program A, yet perforns a PUT to the | ocked

resource. In this scenario, the PUT succeeds because | ocks are
associated with a principal, not a program and thus program B,
because it is acting with principal A's credential, is allowed to

performthe PUT. However, had program B known about the |ock, it
woul d not have overwritten the resource, preferring instead to
present a dialog box describing the conflict to the user. Due to
this scenario, a nechanismis needed to prevent different prograns
fromaccidentally ignoring | ocks taken out by other prograns with the
sane aut hori zation.

In order to prevent these collisions a |ock token MIST be subnitted
by an authorized principal in the If header for all |ocked resources
that a method nay interact with or the method MUST fail. For
exanple, if a resource is to be noved and both the source and
destination are | ocked then two | ock tokens nust be subnmitted, one
for the source and the other for the destination

7.6.1 Exanple - Wite Lock
>>Request

COPY /~fielding/index.htm HITP/ 1.1

Host: www. i cs. uci.edu

Destination: http://ww.ics.uci.edu/users/f/fielding/index.htn

If: <http://ww.ics.uci.edu/users/f/fielding/index.htnm >
(<opaquel ockt oken: f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 6>)

>>Response
HTTP/ 1.1 204 No Content

In this exanple, even though both the source and destination are

| ocked, only one | ock token nust be subnitted, for the lock on the
destination. This is because the source resource is not nodified by
a COPY, and hence unaffected by the wite lock. In this exanple, user
agent authentication has previously occurred via a nechani sm outside
the scope of the HTTP protocol, in the underlying transport |ayer

ol and, et al. St andards Track [Page 22]

RFC 2518 V\EBDAV February 1999

7.7 Wite Locks and COPY/ MOVE

A COPY net hod invocation MJUST NOT duplicate any wite | ocks active on
the source. However, as previously noted, if the COPY copies the
resource into a collection that is locked with "Depth: infinity",
then the resource will be added to the | ock.

A successful MOVE request on a wite | ocked resource MJST NOT nove
the wite lock with the resource. However, the resource is subject to
bei ng added to an existing |lock at the destination, as specified in
section 7.5. For exanple, if the MOVE nakes the resource a child of a
collection that is locked with "Depth: infinity", then the resource
will be added to that collection's lock. Additionally, if a resource
| ocked with "Depth: infinity" is nmoved to a destination that is
within the scope of the sane lock (e.g., within the nanespace tree
covered by the lock), the noved resource will again be a added to the
I ock. In both these exanples, as specified in section 7.6, an If
header nust be subnitted containing a |l ock token for both the source
and destination.

7.8 Refreshing Wite Locks

A client MJUST NOT submit the same wite |lock request twice. Note
that a client is always aware it is resubmitting the sanme | ock
request because it nust include the lock token in the If header in
order to nake the request for a resource that is already | ocked.

However, a client may subnmit a LOCK nmethod with an If header but

wi thout a body. This formof LOCK MJUST only be used to "refresh" a
|l ock. Meaning, at mininum that any tiners associated with the | ock
MJUST be re-set.

A server may return a Tineout header with a lock refresh that is
different than the Ti meout header returned when the | ock was
originally requested. Additionally clients nmay submt Ti neout
headers of arbitrary value with their |ock refresh requests.
Servers, as always, nay ignore Tineout headers subnitted by the
client.

If an error is received in response to a refresh LOCK request the
client SHOULD assune that the | ock was not refreshed.

8 HITP Methods for Distributed Authoring
The followi ng new HTTP net hods use XML as a request and response
format. All DAV conpliant clients and resources MJST use XM parsers

that are conpliant with [REC-XM.]. Al XM used in either requests
or responses MJST be, at minimum well formed. |f a server receives

ol and, et al. St andards Track [Page 23]

RFC 2518 V\EBDAV February 1999

ill-formed XML in a request it MIUST reject the entire request with a
400 (Bad Request). If a client receives ill-formed XML in a response
then it MJST NOT assune anythi ng about the outcome of the executed
nmet hod and SHOULD treat the server as mal functioning.

8.1 PROPFI ND

The PROPFI ND et hod retrieves properties defined on the resource
identified by the Request-URI, if the resource does not have any
internal menbers, or on the resource identified by the Request-UR
and potentially its nenber resources, if the resource is a collection
that has internal nmenber URIs. Al DAV conpliant resources MJST
support the PROPFIND net hod and the propfind XM el ement (section
12.14) along with all XM elements defined for use with that elenent.

A client may submit a Depth header with a value of "0", "1", or
"infinity" with a PROPFIND on a collection resource with interna
menber URIs. DAV conpliant servers MJST support the "0", "1" and
"infinity" behaviors. By default, the PROPFIND nethod without a Depth
header MUST act as if a "Depth: infinity" header was included.

A client may submit a propfind XML el enent in the body of the request
nmet hod descri bing what information is being requested. It is

possi ble to request particular property values, all property val ues,
or a list of the names of the resource’s properties. A client may
choose not to submt a request body. An enpty PROPFIND request body
MUST be treated as a request for the names and val ues of al
properties.

Al'l servers MJST support returning a response of content type
text/xm or application/xm that contains a nultistatus XM el enent
that describes the results of the attenpts to retrieve the various
properties.

If there is an error retrieving a property then a proper error result
MUST be included in the response. A request to retrieve the value of
a property which does not exist is an error and MJST be noted, if the
response uses a nultistatus XM. el enent, with a response XM el enent
whi ch contains a 404 (Not Found) status val ue.

Consequently, the nmultistatus XM. el enent for a collection resource
with nmenmber URIs MJST include a response XM el enent for each nenber
URI of the collection, to whatever depth was requested. Each response
XML el enent MUST contain an href XM. el ement that gives the UR of
the resource on which the properties in the prop XM. el enent are
defined. Results for a PROPFIND on a collection resource with
internal menber URIs are returned as a flat |ist whose order of
entries is not significant.

ol and, et al. St andards Track [Page 24]

RFC 2518 V\EBDAV February 1999

In the case of allprop and propnane, if a principal does not have the
right to know whether a particular property exists then the property
shoul d be silently excluded fromthe response.

The results of this method SHOULD NOT be cached.
8.1.1 Exanple - Retrieving Naned Properties
>>Request

PROPFIND /file HTTP/ 1.1

Host: www. f 00. bar

Content-type: text/xm; charset="utf-8"
Cont ent - Lengt h: xXxxX

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: ">
<D: prop xm ns: R="http://wwmv. f 0o. bar/ boxschena/ ">
<R bi gbox/ >
<R aut hor/ >
<R: Di ngALi ng/ >
<R Randoni >
</ D: pr op>
</ D: pr opfi nd>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: mul tistatus xm ns: D="DAV: ">
<D: response>
<D: href>http://ww. foo. bar/fil e</D: href>
<D: pr opst at >
<D: prop xm ns: R="http://ww. foo. bar/boxschena/" >

<R bi gbox>
<R BoxType>Box type A</ R BoxType>
</ R bi gbox>

<R: aut hor >
<R Nanme>J.J. Johnson</R: Name>
</ R aut hor >
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
<D: pr opst at >
<D: pr op><R: Di ngALi ng/ ><R: Randon ></ D: pr op>

ol and, et al. St andards Track [Page 25]

RFC 2518 V\EBDAV February 1999

<D: status>HTTP/ 1.1 403 For bi dden</ D: st at us>
<D: responsedescri pti on> The user does not have access to
t he Di ngALi ng property.
</ D: responsedescri pti on>
</ D: pr opst at >
</ D: r esponse>
<D: responsedescri pti on> There has been an access violation error.
</ D: responsedescri pti on>
</D:nultistatus>

In this exanple, PROPFIND i s executed on a non-collection resource
http://ww. foo.bar/file. The propfind XM. el enent specifies the nane
of four properties whose values are being requested. In this case
only two properties were returned, since the principal issuing the
request did not have sufficient access rights to see the third and
fourth properties.

8.1.2 Exanple - Using allprop to Retrieve All Properties
>>Request

PROPFIND /container/ HTTP/ 1.1

Host: www. f 0o. bar

Depth: 1

Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: " >

<D: al | prop/ >
</ D: pr opfi nd>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: nmul tistatus xm ns: D="DAV: ">
<D: response>
<D: href >htt p: // ww. f 0o. bar/ cont ai ner/ </ D: hr ef >
<D: pr opst at >
<D: prop xm ns: R="http://wwm. f 0o. bar/ boxschena/ ">

<R: bi gbox>
<R: BoxType>Box type A</ R BoxType>
</ R bi gbox>

<R aut hor >

ol and, et al. St andards Track [Page 26]

RFC 2518

Col and,

V\EBDAV February 1999

<R: Nanme>Hadr i an</ R: Nanme>
</ R aut hor >
<D: creat i ondat e>
1997-12-01T17: 42: 21-08: 00
</ D: creati ondat e>
<D: di spl aynane>
Exanpl e col |l ection
</ D: di spl aynanme>
<D: resour cet ype><D: col | ecti on/ ></ D: r esour cet ype>
<D: support edl ock>
<D: | ockentry>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: | ockentry>
<D: | ockentry>
<D: | ockscope><D: shar ed/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: 1 ockentry>
</ D: suppor t edl ock>
</ D: prop>
<D: status>HTTP/ 1.1 200 OK</D: st at us>

</ D: pr opst at >

</ D: r esponse>

<D: response>

<D: href>http://ww. f 0o. bar/container/front. htm </ D: href >
<D: pr opst at >

et al.

<D: prop xm ns: R="http://ww. foo. bar/boxschena/" >

<R bi gbox>
<R BoxType>Box type B</ R BoxType>
</ R bi gbox>

<D: cr eat i ondat e>
1997-12-01T18: 27: 21-08: 00
</ D: creati ondat e>
<D: di spl ayname>
Exanpl e HTML resource
</ D: di spl aynane>
<D: get cont ent | engt h>
4525
</ D: get cont ent | engt h>
<D: getcontenttype>
text/htm
</ D: getcontenttype>
<D: get et ag>
ZZyzX
</ D: get et ag>
<D: get | ast nodi fi ed>
Monday, 12-Jan-98 09:25:56 GVl
</ D: getl ast nodi fi ed>

St andards Track [Page 27]

RFC 2518 V\EBDAV February 1999

<D: resour cet ype/ >
<D: support edl ock>
<D: | ockentry>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: | ockentry>
<D: | ockentry>
<D: | ockscope><D: shar ed/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: |l ockentry>
</ D: support edl ock>
</ D: prop>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: r esponse>
</ D:mul tistatus>

In this exanple, PROPFIND was invoked on the resource
http://ww. foo. bar/container/ with a Depth header of 1, nmeaning the
request applies to the resource and its children, and a propfind XM
el ement containing the allprop XM. el enent, neaning the request
shoul d return the nane and value of all properties defined on each
resource.

The resource http://ww. foo. bar/container/ has six properties defined
on it:

http://ww. f 0oo. bar/ boxschena/ bi gbox,
http://ww. f 0oo. bar/ boxschena/ aut hor, DAV: creati ondate,
DAV: di spl aynane, DAV:resourcetype, and DAV: support edl ock

The | ast four properties are WbDAV-specific, defined in section 13.
Since GET is not supported on this resource, the get* properties
(e.g., getcontentlength) are not defined on this resource. The DAV-
specific properties assert that "container" was created on Decenber

1, 1997, at 5:42:21PM in a tinme zone 8 hours west of GMI
(creationdate), has a nanme of "Exanple collection" (displaynane), a
coll ection resource type (resourcetype), and supports exclusive wite
and shared wite | ocks (supportedl ock).

The resource http://ww.foo. bar/container/front.htm has nine
properties defined on it:

http: //ww. f 0o. bar/ boxschena/ bi gbox (another instance of the "bigbox"
property type), DAV:creationdate, DAV:di splaynane,

DAV: get cont ent | engt h, DAV: get contenttype, DAV: getetag,

DAV: get | ast nodi fi ed, DAV:resourcetype, and DAV: support edl ock

ol and, et al. St andards Track [Page 28]

RFC 2518 V\EBDAV February 1999

The DAV-specific properties assert that "front.htm" was created on
Decenber 1, 1997, at 6:27:21PM in a tinme zone 8 hours west of GVI
(creationdate), has a name of "Exanple HTM. resource" (displaynane),
a content length of 4525 bytes (getcontentlength), a M ME type of
"text/htm " (getcontenttype), an entity tag of "zzyzx" (getetag), was
| ast nodified on Monday, January 12, 1998, at 09:25:56 GMVI
(getlastnodi fied), has an enpty resource type, neaning that it is not
a collection (resourcetype), and supports both exclusive wite and
shared write | ocks (supportedl ock).

8.1.3 Exanple - Using propnane to Retrieve all Property Nanes
>>Request

PROPFIND /container/ HITP/ 1.1

Host: www. f 00. bar

Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xXxxX

<?xm version="1.0" encoding="utf-8" ?>
<propfind xm ns="DAV: ">

<pr opnane/ >
</ propfind>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xXxxX

<?xm version="1.0" encoding="utf-8" ?>
<mul tistatus xnl ns="DAV:">
<r esponse>
<href>http://ww.foo. bar/contai ner/ </ href>
<propst at >
<prop xm ns: R="http://ww.foo. bar/boxschema/" >
<R: bi gbox/ >
<R: aut hor />
<creationdate/ >
<di spl aynane/ >
<resourcet ype/ >
<support edl ock/ >
</ prop>
<status>HTTP/ 1.1 200 OK</st atus>
</ propst at >
</ response>
<response>
<href>http://ww.foo. bar/container/front.htm </ href>

ol and, et al. St andards Track [Page 29]

RFC 2518 V\EBDAV February 1999

<pr opst at >
<prop xm ns: R="http://ww.foo. bar/boxschema/" >
<R bi gbox/ >
<creationdate/ >
<di spl aynane/ >
<get content | engt h/ >
<get contenttype/ >
<get et ag/ >
<get | ast nodi fi ed/ >
<resourcet ype/ >
<support edl ock/ >
</ prop>
<status>HTTP/ 1.1 200 OK</status>
</ pr opst at >
</ response>
</nmultistatus>

In this exanple, PROPFIND is invoked on the collection resource
http://ww. foo. bar/container/, with a propfind XM. el enent contai ni ng
the propnane XM. el enment, neaning the nane of all properties should
be returned. Since no Depth header is present, it assunes its
default value of "infinity", meaning the nane of the properties on
the collection and all its progeny should be returned.

Consistent with the previ ous exanpl e, resource
http://ww. f 0oo. bar/contai ner/ has six properties defined on it,
http://ww. f 0oo. bar/ boxschena/ bi gbox,
http://ww. f 0oo. bar/ boxschera/ aut hor, DAV: creati ondat e,

DAV: di spl aynane, DAV:resourcetype, and DAV: supportedl ock

The resource http://ww. foo. bar/container/index. htm, a nenber of the
"contai ner" collection, has nine properties defined on it,
http://ww. f 0oo. bar/ boxschera/ bi gbox, DAV: creati ondat e,

DAV: di spl aynane, DAV: getcontentl ength, DAV: getcontenttype,
DAV: get et ag, DAV: getl astnodi fi ed, DAV:resourcetype, and

DAV: support edl ock

This exanple al so denonstrates the use of XM. nanespace scopi ng, and
the default nanespace. Since the "xmns" attribute does not contain
an explicit "shorthand nanme" (prefix) letter, the nanespace applies
by default to all enclosed elenments. Hence, all el enents which do
not explicitly state the nanespace to which they belong are nenbers
of the "DAV:" namespace schema.

ol and, et al. St andards Track [Page 30]

RFC 2518 V\EBDAV February 1999

8. 2 PROPPATCH

The PROPPATCH net hod processes instructions specified in the request
body to set and/or renove properties defined on the resource
identified by the Request-URI.

Al'l DAV conpliant resources MJST support the PROPPATCH net hod and
MJUST process instructions that are specified using the
propertyupdate, set, and renpve XM el ements of the DAV schena
Execution of the directives in this nmethod is, of course, subject to
access control constraints. DAV conpliant resources SHOULD support
the setting of arbitrary dead properties.

The request nmessage body of a PROPPATCH net hod MUST contain the
propertyupdate XM. el enent. Instruction processing MJST occur in the
order instructions are received (i.e., fromtop to bottom
Instructions MUST either all be executed or none executed. Thus if
any error occurs during processing all executed instructions MJST be
undone and a proper error result returned. Instruction processing
details can be found in the definition of the set and renove
instructions in section 12.13.

8.2.1 Status Codes for use with 207 (Milti-Status)

The followi ng are exanpl es of response codes one woul d expect to be
used in a 207 (Milti-Status) response for this nethod. Note,
however, that unless explicitly prohibited any 2/3/4/5xx series
response code nmay be used in a 207 (Milti-Status) response.

200 (OK) - The command succeeded. As there can be a mixture of sets
and renoves in a body, a 201 (Created) seens inappropriate.

403 (Forbidden) - The client, for reasons the server chooses not to
specify, cannot alter one of the properties.

409 (Conflict) - The client has provided a val ue whose senantics are
not appropriate for the property. This includes trying to set read-
only properties.

423 (Locked) - The specified resource is | ocked and the client either
is not a lock owner or the lock type requires a | ock token to be
subnmitted and the client did not submt it.

507 (I nsufficient Storage) - The server did not have sufficient space
to record the property.

ol and, et al. St andards Track [Page 31]

RFC 2518 V\EBDAV February 1999

8.2.2 Exanpl e - PROPPATCH
>>Request

PROPPATCH /bar. htm HTTP/ 1.1

Host: www. f 00. com

Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: XxxX

<?xm version="1.0" encoding="utf-8" ?>
<D: propertyupdat e xm ns: D="DAV: "
xm ns: Z="htt p: / / www. w3. coni st andar ds/ z39. 50/ " >

<D: set >
<D: prop>
<Z: aut hor s>
<Z: Aut hor >Ji m Wi t ehead</ Z: Aut hor >
<Z: Aut hor >Roy Fi el di ng</ Z: Aut hor >
</ Z: aut hor s>
</ D: pr op>
</ D: set>

<D: renove>
<D: prop><Z: Copyri ght - Owner/ ></ D: pr op>
</ D: renmove>
</ D: pr oper t yupdat e>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: mul tistatus xm ns: D="DAV: "
xm ns: Z="http://ww. w3. com st andar ds/ z39. 50" >
<D: response>
<D: href >http://ww. f 0o. coml bar. htm </ D; href >
<D: pr opst at >
<D: pr op><Z: Aut hor s/ ></ D: pr op>
<D: status>HTTP/ 1.1 424 Fail ed Dependency</D: st at us>
</ D: pr opst at >
<D: pr opst at >
<D: prop><Z: Copyri ght - Owner/ ></ D: pr op>
<D: status>HTTP/ 1.1 409 Conflict</D: status>
</ D: pr opst at >
<D: responsedescri pti on> Copyri ght Omer can not be deleted or
al tered. </ D: responsedescri pti on>
</ D: response>
</D:nultistatus>

ol and, et al. St andards Track [Page 32]

RFC 2518 V\EBDAV February 1999

In this exanple, the client requests the server to set the value of
the http://ww. w3. conf st andar ds/ z39. 50/ Aut hors property, and to
renove the property http://ww. w3. conl st andar ds/ z39. 50/ Copyri ght -
Owner. Since the Copyright-Omer property could not be renoved, no
property nodi fications occur. The 424 (Fail ed Dependency) status
code for the Authors property indicates this action would have
succeeded if it were not for the conflict with renoving the
Copyri ght - Omer property.

8.3 MKCOL Met hod

The MKCOL nethod is used to create a new collection. Al DAV
conpliant resources MJST support the MKCOL ret hod.

8. 3.1 Request

MKCOL creates a new collection resource at the location specified by
the Request-URI. If the resource identified by the Request-URl is
non-null then the MKCOL MJST fail. During MKCCOL processing, a server
MUST nmake the Request-URI a nmenber of its parent collection, unless
the Request-URI is "/". If no such ancestor exists, the nethod MJST
fail. Wen the MKCOL operation creates a new collection resource,
all ancestors MJST already exist, or the nmethod MUST fail with a 409
(Conflict) status code. For exanple, if a request to create
collection /alb/c/d/ is made, and neither /a/b/ nor /alb/c/ exists,
the request nust fail

When MKCOL is invoked without a request body, the newy created
col l ecti on SHOULD have no nenbers.

A MKCOL request nessage may contain a nessage body. The behavi or of
a MKCOL request when the body is present is limted to creating

coll ections, menbers of a collection, bodies of nenbers and
properties on the collections or menbers. |If the server receives a
MKCOL request entity type it does not support or understand it MJST
respond with a 415 (Unsupported Medi a Type) status code. The exact
behavi or of MKCOL for various request nedia types is undefined in
this docunent, and will be specified in separate docunents.

8.3.2 Status Codes

Responses froma MKCOL request MJUST NOT be cached as MKCOL has non-
i denpot ent semanti cs.

201 (Created) - The collection or structured resource was created in
its entirety.

ol and, et al. St andards Track [Page 33]

RFC 2518 V\EBDAV February 1999

403 (Forbidden) - This indicates at |east one of two conditions: 1)
the server does not allow the creation of collections at the given
location in its namespace, or 2) the parent collection of the
Request - URI exi sts but cannot accept nenbers.

405 (Method Not Allowed) - MKCOL can only be executed on a
del et ed/ non- exi st ent resource.

409 (Conflict) - A collection cannot be nade at the Request-URl unti
one or nore internedi ate coll ecti ons have been created.

415 (Unsupported Medi a Type)- The server does not support the request
type of the body.

507 (I nsufficient Storage) - The resource does not have sufficient
space to record the state of the resource after the execution of this
nmet hod.

8.3.3 Exanple - MKCOL

This exanple creates a collection called /webhdisc/xfiles/ on the
server Ww. server.org

>>Request

MKCCL /webdi sc/ xfiles/ HITP/ 1.1
Host: www. server.org

>>Response
HTTP/ 1.1 201 Created
8.4 GET, HEAD for Collections

The senantics of GET are unchanged when applied to a collection,
since GET is defined as, "retrieve whatever information (in the form
of an entity) is identified by the Request-URI" [RFC2068]. GET when
applied to a collection may return the contents of an "index. htm"
resource, a human-readabl e view of the contents of the collection, or
sonet hing el se altogether. Hence it is possible that the result of a
CGET on a collection will bear no correlation to the nenbership of the
col I ection.

Similarly, since the definition of HEAD is a GET w thout a response

message body, the semantics of HEAD are unnodified when applied to
col I ection resources.

ol and, et al. St andards Track [Page 34]

RFC 2518 V\EBDAV February 1999

8.5 POST for Collections

Since by definition the actual function perforned by POST is

determi ned by the server and often depends on the particul ar
resource, the behavior of POST when applied to collections cannot be
meani ngful |y nodified because it is largely undefined. Thus the
semantics of POST are unnodi fi ed when applied to a collection

8.6 DELETE
8.6.1 DELETE for Non-Col |l ection Resources

If the DELETE nmethod is issued to a non-collection resource whose
URI's are an internal menber of one or nore collections, then during
DELETE processing a server MJST renove any URI for the resource
identified by the Request-URI fromcollections which contain it as a
nmenber .

8. 6.2 DELETE for Coll ections

The DELETE nethod on a collection MIST act as if a "Depth: infinity"
header was used on it. A client MJUST NOT submt a Depth header with
a DELETE on a collection with any value but infinity.

DELETE instructs that the collection specified in the Request-URl and
all resources identified by its internal nenber URIs are to be
del et ed.

If any resource identified by a nenber URI cannot be del eted then al
of the nenber’s ancestors MJST NOT be deleted, so as to maintain
namespace consi stency.

Any headers included with DELETE MJST be applied in processing every
resource to be del eted.

When the DELETE nethod has conpleted processing it MUST result in a
consi st ent nanespace.

If an error occurs with a resource other than the resource identified
in the Request-URI then the response MJST be a 207 (Milti-Status).
424 (Fail ed Dependency) errors SHOULD NOT be in the 207 (Multi-
Status). They can be safely left out because the client will know
that the ancestors of a resource could not be del eted when the client
receives an error for the ancestor’s progeny. Additionally 204 (No
Content) errors SHOULD NOT be returned in the 207 (Milti-Status).

The reason for this prohibition is that 204 (No Content) is the
default success code.

ol and, et al. St andards Track [Page 35]

RFC 2518 V\EBDAV February 1999

8.6.2.1 Exanple - DELETE
>>Request

DELETE /container/ HTTP/1.1
Host : www. f 00. bar

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<d: nmul tistatus xm ns: d="DAV: ">
<d: response>
<d: href >http://wwv. f 0o. bar/ cont ai ner/resour ce3</d: href >
<d:status>HTTP/ 1.1 423 Locked</d: st atus>
</ d: response>
</d:multistatus>

In this exanple the attenpt to delete
http://ww. f oo. bar/contai ner/resource3 failed because it is |ocked,
and no lock token was subnitted with the request. Consequently, the
attenpt to delete http://ww.foo.bar/container/ also failed. Thus the
client knows that the attenpt to delete http://ww.foo. bar/container/
nmust have also failed since the parent can not be deleted unless its
child has al so been deleted. Even though a Depth header has not been
i ncluded, a depth of infinity is assumed because the nmethod is on a
col I ection.

8.7 PUT
8.7.1 PUT for Non-Col |l ection Resources

A PUT perfornmed on an existing resource replaces the GET response
entity of the resource. Properties defined on the resource nmay be
reconput ed during PUT processing but are not otherw se affected. For
exanple, if a server recognizes the content type of the request body,
it my be able to automatically extract information that could be
profitably exposed as properties.

A PUT that would result in the creation of a resource w thout an

appropriately scoped parent collection MJST fail with a 409
(Conflict).

ol and, et al. St andards Track [Page 36]

RFC 2518 V\EBDAV February 1999

8.7.2 PUT for Collections

As defined in the HITP/ 1.1 specification [RFC2068], the "PUT met hod
requests that the enclosed entity be stored under the supplied
Request-URI." Since subnission of an entity representing a
collection would inplicitly encode creation and del eti on of
resources, this specification intentionally does not define a
transm ssion format for creating a collection using PUT. |Instead,
the MKCOL nethod is defined to create coll ections.

When the PUT operation creates a new non-coll ection resource al
ancestors MJST already exist. |If all ancestors do not exist, the
nmet hod MUST fail with a 409 (Conflict) status code. For exanple, if
resource /a/b/c/d.htm is to be created and /a/b/c/ does not exist,
then the request nust fail

8.8 COPY Met hod

The COPY nethod creates a duplicate of the source resource,
identified by the Request-URI, in the destination resource,
identified by the URI in the Destination header. The Destination
header MUST be present. The exact behavi or of the COPY nethod
depends on the type of the source resource.

Al'l WebDAV conpliant resources MJST support the COPY net hod.

However, support for the COPY nmet hod does not guarantee the ability
to copy a resource. For exanple, separate progranms may contro
resources on the sane server. As aresult, it may not be possible to
copy a resource to a location that appears to be on the sane server

8.8.1 COPY for HITP/ 1.1 resources

When the source resource is not a collection the result of the COPY
nmethod is the creation of a new resource at the destination whose
state and behavior match that of the source resource as closely as
possi ble. After a successful COPY invocation, all properties on the
source resource MJST be duplicated on the destination resource,

subj ect to nodi fying headers and XM. el enents, follow ng the
definition for copying properties. Since the environment at the
destination nay be different than at the source due to factors

out side the scope of control of the server, such as the absence of
resources required for correct operation, it may not be possible to
conpl etely duplicate the behavior of the resource at the destination
Subsequent alterations to the destination resource will not nodify
the source resource. Subsequent alterations to the source resource
will not nodify the destination resource.

ol and, et al. St andards Track [Page 37]

RFC 2518 V\EBDAV February 1999

8.8.2. COPY for Properties

The follow ng section defines how properties on a resource are
handl ed during a COPY operation

Li ve properties SHOULD be duplicated as identically behaving live
properties at the destination resource. |f a property cannot be
copied live, then its value MJST be duplicated, octet-for-octet, in
an identically nanmed, dead property on the destination resource
subject to the effects of the propertybehavior XM el enent.

The propertybehavi or XM. el ement can specify that properties are

copi ed on best effort, that all live properties nust be successfully
copi ed or the nethod nust fail, or that a specified list of live
properties nust be successfully copied or the method nust fail. The

propertybehavior XML elenent is defined in section 12.12.
8.8.3 COPY for Collections

The COPY nethod on a collection without a Depth header MJST act as if
a Depth header with value "infinity" was included. A client may
submit a Depth header on a COPY on a collection with a value of "0"
or "infinity". DAV conpliant servers MJST support the "0" and
"infinity" Depth header behaviors.

A COPY of depth infinity instructs that the collection resource
identified by the Request-URI is to be copied to the | ocation
identified by the URI in the Destination header, and all its interna
menber resources are to be copied to a location relative to it,
recursively through all |evels of the collection hierarchy.

A COPY of "Depth: 0" only instructs that the collection and its
properties but not resources identified by its internal nenmber URIs,
are to be copi ed.

Any headers included with a COPY MJUST be applied in processing every
resource to be copied with the exception of the Destination header

The Destinati on header only specifies the destination URI for the
Request - URI . When applied to nenbers of the collection identified by
the Request-URI the value of Destination is to be nodified to refl ect
the current location in the hierarchy. So, if the Request- URl is
/al with Host header value http://fun.coml and the Destination is
http://fun.conm b/ then when http://fun.comal/c/d is processed it nust
use a Destination of http://fun.conlb/c/d.

ol and, et al. St andards Track [Page 38]

RFC 2518 V\EBDAV February 1999

When the COPY nethod has conpl eted processing it MJST have created a
consi stent nanespace at the destination (see section 5.1 for the
definition of namespace consistency). However, if an error occurs
whil e copying an internal collection, the server MIST NOT copy any
resources identified by menbers of this collection (i.e., the server
nmust skip this subtree), as this would create an inconsi stent
nanespace. After detecting an error, the COPY operation SHOULD try to
finish as much of the original copy operation as possible (i.e., the
server should still attenpt to copy other subtrees and their nenbers,
that are not descendents of an error-causing collection). So, for
exanple, if an infinite depth copy operation is perforned on
collection /al, which contains collections /a/b/ and /al/c/, and an
error occurs copying /a/b/, an attenpt should still be nade to copy
lalc/. Simlarly, after encountering an error copying a non-
collection resource as part of an infinite depth copy, the server
SHOULD try to finish as much of the original copy operation as
possi bl e.

If an error in executing the COPY method occurs with a resource other
than the resource identified in the Request-URl then the response
MUST be a 207 (Milti-Status).

The 424 (Fail ed Dependency) status code SHOULD NOT be returned in the
207 (Multi-Status) response froma COPY method. These responses can
be safely omtted because the client will know that the progeny of a
resource could not be copied when the client receives an error for
the parent. Additionally 201 (Created)/204 (No Content) status codes
SHOULD NOT be returned as values in 207 (Multi-Status) responses from
COPY et hods. They, too, can be safely onitted because they are the
default success codes.

8.8.4 COPY and the Overwrite Header
If a resource exists at the destination and the Overwite header is
"T" then prior to performng the copy the server MIUST perform a
DELETE with "Depth: infinity" on the destination resource. |If the
Overwrite header is set to "F" then the operation will fail.

8.8.5 Status Codes

201 (Created) - The source resource was successfully copied. The
copy operation resulted in the creation of a new resource.

204 (No Content) - The source resource was successfully copied to a
pre-exi sting destination resource.

403 (Forbidden) _ The source and destination URIs are the sane.

ol and, et al. St andards Track [Page 39]

RFC 2518 V\EBDAV February 1999

409 (Conflict) _ A resource cannot be created at the destination
until one or nore internmedi ate coll ecti ons have been created.

412 (Precondition Failed) - The server was unable to maintain the
Iiveness of the properties listed in the propertybehavior XM el enent
or the Overwite header is "F' and the state of the destination
resource i s non-null.

423 (Locked) - The destination resource was | ocked.

502 (Bad Gateway) - This may occur when the destination is on another
server and the destination server refuses to accept the resource.

507 (I nsufficient Storage) - The destination resource does not have
sufficient space to record the state of the resource after the
execution of this nethod.

8.8.6 Exanple - COPY with Overwite

Thi s exanpl e shows resource

http://ww.ics.uci.edu/ ~fielding/index.htm being copied to the

| ocation http://ww.ics.uci.edu/users/f/fielding/index.htm. The 204
(No Content) status code indicates the existing resource at the
destination was overwritten.

>>Request
COPY /~fielding/index.htm HITP/ 1.1
Host: www. i cs. uci.edu
Destination: http://ww.ics.uci.edu/users/f/fielding/index.htn
>>Response
HTTP/ 1.1 204 No Cont ent
8.8.7 Exanple - COPY with No Overwite

The foll owi ng exanpl e shows the same copy operation being perforned,
but with the Overwite header set to "F." A response of 412
(Precondition Failed) is returned because the destination resource
has a non-null state.

>>Request
COPY /~fielding/index.htm HTTP/ 1.1

Host: www.ics. uci.edu

Destination: http://ww.ics.uci.edu/users/f/fielding/index.htn
Overwrite: F

ol and, et al. St andards Track [Page 40]

RFC 2518 V\EBDAV February 1999

>>Response
HTTP/ 1.1 412 Precondition Failed
8.8.8 Exanple - COPY of a Collection
>>Request

COPY /container/ HITP/ 1.1

Host: www. f 00. bar

Destination: http://ww.foo. bar/othercontainer/
Depth: infinity

Content - Type: text/xm ; charset="utf-8"

Cont ent - Lengt h: XxxX

<?xm version="1.0" encoding="utf-8" ?>
<d: propertybehavi or xm ns: d="DAV: ">

<d: keepal i ve>*</ d: keepal i ve>
</ d: pr opertybehavi or >

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<d: mul tistatus xm ns:d="DAV: ">
<d: response>
<d: href >http://ww. f 0o. bar/ ot hercont ai ner/ R2/ </ d: hr ef >
<d:status>HTTP/ 1.1 412 Precondition Fail ed</d: status>
</ d: response>
</d:nultistatus>

The Depth header is unnecessary as the default behavior of COPY on a
collectionis to act as if a "Depth: infinity" header had been
submitted. In this exanple nbst of the resources, along with the
coll ection, were copied successfully. However the collection R2
failed, nost likely due to a problemw th maintaining the Iiveness of
properties (this is specified by the propertybehavior XM el enent).
Because there was an error copying R2, none of R2's nenbers were
copied. However no errors were listed for those nenbers due to the
error minimzation rules given in section 8.8. 3.

ol and, et al. St andards Track [Page 41]

RFC 2518 V\EBDAV February 1999

8.9 MOVE Met hod

The MOVE operation on a non-collection resource is the |ogica

equi val ent of a copy (COPY), followed by consistency mnaintenance
processing, followed by a delete of the source, where all three
actions are perfornmed atomcally. The consistency mai ntenance step
all ows the server to perform updates caused by the nove, such as
updating all URI's other than the Request-URl which identify the
source resource, to point to the new destination resource.
Consequently, the Destination header MJST be present on all MOVE
met hods and MUST follow all COPY requirenents for the COPY part of
the MOVE nethod. All DAV conpliant resources MJST support the MOVE
nmet hod. However, support for the MOVE met hod does not guarantee the
ability to nove a resource to a particular destination

For exanple, separate programs may actually control different sets of
resources on the sane server. Therefore, it may not be possible to
nove a resource within a namespace that appears to belong to the sane
server.

If a resource exists at the destination, the destination resource
will be DELETEd as a side-effect of the MOVE operation, subject to
the restrictions of the Overwite header.

8.9.1 MOVE for Properties

The behavior of properties on a MOVE, including the effects of the
propertybehavi or XM. el ement, MJST be the sane as specified in
section 8.8.2.

8.9.2 MOVE for Collections

A MOVE with "Depth: infinity" instructs that the collection
identified by the Request-URI be nmoved to the URI specified in the
Destination header, and all resources identified by its interna
menber URIs are to be noved to |ocations relative to it, recursively
through all levels of the collection hierarchy.

The MOVE nethod on a collection MIST act as if a "Depth: infinity"
header was used on it. A client MJUST NOT submt a Depth header on a
MOVE on a collection with any value but "infinity".

Any headers included with MOVE MUST be applied in processing every
resource to be noved with the exception of the Destination header

The behavi or of the Destination header is the sane as given for COPY
on col | ections.

ol and, et al. St andards Track [Page 42]

RFC 2518 V\EBDAV February 1999

When the MOVE net hod has conpl eted processing it MJST have created a
consi stent nanespace at both the source and destination (see section
5.1 for the definition of nanespace consistency). However, if an
error occurs while noving an internal collection, the server MJST NOT
nove any resources identified by nenbers of the failed collection
(i.e., the server nust skip the error-causing subtree), as this would
create an inconsistent nanespace. In this case, after detecting the
error, the nove operation SHOULD try to finish as nmuch of the
original nove as possible (i.e., the server should still attenpt to
nove other subtrees and the resources identified by their nenbers,
that are not descendents of an error-causing collection). So, for
exanple, if an infinite depth nove is performed on collection /a/,

whi ch contains collections /a/b/ and /a/c/, and an error occurs
noving /a/b/, an attenpt should still be made to try nmoving /al/c/.
Simlarly, after encountering an error noving a non-coll ection
resource as part of an infinite depth nove, the server SHOULD try to
finish as nmuch of the original nove operation as possible.

If an error occurs with a resource other than the resource identified
in the Request-URI then the response MJST be a 207 (Milti-Status).

The 424 (Fail ed Dependency) status code SHOULD NOT be returned in the
207 (Multi-Status) response froma MOWE method. These errors can be
safely onmitted because the client will know that the progeny of a
resource could not be noved when the client receives an error for the
parent. Additionally 201 (Created)/204 (No Content) responses SHOULD
NOT be returned as values in 207 (Milti-Status) responses froma
MOVE. These responses can be safely onmitted because they are the
default success codes.

8.9.3 MOVE and the Overwrite Header
If a resource exists at the destination and the Overwite header is
"T" then prior to perform ng the nove the server MJST perform a
DELETE with "Depth: infinity" on the destination resource. |If the
Overwrite header is set to "F" then the operation will fail.

8.9.4 Status Codes

201 (Created) - The source resource was successfully noved, and a new
resource was created at the destination

204 (No Content) - The source resource was successfully noved to a
pre-existing destination resource.

403 (Forbidden) _ The source and destination URIs are the sane.

ol and, et al. St andards Track [Page 43]

RFC 2518 V\EBDAV February 1999

409 (Conflict) _ A resource cannot be created at the destination
until one or nore internmedi ate coll ecti ons have been created.

412 (Precondition Failed) - The server was unable to maintain the
Iiveness of the properties listed in the propertybehavior XM el enent
or the Overwite header is "F' and the state of the destination
resource i s non-null.

423 (Locked) - The source or the destination resource was | ocked.

502 (Bad Gateway) - This may occur when the destination is on another
server and the destination server refuses to accept the resource.

8.9.5 Exanple - MOVE of a Non-Collection

Thi s exanpl e shows resource

http://ww.ics.uci.edu/ ~fielding/index.htm being noved to the
location http://wwvics.uci.edu/users/f/fielding/index.htm . The
contents of the destination resource would have been overwritten if
the destination resource had been non-null. In this case, since
there was nothing at the destination resource, the response code is
201 (Created).

>>Request

MOVE / ~fielding/index.htm HITP/ 1.1
Host: www. i cs. uci.edu
Destination: http://ww.ics.uci.edu/users/f/fielding/index.htni

>>Response

HTTP/ 1.1 201 Created
Location: http://wwmv ics.uci.edu/users/f/fielding/index.htnm

8.9.6 Exanple - MOVE of a Collection
>>Request

MOVE /container/ HITP/ 1.1

Host: www. f 00. bar

Destination: http://ww.foo. bar/othercontainer/

Overwrite: F

I f: (<opaquel ockt oken: f e1l84f 2e- 6eec-41d0- c765- 01ladc56e6bb4>)
(<opaquel ockt oken: e454f 3f 3- acdc- 452a- 56¢7- 00a5¢c91e4b77>)

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: xxXxx

ol and, et al. St andards Track [Page 44]

RFC 2518 V\EBDAV February 1999

<?xm version="1.0" encoding="utf-8" ?>
<d: propertybehavi or xm ns: d=" DAV: ' >

<d: keepal i ve>*</ d: keepal i ve>
</ d: pr opertybehavi or >

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<d: mul tistatus xm ns:d="DAV:' >
<d: response>
<d: href >http://ww. f 0o. bar/ ot her cont ai ner/ C2/ </ d: hr ef >
<d: status>HTTP/ 1.1 423 Locked</d: st at us>
</ d: response>
</d:nultistatus>

In this exanple the client has submtted a nunber of |ock tokens with

the request. A lock token will need to be submtted for every
resource, both source and destination, anywhere in the scope of the
nmet hod, that is locked. |In this case the proper |ock token was not

subnmitted for the destination http://ww.foo.bar/othercontainer/C2/.
This neans that the resource /container/C2/ could not be noved.
Because there was an error copying /container/C2/, none of
/container/C2's nenbers were copied. However no errors were |isted
for those nenbers due to the error mininization rules given in
section 8.8.3. User agent authentication has previously occurred via
a mechani sm outside the scope of the HTTP protocol, in an underlying
transport |ayer.

8.10 LOCK Met hod

The follow ng sections describe the LOCK nmet hod, which is used to
take out a lock of any access type. These sections on the LOCK
met hod describe only those semantics that are specific to the LOCK
nmet hod and are independent of the access type of the | ock being
request ed.

Any resource whi ch supports the LOCK nmet hod MJST, at m ni num support
the XML request and response formats defined herein.

ol and, et al. St andards Track [Page 45]

RFC 2518 V\EBDAV February 1999

8.10.1 Operation

A LOCK met hod invocation creates the |ock specified by the |ockinfo
XML el enent on the Request-URI. Lock nethod requests SHOULD have a
XM request body which contains an owner XM el enent for this |ock

request, unless this is a refresh request. The LOCK request may have
a Ti meout header.

Cients MIST assune that |ocks may arbitrarily di sappear at any tine,
regardl ess of the value given in the Tineout header. The Ti neout
header only indicates the behavior of the server if "extraordi nary"

circunstances do not occur. For exanple, an adm nistrator nmay renove

a lock at any time or the systemmay crash in such a way that it
| oses the record of the lock’s existence. The response MJST contain
the val ue of the | ockdiscovery property in a prop XM el enent.

In order to indicate the | ock token associated with a newy created
| ock, a Lock-Token response header MJST be included in the response
for every successful LOCK request for a new lock. Note that the
Lock- Token header would not be returned in the response for a
successful refresh LOCK request because a new | ock was not creat ed.

8.10.2 The Effect of Locks on Properties and Collections

The scope of a lock is the entire state of the resource, including
its body and associated properties. As aresult, a lock on a
resource MJUST al so | ock the resource’s properties.

For collections, a lock also affects the ability to add or renove
menbers. The nature of the effect depends upon the type of access
control involved

8. 10. 3 Locking Replicated Resources

A resource may be nmde avail abl e through nore than one URI. However
| ocks apply to resources, not URIs. Therefore a LOCK request on a
resource MJUST NOT succeed if can not be honored by all the URIs

t hrough which the resource is addressabl e.

8.10.4 Depth and Locki ng
The Depth header may be used with the LOCK nethod. Val ues other than
0 or infinity MJST NOT be used with the Depth header on a LOCK

method. All resources that support the LOCK nmet hod MJST support the
Dept h header.

A Depth header of value 0 nmeans to just |ock the resource specified
by the Request-UR

ol and, et al. St andards Track [Page 46]

RFC 2518 V\EBDAV February 1999

If the Depth header is set to infinity then the resource specified in
the Request-URlI along with all its internal nenbers, all the way down
the hierarchy, are to be |ocked. A successful result MJST return a
single lock token which represents all the resources that have been

|l ocked. [If an UNLOCK is successfully executed on this token, al
associ ated resources are unlocked. |If the lock cannot be granted to
all resources, a 409 (Conflict) status code MJUST be returned with a
response entity body containing a nultistatus XM. el enent descri bi ng
whi ch resource(s) prevented the |ock frombeing granted. Hence,
partial success is not an option. Either the entire hierarchy is

| ocked or no resources are |ocked.

If no Depth header is submitted on a LOCK request then the request
MJUST act as if a "Depth:infinity" had been subnitted.

8.10.5 Interaction with other Methods
The interaction of a LOCK with various nmethods is dependent upon the
| ock type. However, independent of |ock type, a successful DELETE of
a resource MJUST cause all of its locks to be renpved.

8.10.6 Lock Conpatibility Table

The tabl e bel ow descri bes the behavior that occurs when a | ock
request is nade on a resource.

Current |ock state/ | Shar ed Lock | Excl usi ve
Lock request | | Lock

None | True | Tr ue
_____________________ I
Shared Lock | True | Fal se
..................... e e e e e e e e e e e e e e e e e e — =
Excl usi ve Lock | Fal se | Fal se*

Legend: True = lock may be granted. False = |ock MJUST NOT be
granted. *=It is illegal for a principal to request the sane |ock
twice.

The current | ock state of a resource is given in the |eftnost col um,
and | ock requests are listed in the first row The intersection of a
row and colum gives the result of a |l ock request. For exanple, if a
shared lock is held on a resource, and an exclusive lock is
requested, the table entry is "false", indicating the | ock nust not
be granted.

ol and, et al. St andards Track [Page 47]

RFC 2518 V\EBDAV February 1999

8.10.7 Status Codes

200 (OK) - The lock request succeeded and the val ue of the
| ockdi scovery property is included in the body.

412 (Precondition Failed) - The included | ock token was not
enforceable on this resource or the server could not satisfy the
request in the |l ockinfo XM el enent.

423 (Locked) - The resource is |ocked, so the nmethod has been
rejected.

8.10.8 Exanmple - Sinmple Lock Request
>>Request

LOCK / wor kspace/ webdav/ proposal . doc HTTP/ 1.1
Host: webdav. sb. aol . com
Timeout: Infinite, Second-4100000000
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx
Aut hori zation: Digest usernane="ejw'
r eal ne" ej w@webdav. sb. aol . cont', nonce="...",
uri ="/wor kspace/ webdav/ pr oposal . doc",

response="...", opaque="..."
<?xm version="1.0" encoding="utf-8" ?>
<D: | ocki nfo xm ns: D=" DAV: ' >
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
<D: owner >
<D: href>http://ww.ics. uci.edu/~ejw contact. htm </ D; href >
</ D: owner >
</ D: | ocki nf 0>

>>Response

HTTP/ 1.1 200 K
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: prop xm ns: D="DAV: ">
<D: | ockdi scovery>
<D: acti vel ock>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: dept h>I nfi ni t y</ D: dept h>

ol and, et al. St andards Track [Page 48]

RFC 2518 V\EBDAV February 1999

<D: owner >
<D: hr ef >
http://ww. ics. uci.edu/ ~ejw contact. ht
</ D: href >
</ D: owner >
<D: t i meout >Second- 604800</ D: t i meout >
<D: | ockt oken>
<D: href>
opaquel ockt oken: e71d4f ae- 5dec- 22d6- f ea5- 00a0c91le6besd
</ D: href>
</ D: | ockt oken>
</ D: acti vel ock>
</ D: | ockdi scovery>
</ D: pr op>

Thi s exanpl e shows the successful creation of an exclusive wite |ock
on resource http://webdav. sb. aol . com wor kspace/ webdav/ pr oposal . doc.
The resource http://ww.ics.uci.edu/ ~ejw contact.htnm contains
contact information for the owner of the |ock. The server has an
activity-based tineout policy in place on this resource, which causes
the lock to automatically be renoved after 1 week (604800 seconds).
Not e that the nonce, response, and opaque fields have not been
calculated in the Authorization request header.

8.10.9 Exanple - Refreshing a Wite Lock
>>Request

LOCK / wor kspace/ webdav/ proposal . doc HTTP/ 1.1
Host: webdav. sb. aol . com
Tinmeout: Infinite, Second-4100000000
| f: (<opaquel ockt oken: e71d4f ae- 5dec- 22d6-f ea5- 00a0c91eb6bes>)
Aut hori zation: Digest username="ejw'
r eal n" ej w@webdav. sb. aol . cont', nonce="...",
uri ="/ wor kspace/ webdav/ pr oposal . doc",

response="...", opaque="..
>>Response

HTTP/ 1.1 200 K
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encoding="utf-8" ?>
<D: prop xm ns: D="DAV: ">
<D: | ockdi scovery>
<D: acti vel ock>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>

ol and, et al. St andards Track [Page 49]

RFC 2518 V\EBDAV February 1999

<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: dept h>I nfi ni t y</ D: dept h>
<D:. owner >
<D: href>
http://ww. ics.uci.edu/ ~ejw contact. htmn
</ D: href>
</ D: owner >
<D: ti meout >Second- 604800</ D: t i neout >
<D: | ockt oken>
<D: hr ef >
opaquel ockt oken: e71d4f ae- 5dec- 22d6- f ea5- 00a0c91le6bed
</ D: href>
</ D: | ockt oken>
</ D: acti vel ock>
</ D: | ockdi scovery>
</ D: pr op>

This request would refresh the lock, resetting any tine outs. Notice
that the client asked for an infinite tine out but the server choose
to ignore the request. In this exanple, the nonce, response, and
opaque fields have not been calculated in the Authorization request
header .

8.10.10 Exanple - Milti-Resource Lock Request
>>Request

LOCK /webdav/ HTTP/ 1.1

Host: webdav. sb. aol . com

Timeout: Infinite, Second-4100000000

Depth: infinity

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: XxxX

Aut hori zation: Digest username="ejw'
real m=" ej w@webdav. sb. aol . comt', nonce="...",
uri ="/ wor kspace/ webdav/ pr oposal . doc",

response="...", opaque="..

<?xm version="1.0" encoding="utf-8" ?>
<D: | ocki nfo xm ns: D="DAV: " >
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: owner >
<D: href>http://wwv. i cs. uci.edu/ ~ejw contact. htm </D: href>
</ D: owner >
</ D: | ocki nf o>

>>Response

ol and, et al. St andards Track [Page 50]

RFC 2518 V\EBDAV February 1999

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxX

<?xm version="1.0" encoding="utf-8" ?>
<D: nul tistatus xm ns: D="DAV: ">
<D: response>
<D: href >htt p: / / webdav. sb. aol . conf webdav/ secret </ D: hr ef >
<D: status>HTTP/ 1.1 403 For bi dden</ D: st at us>
</ D: r esponse>
<D: response>
<D: href >htt p: / / webdav. sb. aol . conf webdav/ </ D; hr ef >
<D: pr opst at >
<D: pr op><D: | ockdi scovery/ ></ D: pr op>
<D: status>HTTP/ 1.1 424 Fail ed Dependency</D: st at us>
</ D: pr opst at >
</ D: r esponse>
</D:nultistatus>

Thi s exanpl e shows a request for an exclusive wite lock on a

collection and all its children. 1In this request, the client has
specified that it desires an infinite length lock, if avail able,
otherwise a timeout of 4.1 billion seconds, if available. The request

entity body contains the contact information for the principal taking
out the lock, in this case a web page URL.

The error is a 403 (Forbi dden) response on the resource
http://webdav. sb. aol . com webdav/ secret. Because this resource could
not be | ocked, none of the resources were |ocked. Note also that the
| ockdi scovery property for the Request-URlI has been included as
required. In this exanple the | ockdiscovery property is enpty which
means that there are no outstanding | ocks on the resource.

In this exanple, the nonce, response, and opaque fields have not been
calculated in the Authorization request header

8.11 UNLOCK Met hod

The UNLOCK net hod renoves the lock identified by the | ock token in
t he Lock-Token request header fromthe Request-URI, and all other

resources included in the lock. If all resources which have been

| ocked under the submtted | ock token can not be unl ocked then the
UNLOCK request MUST fail.

Any DAV conpliant resource which supports the LOCK nethod MJUST
support the UNLOCK net hod.

ol and, et al. St andards Track [Page 51]

RFC 2518 V\EBDAV February 1999

8.11.1 Exanple - UNLOCK

9

>>Request

UNLOCK / wor kspace/ webdav/i nfo.doc HTTP/ 1.1
Host: webdav. sb. aol . com
Lock- Token: <opaquel ockt oken: a515cf a4- 5da4- 22el- f 5b5- 00a0451e6bf 7>
Aut hori zation: Digest username="ejw'
r eal n" ej w@webdav. sb. aol . cont', nonce="...",
uri ="/wor kspace/ webdav/ pr oposal . doc",

response="...", opaque="..
>>Response
HTTP/ 1.1 204 No Content

In this exanple, the lock identified by the | ock token

"opaquel ockt oken: a515cf a4- 5da4- 22el- f 5b5- 00a0451e6bf 7" is
successfully renoved fromthe resource

htt p: // webdav. sb. aol . conf wor kspace/ webdav/i nfo.doc. |f this |ock

i ncluded nore than just one resource, the lock is renoved from al
resources included in the lock. The 204 (No Content) status code is
used instead of 200 (OK) because there is no response entity body.

In this exanple, the nonce, response, and opaque fields have not been
calculated in the Authorization request header

HTTP Headers for Distributed Authoring

9.1 DAV Header

DAV = "DAV" ":" "1" ["," "2"] ["," 1#extend]

Thi s header indicates that the resource supports the DAV schena and
protocol as specified. Al DAV conpliant resources MJST return the
DAV header on all OPTI ONS responses.

The value is a list of all conpliance classes that the resource
supports. Note that above a comma has al ready been added to the 2.
This is because a resource can not be level 2 conpliant unless it is
also level 1 conpliant. Please refer to section 15 for nore details.
In general, however, support for one conpliance class does not entai
support for any other

9. 2 Dept h Header

Depth = "Depth* ":" ("0" | "1" | "infinity")

ol and, et al. St andards Track [Page 52]

RFC 2518 V\EBDAV February 1999

The Depth header is used with nethods executed on resources which
could potentially have internal nmenbers to indicate whether the
method is to be applied only to the resource ("Depth: 0"), to the
resource and its inmediate children, ("Depth: 1"), or the resource
and all its progeny ("Depth: infinity").

The Depth header is only supported if a nethod' s definition
explicitly provides for such support.

The following rules are the default behavior for any nethod that
supports the Depth header. A nethod may override these defaults by
defining different behavior in its definition

Met hods whi ch support the Depth header may choose not to support al
of the header’s values and may define, on a case by case basis, the
behavi or of the method if a Depth header is not present. For exanple,
the MOVE nethod only supports "Depth: infinity" and if a Depth header
is not present will act as if a "Depth: infinity" header had been
appl i ed.

Cients MUST NOT rely upon nethods executing on nenbers of their
hierarchies in any particular order or on the execution being atomc
unl ess the particular method explicitly provides such guarantees.

Upon execution, a nethod with a Depth header will performas nuch of
its assigned task as possible and then return a response specifying
what it was able to acconplish and what it failed to do.

So, for exanple, an attenpt to COPY a hierarchy may result in sonme of
t he menbers being copied and sone not.

Any headers on a nethod that has a defined interaction with the Depth
header MUST be applied to all resources in the scope of the nethod
except where alternative behavior is explicitly defined. For exanple,
an | f-Match header will have its value applied agai nst every resource
in the nethod’'s scope and will cause the nmethod to fail if the header
fails to match.

If a resource, source or destination, within the scope of the nethod
with a Depth header is locked in such a way as to prevent the
successful execution of the method, then the | ock token for that
resource MJUST be submitted with the request in the If request header

The Depth header only specifies the behavior of the nmethod with

regards to internal children. |If a resource does not have interna
children then the Depth header MJST be i gnored.

ol and, et al. St andards Track [Page 53]

RFC 2518 V\EBDAV February 1999

Pl ease note, however, that it is always an error to subnmt a val ue
for the Depth header that is not allowed by the nethod s definition
Thus submitting a "Depth: 1" on a COPY, even if the resource does not

have internal menmbers, will result in a 400 (Bad Request). The nethod
shoul d fail not because the resource doesn't have internal nenbers,
but because of the illegal value in the header

9. 3 Destination Header
Destination = "Destination" ":" absol uteUR
The Destination header specifies the URI which identifies a
destination resource for nethods such as COPY and MOVE, which take
two URIs as paraneters. Note that the absoluteURl production is
defined in [RFC2396] .

9.4 |f Header

[f ="1f" ":" (1*No-tag-list | 1*Tagged-Iist)
No-tag-list = List
Tagged-1ist = Resource 1*Li st

Resource = Coded- URL

List = "(" 1*(["Not"](State-token | "[" entity-tag "]")) ")"
St at e-t oken = Coded- URL

Coded- URL = "<" absol uteURl ">"

The If header is intended to have simlar functionality to the If-
Mat ch header defined in section 14.25 of [RFC2068]. However the If
header is intended for use with any URl which represents state
information, referred to as a state token, about a resource as wel
as ETags. A typical exanple of a state token is a | ock token, and
| ock tokens are the only state tokens defined in this specification

Al'l DAV conpliant resources MJST honor the |If header.

The If header’s purpose is to describe a series of state lists. |If
the state of the resource to which the header is applied does not

mat ch any of the specified state lists then the request MJST fai

with a 412 (Precondition Failed). |If one of the described state
lists matches the state of the resource then the request may succeed.

Not e that the absol uteURlI production is defined in [RFC2396].

ol and, et al. St andards Track [Page 54]

RFC 2518 V\EBDAV February 1999

9.4.1 No-tag-list Production

The No-tag-list production describes a series of state tokens and
ETags. |If nultiple No-tag-list productions are used then one only
needs to match the state of the resource for the method to be all owed
to conti nue.

If a nmethod, due to the presence of a Depth or Destination header, is
applied to multiple resources then the No-tag-list production MIST be
applied to each resource the nethod is applied to.

9.4.1.1 Exanple - No-tag-list If Header

If: (<locktoken:a-wite-lock-token> ["] aman ETag"]) (["| am another
ETag"])

The previ ous header would require that any resources within the scope
of the nethod nust either be | ocked with the specified | ock token and
inthe state identified by the "I aman ETag" ETag or in the state
identified by the second ETag "I am another ETag". To put the natter
nore plainly one can think of the previous If header as being in the
form (or (and <l ocktoken:a-write-|lock-token> ["] am an ETag"]) (and
["I am anot her ETag"])).

9. 4.2 Tagged-1list Production

The tagged-list production scopes a |list production. That is, it
specifies that the lists followi ng the resource specification only
apply to the specified resource. The scope of the resource
production begins with the |ist production immediately follow ng the
resource production and ends with the next resource production, if
any.

When the If header is applied to a particular resource, the Tagged-
list productions MJST be searched to deternmine if any of the listed

resources natch the operand resource(s) for the current nethod. |If
none of the resource productions match the current resource then the
header MJUST be ignored. |If one of the resource productions does

mat ch the nanme of the resource under consideration then the Iist
productions followi ng the resource production MJST be applied to the
resource in the manner specified in the previous section

The sane URI MJUST NOT appear nore than once in a resource production
in an |If header.

ol and, et al. St andards Track [Page 55]

RFC 2518 V\EBDAV February 1999

9.4.2.1 Exanple - Tagged List |If header

COPY /resourcel HTTP/ 1.1

Host: www. f 0o. bar

Destination: http://ww.foo. bar/resource2

If: <http://ww.foo.bar/resourcel> (<l ocktoken:a-wite-I|ock-token>
[W"A weak ETag"]) (["strong ETag"])

<htt p://ww. bar. bar/randon®(["anot her strong ETag"])

In this exanple http://ww.foo.bar/resourcel is being copied to
http://ww. foo. bar/resource2. Wen the nethod is first applied to
http://ww. f oo. bar/resourcel, resourcel nust be in the state
specified by "(<l ocktoken:a-wite-|ock-token> [W"A weak ETag"])
(["strong ETag"])", that is, it either nust be locked with a | ock
token of "l ocktoken:a-write-|lock-token" and have a weak entity tag
W"A weak ETag" or it nust have a strong entity tag "strong ETag".

That is the only success condition since the resource
http://ww. bar. bar/random never has the nmethod applied to it (the
only other resource listed in the If header) and
http://ww. foo. bar/resource2 is not listed in the If header

9.4.3 not Production

Every state token or ETag is either current, and hence describes the
state of a resource, or is not current, and does not describe the
state of a resource. The bool ean operation of matching a state token
or ETag to the current state of a resource thus resolves to a true or
fal se value. The not production is used to reverse that value. The
scope of the not production is the state-token or entity-tag

i Mmediately following it.

I f: (Not <l ocktoken:witel> <l ocktoken:wite2>)

When submitted with a request, this If header requires that al
operand resources nmust not be |ocked with | ocktoken:witel and nust
be | ocked with | ocktoken:wite2.

9.4.4 Matching Function

When performng If header processing, the definition of a matching
state token or entity tag is as follows.

Mat ching entity tag: Were the entity tag matches an entity tag
associated with that resource.

Mat chi ng state token: Were there is an exact nmatch between the state
token in the If header and any state token on the resource.

ol and, et al. St andards Track [Page 56]

RFC 2518 V\EBDAV February 1999

9.4.5 | f Header and Non- DAV Conpliant Proxies

Non- DAV conpliant proxies will not honor the If header, since they

wi Il not understand the |If header, and HTTP requires non-understood
headers to be ignored. Wen communicating with HTTP/ 1.1 proxies, the
"Cache- Control: no-cache" request header MJST be used so as to
prevent the proxy frominproperly trying to service the request from
its cache. \When dealing with HTTP/1.0 proxies the "Pragma: no-cache"
request header MUST be used for the sanme reason.

9.5 Lock- Token Header
Lock- Token = "Lock- Token" ":" Coded- URL

The Lock-Token request header is used with the UNLOCK nmet hod to
identify the lock to be renobved. The |ock token in the Lock-Token
request header MUST identify a | ock that contains the resource
identified by Request-URI as a nenber.

The Lock-Token response header is used with the LOCK nethod to
indicate the I ock token created as a result of a successful LOCK
request to create a new | ock.

9.6 Overwite Header
Overwite = "Overwite" ":" ("T" | "F")

The Overwite header specifies whether the server should overwite
the state of a non-null destination resource during a COPY or MOVE.

A value of "F" states that the server nust not performthe COPY or
MOVE operation if the state of the destination resource is non-null.
If the overwite header is not included in a COPY or MOVE request
then the resource MJST treat the request as if it has an overwite
header of value "T'. Wile the Overwite header appears to duplicate
the functionality of the If-Match: * header of HTTP/ 1.1, I|f-Match
applies only to the Request-URI, and not to the Destination of a COPY
or MOVE.

If a COPY or MOVE is not performed due to the value of the Overwite
header, the nethod MJUST fail with a 412 (Precondition Failed) status
code.
Al'l DAV conpliant resources MJST support the Overwite header.

9.7 Status-URI Response Header

The Status-URI response header nmay be used with the 102 (Processing)
status code to informthe client as to the status of a nethod.

ol and, et al. St andards Track [Page 57]

RFC 2518 V\EBDAV February 1999

Status-URI = "Status-URI" ":" *(Status-Code Coded-URL) ; Status-Code
is defined in 6.1.1 of [RFC2068]

The URIs listed in the header are source resources whi ch have been
af fected by the outstanding nethod. The status code indicates the
resolution of the method on the identified resource. So, for
exanple, if a MOVE nmethod on a collection is outstanding and a 102
(Processing) response with a Status-URl response header is returned,
the included URIs will indicate resources that have had nove
attenpted on them and what the result was.

9.8 Ti meout Request Header

TimeQut = "Tineout" ":" 1#Ti meType

Ti reType = ("Second-" DAVTineCutVal | "Infinite" | Qher)
DAVTi neCut Val = 1*digit

O her = "Extend" field-value ; See section 4.2 of [RFC2068]

Clients may include Tineout headers in their LOCK requests. However,
the server is not required to honor or even consider these requests.
Cients MUST NOT submit a Tineout request header with any nethod

ot her than a LOCK net hod.

A Ti meout request header MJST contain at |east one TineType and nay
contain nmultiple TinmeType entries. The purpose of listing nmultiple
Ti reType entries is to indicate multiple different values and val ue
types that are acceptable to the client. The client lists the

Ti meType entries in order of preference.

Ti reout response val ues MJST use a Second value, Infinite, or a

Ti mreType the client has indicated famliarity with. The server nay
assune a client is famliar with any Ti meType submitted in a Ti meout
header .

The "Second" Ti meType specifies the nunber of seconds that will

el apse between granting of the lock at the server, and the automatic
renoval of the lock. The tineout value for TinmeType "Second" MJST
NOT be greater than 2732-1

The tineout counter SHOULD be restarted any time an owner of the | ock
sends a nethod to any nenber of the | ock, including unsupported

net hods, or nethods which are unsuccessful. However the | ock MJST be
refreshed if a refresh LOCK nethod is successfully received.

If the tinmeout expires then the lock may be lost. Specifically, if
the server wi shes to harvest the | ock upon tine-out, the server

SHOULD act as if an UNLOCK nethod was executed by the server on the
resource using the lock token of the timed-out |ock, performed with

ol and, et al. St andards Track [Page 58]

RFC 2518 V\EBDAV February 1999

10

10.

10.

its override authority. Thus | ogs should be updated with the
di sposition of the lock, notifications should be sent, etc., just as
they would be for an UNLOCK request.

Servers are advised to pay close attention to the values subnmtted by
clients, as they will be indicative of the type of activity the
client intends to perform For exanple, an applet running in a
browser may need to | ock a resource, but because of the instability
of the environnment within which the applet is running, the applet may
be turned off without warning. As a result, the applet is likely to
ask for a relatively small tinmeout value so that if the applet dies,
the | ock can be quickly harvested. However, a docunent nanagenent
systemis likely to ask for an extrenmely long tinmeout because its
user may be planning on going off-1line.

A client MUST NOT assune that just because the tine-out has expired
the | ock has been | ost.

St at us Code Extensions to HTTP/1.1

The follow ng status codes are added to those defined in HITP/1.1
[RFC2068] .

1 102 Processing

The 102 (Processing) status code is an interimresponse used to
informthe client that the server has accepted the conpl ete request,
but has not yet conpleted it. This status code SHOULD only be sent
when the server has a reasonabl e expectation that the request wll
take significant tine to conplete. As guidance, if a nethod is taking
| onger than 20 seconds (a reasonable, but arbitrary value) to process
the server SHOULD return a 102 (Processing) response. The server MJST
send a final response after the request has been conpl et ed.

Met hods can potentially take a long period of tinme to process,

especi ally methods that support the Depth header. In such cases the
client may tinme-out the connection while waiting for a response. To
prevent this the server may return a 102 (Processing) status code to
indicate to the client that the server is still processing the

net hod.

2 207 Multi-Status

The 207 (Multi-Status) status code provides status for multiple
i ndependent operations (see section 11 for nore information).

ol and, et al. St andards Track [Page 59]

RFC 2518 V\EBDAV February 1999

10.

10.

10.

10.

11

3 422 Unprocessable Entity

The 422 (Unprocessable Entity) status code means the server

under stands the content type of the request entity (hence a
415(Unsupported Media Type) status code is inappropriate), and the
syntax of the request entity is correct (thus a 400 (Bad Request)
status code is inappropriate) but was unable to process the contained
instructions. For exanple, this error condition may occur if an XM
request body contains well-formed (i.e., syntactically correct), but
semantically erroneous XM instructions.

4 423 Locked

The 423 (Locked) status code means the source or destination resource
of a nethod is |ocked.

5 424 Fail ed Dependency

The 424 (Fail ed Dependency) status code neans that the method coul d
not be perforned on the resource because the requested action
depended on anot her action and that action failed. For exanple, if a
comand in a PROPPATCH nethod fails then, at mninmum the rest of the
conmmands will also fail with 424 (Fail ed Dependency).

6 507 Insufficient Storage

The 507 (Insufficient Storage) status code neans the nethod coul d not
be performed on the resource because the server is unable to store
the representati on needed to successfully conmplete the request. This
condition is considered to be tenmporary. |f the request which
received this status code was the result of a user action, the
request MJST NOT be repeated until it is requested by a separate user
action.

Mul ti-Status Response

The default 207 (Multi-Status) response body is a text/xm or
application/xm HITP entity that contains a single XM el enent called
mul tistatus, which contains a set of XML el enents called response

whi ch contain 200, 300, 400, and 500 series status codes generated
during the method invocation. 100 series status codes SHOULD NOT be
recorded in a response XM el enent.

ol and, et al. St andards Track [Page 60]

RFC 2518 V\EBDAV February 1999

12

12.

12.

12.

12.

XML El enent Definitions

In the section below, the final line of each section gives the

el enent type declaration using the format defined in [REC- XM.]. The
"Val ue" field, where present, specifies further restrictions on the
al | owabl e contents of the XML el enent using BNF (i.e., to further
restrict the values of a PCDATA el enent).

1 activel ock XM. El enent

Nane: activel ock
Nanespace: DAV:
Pur pose: Describes a | ock on a resource.

<! ELEMENT activel ock (lockscope, |ocktype, depth, owner?, tineout?,
| ockt oken?) >

1.1 depth XM El enment

Nane: dept h

Nanespace: DAV:

Pur pose: The val ue of the Depth header.
Val ue: "0" | "1" | "infinity"

<! ELEMENT depth (#PCDATA) >

1.2 | ockt oken XM. El enent

Nane: | ockt oken
Nanespace: DAV:
Pur pose: The | ock token associated with a | ock.

Description: The href contains one or nore opaque |ock token URIs
which all refer to the same lock (i.e., the OpaqueLockToken- UR
production in section 6.4).

<! ELEMENT | ockt oken (href+) >

1.3 ti meout XM. El enent

Nane: ti meout

Nanespace: DAV:

Pur pose: The tineout associated with a |ock
Val ue: Ti meType ; Defined in section 9.8

<! ELEMENT tineout (#PCDATA) >

ol and, et al. St andards Track [Page 61]

RFC 2518 V\EBDAV February 1999

12.

12.

12

12.

12.

2 collection XM El enent

Narme: col l ection
Nanmespace: DAV
Pur pose: Identifies the associated resource as a collection. The

resourcetype property of a collection resource MUST have this val ue.
<! ELEMENT col | ecti on EMPTY >

3 href XM El enent

Nane: hr ef

Nanmespace: DAV

Pur pose: Identifies the content of the element as a URI.
Val ue: URI ; See section 3.2.1 of [RFC2068]

<! ELEMENT href (#PCDATA)>

.4 link XM El enent

Nane: i nk
Nanespace: DAV
Pur pose: Identifies the property as a link and contains the source

and destination of that |ink.

Description: The link XM. elenent is used to provide the sources and
destinations of a link. The name of the property containing the link
XM. el enent provides the type of the link. Link is a nulti-val ued
elenment, so multiple links nay be used together to indicate nultiple
links with the same type. The values in the href XM el enments inside
the src and dst XM el ements of the link XM. el ement MUST NOT be
rejected if they point to resources which do not exist.

<IELEMENT link (src+, dst+) >

4.1 dst XM El enent

Nane: dst
Nanmespace: DAV
Pur pose: I ndi cates the destination of a link
Val ue: UR|

<! ELEMENT dst (#PCDATA) >

4.2 src XM El enent

Nanme: src
Nanespace: DAV
Pur pose: I ndi cates the source of a link.

ol and, et al. St andards Track [Page 62]

RFC 2518 V\EBDAV February 1999

Val ue: URI
<! ELEMENT src (#PCDATA) >

12.5 lockentry XM. El enent

Nane: | ockentry

Nanmespace: DAV

Pur pose: Defines the types of locks that can be used with the
resour ce.

<! ELEMENT | ockentry (I ockscope, |ocktype) >

12.6 | ocki nfo XM. El emrent

Nane: | ockinfo
Nanespace: DAV
Pur pose: The lockinfo XML elenent is used with a LOCK method to

specify the type of lock the client w shes to have created.
<! ELEMENT | ocki nfo (| ockscope, |ocktype, owner?) >

12.7 | ockscope XM El enment

Nane: | ockscope
Nanespace: DAV
Pur pose: Specifies whether a lock is an exclusive lock, or a

shared | ock.
<! ELEMENT | ockscope (exclusive | shared) >

12. 7.1 excl usive XM El enent

Nane: excl usi ve
Nanespace: DAV
Pur pose: Speci fies an exclusive |ock

<! ELEMENT excl usi ve EMPTY >

12. 7.2 shared XM El enent

Nane: shar ed
Nanmespace: DAV
Pur pose: Specifies a shared | ock

<! ELEMENT shared EMPTY >

ol and, et al. St andards Track [Page 63]

RFC 2518 V\EBDAV February 1999

12.

12.

12.

12.

8 | ocktype XM El enment

Nane: | ocktype
Nanmespace: DAV
Pur pose: Specifies the access type of a lock. At present, this

specification only defines one lock type, the wite |ock.
<! ELEMENT | ocktype (wite) >

8.1 wite XM El enent

Nane: wite
Nanmespace: DAV
Pur pose: Specifies a wite | ock.

<! ELEMENT wite EMPTY >

9 nmul ti status XM. El enent

Nane: mul tistatus
Nanespace: DAV
Pur pose: Contains nultiple response nessages.

Description: The responsedescription at the top level is used to
provi de a general nessage describing the overarching nature of the
response. |If this value is available an application nmay use it

i nstead of presenting the individual response descriptions contained
wi thin the responses.

<l ELEMENT nul ti status (response+, responsedescription?) >

9.1 response XM. El enent

Nane: response
Nanmespace: DAV
Pur pose: Hol ds a single response describing the effect of a

met hod on resource and/or its properties.

Description: A particular href MJST NOT appear nore than once as the
child of a response XM el ement under a multistatus XM el ement.

This requirement is necessary in order to keep processing costs for a
response to linear tine. Essentially, this prevents having to search
in order to group together all the responses by href. There are,
however, no requirenents regarding orderi ng based on href val ues.

<! ELEMENT response (href, ((href*, status)|(propstat+)),
responsedescri pti on?) >

ol and, et al. St andards Track [Page 64]

RFC 2518 V\EBDAV February 1999

12.

12.

12.

12.

9.1.1 propstat XM El enent

Nane: propst at
Nanmespace: DAV
Pur pose: Groups together a prop and status elenent that is

associated with a particular href elenent.

Description: The propstat XM. el enent MJST contain one prop XM

el enent and one status XM. el ement. The contents of the prop XM

el ement MUST only list the names of properties to which the result in
the status el enent appli es.

<! ELEMENT propstat (prop, status, responsedescription?) >

9.1.2 status XM El enent

Nanme: status

Nanespace: DAV

Pur pose: Hol ds a single HTTP status-1line

Val ue: status-1ine ;status-line defined in [RFC2068]

<! ELEMENT status (#PCDATA) >

9.2 responsedescription XM El enent

Nane: responsedescri ption
Nanespace: DAV
Pur pose: Contai ns a nmessage that can be displayed to the user

expl ai ning the nature of the response.

Description: This XM. el enent provides information suitable to be
presented to a user.

<! ELEMENT responsedescri pti on (#PCDATA) >

10 owner XM El ement

Nane: owner

Nanespace: DAV

Pur pose: Provi des information about the principal taking out a
| ock.

Description: The owner XM. el ement provides information sufficient
for either directly contacting a principal (such as a tel ephone
nunber or Emmil URI), or for discovering the principal (such as the
URL of a honmepage) who owns a | ock

<! ELEMENT owner ANY>

ol and, et al. St andards Track [Page 65]

RFC 2518 V\EBDAV February 1999

12.

12.

12.

11 prop XM el enent

Nane: pr op
Nanmespace: DAV
Pur pose: Contains properties related to a resource.

Description: The prop XM elenent is a generic container for
properties defined on resources. All elenents inside a prop XM
el ement MJST define properties related to the resource. No other
el ements may be used inside of a prop el enent.

<! ELEMENT prop ANY>
12 propertybehavi or XM el enent

Nane: propertybehavi or Namespace: DAV: Purpose: Specifies
how properties are handl ed during a COPY or MOVE

Description: The propertybehavi or XM. el enent specifies how
properties are handled during a COPY or MOVE. If this XM element is
not included in the request body then the server is expected to act
as defined by the default property handling behavior of the

associ ated method. All WebDAV conpliant resources MJST support the
propertybehavi or XM el enent.

<! ELEMENT propertybehavior (omt | keepalive) >

12.1 keepalive XM el enent

Narme: keepal i ve
Nanespace: DAV
Pur pose: Specifies requirenents for the copying/ noving of live

properties.

Description: If alist of URIs is included as the value of keepalive
then the named properties MJST be "live" after they are copied
(rmoved) to the destination resource of a COPY (or MOVE). If the
value "*" is given for the keepalive XM. el enment, this designates
that all live properties on the source resource MJUST be live on the
destination. |If the requirenents specified by the keepalive el ement
can not be honored then the method MUST fail with a 412 (Precondition
Failed). Al DAV conpliant resources MJST support the keepalive XM
el enent for use with the COPY and MOVE net hods

Val ue: "x" . #PCDATA val ue can only be "*"

<! ELEMENT keepal i ve (#PCDATA | href+) >

ol and, et al. St andards Track [Page 66]

RFC 2518 V\EBDAV February 1999

12.

12.

12.

12.

12.2 omt XM el enent

Nane: om t

Nanmespace: DAV

Pur pose: The omt XM el enent instructs the server that it should
use best effort to copy properties but a failure to copy a property
MUST NOT cause the nethod to fail. Description: The default behavior

for a COPY or MOVE is to copy/nove all properties or fail the nethod
In certain circunstances, such as when a server copies a resource
over another protocol such as FTP, it may not be possible to

copy/ nove the properties associated with the resource. Thus any
attenpt to copy/ nove over FTP woul d al ways have to fail because
properties could not be noved over, even as dead properties. Al DAV
conpliant resources MJST support the omit XM el enent on COPY/ MOVE
net hods.

<! ELEMENT onmit EMPTY >

13 propertyupdate XM el enment

Nane: propertyupdate

Nanespace: DAV

Pur pose: Contains a request to alter the properties on a
resource.

Description: This XM. elenent is a container for the infornmation
required to nmodify the properties on the resource. This XM el enent
is nulti-val ued.

<! ELEMENT propertyupdate (renmove | set)+ >

13.1 renpve XM el enent

Nane: renove
Nanmespace: DAV
Pur pose: Lists the DAV properties to be renoved froma resource.

Description: Renmpve instructs that the properties specified in prop
shoul d be renpbved. Specifying the renoval of a property that does
not exist is not an error. Al the XML elenments in a prop XM

el ement inside of a remove XM. el ement MJST be enpty, as only the
nanes of properties to be renoved are required.

<! ELEMENT renove (prop) >

13.2 set XM el ement

Nane: set
Nanespace: DAV
Pur pose: Li sts the DAV property values to be set for a resource.

ol and, et al. St andards Track [Page 67]

RFC 2518 V\EBDAV February 1999

12.

12.

12.

13

Description: The set XM. el ement MJST contain only a prop XM

el ement. The el enents contained by the prop XM. el enent inside the
set XML el enent MJUST specify the nane and val ue of properties that
are set on the resource identified by Request-URI. |f a property

al ready exists then its value is replaced. Language taggi ng
information in the property’'s value (in the "xm:lang" attribute, if
present) MJST be persistently stored along with the property, and
MUST be subsequently retrievabl e usi ng PROPFI ND.

<! ELEMENT set (prop) >

14 propfind XM. El enent

Nane: propfind
Nanespace: DAV
Pur pose: Specifies the properties to be returned from a PROPFI ND

met hod. Two special elenments are specified for use with propfind,
all prop and propname. |If prop is used inside propfind it MJST only
contain property nanes, not val ues.

<! ELEMENT propfind (allprop | propnane | prop) >
14.1 all prop XM El enent

Nane: al | prop Namespace: DAV: Purpose: The al | prop XM
el ement specifies that all property nanes and val ues on the resource
are to be returned.

<! ELEMENT al | prop EMPTY >
14. 2 propnane XM El enent

Nane: propname Nanespace: DAV: Purpose: The propnane XM
el ement specifies that only a list of property nanes on the resource
is to be returned.

<! ELEMENT propnanme EMPTY >
DAV Properties

For DAV properties, the name of the property is also the sane as the
name of the XM. el ement that contains its value. In the section

bel ow, the final line of each section gives the elenment type
declaration using the format defined in [REC-XM.]. The "Val ue" field,
where present, specifies further restrictions on the allowable
contents of the XM. el ement using BNF (i.e., to further restrict the
val ues of a PCDATA el enent).

ol and, et al. St andards Track [Page 68]

RFC 2518 V\EBDAV February 1999

13.

13.

13.

13.

1 creationdate Property

Nane: creati ondat e

Nanmespace: DAV

Pur pose: Records the tinme and date the resource was created.

Val ue: date-tine ; See Appendix 2

Description: The creationdate property should be defined on all DAV
conpliant resources. |If present, it contains a tinmestanp of the

nonment when the resource was created (i.e., the nonent it had non-
null state).

<! ELEMENT creati ondate (#PCDATA) >

2 di spl aynane Property

Nane: di spl aynane
Nanespace: DAV
Pur pose: Provi des a nane for the resource that is suitable for

presentation to a user.

Description: The di splaynane property should be defined on all DAV
conpliant resources. |If present, the property contains a description
of the resource that is suitable for presentation to a user

<! ELEMENT di spl aynane (#PCDATA) >

3 getcontentl anguage Property

Nane: get cont ent | anguage
Nanmespace: DAV
Pur pose: Cont ai ns the Content-Language header returned by a GET

wi t hout accept headers

Description: The getcontentl anguage property MJST be defined on any
DAV conpliant resource that returns the Content-Language header on a
GET.

Val ue: | anguage-t ag ;| anguage-tag is defined in section 14.13
of [RFC2068]

<! ELEMENT get cont ent | anguage (#PCDATA) >

4 getcontentlength Property

Nane: getcontentl ength
Nanmespace: DAV
Pur pose: Contai ns the Content-Length header returned by a GET

wi t hout accept headers.

Description: The getcontentlength property MJST be defined on any
DAV conpliant resource that returns the Content-Length header in
response to a CET.

ol and, et al. St andards Track [Page 69]

RFC 2518 V\EBDAV February 1999

13.

13.

13.

Val ue: content-length ; see section 14.14 of [RFC2068]
<! ELEMENT get cont ent | engt h (#PCDATA) >

5 getcontenttype Property

Nane: getcontenttype
Nanmespace: DAV
Pur pose: Cont ai ns the Content-Type header returned by a GET

wi t hout accept headers.

Description: This getcontenttype property MJST be defined on any DAV
conpliant resource that returns the Content-Type header in response
to a CET.

Val ue: nedi a-type ; defined in section 3.7 of [RFC2068]

<! ELEMENT getcontenttype (#PCDATA) >

6 getetag Property

Nane: get et ag
Nanespace: DAV
Pur pose: Contai ns the ETag header returned by a GET wi t hout

accept headers.

Description: The getetag property MJST be defined on any DAV
conpliant resource that returns the Etag header

Val ue: entity-tag ; defined in section 3.11 of [RFC2068]

<! ELEMENT get etag (#PCDATA) >

7 getlastnodified Property

Nane: get | ast nodi fi ed
Nanmespace: DAV
Pur pose: Contains the Last-Mdified header returned by a GET

met hod wi t hout accept headers.

Description: Note that the |last-nodified date on a resource nmay

refl ect changes in any part of the state of the resource, not
necessarily just a change to the response to the GET nmethod. For
exanpl e, a change in a property may cause the last-nodified date to
change. The getlastnodified property MJST be defined on any DAV
conpliant resource that returns the Last-Mdified header in response
to a GET.

Val ue: HTTP-date ; defined in section 3.3.1 of [RFC2068]

<! ELEMENT get | astnodi fi ed (#PCDATA) >

ol and, et al. St andards Track [Page 70]

RFC 2518 VEBDAV

13.

13.

8 | ockdi scovery Property

Nane: | ockdi scovery
Nanmespace: DAV

Pur pose: Descri bes the active | ocks on a resource

February 1999

Description: The | ockdi scovery property returns a listing of who has
a lock, what type of |ock he has, the tinmeout type and the tine

remai ning on the timeout, and the associ ated | ock token

The server

is free to withhold any or all of this information if the requesting
princi pal does not have sufficient access rights to see the requested

dat a.

<l ELEMENT | ockdi scovery (activel ock)* >

8.1 Exanple - Retrieving the | ockdi scovery Property

>>Request

PROPFI ND / container/ HTTP/1.1

Host: www. f 00. bar

Cont ent - Lengt h: xxxx

Content - Type: text/xm; charset="utf-8"

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D=" DAV: ' >

<D: prop><D: | ockdi scovery/ ></ D: pr op>
</ D: pr opfi nd>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xXxxX

<?xm version="1.0" encoding="utf-8" ?>
<D: nmul tistatus xm ns: D=" DAV: ' >
<D: response>

<D: href >htt p: // ww. f 00. bar/ cont ai ner/ </ D: hr ef >

<D: pr opst at >
<D: pr op>
<D: | ockdi scovery>
<D: acti vel ock>

<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>

<D: dept h>0</ D: dept h>
<D: owner >Jane Sm t h</ D owner >

<D: ti meout >I nfinite</D: tineout>

<D: | ockt oken>

ol and, et al. St andards Track

[Page 71]

RFC 2518 V\EBDAV February 1999

<D: hr ef >
opaquel ockt oken: f 81de2ad- 7f 3d- alb2- 4f 3c- 00a0c91a9d76
</ D: href >
</ D: | ockt oken>
</ D: acti vel ock>
</ D: | ockdi scovery>
</ D: prop>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: r esponse>
</D:mul tistatus>

This resource has a single exclusive wite lock onit, with an
infinite tineout.

13.9 resourcetype Property

Nane: resour cet ype
Nanmespace: DAV
Pur pose: Specifies the nature of the resource.

Description: The resourcetype property MJST be defined on all DAV
conpliant resources. The default value is enpty.

<! ELEMENT resourcetype ANY >

13. 10 source Property

Nane: sour ce
Nanespace: DAV
Pur pose: The destination of the source link identifies the

resource that contains the unprocessed source of the Iink’'s source.
Description: The source of the link (src) is typically the UR of the
out put resource on which the link is defined, and there is typically
only one destination (dst) of the link, which is the URl where the
unprocessed source of the resource may be accessed. Wen nore than
one |link destination exists, this specification asserts no policy on
orderi ng.

<! ELEMENT source (link)* >
13.10.1 Exanple - A source Property

<?xm version="1.0" encoding="utf-8" ?>
<D: prop xm ns: D="DAV: " xm ns: F="http://ww:. f oocor p. conf Project/">
<D: source>
<D: i nk>
<F:projfiles>Source</F:.projfil es>
<D: src>http://foo. bar/progranx/D: src>

ol and, et al. St andards Track [Page 72]

RFC 2518 V\EBDAV February 1999

13.

13.

<D: dst>http://foo. bar/src/ main.c</D:dst>
</ D:link>
<D: i nk>
<F:projfiles>Library</F:projfiles>
<D: src>http://foo. bar/progranx/D: src>
<D: dst>http://foo.bar/src/main.lib</D:dst>
</ D:link>
<D: i nk>
<F:projfiles>Makefile</F:projfiles>
<D: src>http://foo. bar/progranx/D: src>
<D: dst>http://foo. bar/src/ makefil e</ D: dst >
</ D:link>
</ D: sour ce>
</ D: pr op>

In this exanple the resource http://foo.bar/programhas a source
property that contains three links. Each link contains three

el ements, two of which, src and dst, are part of the DAV schema
defined in this docunent, and one which is defined by the schena
http://ww. f oocor p. conl project/ (Source, Library, and Makefile). A
client which only inplenments the elenents in the DAV spec will not
understand the foocorp el enents and will ignore them thus seeing the
expected source and destination Iinks. An enhanced client may know
about the foocorp elenments and be able to present the user with
additional information about the |inks. This exanple denonstrates
the power of XM. markup, allow ng el enent values to be enhanced

wi t hout breaking ol der clients.

11 supportedl ock Property

Nane: support edl ock
Nanespace: DAV
Pur pose: To provide a listing of the |ock capabilities supported

by the resource.

Description: The supportedl ock property of a resource returns a
listing of the conbi nations of scope and access types which nay be
specified in a lock request on the resource. Note that the actua
contents are thensel ves controlled by access controls so a server is
not required to provide information the client is not authorized to
see.

<! ELEMENT supportedl ock (|l ockentry)* >
11.1 Exanple - Retrieving the supportedl ock Property
>>Request

PROPFIND /container/ HTTP/ 1.1

ol and, et al. St andards Track [Page 73]

RFC 2518 V\EBDAV February 1999

Host: www. f 00. bar
Cont ent - Lengt h: xxxx
Content - Type: text/xm; charset="utf-8"

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: ">

<D: pr op><D: support edl ock/ ></ D: pr op>
</ D: pr opfi nd>

>>Response

HTTP/ 1.1 207 Multi-Status
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xXxxX

<?xm version="1.0" encoding="utf-8" ?>
<D: nul tistatus xm ns: D="DAV: ">
<D: response>
<D: href >htt p: // ww. f 00. bar/ cont ai ner/ </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: support edl ock>
<D: | ockentry>
<D: | ockscope><D: excl usi ve/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: | ockentry>
<D: | ockentry>
<D: | ockscope><D: shar ed/ ></ D: | ockscope>
<D: | ockt ype><D: wri t e/ ></ D: | ockt ype>
</ D: | ockentry>
</ D: support edl ock>
</ D: prop>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: r esponse>
</D:mul tistatus>

14 Instructions for Processing XM. in DAV
Al'l DAV conpliant resources MJST ignore any unknown XM el enent and
all its children encountered while processing a DAV nethod that uses
XML as its command | anguage.
This restriction also applies to the processing, by clients, of DAV

property val ues where unknown XM. el enents SHOULD be ignored unl ess
the property’s schena decl ares ot herw se.

ol and, et al. St andards Track [Page 74]

RFC 2518 V\EBDAV February 1999

15

15.

15.

This restriction does not apply to setting dead DAV properties on the
server where the server MJST record unknown XM el enents.

Additionally, this restriction does not apply to the use of XM. where
XM. happens to be the content type of the entity body, for exanple,
when used as the body of a PUT.

Since XML can be transported as text/xm or application/xm, a DAV
server MJST accept DAV nethod requests with XM paraneters
transported as either text/xm or application/xm, and DAV client
MUST accept XM. responses using either text/xm or application/xn.

DAV Conpl i ance C asses

A DAV conpliant resource can choose fromtwo cl asses of conpliance.
A client can discover the conpliance classes of a resource by
executing OPTIONS on the resource, and exam ning the "DAV' header
whi ch is returned.

Since this docunent describes extensions to the HTTP/ 1.1 protocol
mnimally all DAV conpliant resources, clients, and proxi es MJUST be
conpliant with [RFC2068].

Conpl i ance classes are not necessarily sequential. A resource that is
class 2 conpliant nmust also be class 1 conpliant; but if additiona
conpliance classes are defined |later, a resource that is class 1, 2,
and 4 conpliant mght not be class 3 conpliant. Al so note that
identifiers other than nunmbers may be used as conpliance cl ass

i dentifiers.

1 dass 1

A class 1 conpliant resource MJST neet all "MJST" requirenments in al
sections of this docunent.

Class 1 conpliant resources MJUST return, at nmininmum the value "1" in
the DAV header on all responses to the OPTI ONS net hod.

2 Class 2

A class 2 conpliant resource MJST neet all class 1 requirenents and
support the LOCK nethod, the supportedl ock property, the

| ockdi scovery property, the Tinme-Qut response header and the Lock-
Token request header. A class "2" conpliant resource SHOULD al so
support the Tinme-Qut request header and the owner XM el enent.

Cass 2 conpliant resources MJUST return, at mninmm the values "1"
and "2" in the DAV header on all responses to the OPTIONS net hod.

ol and, et al. St andards Track [Page 75]

RFC 2518 V\EBDAV February 1999

16 Internationalizati on Consi derations

In the realmof internationalization, this specification conplies
with the | ETF Character Set Policy [RFC2277]. In this specification
human-readabl e fields can be found either in the value of a property,
or in an error nessage returned in a response entity body. 1In both
cases, the human-readabl e content is encoded using XM., which has
explicit provisions for character set taggi ng and encodi ng, and
requires that XM. processors read XM el enents encoded, at m ni num
using the UTF-8 [UTF-8] encoding of the |1SO 10646 nultilingual plane.
XM. exanples in this specification denonstrate use of the charset
paraneter of the Content-Type header, as defined in [RFC2376], as
well as the XML "encodi ng" attribute, which together provide charset
identification information for MM and XM. processors.

XM. al so provides a | anguage tagging capability for specifying the

| anguage of the contents of a particular XM. el enent. XM uses
either | ANA registered | anguage tags (see [RFCL766]) or | SO 639

| anguage tags [I1SO-639] in the "xm:lang" attribute of an XM el enent
to identify the |anguage of its content and attri butes.

WebDAV applications MJST support the character set tagging, character
set encodi ng, and the | anguage tagging functionality of the XM
specification. |Inplenmentors of WebDAV applications are strongly
encouraged to read "XM. Medi a Types" [RFC2376] for instruction on
which M ME nedia type to use for XM transport, and on use of the
charset paraneter of the Content-Type header

Names used within this specification fall into three categories:
nanes of protocol elenments such as nethods and headers, nanmes of XM
el ements, and nanes of properties. Namng of protocol elenents

foll ows the precedent of HITP, using English nanmes encoded i n USASCI
for methods and headers. Since these protocol elenments are not
visible to users, and are in fact sinply long token identifiers, they
do not need to support encoding in nultiple character sets.
Simlarly, though the nanes of XM. el enents used in this
specification are English nanes encoded in UTF-8, these nanes are not
visible to the user, and hence do not need to support multiple
character set encodings.

The nane of a property defined on a resource is a URI. Although sone
applications (e.g., a generic property viewer) will display property
URI's directly to their users, it is expected that the typica
application will use a fixed set of properties, and will provide a
mappi ng fromthe property nane URI to a human-readable field when

di splaying the property name to a user. It is only in the case where

ol and, et al. St andards Track [Page 76]

RFC 2518 V\EBDAV February 1999

17

17.

the set of properties is not known ahead of time that an application
need di splay a property nane URI to a user. W recommend that
applications provide human-readabl e property nanmes wherever feasible.

For error reporting, we follow the convention of HTTP/ 1.1 status
codes, including with each status code a short, English description
of the code (e.g., 423 (Locked)). While the possibility exists that
a poorly crafted user agent would display this nmessage to a user
internationalized applications will ignore this nmessage, and di spl ay
an appropriate nessage in the user’s |language and character set.

Since interoperation of clients and servers does not require |ocale
i nformation, this specification does not specify any mechani sm for
transm ssion of this information.

Security Considerations

This section is provided to detail issues concerning security
i mplications of which WbDAV applications need to be aware.

Al'l of the security considerations of HITP/ 1.1 (discussed in

[RFC2068]) and XM. (discussed in [RFC2376]) also apply to WebDAV. In
addition, the security risks inherent in renpte authoring require
stronger authentication technol ogy, introduce several new privacy
concerns, and may increase the hazards from poor server design

These issues are detail ed bel ow

1 Authentication of Cients

Due to their enphasis on authoring, WbDAV servers need to use
aut hentication technology to protect not just access to a network
resource, but the integrity of the resource as well. Furthernore,
the introduction of |ocking functionality requires support for

aut henti cati on.

A password sent in the clear over an insecure channel is an

i nadequat e neans for protecting the accessibility and integrity of a
resource as the password may be intercepted. Since Basic

aut hentication for HITP/ 1.1 performs essentially clear text

transm ssion of a password, Basic authentication MJUST NOT be used to
aut henticate a WebDAV client to a server unless the connection is
secure. Furthernore, a WebDAV server MJST NOT send Basic

aut hentication credentials in a WWVAut henti cate header unless the
connection is secure. Exanmples of secure connections include a
Transport Layer Security (TLS) connection enploying a strong cipher
suite with nutual authentication of client and server, or a
connection over a network which is physically secure, for exanple, an
i solated network in a building with restricted access.

ol and, et al. St andards Track [Page 77]

RFC 2518 V\EBDAV February 1999

17.

17.

17.

WebDAV applicati ons MJST support the Di gest authentication schene

[RFC2069]. Since Digest authentication verifies that both parties to
a communi cati on know a shared secret, a password, without having to
send that secret in the clear, Digest authentication avoids the
security problens inherent in Basic authentication while providing a
| evel of authentication which is useful in a w de range of scenari os.

2 Denial of Service

Deni al of service attacks are of special concern to WbDAV servers.
WebDAV pl us HTTP enabl es denial of service attacks on every part of a
systeni s resources.

The underlying storage can be attacked by PUTting extrenely |arge
files.

Asking for recursive operations on |large collections can attack
processing tinmne.

Maki ng mul tiple pipelined requests on nultiple connections can attack
net wor k connecti ons.

WebDAV servers need to be aware of the possibility of a denial of
service attack at all |evels.

3 Security through Cbscurity

WebDAV provi des, through the PROPFIND net hod, a nechanismfor listing
the menber resources of a collection. This greatly dininishes the

ef fecti veness of security or privacy techniques that rely only on the
difficulty of discovering the names of network resources. Users of
WebDAV servers are encouraged to use access control techniques to
prevent unwanted access to resources, rather than depending on the
relative obscurity of their resource nanes.

4 Privacy |ssues Connected to Locks

When submitting a | ock request a user agent nmay al so subnit an owner
XML field giving contact information for the person taking out the

| ock (for those cases where a person, rather than a robot, is taking
out the lock). This contact information is stored in a | ockdi scovery
property on the resource, and can be used by other collaborators to
begi n negotiation over access to the resource. However, in nany
cases this contact information can be very private, and should not be
wi dely dissem nated. Servers SHOULD |imit read access to the

| ockdi scovery property as appropriate. Furthernore, user agents

ol and, et al. St andards Track [Page 78]

RFC 2518 V\EBDAV February 1999

17

17.

17.

SHOULD provide control over whether contact infornmation is sent at
all, and if contact information is sent, control over exactly what
information is sent.

.5 Privacy Issues Connected to Properties

Since property values are typically used to hold information such as
t he aut hor of a document, there is the possibility that privacy
concerns could arise stemm ng fromw despread access to a resource’s
property data. To reduce the risk of inadvertent rel ease of private
information via properties, servers are encouraged to devel op access
control nechani sns that separate read access to the resource body and
read access to the resource’'s properties. This allows a user to
control the dissenination of their property data w thout overly
restricting access to the resource’s contents.

6 Reduction of Security due to Source Link

HTTP/ 1.1 warns agai nst providing read access to script code because
it may contain sensitive information. Yet WbDAV, via its source
link facility, can potentially provide a URI for script resources so
they may be authored. For HITP/ 1.1, a server could reasonably
prevent access to source resources due to the predoni nance of read-
only access. WbDAV, with its enphasis on authoring, encourages read
and wite access to source resources, and provides the source |ink
facility to identify the source. This reduces the security benefits
of elimnating access to source resources. Users and admnistrators
of WebDAV servers should be very cautious when allow ng renote
authoring of scripts, limting read and wite access to the source
resources to authorized principals.

7 Inplications of XML External Entities

XML supports a facility known as "external entities", defined in
section 4.2.2 of [REC-XM.], which instruct an XM. processor to
retrieve and performan inline include of XML |ocated at a particular
URI. An external XM entity can be used to append or nodify the
docunent type declaration (DTD) associated with an XM. docunent. An
external XML entity can also be used to include XML within the
content of an XM. docunent. For non-validating XM., such as the XM
used in this specification, including an external XM. entity is not
required by [REC-XM.]. However, [REC-XM.] does state that an XM
processor nmay, at its discretion, include the external XM entity.

External XM entities have no inherent trustworthiness and are
subject to all the attacks that are endemic to any HTTP GET request.
Furthernore, it is possible for an external XM entity to nodify the
DTD, and hence affect the final formof an XM. docunent, in the worst

ol and, et al. St andards Track [Page 79]

RFC 2518 V\EBDAV February 1999

17.

18

case significantly nodifying its semantics, or exposing the XM
processor to the security risks discussed in [RFC2376]. Therefore,
i mpl ementers nmust be aware that external XML entities should be
treated as untrustworthy.

There is also the scalability risk that woul d acconpany a widely
depl oyed application which made use of external XM entities. In
this situation, it is possible that there would be significant
nunmbers of requests for one external XML entity, potentially
overl oadi ng any server which fields requests for the resource
containing the external XM entity.

8 Ri sks Connected with Lock Tokens

This specification, in section 6.4, requires the use of Universa

Uni que Identifiers (UU Ds) for |ock tokens, in order to guarantee
their uni queness across space and tinme. UUIDs, as defined in [ISO
11578], contain a "node" field which "consists of the | EEE address,
usual Iy the host address. For systens with nultiple | EEE 802 nodes,
any avail abl e node address can be used." Since a WbDAV server will
i ssue many | ocks over its lifetime, the inplicationis that it wll
al so be publicly exposing its | EEE 802 address.

There are several risks associated with exposure of | EEE 802
addresses. Using the | EEE 802 address:

* |t is possible to track the novenent of hardware from subnet to
subnet .

* |t may be possible to identify the manufacturer of the hardware
runni ng a WebDAV server.

* It may be possible to determ ne the nunber of each type of conputer
runni ng WWebDAV.

Section 6.4.1 of this specification details an alternate nmechani sm
for generating the "node" field of a UU D wi thout using an | EEE 802
address, which alleviates the risks associated with exposure of |EEE
802 addresses by using an alternate source of uniqueness.

| ANA Consi derations
Thi s docunent defines two namespaces, the namespace of property

nanes, and the namespace of WebDAV-specific XM. el ements used within
property val ues.

ol and, et al. St andards Track [Page 80]

RFC 2518 V\EBDAV February 1999

19

URI's are used for both names, for several reasons. Assignnment of a
URI does not require a request to a central naming authority, and
hence al | ow WbDAV property names and XM. el ements to be quickly
defined by any WebDAV user or application. URIs also provide a

uni que address space, ensuring that the distributed users of WbDAV
wi |l not have collisions anong the property nanes and XM el enents
they create

This specification defines a distinguished set of property nanes and
XM. el enents that are understood by all WbDAV applications. The
property nanmes and XM. el enents in this specification are all derived
fromthe base URI DAV: by adding a suffix to this URI, for exanple,
DAV: creationdate for the "creationdate" property.

This specification also defines a URI schene for the encodi ng of | ock
t okens, the opaquel ockt oken URI schenme described in section 6.4.

To ensure correct interoperation based on this specification, |ANA
nmust reserve the URI nanespaces starting with "DAV:" and with
"opaquel ockt oken: " for use by this specification, its revisions, and
rel ated WebDAV specifications.

Intell ectual Property

The following notice is copied from RFC 2026 [RFC2026], section 10. 4,
and describes the position of the I ETF concerning intellectua
property clai ns made agai nst this docunent.

The | ETF takes no position regarding the validity or scope of any
intellectual property or other rights that mght be clained to
pertain to the inplenentation or use other technol ogy described in
this docunent or the extent to which any |icense under such rights

nm ght or might not be available; neither does it represent that it
has nmade any effort to identify any such rights. [Information on the
| ETF's procedures with respect to rights in standards-track and
standards-rel ated docunentation can be found in BCP-11. Copi es of
clains of rights nade avail able for publication and any assurances of
licenses to be nade avail able, or the result of an attenpt made to
obtain a general license or permssion for the use of such
proprietary rights by inplenmentors or users of this specification can
be obtained fromthe | ETF Secretari at.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that nay be required to practice
this standard. Please address the information to the | ETF Executive
Director.

ol and, et al. St andards Track [Page 81]

RFC 2518 V\EBDAV February 1999

20 Acknow edgenents

21

21.

A specification such as this thrives on piercing critical review and
wi thers fromapathetic neglect. The authors gratefully acknow edge
the contributions of the foll owi ng people, whose insights were so
val uabl e at every stage of our work.

Terry Allen, Harald Al vestrand, Ji m Ansden, Becky Anderson, Al an
Babi ch, Sanford Barr, Dylan Barrell, Bernard Chester, Ti m Berners-
Lee, Dan Connolly, Jim Cunningham Ron Daniel, Jr., JimDavis, Keith
Dawson, Mark Day, Brian Deen, Martin Duerst, David Durand, Lee
Farrell, Chuck Fay, Wsley Felter, Roy Fielding, Mark Fisher, Al an
Freier, Ceorge Florentine, JimGettys, Phill Hallam Baker, Dennis
Ham | ton, Steve Henning, Mead Hinel stein, Al ex Hopmann, Andre van der
Hoek, Ben Laurie, Paul Leach, Ora Lassila, Karen MacArthur, Steven
Martin, Larry Masinter, Mchael Mealling, Keith More, Thomas Narten
Henri k Ni el sen, Kenji Ota, Bob Parker, denn Peterson, Jon Radoff,
Saveen Reddy, Henry Sanders, Christopher Seiwald, Judith Slein, Mke
Spreitzer, Einar Stefferud, Geg Stein, Ralph Swick, Kenji Takahashi
Richard N. Tayl or, Robert Thau, John Turner, Sankar Virdhagriswaran
Fabio Vitali, G egory Wodhouse, and Lauren Wod

Two fromthis [ist deserve special nmention. The contributions by
Larry Masinter have been invaluable, both in helping the formation of
the working group and in patiently coaching the authors al ong the
way. In so many ways he has set high standards we have toiled to
meet. The contributions of Judith Slein in clarifying the

requi renents, and in patiently reviewing draft after draft, both

i mproved this specification and expanded our ninds on docunent
nmanagenent .

W would also Iike to thank John Turner for devel oping the XML DTD.
Ref er ences
1 Normative References

[RFC1766] Al vestrand, H., "Tags for the ldentification of
Languages", RFC 1766, March 1995.

[RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

ol and, et al. St andards Track [Page 82]

RFC 2518

21.

[RFC2396]

[REC- XM.]

[REC- XML- NAMES]

[RFC2069]

[RFC2068]

[1SO 639]

[1SO 8601]

[1SO 11578]

[RFC2141]

[UTF- 8]

2 I nformati onal

V\EBDAV February 1999

Berners-Lee, T., Fielding, R and L. Masinter,
"Uni form Resource ldentifiers (URI): Generic Syntax",
RFC 2396, August 1998.

T. Bray, J. Paoli, C. M Sperberg-MQeen
"Extensi bl e Markup Language (XM.)." Wrld Wde Wb
Consortium Recomrendati on REC- xnl - 19980210.
http://ww. w3. org/ TR/ 1998/ REC- xmm - 19980210

T. Bray, D. Hollander, A Layman, "Nanespaces in
XM.". World Wde Web Consortium Reconmendati on REC
xm - nanmes-19990114. http://ww. w3. or g/ TR/ 1999/ REC-
xm - nanes-19990114/

Franks, J., Hallam Baker, P., Hostetler, J., Leach
P, Luotonen, A, Sink, E. and L. Stewart, "An
Extension to HITP : Digest Access Authentication"
RFC 2069, January 1997.

Fielding, R, Gettys, J., Mgul, J., Frystyk, H and
T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/ 1. 1", RFC 2068, January 1997

| SO (International Organization for Standardization).
| SO 639:1988. "Code for the representation of nanes
of | anguages."

| SO (I nternational Organization for Standardization).
| SO 8601: 1988. "Data el enents and interchange fornmats
- Information interchange - Representation of dates
and tines."

| SO (International Organization for Standardization).
| SO I EC 11578: 1996. "Information technol ogy - Open
Systens | nterconnection - Renbte Procedure Cal

(RPQ) "

Moats, R, "URN Syntax", RFC 2141, May 1997.

Yergeau, F., "UTF-8, a transfornation format of
Uni code and | SO 10646", RFC 2279, January 1998.

Ref er ences

[RFC2026] Bradner, S., "The Internet Standards Process - Revision

3")

ol and, et al

BCP 9, RFC 2026, Cctober 1996

St andards Track [Page 83]

RFC 2518 V\EBDAV February 1999

22

[RFC1807] Lasher, R and D. Cohen, "A Format for Bibliographic
Records", RFC 1807, June 1995.

[WF] C. Lagoze, "The Warwi ck Framework: A Contai ner
Architecture for Diverse Sets of Metadata", D Lib
Magazi ne, Jul y/ August 1996.
http://ww.dlib.org/dlib/july96/|agoze/ 071 agoze. ht nl

[USMARC] Net wor k Devel oprent and MARC St andards, O fice, ed. 1994.
"USMARC Format for Bibliographic Data", 1994. Washi ngton,
DC. Cataloging Distribution Service, Library of Congress.

[REC-PICS] J. MIler, T. Krauskopf, P. Resnick, W Treese, "PICS
Label Distribution Label Syntax and Conmuni cati on
Protocol s" Version 1.1, Wrld Wde Web Consortium
Recomendat i on REC- Pl CS-| abel s-961031.
htt p: // www. w3. or g/ pub/ WMV TR/ REC- PI CS- | abel s-961031. htnl .

[RFC2291] Slein, J., Vitali, F., Witehead, E. and D. Durand,
"Requirenents for Distributed Authoring and Versioni ng
Protocol for the Wrld Wde Wb", RFC 2291, February 1998.

[RFC2413] Wibel, S., Kunze, J., Lagoze, C. and M Wl f, "Dublin
Core Metadata for Resource Discovery", RFC 2413, Septenber
1998.

[RFC2376] Wiitehead, E. and M Mirata, "XM. Medi a Types", RFC 2376,
July 1998.

Aut hors’ Addr esses

Y. Y. Goland

M crosoft Corporation
One M crosoft Way
Redmond, WA 98052- 6399

EMai | ; yarong@n crosoft.com

E. J. Witehead, Jr.

Dept. O Informati on and Conputer Science
University of California, Irvine

Irvine, CA 92697-3425

EMail: ejw@cs. uci.edu

ol and, et al. St andards Track [Page 84]

RFC 2518 V\EBDAV February 1999

A. Fai zi

Net scape

685 East M ddl efield Road
Mount ai n Vi ew, CA 94043

EMai | ; asad@et scape. com

S. R Carter

Novel |

1555 N. Technol ogy Wy
MS ORM F111

Orem UT 84097-2399

EMBi | : srcarter@ovell.com
D. Jensen

Novel |

1555 N. Technol ogy Wy

MS ORM F111

Orem UT 84097-2399

EMai | : dcj ensen@ovel | . com

ol and, et al. St andards Track [Page 85]

RFC 2518 V\EBDAV February 1999

23 Appendi ces

23.1 Appendix 1 - WebDAV Docunent Type Definition

This section provides a docunent type definition
in [RECG XM],
the val ues of properties.

followi ng the rules
for the XML el enents used in the protocol streamand in
It collects the el enent definitions given

in sections 12 and 13.

<! DOCTYPE

<! ELEMENT

webdav-1.0 [

=->

XML El enents from Section 12 =

activel ock (lockscope, |ocktype, depth, owner?, tineout?,

| ockt oken?) >

<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT

| ockentry (I ockscope,
I ocki nfo (I ockscope,

| ocktype) >
| ockt ype, owner?) >

| ocktype (wite) >
wite EMPTY >

| ockscope (exclusive
excl usi ve EMPTY >
shared EMPTY >

shared) >

depth (#PCDATA) >
owner ANY >

ti meout (#PCDATA) >

| ockt oken (href+) >
href (#PCDATA) >

link (src+, dst+) >

dst (#PCDATA) >

src (#PCDATA) >

nmul ti status (response+, responsedescription?) >

response (href, ((href*, status)|(propstat+)),

Col and,

responsedescri pti on?) >

<! ELEMENT st atus (#PCDATA) >

<! ELEMENT propstat (prop, status, responsedescription?) >
<! ELEMENT responsedescri pti on (#PCDATA) >

et al. St andards Track [Page 86]

RFC 2518 V\EBDAV February 1999

<! ELEMENT prop ANY >

<! ELEMENT propertybehavior (omt | keepalive) >
<! ELEMENT onit EMPTY >

<! ELEMENT keepal ive (#PCDATA | href+) >

<! ELEMENT propertyupdate (renmove | set)+ >

<! ELEMENT renove (prop) >

<! ELEMENT set (prop) >

<! ELEMENT propfind (allprop | propnane | prop) >
<! ELEMENT al | prop EMPTY >

<! ELEMENT propnanme EWMPTY >

<! ELEMENT col | ecti on EMPTY >

<!--=========== Property Elements from Section 13 ==-->
<! ELEMENT cr eati ondate (#PCDATA) >

<! ELEMENT di spl aynanme (#PCDATA) >

<! ELEMENT get cont ent| anguage (#PCDATA) >
<! ELEMENT getcontentl| ength (#PCDATA) >
<! ELEMENT get contenttype (#PCDATA) >

<! ELEMENT get etag (#PCDATA) >

<! ELEMENT get | astnodi fi ed (#PCDATA) >

<! ELEMENT | ockdi scovery (activel ock)* >
<! ELEMENT resourcetype ANY >

<! ELEMENT source (link)* >

<! ELEMENT supportedl ock (lockentry)* >
1>

ol and, et al. St andards Track [Page 87]

RFC 2518 V\EBDAV February 1999

23.2 Appendix 2 - 1SO 8601 Date and Tine Profile

The creationdate property specifies the use of the |1SO 8601 date
format [I SO 8601]. This section defines a profile of the | SO 8601
date format for use with this specification. This profile is quoted
froman Internet-Draft by Chris Newnan, and is nentioned here to
properly attribute his work.

date-tine = full-date "T" full-tine
full -date = date-fullyear "-" date-nonth "-" date-nday
full-tine = partial-tine tinme-offset

DA T
2DET ; 01-12

date-ful | year
dat e- nont h

dat e- nday 2DDE@T ; 01-28, 01-29, 01-30, 01-31 based on
nont h/ year
ti me- hour 2DDE@T ; 00-23

time-mnute

ti me- second

ti me-secfrac
ti me- nunof f set
time-of fset

2DIAT ; 00-59

2DIA T ; 00-59, 00-60 based on | eap second rules
LT 1*DIAT

"+ "-") time-hour
"Z" [time-nunoffset

time-mnute

partial -tine = tinme-hour time-mnute ti me- second

[time-secfrac]

Nureric offsets are calculated as local tine mnus UTC (Coordinated

Universal Tine). So the equivalent tinme in UTC can be deternined by
subtracting the offset fromthe local time. For exanple, 18:50: 00-

04:00 is the sane tinme as 22:58:00Z.

If the time in UTC is known, but the offset to local tine is unknown,
this can be represented with an offset of "-00:00". This differs
froman offset of "Z" which inplies that UTCis the preferred
reference point for the specified tine.

ol and, et al. St andards Track [Page 88]

RFC 2518 V\EBDAV February 1999

23.

23.

23.

3 Appendi x 3 - Notes on Processing XM. El enents
3.1 Notes on Enpty XM. El erments

XML supports two nechanisns for indicating that an XM. el enent does
not have any content. The first is to declare an XM el enent of the
form <A>. The second is to declare an XM. el enent of the form
<A/>. The two XM. el enents are senmantically identical

It is a violation of the XM. specification to use the <A> formif
the associ ated DTD declares the el enent to be EMPTY (e.g., <!ELEVMENT
A EMPTY>). If such a statenent is included, then the enpty el enent
format, <A/> nmust be used. |If the elenent is not declared to be
EMPTY, then either form <A> or <A/ > may be used for enpty

el ement s.

23.3.2 Notes on Illegal XM. Processing

XML is a flexible data format that makes it easy to subnmit data that
appears legal but in fact is not. The philosophy of "Be flexible in
what you accept and strict in what you send" still applies, but it
nmust not be applied inappropriately. XM is extrenely flexible in
dealing with issues of white space, elenent ordering, inserting new
el enents, etc. This flexibility does not require extension
especially not in the area of the neaning of el enents.

There is no kindness in accepting illegal conbinations of XM
elements. At best it will cause an unwanted result and at worst it
can cause real danage

3.2.1 Example - XM. Syntax Error
The follow ng request body for a PROPFIND nmethod is ill egal

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: ">

<D: al | prop/ >

<D: pr opnane/ >
</ D: pr opfi nd>

The definition of the propfind elenment only allows for the allprop or
t he propnane el enent, not both. Thus the above is an error and nust
be responded to with a 400 (Bad Request).

ol and, et al. St andards Track [Page 89]

RFC 2518 V\EBDAV February 1999

23.

| magi ne, however, that a server wanted to be "kind" and decided to
pick the allprop element as the true elenment and respond to it. A
client running over a bandwidth limted |ine who intended to execute
a propnanme would be in for a big surprise if the server treated the
conmand as an al |l prop

Additionally, if a server were lenient and decided to reply to this
request, the results would vary randomy fromserver to server, with
sonme servers executing the allprop directive, and others executing
the propnane directive. This reduces interoperability rather than
increasing it.

3.2.2 Exanple - Unknown XM El ement

The previous exanple was illegal because it contained two el enents
that were explicitly banned from appearing together in the propfind
el ement. However, XM is an extensible | anguage, so one can inagine
new el enents being defined for use with propfind. Belowis the
request body of a PROPFIND and, |ike the previous exanple, nust be
rejected with a 400 (Bad Request) by a server that does not

under stand the expired-props el enent.

<?xm version="1.0" encoding="utf-8" ?>

<D: propfind xm ns: D="DAV: "

xm ns: E="htt p: // ww. f 00. bar/ st andar ds/ props/ " >
<E: expi r ed- props/ >

</ D: pr opfi nd>

To understand why a 400 (Bad Request) is returned let us |ook at the
request body as the server unfamliar with expired-props sees it.

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: "

xm ns: E="htt p: // ww. f 00. bar/ st andar ds/ props/ ">
</ D: pr opfi nd>

As the server does not understand the expired-props el enent,
according to the WebDAV-specific XM processing rules specified in
section 14, it nust ignore it. Thus the server sees an enpty
propfind, which by the definition of the propfind elenent is illegal

Pl ease note that had the extension been additive it would not
necessarily have resulted in a 400 (Bad Request). For exanple,
i mgi ne the followi ng request body for a PROPFI ND:

<?xm version="1.0" encoding="utf-8" ?>
<D: propfind xm ns: D="DAV: "
xm ns: E="htt p: //ww. f 00. bar/ st andar ds/ props/ ">

ol and, et al. St andards Track [Page 90]

RFC 2518 V\EBDAV February 1999

<D: pr opnane/ >
<E: | eave- out >*boss*</ E: | eave- out >
</ D: pr opfi nd>

The previous exanple contains the fictitious elenent |eave-out. Its
purpose is to prevent the return of any property whose nanme natches
the submtted pattern. |[If the previous exanple were subnmtted to a
server unfamliar with | eave-out, the only result would be that the
| eave-out el enent woul d be ignored and a propnane woul d be execut ed.

ol and, et al. St andards Track [Page 91]

RFC 2518 V\EBDAV February 1999

23.

23.

23.

4 Appendi x 4 -- XM. Nanespaces for WbDAV
4.1 Introduction

Al'l DAV conpliant systens MJST support the XM. namespace extensions
as specified in [REC XM.- NAMVES] .

4.2 Meaning of Qualified Names

[Note to the reader: This section does not appear in [REC- XM.- NAMES],
but is necessary to avoid anbiguity for WebDAV XM. processors.]

WebDAV conpliant XM. processors MJST interpret a qualified name as a
URI constructed by appending the Local Part to the nanespace name UR

Exanpl e

<del : glider xm ns:del ="http://ww.del.jensen.org/">
<del : gl i der nanme>
Johnny Updr aft
</ del : gl i der nane>
<del : gl i der acci dent s/ >
</ del : glider>

In this exanple, the qualified elenent nane "del:glider" is
interpreted as the URL "http://ww. del.jensen.org/glider"

<bar:glider xmns:del="http://ww.del.jensen.org/">
<bar: gl i der nanme>
Johnny Updraft
</ bar: gl i der nane>
<bar: gl i deracci dents/ >
</ bar:glider>

Even though this exanple is syntactically different fromthe previous
exanple, it is semantically identical. Each instance of the
nanespace nane "bar" is replaced with "http://ww.del.jensen.org/"
and then appended to the |ocal nane for each el enment tag. The
resulting tag nanes in this exanple are exactly the same as for the
previ ous exanpl e.

<foo:r xmns:foo="http://ww.del.jensen.org/glide">
<f oo: r nane>
Johnny Updr aft
</ foo: rnane>
<f oo: racci dent s/ >
</ foo:r>

ol and, et al. St andards Track [Page 92]

RFC 2518 V\EBDAV February 1999

This exanple is semantically identical to the two previous ones.
Each i nstance of the namespace nane "foo" is replaced with
"http://ww.del .jensen.org/glide" which is then appended to the |oca
name for each element tag, the resulting tag names are identical to
those in the previous exanpl es.

ol and, et al. St andards Track [Page 93]

RFC 2518 V\EBDAV February 1999

24. Full Copyright Statenent
Copyright (C The Internet Society (1999). All R ghts Reserved.

This docunent and translations of it may be copied and furnished to
others, and derivative works that conment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linmted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

ol and, et al. St andards Track [Page 94]

	HTTP Extensions for Distributed Authoring -- WEBDAV
	Feb 1999 RFC 2518
	Abstract
	Table of Contents
	1 Introduction
	2 Notational Conventions
	3 Terminology
	4 Data Model for Resource Properties
	4.1 The Resource Property Model
	4.2 Existing Metadata Proposals
	4.3 Properties and HTTP Headers
	4.4 Property Values
	4.5 Property Names
	4.6 Media Independent Links

	5 Collections of Web Resources
	5.1 HTTP URL Namespace Model
	5.2 Collection Resources
	5.3 Creation and Retrieval of Collection Resources
	5.4 Source Resources and Output Resources

	6 Locking
	6.1 Exclusive Vs. Shared Locks
	6.2 Required Support
	6.3 Lock Tokens
	6.4 opaquelocktoken Lock Token URI Scheme
	6.4.1 Node Field Generation Without the IEEE 802 Address

	6.5 Lock Capability Discovery
	6.6 Active Lock Discovery
	6.7 Usage Considerations

	7 Write Lock
	7.1 Methods Restricted by Write Locks
	7.2 Write Locks and Lock Tokens
	7.3 Write Locks and Properties
	7.4 Write Locks and Null Resources
	7.5 Write Locks and Collections
	7.6 Write Locks and the If Request Header
	7.6.1 Example - Write Lock

	7.7 Write Locks and COPY/MOVE
	7.8 Refreshing Write Locks

	8 HTTP Methods for Distributed Authoring
	8.1 PROPFIND
	8.1.1 Example - Retrieving Named Properties
	8.1.2 Example - Using allprop to Retrieve All Properties
	8.1.3 Example - Using propname to Retrieve all Property Names

	8.2 PROPPATCH
	8.2.1 Status Codes for use with 207 (Multi-Status)
	8.2.2 Example - PROPPATCH

	8.3 MKCOL Method
	8.3.1 Request
	8.3.2 Status Codes
	8.3.3 Example - MKCOL

	8.4 GET, HEAD for Collections
	8.5 POST for Collections
	8.6 DELETE
	8.6.1 DELETE for Non-Collection Resources
	8.6.2 DELETE for Collections
	8.6.2.1 Example - DELETE

	8.7 PUT
	8.7.1 PUT for Non-Collection Resources
	8.7.2 PUT for Collections

	8.8 COPY Method
	8.8.1 COPY for HTTP/1.1 resources
	8.8.2. COPY for Properties
	8.8.3 COPY for Collections
	8.8.4 COPY and the Overwrite Header
	8.8.5 Status Codes
	8.8.6 Example - COPY with Overwrite
	8.8.7 Example - COPY with No Overwrite
	8.8.8 Example - COPY of a Collection

	8.9 MOVE Method
	8.9.1 MOVE for Properties
	8.9.2 MOVE for Collections
	8.9.3 MOVE and the Overwrite Header
	8.9.4 Status Codes
	8.9.5 Example - MOVE of a Non-Collection
	8.9.6 Example - MOVE of a Collection

	8.10 LOCK Method
	8.10.1 Operation
	8.10.2 The Effect of Locks on Properties and Collections
	8.10.3 Locking Replicated Resources
	8.10.4 Depth and Locking
	8.10.5 Interaction with other Methods
	8.10.6 Lock Compatibility Table
	8.10.7 Status Codes
	8.10.8 Example - Simple Lock Request
	8.10.9 Example - Refreshing a Write Lock
	8.10.10 Example - Multi-Resource Lock Request

	8.11 UNLOCK Method
	8.11.1 Example - UNLOCK

	9 HTTP Headers for Distributed Authoring
	9.1 DAV Header
	9.2 Depth Header
	9.3 Destination Header
	9.4 If Header
	9.4.1 No-tag-list Production
	9.4.1.1 Example - No-tag-list If Header

	9.4.2 Tagged-list Production
	9.4.2.1 Example - Tagged List If header

	9.4.3 not Production
	9.4.4 Matching Function
	9.4.5 If Header and Non-DAV Compliant Proxies

	9.5 Lock-Token Header
	9.6 Overwrite Header
	9.7 Status-URI Response Header
	9.8 Timeout Request Header

	10 Status Code Extensions to HTTP/1.1
	10.1 102 Processing
	10.2 207 Multi-Status
	10.3 422 Unprocessable Entity
	10.4 423 Locked
	10.5 424 Failed Dependency
	10.6 507 Insufficient Storage

	11 Multi-Status Response
	12 XML Element Definitions
	12.1 activelock XML Element
	12.1.1 depth XML Element
	12.1.2 locktoken XML Element
	12.1.3 timeout XML Element

	12.2 collection XML Element
	12.3 href XML Element
	12.4 link XML Element
	12.4.1 dst XML Element
	12.4.2 src XML Element

	12.5 lockentry XML Element
	12.6 lockinfo XML Element
	12.7 lockscope XML Element
	12.7.1 exclusive XML Element
	12.7.2 shared XML Element

	12.8 locktype XML Element
	12.8.1 write XML Element

	12.9 multistatus XML Element
	12.9.1 response XML Element
	12.9.1.1 propstat XML Element
	12.9.1.2 status XML Element

	12.9.2 responsedescription XML Element

	12.10 owner XML Element
	12.11 prop XML element
	12.12 propertybehavior XML element
	12.12.1 keepalive XML element
	12.12.2 omit XML element

	12.13 propertyupdate XML element
	12.13.1 remove XML element
	12.13.2 set XML element

	12.14 propfind XML Element
	12.14.1 allprop XML Element
	12.14.2 propname XML Element

	13 DAV Properties
	13.1 creationdate Property
	13.2 displayname Property
	13.3 getcontentlanguage Property
	13.4 getcontentlength Property
	13.5 getcontenttype Property
	13.6 getetag Property
	13.7 getlastmodified Property
	13.8 lockdiscovery Property
	13.8.1 Example - Retrieving the lockdiscovery Property

	13.9 resourcetype Property
	13.10 source Property
	13.10.1 Example - A source Property

	13.11 supportedlock Property
	13.11.1 Example - Retrieving the supportedlock Property

	14 Instructions for Processing XML in DAV
	15 DAV Compliance Classes
	15.1 Class 1
	15.2 Class 2

	16 Internationalization Considerations
	17 Security Considerations
	17.1 Authentication of Clients
	17.2 Denial of Service
	17.3 Security through Obscurity
	17.4 Privacy Issues Connected to Locks
	17.5 Privacy Issues Connected to Properties
	17.6 Reduction of Security due to Source Link
	17.7 Implications of XML External Entities
	17.8 Risks Connected with Lock Tokens

	18 IANA Considerations
	19 Intellectual Property
	20 Acknowledgements
	21 References
	21.1 Normative References
	21.2 Informational References

	22 Authors’ Addresses
	23 Appendices
	23.1 Appendix 1 - WebDAV Document Type Definition
	23.2 Appendix 2 - ISO 8601 Date and Time Profile
	23.3 Appendix 3 - Notes on Processing XML Elements
	23.3.1 Notes on Empty XML Elements
	23.3.2.1 Example - XML Syntax Error
	23.3.2.2 Example - Unknown XML Element

	23.4 Appendix 4 -- XML Namespaces for WebDAV
	23.4.1 Introduction
	23.4.2 Meaning of Qualified Names

	24. Full Copyright Statement

	
	IETF Title Page

