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Status of this Memo 
 
   This memo defines an Experimental Protocol for the Internet 
   community.  It does not specify an Internet standard.  Discussion and 
   suggestions for improvement are requested.  Please refer to the 
   current edition of the "IAB Official Protocol Standards" for the 
   standardization state and status of this protocol.  Distribution of 
   this memo is unlimited. 
 
Abstract 
 
   The first version of this memo, describing a possible next generation 
   of Internet protocols, was written by the present author in the 
   summer and fall of 1989, and circulated informally, including to the 
   IESG, in December 1989.  A further informal note on the addressing, 
   called "Toasternet Part II", was circulated on the IETF mail list 
   during March of 1992. 
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1.  Introduction 
 
   This memo presents the specification for version 7 of the Internet 
   Protocol, as well as version 7 of the TCP and the user datagram 
   protocol.  Version 7 has been designed to address several major 
   problems that have arisen as version 4 has evolved and been deployed, 
   and to make a major step forward in the datagram switching and 
   forwarding architecture of the Internet. 
 
   The major problems are threefold.  First, the address space of 
   version 4 is now seen to be too small.  While it was viewed as being 
   almost impossibly large when version 4 was designed, two things have 
   occurred to create a problem.  The first is a success crisis:  the 
   internet protocols have been more widely used and accepted than their 
   designers anticipated.  Also, technology has moved forward, putting 
   microprocessors into devices not anticipated except as future dreams 
   a decade ago. 
 
   The second major problem is a perceived routing explosion.  The 
   present routing architecture of the internet calls for routing each 
   organization's network independently.  It is becoming increasingly 
   clear that this does not scale to a universal internet.  While it is 
   possible to route several billion networks in a flat, structureless 
   domain, it is not desireable. 
 
   There is also the political administrative issue of assigning network 
   numbers to organizations.  The version 4 administrative system calls 
   for organizations to request network assignments from a single 
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   authority.  While to some extent this has been alleviated by 
   reserving blocks to delegated assignments, the address space is not 
   large enough to do this in the necessary general case, with large 
   blocks allocated to (e.g.) national authority. 
 
   The third problem is the increasing bandwidth of the networks and of 
   the applications possible on the network.  The TCP, while having 
   proven useful on an unprecedented range of network speeds, is now the 
   limiting factor at the highest speeds, due to restrictions of window 
   size, sequence-space, and port numbers.  These limitations can all be 
   addressed by increasing the sizes of the relevant fields.  See 
   [RFC1323]. 
 
   There is also an opportunity to move the technology forward, and take 
   advantage of a combination of the best features of the hop-by-hop 
   connectionless forwarding of version 4 (and CLNP) as well as the 
   pre-established paths of version 5 (and, e.g., the OSI CONS). 
 
   Internet Version 7 includes four major areas of improvement, while at 
   the same time retaining interoperation with version 4 with a small 
   amount of conversion knowledge imposed on version 7 hosts and 
   routers. 
 
      o  It increases the address fields to 64 bits, with sufficient 
         space for visible future expansion of the internet. 
 
      o  It adds a numbering layer for administrations, above the 
         organization or network layer, as well as providing more 
         space for subnetting within organizations. 
 
      o  It increases the range of speeds and network path delays over 
         which the TCP will operate satisfactorily, as well as the 
         number of transactions in bounded time that can be served by 
         a host. 
 
      o  Finally, it provides a forward route identifier in each 
         datagram, to support extremely fast path, circuit, or 
         flow-based forwarding, or any desired combination, while 
         preserving hop-by-hop connectivity. 
 
   The result is not just a movement sideways, deploying a new network 
   layer protocol to patch current problems.  It is a significant step 
   forward for network layer technology, 
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1.1  Objectives 
 
   The following are some of the objectives of the design. 
 
  o  Use what has been learned from the IP version 4 protocol, fixing 
     things that are troublesome, and not fixing that which is not 
     broken. 
 
  o  Retain the essential "look and feel" of the Internet protocol 
     suite.  It has been very successful, and one doesn't argue with 
     success. 
 
  o  Not introduce concepts that the Internet has shown do not belong 
     in the protocol definition.  Best example:  we do not want to add 
     any kind of routing information into the addressing, other than 
     the administrative hierarchy that has sometimes proved useful. 
     Note that the one feature in version 4 addressing (the class 
     system) designed to aid routing is now the most serious single 
     problem. 
 
  o  Allow current hosts to interoperate, if not universally, at least 
     within an organization or larger area for the indefinite future. 
     There will be version 4 hosts for 10-15 years into the future, 
     the Internet must remain on good terms with them. 
 
  o  Likewise, we must not impose the new version, telling sites they 
     must convert to stay connected.  People resist imposed solutions. 
     It must not be marketed as something different from IPv4; the 
     differences must be down-played at every opportunity. 
 
  o  The design must allow individual hosts and routers to be upgraded 
     effectively at random, with no transition plan constraints. 
 
  o  The design must not require renumbering the Internet.  The 
     administrative work already accomplished is immense, if it is to 
     be done again it will be in assigning NSAPs. 
 
  o  It must allow IPv4 hosts to interoperate without any reduction in 
     function, without any modification to their software or 
     configuration.  (Universal connectivity will be lost by IPv4 
     hosts, but they must be able to continue operating within their 
     organization at least.) 
 
  o  It must permit network layer state-free translation of datagrams 
     between IPv4 and IPv7; this is important to the previous point, 
     and essential to early testing and transitional deployment. 
 
  o  It must be a competent alternative to CLNP. 
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  o  It must not involve changing the semantics of the network layer 
     service in any way that invalidates the huge amount of work that 
     has gone into understanding how TCP (for example) functions in 
     the net, and the implementation of that understanding. 
 
  o  It must be defined Real Soon; the window of opportunity is almost 
     closed.  It will take vendors 3 years to deploy from the time the 
     standard is rock-solid concrete. 
 
   I believe all of these are accomplishable in a consistent, well- 
   engineered solution, and all are essential to the survival of the 
   Internet. 
 
1.2  Philosophy 
 
   Protocols should become simpler as they evolve. 
 
2.  Internet numbers 
 
   The version 4 numbering system has proven to be very flexible, 
   (mostly) expandable, and simple.  In short:  it works.  There are two 
   problems, neither serious when this specification was first developed 
   in 1988 and 1989, but have as expected become more serious: 
 
      o  The division into network, and then subnet, is insufficient. 
         Almost all sites need a network assignment large enough to 
         subnet.  At the top of the hierarchy, there is a need to 
         assign administrative domains. 
 
      o  As bit-packing is done to accomplish the desired network 
         structure, the 32 bit limit causes more and more aggravation. 
 
2.1  Is 64 Bits Enough? 
 
   Consider:  (thought experiment) 32 bits presently numbers "all" of 
   the computers in the world, and another 32 bits could be used to 
   number all of the bytes of on-line storage on each computer.  (Most 
   have a lot less than 4 gigabytes on-line, the ones that have more 
   could be notionally assigned more than one address.) 
 
   So: 64 bits is enough to number every byte of online storage in 
   existence today, in a hierarchical structured numbering plan. 
 
   Another way of looking at 64 bits:  it is more than 2 billion 
   addresses for each person on the planet.  Even if I have 
   microprocessors in my shirt buttons I'm not going to have that many. 
   32 bits, on the other hand, was never going to be sufficient:  there 
   are more than 2^32 people. 
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2.2  Why version 7? 
 
   It was clearly recognized at the start of this project in 1988 that 
   making the address 64 bits implies a new IP header format, which was 
   called either "TP/IX" or "IP version 7"; there wasn't anything magic 
   about the number 7, I made it up.  Version 4 is the familiar current 
   version of IP.  Version 5 is the experimental ST (Stream) protocol. 
   ST-II, a newer version of ST, uses the same version number, something 
   I was not aware of until recently; I suspected it might have been 
   allocated 6.  Besides, I liked 7. 
 
   Apparently (as reported by Bob Braden) the IAB followed much the same 
   logic, and may have had the idea planted by the mention of version 7 
   in the "Toasternet Part II" memo.  The IAB in June 1992 floated a 
   proposal that CLNP, or a CLNP-based design, be Internet Version 7. 
   (And promptly got themselves toasted.) However, close inspection of 
   the bits shows that CLNP is clearly version 8. 
 
2.3  The version 7 IP address 
 
   The Version 7 IP 64 bit address looks like: 
 
    +-------+-------+-------+-------+-------+-------+-------+-------+ 
    |      Admin Domain     |        Network        |     Host      | 
    +-------+-------+-------+-------+-------+-------+-------+-------+ 
 
   Note:  the boundary between "network" and "host" is no more fixed 
   than it is today; each (sub)network will have its own mask.  Just as 
   the mask today can be anywhere from FF00 0000 (8/24) to FFFF FFFC 
   (30/2), the mask for the 64 bit address can reasonably be FFFF FF00 
   0000 0000 (24/40) to FFFF FFFF FFFF FFFC (62/2). 
 
   The AD (Administrative Domain), identifies an administration which 
   may be a service provider, a national administration, or a large 
   multi-organization (e.g.  a government).  The idea is that there 
   should not be more than a few hundred of these at first, and 
   eventually thousands or tens of thousands at most.  (But note that we 
   do not introduce a hard limit of 2^16 here; this estimate may be off 
   by a few orders of magnitude.) Since only 1/4th of the address space 
   is initially used (first two bits are 01), the remainder can then be 
   allocated in the future with more information available. 
 
   Most individual organizations would not be ADs.  In the short term, 
   ADs are known to the "core routing"; it pays to keep the number 
   smallish, a few thousand given current routing technology.  In the 
   long term, this is not necessary.  Big administrations (i.e., with 
   tens of millions of networks) get small blocks where needed, or 
   additional single AD numbers when needed. 
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   While the AD may be used for last resort routing (with a 24/40 mask), 
   it is primarily only an administrative device.  Most routing will be 
   done on the entire 48 bit AD+network number, or sub and super-sets of 
   those numbers.  (I.e., masks between about 32/32 and 56/8.) 
 
   Some ADs (e.g., NSF) may make permanent assignments; others (such as 
   a telephone company defining a network number for each subscriber 
   line) may tie the assignment to such a subscription.  But in no case 
   does this require traffic to be routed via the AD. 
 
2.4  AD numbers 
 
   AD numbers are allocated out of the same numbering space as network 
   numbers.  This means that a version 4 address can be distinguished 
   from the first 32 bits of a version 7 address.  This is useful to 
   help prevent the inadvertent use of the first half of the longer 
   address by a version 4 host. 
 
   There is a non-trivial amount of software that assumes that an "int" 
   is the same size and shape as an IP address, and does things like 
   "ipaddr = *(int *)ptr".  This usage has always been incorrect, but 
   does occur with disturbing frequency.  As IPv7 8 byte addresses 
   appear in the application layers, this software will find those 
   addresses unreachable; this is preferable to interacting with a 
   random host. 
 
   One possible method would be to allocate ADs in the range 96.0.0 to 
   192.255.255, using the top 1/4 of the version 4 class A space.  It is 
   probably best to allocate the first component downwards from 192, so 
   that the boundary between class A and AD can be moved if desired 
   later.  This initial allocation provides for 2031616 ADs, many more 
   than there should be even in full deployment. 
 
   Eventually, both AD and network will use the full 24 bit space 
   available to them.  Knowledge of the AD range should not be coded 
   into software.  If it was coded in, that software would break when 
   the entire 24 bit space is used for ADs.  (This lesson should have 
   been learned from CIDR.) 
 
2.5  Mapping of version 4 numbers 
 
   Initially, all existing Internet numbers are defined as belonging to 
   the NSF/Internet AD, number 192.0.0. 
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   The mapping from/to version 4 IP addresses: 
 
    +-------+-------+-------+-------+-------+-------+-------+-------+ 
    |      Admin Domain     |        Network        |     Host      | 
    +-------+-------+-------+-------+-------+-------+-------+-------+ 
     [  fixed at A0 00 00  ] [ 1st 24 bits of V4 IP]   [1]   [last 8] 
 
   So, for example, 192.42.95.15 (V4) becomes 192.0.0.192.42.95.1.15. 
 
   And the "standard" loopback interface address becomes 
   192.0.0.127.0.0.1.1 (I can see explaining that in 2015 to someone 
   born in 1995.) 
 
   The present protocol multicast (192.0.0.224.x.y.1.z) and loopback 
   addresses are permanently allocated in the NSF AD. 
 
3.  IP:  Internet datagram protocol 
 
   The Internet datagram protocol is revised to expand some fields (most 
   notably the addresses), while removing and relegating to options all 
   fields not universally useful (imperative) in every datagram in every 
   environment. 
 
   This results in some simplification, a length less than twice the 
   size of IPv4 even though most fields are doubled in size, and an 
   expanded space for options. 
 
   There is also a change in the option philosophy from IPv4:  it 
   specified that implementation of options was not optional, what was 
   optional was the existence of options in any given datagram.  This is 
   changed in IPv7:  no option need be implemented to be fully 
   conformant.  However, implementations must understand the option 
   classes; and a future Host Requirements specification for hosts and 
   routers used in the "connected Internet" may require some options in 
   its profile, e.g., Fragment would probably be required. 
 
   Digression:  In IPv4, options are often "considered harmful".  It is 
   the opinion of the present author that this is because they are 
   rarely needed, and not designed to be processed rapidly on most 
   architectures.  This leads to little or no attempt to improve 
   performance in implementations, while at the same time enormous 
   effort is dedicated to optimization of the no-option case.  IPv7 is 
   expected to be different on both counts. 
 
   Fields are always aligned on their own size; the 64 bit fields on 64 
   bit intervals from the start of the datagram. 
 
   Options are all 32 bit aligned, and the null option can be used to 
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   push a subsequent option (or the transport layer header) into 64 bit 
   or 64+32 off-phase alignment as desired. 
 
3.1  IP datagram header format 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |version|     header length     |        time to live           | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        total datagram length                                  | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +        forward route identifier                               + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +        destination address                                    + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +        source address                                         + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        protocol               |           checksum            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        options                                                | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   A description of each field follows. 
 
3.1.1  Version 
 
   This document describes version 7 of the protocol. 
 
3.1.2  Header length 
 
   The header length is a 12 bit count of the number of 32 bit words in 
   the IPv7 header.  This allows a header to be (theoretically at least) 
   up to 16380 bytes in length. 
 
3.1.3  Time to live 
 
   The time to live is a 16 bit count, nominally in 1/16 seconds.  Each 
   hop is required to decrement TTL by at least one. 
 
   This definition should allow continuation of the useful (even though 
   not entirely valid) interpretation of TTL as a hop count, while we 
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   move to faster networks and routers.  (The most familiar use is by 
   "traceroute", which really ought to be directly implemented by one or 
   more ICMP messages.) 
 
   The scale factor converts the usual version 4 default TTL into a 
   larger number of hops.  This is desireable because the forward route 
   architecture of version 7 enables the construction of simpler, faster 
   switches, and this may cause the network diameter to increase. 
 
3.1.4  Total datagram length 
 
   The 32 bit length of the entire datagram in octets.  A datagram can 
   therefore be up to 4294967295 bytes in overall length.  Particular 
   networks will normally impose lower limits. 
 
3.1.5  Forward route identifier 
 
   The identifier from the routing protocol to be used by the next hop 
   router to find its next hop.  (A more complete description is given 
   below.) 
 
3.1.6  Destination 
 
   The 64 bit IPv7 destination address. 
 
3.1.7  Source 
 
   The 64 bit IPv7 source address. 
 
3.1.8  Protocol 
 
   The transport layer protocol, e.g., TCP is 6.  The present code space 
   for this layer of demultiplexing is about half full.  Expanding it to 
   16 bits, allowing 65535 registered "transport" layers seems prudent. 
 
3.1.9  Checksum 
 
   The checksum is a 16 bit checksum of the entire IP header, using the 
   familiar algorithm used in IPv4. 
 
3.1.10  Options 
 
   Options may follow.  They are variable length, and always 32 bit 
   aligned, as discussed previously. 
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3.2  Option Format 
 
   Each option begins with a 32 bit header: 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    | C |F|    type                 |   length                      | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        option data                 ...          |   padding   | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   A description of each field: 
 
3.2.1  Class (C) 
 
   This field tells implementations what to do with datagrams containing 
   options they do not understand.  No implementation is required to 
   implement (i.e., understand) any given option by the TCP/IP 
   specification itself. 
 
   Classes: 
 
       0        use or forward and include this option unmodified 
       1        use this datagram, but do not forward the datagram 
       2        discard, or forward and include this option unmodified 
       3        discard this datagram 
 
   A host receiving a datagram addressed to itself will use it if there 
   are no unknown options of class 2 or 3.  A router receiving a 
   datagram not addressed to it will forward the datagram if and only if 
   there are no unknown options of class 1 or 3.  (The astute reader 
   will note that the bits can also be seen as having individual 
   interpretations, one allowing use even if unknown, one allowing 
   forwarding if unknown.) 
 
   Note that classes 0 and 2 are imperative:  if the datagram is 
   forwarded, the unknown option must be included. 
 
   Class and type are entirely orthogonal, different implementations 
   might use different classes for the same option, except where 
   restricted by the option definition. 
 
   Also note that for options that are known (implemented by) the host 
   or router, the class has no meaning; the option definition totally 
   determines the behavior.  (Although it should be noted that the 
   option might explicitly define a class dependent behavior.) 
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3.2.2  Copy on fragmentation (F) 
 
   If the F bit is set, this option must be copied into all fragments 
   when a datagram is fragmented.  If the F bit is reset (zero), the 
   option must only be copied into the first (zero-offset) fragment. 
 
3.2.3  Type 
 
   The type field identifies the particular option, types being 
   registered as well known values in the internet.  A few of the 
   options with their types are described below. 
 
3.2.4  Length 
 
   Length of the option data, in bytes. 
 
3.2.5  Option data 
 
   Variable length specified by the length field, plus 0-3 bytes of 
   zeros to pad to a 32 bit boundary.  Fields within the option data 
   that are 64 bits long are normally placed on the assumption that the 
   option header is off-phase aligned, the usual case when the option is 
   the only one present, and immediately follows the IP header. 
 
3.3  IP options 
 
   The following sections describe the options defined to emulate IPv4 
   features, or necessary in the basic structure of the protocol. 
 
3.3.1  Null 
 
   The null option, type 0, provides for a space filler in the option 
   area.  The data may be of any size, including 0 bytes (perhaps the 
   most useful case.) 
 
   It may be used to change alignment of the following options or to 
   replace an option being deleted, by setting type to 0 and class to 0, 
   leaving the length and content of the data unmodified.  (Note that 
   this implies that options must not contain "secret" data, relying on 
   class 3 to prevent the data from leaving the domain of routers that 
   understand the option.) 
 
   Null is normally class 0, and need not be implemented to serve its 
   function. 
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3.3.2  Fragment 
 
   Fragment (type 1) indicates that the datagram is part of a complete 
   IP datagram.  It is always class 2. 
 
   The data consists of (one of) the 64 bit IP address(es) of the router 
   doing the fragmentation, a 64 bit datagram ID generated by that 
   router, and a 32 bit fragment offset.  The IDs should be generated so 
   as to be very likely unique over a period of time larger than the TCP 
   MSL (maximum segment lifetime).  (The TCP ISN (initial sequence 
   number) generator might be used to initialize the ID generator in a 
   router.) 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    | C |F|    type                 |   length                      | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +          fragmenting router IP address                        + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +          datagram ID                                          + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |          offset                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   If a datagram must be refragmented, the original 128 bit address+ID 
   is preserved, so that the datagram can be reassembled from any 
   sufficient set of the resulting fragments.  The 64 bits fields are 
   positioned so that they are aligned in the usual case of the fragment 
   option following the IP header. 
 
   A router implementing Fragment (doing fragmentation) must recognize 
   the Don't Fragment option. 
 
3.3.3  Last Fragment 
 
   Last Fragment (type 2) has the same format as Fragment, but implies 
   that this datagram is the last fragment needed to reassemble the 
   original datagram. 
 
   Note that an implementation can reasonably add arriving datagrams 
   with Fragment to a cache, and then attempt a reassembly when a 
   datagram with Last Fragment arrives (and the the total length is 
   known); this will work well when datagrams are not reordered in the 
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   network. 
 
3.3.4  Don't Fragment 
 
   This option (type 3, class 0) indicates that the datagram may not be 
   fragmented.  If it can not be forwarded without fragmentation, it is 
   discarded, and the appropriate ICMP message sent.  (Unless, of 
   course, the datagram is an ICMP message.) There is no data present. 
 
3.3.5  Don't Convert 
 
   The Don't Convert option prohibits conversion from IPv7 to IPv4 
   protocol, requiring instead that the datagram be discarded and an 
   ICMP message sent (conversion failed/don't convert set).  It is type 
   4, usually class 0, and must be implemented by any router 
   implementing conversion.  A host is under no such constraint; like 
   any protocol specification, only the "bits on the wire" can be 
   specified, the host receiving the datagram may convert it as part of 
   its procedure.  There is no data present in this option. 
 
3.4  Forward route identifier 
 
   Each IP datagram carries a 64 bit field, called "forward route 
   identifier", that is updated (if the information is available) at 
   each hop.  This field's value is derived from the routing protocol 
   (e.g., RAP [RFC1476]).  It is used to expedite routing decisions by 
   preserving knowledge where possible between consecutive routers.  It 
   can also be used to make datagrams stay within reserved flows and 
   mobile-host tunnels where required. 
 
3.4.1  Procedure description 
 
   Consider 3 routers, A, B, and C.  Traffic is passing through them, 
   between two other hosts (or networks), X and Y, packets are going 
   XABCY and YCBAX.  Consider only one direction:  routing info flowing 
   from C to A, to provide a route from A to C.  The same thing will be 
   happening in the other direction. 
 
   An explanation of the notation: 
 
     R(r,d,i,h)    A route that means: "from router r, to go toward 
                   final destination d, replace the forward route 
                   identifier in the packet with i, and take next 
                   hop h." 
 
     Ri(r,d)       An opaque (outside of router r) identifier, that can 
                   be used by r to find R(r,d,...). 
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     Flowi(r,rt)   An opaque (outside of router r) identifier, that 
                   router r can use to find a flow or tunnel with which 
                   the datagram is associated, and from that the route 
                   rt on which the flow or tunnel is built, as well as 
                   the Flowi() for the subsequent hop. 
 
     Ri(Dgram)     The forward route identifier in a datagram. 
 
   Router C announces a route R(C,Y,0,Y) to router B.  It includes in it 
   an identifier Ri(C,Y) internal to C, that will allow C to find the 
   route rapidly.  (A table index, or an actual memory address.) 
 
   Router B creates a route R(B,Y,Ri(C,Y),C) via router C, it announces 
   it to A, including an identifier Ri(B,Y), internal to B, and used by 
   A as an opaque object. 
 
   Router A creates a route R(A,Y,Ri(B,Y),B) via router B.  It has no 
   one to announce it to. 
 
   Now:  X originates a datagram addressed to Y.  It has no routing 
   information, and sets Ri(Dgram) to zero.  It forwards the datagram to 
   router A (X's default gateway). 
 
   A finds no valid Ri(Dgram), and looks up the destination (Y) in its 
   routing tables.  It finds R(A,Y,Ri(B,Y),B), sets Ri(Dgram) <- 
   Ri(B,Y), and forwards the datagram to B. 
 
   Router B looks at Ri(Dgram) which directly identifies the next hop 
   route R(B,Ri(C,Y),C), sets Ri(Dgram) <- Ri(C,Y) and forwards it to 
   router C. 
 
   Router C looks at Ri(Dgram) which directly locates R(C,0,Y), sets 
   Ri(Dgram) <- 0 and forwards to Y. 
 
   Y recognizes its own address in Dest(Dgram), ignores Ri(Dgram). 
 
   Of course, the routers will validate the Ri's received, particularily 
   if they are memory addresses (e.g., M(a) < Ri < M(b), Ri mod N == 0), 
   and probably check that the route in fact describes the destination 
   of the datagram.  If the Ri is invalid, the router must use the 
   ordinary method of finding a route (i.e., what it would have done if 
   Ri was 0), and silently ignore the invalid Ri. 
 
   When a route has been aggregated at some router, implicitly or 
   explicitly, it will find that the incoming Ri(Dgram) at most can 
   identify the aggregation, and it must make a decision; the forwarded 
   datagram then contains the Ri for the specific route.  (Note this may 
   happen well upstream of the point at which the routes actually 
 
 
 
Ullmann                                                        [Page 16] 



 
RFC 1475                         TP/IX                         June 1993 
 
 
   diverge.) 
 
   This allows all cooperating routers to make immediate forwarding 
   decisions, without any searching of tables or caches once the 
   datagram has entered the routing domain.  If the host participates in 
   the routing, at least to the extent of acquiring the initial Ri 
   required from the first router, then only routers that have done 
   aggregations need make decisions.  (If the routing changes with 
   datagrams in flight, some router will be required to make a decision 
   to re-rail each datagram.) 
 
3.4.2  Flows 
 
   If a "flow" is to be set up, the identifiers are replaced by 
   Flowi(router,route), where each router's structure for the flow 
   contains a pointer to the route on which the flow is built. 
   Datagrams can drop out of the flow at some point, and can be inserted 
   either by the originating host or by a cooperating router near the 
   originator.  Since the forward route identifier field is opaque to 
   the sending router, and implicitly meaningful only to the next hop 
   router, use for flows (or similar optimizations) need not be 
   otherwise defined by the protocol.  (One presumes that a router 
   issuing both Ri's and Flowi's will take care to make sure that it can 
   distinguish them by some private method.) 
 
   If a flow has been set up by a restricted target RAP route 
   announcement, it is no different from a route in the implementation. 
   If this announcement originates from the host itself, the Ri in 
   incoming datagrams can be used to determine whether they followed the 
   flow, or to optimize delivery of the datagrams to the next layer 
   protocol. 
 
3.4.3  Mobile hosts 
 
   First, a definition:  A "mobile host" is a host that can move around, 
   connecting via different networks at different times, while 
   maintaining open TCP connections.  It is distinguished from a 
   "portable host", which is simply a host that can appear in various 
   places in the net, without continuity.  A portable host can be 
   implemented by assigning a new address for each location (more or 
   less automatically), and arranging to update the domain system. 
   Supporting truly mobile hosts is the more interesting problem. 
 
   To implement mobile host support in a general way, either some layer 
   of the protocol suite must provide network-wide routing, or the 
   datagrams must be tunnelled from the "home" network of the host to 
   its present location.  In the real network, some combination of these 
   is probable:  most of the net will forward datagrams toward the home 
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   network, and then the datagrams will follow a specific host route to 
   the mobile host. 
 
   The requirement on the routing system is that it must be able to 
   propagate a host route at least to the home network; any other 
   distribution is useful optimization.  When a host route is propagated 
   by RAP as a targeted route, and the routers use the resulting Ri's, 
   the datagram follows an effective tunnel to the mobile host.  (Not a 
   real tunnel, in the strict sense; the datagrams are following an 
   actual route at the network protocol layer.) 
 
   As explained in RAP [RFC14XX-RAP], a targeted route can be issued 
   when desired; in particular, it can be triggered by the establishment 
   of a TCP connection or by the arrival of datagrams that do not carry 
   an Ri indicating that they have followed a (non-tunnel) route. 
 
4.  TCP:  Transport protocol 
 
   Internet version 7 expands the sizes of the sequence and 
   acknowledgement fields, the window, and the port numbers.  This is to 
   remove limitations in version 4 that begin to restrict throughput at 
   (for example) the bandwidth of FDDI and round trip delay of more than 
   60 milliseconds.  At gigabit speeds and delays typical of 
   international links, the version 4 TCP would be a serious limitation. 
   See [RFC1323]. 
 
   The port numbers are also expanded.  This alleviates the problem of 
   going through the entire port number range with a rapid sequence of 
   transactions in less than the lifetime of datagrams in the network. 
 
4.1  TCP segment header format 
 
   The 64 bit fields (sequence and acknowledgement) in the TCP header 
   are off-phase aligned, in anticipation of the usual case of the TCP 
   header following the 9 32-bit word IP header.  If IP options add up 
   to an odd number of 32 bit words, a null option may be added to push 
   the transport header to off-phase alignment. 
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     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |  data offset  | MBZ |A|P|R|S|F|           checksum            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        source port                                            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        destination port                                       | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +        sequence number                                        + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |                                                               | 
    +        acknowledgement number                                 + 
    |                                                               | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        window                                                 | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        options                          ...                   | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   A description of each field: 
 
4.1.1  Data offset 
 
   An 8 bit count of the number of 32 bit words in the TCP header, 
   including any options. 
 
4.1.2  MBZ 
 
   Reserved bits, must be zero, and must be ignored. 
 
4.1.3  Flags 
 
   These are the protocol state flags, use exactly as in TCPv4, except 
   that there is no urgent data flag. 
 
4.1.4  Checksum 
 
   This is a 16 bit checksum of the segment.  The pseudo-header used in 
   the checksum consists of the destination address, the source address, 
   the protocol field (constant 6 for TCP), and the 32 bit length of the 
   TCP segment. 
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4.1.5  Source port 
 
   The source port number, a 32 bit identifier.  See the section on port 
   numbers below. 
 
4.1.6  Destination port. 
 
   The 32 bit destination port number. 
 
4.1.7  Sequence 
 
   A 64 bit sequence number, the sequence number of the first octet of 
   user data in the segment. 
 
   The ISN (Initial Sequence Number) generator used in TCPv4 is used in 
   TCPv7, with the 32 bit value loaded into both the high and low 32 
   bits of the TCPv7 sequence number.  This provides reasonable behavior 
   when the 32 bit rollover option is used (see below) for TCPv4 
   interoperation.  V7 hosts must implement the full 64 bit sequence 
   number rollover. 
 
4.1.8  Acknowledgement 
 
   The 64 bit acknowledgement number, acknowledging receipt of octets up 
   to but not including the octet identified.  Valid if the A flag is 
   set, if A is reset (0), this field should be zero, and must be 
   ignored. 
 
4.1.9  Window 
 
   The 32 bit offered window. 
 
4.1.10  Options 
 
   TCP options, some of which are documented below. 
 
4.2  Port numbers 
 
   Port numbers are divided into several ranges:  (all numbers are 
   decimal) 
 
    0             reserved 
    1-32767       Internet registered ("well-known") protocols 
    32768-98303   reserved, to allow TCPv7-TCPv4 conversion 
    98304 up      dynamic assignment 
 
   It must also be remembered that hosts are free to dynamically assign 
   for active connections any port not actually in use by that host: 
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   hosts must not reject connections because the "client" port is in the 
   registered range. 
 
4.3  TCP options 
 
4.3.1  Option Format 
 
   Each option begins with a 32 bit header: 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        type                   |   length                      | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        option data                 ...          |   padding   | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
4.3.2  Null 
 
   The null option (type = 0), is to be ignored. 
 
4.3.3  Maximum Segment Size 
 
   Maximum segment size (type = 1) specifies the largest segment that 
   the other TCP should send, in terms of the number of data octets. 
   When sent on a SYN segment, it is mandatory; if sent on any other 
   segment it is advisory. 
 
   Data is one 32 bit word specifying the size in octets. 
 
4.3.4  Urgent Pointer 
 
   The urgent pointer (type = 2) emulates the urgent field in TCPv4. 
   Its presence is equivalent to the U flag being set.  The data is a 64 
   bit sequence number identifying the last octet of urgent data.  (Not 
   an offset, as in v4.) 
 
4.3.5  32 Bit rollover 
 
   The 32 bit rollover option (type = 3) indicates that only the low 
   order 32 bits of the sequence and acknowledgement packets are 
   significant in the packet. 
 
   This is necessary because a converting internet layer gateway has no 
   retained state, and cannot properly set the high order bits.  This 
   option must be implemented by version 7 hosts that want to 
   interoperate with version 4 hosts. 
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5.  UDP:  User Datagram protocol 
 
   The user datagram protocol is also expanded to include larger port 
   numbers, for reasons similar to the TCP. 
 
5.1  UDP header format 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |  data offset  |     MBZ       |           checksum            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        source port                                            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        destination port                                       | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        options                          ...                   | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   A description of each field: 
 
5.1.1  Data offset 
 
   An 8 bit count of the number of 32 bit words in the UDP header, 
   including any options. 
 
5.1.2  MBZ 
 
   Reserved bits, must be zero, and must be ignored. 
 
5.1.3  Checksum 
 
   This is a 16 bit checksum of the datagram.  The pseudo-header used in 
   the checksum consists of the destination address, the source, 
   address, and the protocol field (constant 17 for UDP), and the 32 bit 
   length of the user datagram. 
 
5.1.4  Source port 
 
   The source port number, a 32 bit identifier.  See the section on TCP 
   port numbers above. 
 
5.1.5  Destination port. 
 
   The 32 bit destination port number. 
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5.1.6  Options 
 
   UDP options, none are presently defined. 
 
6.  ICMP 
 
   The ICMP protocol is very similar to ICMPv4, in some cases not 
   requiring any conversion. 
 
   The complication is that IP datagrams are nested within ICMP 
   messages, and must be converted.  This is discussed later. 
 
6.1  ICMP header format 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |     type      |     code      |           checksum            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        type-specific parameter                                | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        type-specific data               ...                   | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   Type and code are well-known values, defined in [RFC792].  The codes 
   have meaning only within a particular type, they are not orthogonal. 
 
   The next 32 bit word is usually defined for the specific type, 
   sometimes it is unused. 
 
   For many types, the data consists of a nested IP datagram, usually 
   truncated, which is a copy of the datagram causing the event being 
   reported.  In IPv4, the nested datagram consists of the IP header, 
   and another 64 bits (at least) of the original datagram. 
 
   For IPv7, the nested datagram must include the IP header plus 96 bits 
   of the remaining datagram (thus including the port numbers within TCP 
   and UDP), and should include the first 256 bytes of the datagram. 
   I.e., in most cases where the original datagram was not large, it 
   will return the entire datagram. 
 
6.2  Conversion failed ICMP message 
 
   The introduction of network layer conversion requires a new message 
   type, to report conversion errors.  Note that an invalid datagram 
   should result in the sending of some other ICMP message (e.g., 
   parameter problem) or the silent discarding of the datagram.  This 
   message is only sent when a valid datagram cannot be converted. 
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   Note:  implementations are not expected to, and should not, check the 
   validity of incoming datagrams just to accomplish this; it simply 
   means that an error detected during conversion that is known to be an 
   actual error in the incoming datagram should be reported as such, not 
   as a conversion failure. 
 
   Note that the conversion failed ICMP message may be sent in either 
   the IPv4 or IPv7 domain; it is a valid ICMP message type for IPv4. 
 
     0                   1                   2                   3 
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |     type      |     code      |           checksum            | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        pointer to problem area                                | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |        copy of datagram that could not be converted ....      | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   The type for Conversion Failed is 31. 
 
   The codes are: 
 
        0       Unknown/unspecified error 
        1       Don't Convert option present 
        2       Unknown mandatory option present 
        3       Known unsupported option present 
        4       Unsupported transport protocol 
        5       Overall length exceeded 
        6       IP header length exceeded 
        7       Transport protocol > 255 
        8       Port conversion out of range 
        9       Transport header length exceeded 
        10      32 Bit Rollover missing and ACK set 
        11      Unknown mandatory transport option present 
 
   The use of code 0 should be avoided, any other condition found by 
   implementors should be assigned a new code requested from IANA.  When 
   code 0 is used, it is particularily important that the pointer be set 
   properly. 
 
   The pointer is an offset from the start of the original datagram to 
   the beginning of the offending field. 
 
   The data is part of the datagram that could not be converted.  It 
   must be at least the IP and transport headers, and must include the 
   field pointed to by the previous parameter.  For code 4, the 
   transport header is probably not identifiable; the data should 
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   include 256 bytes of the original datagram. 
 
7.  Notes on the domain system 
 
7.1  A records 
 
   Address records will be added to the IN (Internet) zone with IPv7 
   addresses for all hosts as IPv7 is deployed.  Eventually the IPv4 
   addresses will be removed.  As mentioned above, the AD 
   (Administrative Domain) space is initially assigned so that the first 
   4 octets of a v7 address cannot be confused with a v4 address (or, 
   rather, the confusion will be to no effect.) 
 
   For example: 
 
   DELTA.Process.COM.      A       192.42.95.68 
                           A       192.0.0.192.42.95.1.68 
 
   It is important that the A record be used, to avoid the cache 
   consistancy problem that would arise when different records had 
   different remaining TTLs. 
 
   Note that if an unmodified version of the more popular public domain 
   nameserver is a secondary for a zone containing IPv7 addresses, it 
   will erroneously issue RRs with only the first four bytes.  (I.e., 
   192.0.0.192 in the example.) This is another reason to ensure that 
   the AD numbers are initially reserved out of the IPv4 network number 
   space.  Eventually, zones with IPv7 addresses would be expected to be 
   served only by upgraded servers. 
 
7.2  PTR zone 
 
   The inverse (PTR) zone is .#, with the IPv7 address (reversed). 
   I.e., just like .IN-ADDR.ARPA, but with .# instead. 
 
   This respects the difference in actual authority:  the NSF/DDN NIC is 
   the authority for the entire space rooted in .IN-ADDR.ARPA.  in the 
   v4 Internet, while in the new Internet it holds the authority only 
   for the AD 0.0.192.#.  (Plus, of course, any other ADs assigned to it 
   over time.) 
 
8.  Conversion between version 4 and version 7 
 
   As noted in the description of datagram format, it is possible to 
   provide a mostly-transparent bridge between version 4 and version 7. 
 
   This discusses TCP and ICMP at the session/transport layer; UDP is a 
   subset of the TCP conversion.  Most protocols at this layer will 
 
 
 
Ullmann                                                        [Page 25] 



 
RFC 1475                         TP/IX                         June 1993 
 
 
   probably need no translation; however it will probably be necessary 
   to specify exactly which will have translations done. 
 
   New protocols at the session/transport layer defined over IPv7 should 
   have protocol numbers greater than 255, and will not be translated to 
   IPv4. 
 
   Most of the translations should consist of copying various fields, 
   verifying fixed values in the datagram being translated, and setting 
   fixed values in the datagram being produced.  In general, the 
   checksum must be verified first, and then a new checksum computed for 
   the generated datagram. 
 
8.1  Version 4 IP address extension option 
 
   A new option is defined for IP version 4, to carry the extended 
   addresses of IPv7.  This will be particularily useful in the initial 
   testing of IPv7, during a time when most of the fabric of the 
   internet is IPv4.  An IPv7 host will be able to connect to another 
   IPv7 host anywhere in the internet even though most of the paths and 
   routers are IPv4, and still use the full addressing.  This will 
   continue to work until non-unique network numbers are assigned, by 
   which time most of the infrastructure should be IPv7. 
 
8.1.1  Option format 
 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |  type (147)   | length = 10   |     source IPv7 AD number     | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |  ...          | src 7th octet |     destination IPv7 AD       | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
    |  number ...   | dst 7th octet | 
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
   The source and destination are in IPv4 order (source first), for 
   consistancy.  The type code is 147. 
 
8.2  Fragmented datagrams 
 
   Datagrams that have been fragmented must be reassembled by the 
   converting host or router before conversion.  Where the conversion is 
   being done by the destination host (i.e.,  the case of a v7 host 
   receiving v4 datagrams), this is similar to the present fragmentation 
   model. 
 
   When it is being done by an intermediate router (acting as an 
   internetwork layer gateway) the router should use all of source, 
   destination, and datagram ID for identification of IPv4 fragments; 
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   note that destination is used implicitly in the usual reassembly at 
   the destination.  When reassembling an IPv7 datagram, the 128 bit 
   fragment ID is used as usual. 
 
   If the fragments take different paths through the net, and arrive at 
   different conversion points, the datagram is lost. 
 
8.3  Where does the conversion happen? 
 
   The objective of conversion is to be able to upgrade systems, both 
   hosts and routers, in whatever order desired by their owners. 
   Organizations must be able to upgrade any given system without 
   reconfiguration or modification of any other; and IPv4 hosts must be 
   able to interoperate essentially forever.  (IPv4 routers will 
   probably be effectively eliminated at some point, except where they 
   exist in their own remote or isolated corners.) 
 
   Each TCP/IP v7 system, whether host or router, must be able to 
   recognize adjacent systems in the topology that are (only) v4, and 
   call the appropriate conversion routine just before sending the 
   datagram. 
 
   Digression:  I believe v7 hosts will get much better performance by 
   doing everything internally in v7, and using conversion to filter 
   datagrams when necessary.  This keeps the usual code path simple, 
   with only a "hook" right after receiving to convert incoming IPv4 
   datagrams, and just before sending to convert to IPv4.  Routers may 
   prefer to keep datagrams in their incoming version, at least until 
   after the routing decision is made, and then doing the conversion 
   only if necessary.  In either case, this is an implementation 
   specific decision. 
 
   It must be noted that any forwarding system may convert datagrams to 
   IPv7, then back to IPv4, even if that loses information such as 
   unknown options.  The reverse is not acceptable:  a system that 
   receives an IPv7 datagram should not convert it to IPv4, then back to 
   IPv7 on forwarding. 
 
   The preferred method for identifying which hosts require conversion 
   is to ARP first for the IPv7 address, and then again if no response 
   is received, for the IPv4 address.  The reservation of ADs out of the 
   v4 network number space is useful again here, protecting hosts that 
   fail to properly use the ARP address length fields. 
 
   On networks where ARP is not normally used, the method is to assume 
   that a remote system is v7.  If an IPv7 datagram is received from it, 
   the assumption is confirmed.  If, after a short time, no IPv7 
   datagram is received, a v7 ICMP echo is sent.  If a reply is received 
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   (in either version) the assumption is confirmed. 
 
   If no reply is recieved, the remote system is assumed not to 
   understand IPv7, and datagrams are converted to IPv4 just before 
   transmitting them. 
 
   Implementations should also provide for explicit configuration where 
   desired. 
 
8.4  Hybrid IPv4 systems 
 
   In the course of implementing IPv7, especially in constrained 
   environments such as small terminal servers, it may be useful to 
   implement the IPv4 address extension option directly, thereby 
   regaining universal connectivity. 
 
   This may also be a useful interim step for vendors not prepared to do 
   a major rework of an implementation; but it is important not to get 
   stalled in this step. 
 
   A hybrid IPv4 + address extension system does not have to implement 
   the conversion, it places this onus on its neighbors.  It may itself 
   have an address with the subnet extension (7th byte) not equal to 1. 
 
   The implication of hybrid systems is that it is not valid to assume 
   that a host with a IPv7 address is a native IPv7 implementation. 
 
8.5  Maximum segment size in TCP 
 
   It is probably advisable for IPv4 implementations to reduce the MSS 
   offered by a small amount where possible, to avoid fragmentation when 
   datagrams are converted to IPv7.  This arises when IPv4 hosts are 
   communicating through an IPv7 infrastructure, with the same MTU as 
   the local networks of the hosts. 
 
8.6  Forwarding and redirects 
 
   It may be important for a router to not send ICMP redirects when it 
   finds that it must do a conversion as part of forwarding the 
   datagram.  In this case, the hosts involved may not be able to 
   interact directly.  The IPv7 host could ignore the redirect, but this 
   results in an unpleasant level of noise as the sequence continually 
   recurs. 
 
8.7  Design considerations 
 
   The conversion is designed to be fairly efficient in implementation, 
   especially on RISC architectures, assuming they can either do a 
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   conditional move (or store), or do a short forward branch without 
   losing the instruction cache.  The other conditional branches in the 
   body of the code are usually not-taken out to the failure/discard 
   case. 
 
   Handling options does involve a loop and a dispatch (case) operation. 
   The options in IPv4 are more difficult to handle, not being designed 
   for speed on a 32 bit aligned RISCish architecture, but they do not 
   occur often, except perhaps the address extension option. 
 
   For CISC machines, the same considerations will lead to fairly 
   efficient code. 
 
   The conversion code must be extremely careful to be robust when 
   presented with invalid input; in particular, it may be presented with 
   truncated transport layer headers when called recursively from the 
   ICMP conversion. 
 
8.8  Conversion from IPv4 to IPv7 
 
   Individual steps in the conversion; the order is in most cases not 
   significant. 
 
      o  Verify checksum. 
 
      o  Verify fragment offset is 0, MF flag is 0. 
 
      o  Verify version is 4. 
 
      o  Extend TTL to 16 bits, multiply by 16. 
 
      o  Set forward route identifier to 0. 
 
      o  Set first 3 octets of destination to AD (i.e., 192.0.0), copy 
         first three octets from v4 address, set next octet to 1, copy 
         last octet.  (This can be done with shift/mask/or operations 
         on most architectures.) 
 
      o  Do the same translation on source address. 
 
      o  Copy protocol, set high 8 bits to zero. 
 
      o  If DF flag set, add Don't Fragment option. 
 
      o  If Address Extension option present, copy ADs and subnet 
         extension numbers into destination and source. 
 
      o  Convert other options where possible.  If an unknown option 
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         with copy-on-fragment is found, fail.  If copy-on-fragment is 
         not set, ignore the option.  I.e., the flag is (ab)used as an 
         indicator of whether the option is mandatory. 
 
      o  Compute new IP header length. 
 
      o  Convert session/transport layer (TCP) header and data. 
 
      o  Compute new overall datagram length. 
 
      o  Calculate IPv7 checksum. 
 
8.9  Conversion from IPv7 to IPv4 
 
   The steps to convert IPv7 to IPv4 follow.  Note that the converting 
   router or host is partly in the role of destination host; it checks 
   both bits of class in IP options, and (as in the other direction) 
   must reassemble fragmented datagrams. 
 
      o  Verify checksum. 
 
      o  Verify version is 7 
 
      o  Set type-of-service to 0 (there may be an option defined, 
         that will be handled later). 
 
      o  If length is greater than (about) 65563, fail.  (That number 
         is not a typographical error.  Note that the IPv7+TCPv7 
         headers add up to 28 bytes more than the corresponding v4 
         headers in the usual case.) This check is only to avoid 
         useless work, the precise check is later. 
 
      o  Generate an ID (using an ISN based sequence generator, 
         possibly also based on destination or source or both). 
 
      o  Set flags and fragment field to 0. 
 
      o  Divide TTL by 16, if zero, fail (send ICMP Time Exceeded). 
         If greater that 255, set to 255. 
 
      o  If next layer protocol is greater than 255, fail.  Else copy. 
 
      o  Copy first 3 octets and 8th octet of destination to 
         destination address. 
 
      o  Same for source address. 
 
      o  Generate v4 address extension option.  (If enabled; this 
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         probably should be a configuration option, should default to 
         on.) 
 
      o  Process v7 options.  If any unknown options of class not 0 
         found, fail. 
 
      o  If Don't Fragment option found, set DF flag. 
 
      o  If Don't Convert option found, fail. 
 
      o  Convert other options where possible, or fail. 
 
      o  Compute new IP header length.  This may fail (too large), 
         fail conversion if so. 
 
      o  Convert session/transport layer (e.g., TCP). 
 
      o  Compute new overall datagram length.  If greater than 65535, 
         fail. 
 
      o  Compute IPv4 checksum. 
 
8.10  Conversion from TCPv4 to TCPv7 
 
      o  Subtract header words from v4 checksum.  (Note that this is 
         actually done with one's complement addition.) 
 
      o  Copy flags (except for Urgent). 
 
      o  If source port is less than 32768 (a sign condition test will 
         suffice on most architectures), copy it.  If equal or 
         greater, add 65536. 
 
      o  Same operation on destination port. 
 
      o  Copy sequence to low 32 bits, set high to 0. 
 
      o  Copy acknowledgement to low 32 bits, set high to 0. 
 
      o  Copy window.  (The TCPv4 performance extension [RFC1323] 
         window-scale cannot be used, as it would require state; we 
         use the basic window offered.) 
 
      o  Add 32 bit rollover option. 
 
      o  Convert maximum segment size option if present. 
 
      o  Compute data offset and copy data. 
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      o  Add header words into saved checksum.  It is important not to 
         recompute the checksum over the data; it must remain an 
         end-to-end checksum. 
 
      o  Return to IP layer conversion. 
 
8.11  Conversion from TCPv7 to TCPv4 
 
      o  Subtract header from v7 checksum. 
 
      o  If source port is greater than 65535, subtract 65536.  If 
         result is still greater than 65535, fail.  (Send ICMP 
         conversion failed/port conversion out of range.  The sending 
         host may then reset its port number generator to 98304.) 
 
      o  Same translation for destination port. 
 
      o  Copy low 32 bits of sequence number. 
 
      o  If A bit set, copy low 32 bits of acknowledgement. 
 
      o  Copy flags. 
 
      o  If window is greater than 61440, set it to 24576.  If less, 
         copy it unchanged.  (Rationale for the 24K figure:  this has 
         been found to be a good default for IPv4 hosts.  If the IPv7 
         host is offering a very large window, the IPv4 host probably 
         isn't prepared to play at that level.) 
 
      o  Process options.  If 32 Bit Rollover is not present, and A 
         flag is set, fail.  (Send ICMP conversion failed/32 bit 
         Rollover missing.) 
 
      o  If Urgent is present, compute offset.  If in segment, set U 
         flag and offset field.  If not, ignore. 
 
      o  Convert Maximum Segment Size option.  If greater than 16384, 
         set to 16384. 
 
      o  Compute new data offset. 
 
      o  Add header words into v4 checksum. 
 
      o  Return to IP layer conversion. 
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8.12  ICMP conversion 
 
   ICMP messages are converted by copying the type and code into the new 
   packet, and copying the other type-specific fields directly. 
 
   If the message contains an encapsulated, and usually truncated, IP 
   datagram, the conversion routine is called recursively to translate 
   it as far as possible.  There are some special considerations: 
 
      o  The encapsulated datagram is less likely to be valid, given 
         that it did generate an error of some kind. 
 
      o  The conversion should attempt to complete all fields 
         available, even if some would cause failures in the general 
         case.  Note, in particular, that in the course of converting 
         a datagram, when a failure occurs, an ICMP message 
         (conversion failed) is sent; this message itself may 
         immediately require conversion.  Part of that conversion will 
         involve converting the original datagram. 
 
      o  Conditions such as overall datagram length too large are not 
         checked. 
 
      o  The AD and subnet byte assumed in the nested conversion may 
         not be sensible if the IPv4 address extension option is not 
         present and the datagram has strayed from the expected AD. 
         (Not unlikely, given that we know a priori that some error 
         occured.) 
 
      o  The conversion must be very sure not to make another 
         recursive call if the nested datagram is an ICMP message. 
         (This should not occur, but obviously may.) 
 
      o  It is probably impossible to generate a correct transport 
         layer checksum in the nested datagram.  The conversion may 
         prefer to just zero the checksum field.  Likewise, validating 
         the original checksum is pointless. 
 
   It may be best in a given implementation to have a separate code path 
   for the nested conversion, that handles these issues out of the 
   optimized usual path. 
 
9.  Postscript 
 
   The present version of TCP/IP has been a success partly by accident, 
   for reasons that weren't really designed in.  Perhaps the most 
   significant is the low level of network integration required to make 
   it work. 
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   We must be careful to retain the successful ingredients, even where 
   we may be unaware of them.  Tread lightly, and use all that we have 
   learned, especially about not changing things that work. 
 
   This document has described a fairly conservative step forward, with 
   clear extensibility for future developments, but without jumping into 
   the abyss. 
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