
INTERNET-DRAFT H. Sugano
 Fujitsu

 F. Mazzoldi
 Network Projects, Inc.

 A. Diacakis
 Network Projects, Inc.

 S. Fujimoto
 Fujitsu

 G. Hudson
 MIT

 J. D. Ramsdell
 The MITRE Corporation

Expires: September 2001 March 2001

 Presence and Instant Messaging Protocol (PRIM)
 <draft-mazzoldi-prim-impp-01.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 Please send comments to the authors or to the prim@ml.fujitsulabs.com
 discussion list.

Mazzoldi et al. [Page 1]

INTERNET DRAFT PRIM Specification March 2001

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 The architecture and specifications of the Presence and Instant
 Messaging protocols (PRIM) are described. PRIM defines a set of
 protocols for the Presence and Instant Messaging services which
 satisfy the IMPP requirements [RFC2779]. PRIM is also designed so as
 to conform with the Common Profile for Instant Messaging (CPIM)
 specification being developed in the IMPP WG.

Mazzoldi et al. [Page 2]

INTERNET DRAFT PRIM Specification March 2001

Table of Contents

 1. Introduction ... 5
 1.1. Design Goals and Assumptions 5
 2. Terminology .. 6
 3. Architecture ... 6
 3.1. Service Domain Clustering 7
 4. Connection Model 7
 4.1. Client-server Connections 7
 4.2. Server-server Connections 7
 4.3. Shared Connections for Both Services 8
 5. Presence Model 8
 5.1. Presence Subscriptions 9
 5.2. PRESENCE Publication & Distribution 9
 6. Instant Messaging Model 9
 7. Namespace .. 10
 7.1. Identifiers .. 10
 7.2. Name Resolution 11
 8. Command Structure 12
 8.1. Requests ... 13
 8.2. Responses .. 14
 9. Command Headers 15
 9.1. Common Headers 16
 9.2. Presence Headers 20
 9.3. IM Headers ... 21
 10. Common Commands 21
 10.1. Connection Setup - LOGIN 21
 10.2. Connection Setup - STARTTLS 23
 10.3. Connection Shutdown - LOGOUT 23
 10.4. Testing a connection - PING 23
 10.5. Verifying a server’s authority - VERIFYSERVER 24
 10.6. Access Control 24
 11. Presence Service Commands 26
 11.1. Placement, Renewal and Removal of SUBSCRIPTIONS 26
 11.2. Publication & Removal of PRESENCE INFORMATION 29
 11.3. Propagation of PRESENCE INFORMATION - NOTIFY 32
 11.4. Presence Privacy Management 33
 12. Instant Messaging Service Commands 36
 12.1. Listening to INSTANT INBOXes 36
 12.2. Sending Messages - SEND 37
 12.3. Access Control Lists 38
 13. Authentication 38
 13.1. Client-Server Authentication 39
 13.2. Server-Server Authentication 41
 14. Privacy Management 42
 14.1. Presence Publication Control 42
 14.2. Access Control 43
 15. Presence Information Data Format (PIDF) 46

Mazzoldi et al. [Page 3]

INTERNET DRAFT PRIM Specification March 2001

 15.1. General Design 46
 15.2. Required Headers for PIDF 47
 15.3. XML Format Definition 47
 15.4. XML tags and attributes definitions 48
 15.5. Date Format ... 50
 15.6. Examples .. 50
 15.7. Presence Document DTD 51
 16. IM Format ... 52
 17. CPIM/PRIM Mapping 52
 17.1. Presence Protocol 52
 17.2. Instant Messaging Protocol 52
 18. Security Considerations 53
 19. Appendix A: Response Codes 54
 20. References .. 56
 21. Acknowledgements 57
 22. Author’s Addresses 58
 23. Full Copyright Statement 59

Mazzoldi et al. [Page 4]

INTERNET DRAFT PRIM Specification March 2001

1. Introduction

 On the Internet and elsewhere, a growing number of people would like
 to know when others are available to communicate with them. A system
 that provides this type of PRESENCE INFORMATION is known as Presence
 Service.

 INSTANT MESSAGING allows text base communication to occur in a rapid,
 conversational fashion. An INSTANT MESSAGE is delivered to a
 recipient if the recipient is listening for messages, otherwise the
 message is dropped and the sender is informed of the delivery
 failure.

 PRESENCE and INSTANT MESSAGING SERVICES are separate and can work
 independently of each other. However, by utilizing the Presence
 Service a user has a better idea as to whether a recipient is
 listening for INSTANT MESSAGES. Therefore, the two services are often
 used in tandem.

 The PResence and Instant Messaging (PRIM) protocol is designed so
 that INSTANT MESSAGING and PRESENCE SERVICES can be provided by a set
 of servers distributed across a large number of administrative
 domains.

 PRIM is also designed to conform to the Common Profile for Instant
 Messaging (CPIM) specification being developed by the IMPP WG. This
 enables that users of PRIM services exchange PRESENCE INFORMATION and
 INSTANT MESSAGES with the users of the services which use other CPIM
 compatible protocols.

1.1. Design Goals and Assumptions

 Some of the design principles on which this protocol is based are:

 o Transfer protocol directly atop of TCP

 PRIM assumes TCP as the basic transport mechanism for INSTANT
 MESSAGES and PRESENCE INFORMATION. TCP provides a sufficiently
 reliable transport infrastructure which is required by both INSTANT
 MESSAGING and PRESENCE SERVICES.

 o Long-lived Client/Server connections

 PRIM uses long-lived client/server TCP connections in order to
 receive INSTANT MESSAGES and PRESENCE INFORMATION NOTIFICATIONS.
 Note that this is the prevailing model used by most Presence and IM
 systems today. It brings the following advantages:

Mazzoldi et al. [Page 5]

INTERNET DRAFT PRIM Specification March 2001

 - Overhead is reduced, because authentication is performed once, at
 the beginning of the connection. This is important, for example,
 when PRESENCE INFORMATION NOTIFICATIONS occur frequently.

 - Connections are firewall friendly, because USER AGENTS initiate
 connections from inside a firewall that can carry NOTIFICATIONS or
 messages initiated from the outside.

 o Selective Presence Publication

 [RFC2779] stipulates various requirements for access control; 2.3.x
 and several in section 5. Among others, we consider the feature of
 "Polite Blocking" (5.1.15, 5.2.3) to be very important for PRESENCE
 SERVICES. This protocol contains a mechanism for such selective
 PRESENCE INFORMATION publication as well as in-band access control.

2. Terminology

 [RFC2778] and [RFC2779] define the terminology for the PRESENCE and
 INSTANT MESSAGING fields. Please refer to those documents for a
 complete glossary of the UPPER CASED terms.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119 [34].

3. Architecture

 The PRIM architecture involves two components: Service Domains and
 USER AGENTS. Each Service Domain is a set of servers that are
 responsible for a set of PRINCIPALS. A PRINCIPAL’s Service Domain is
 called its Home Domain. A PRINCIPAL connects to its Home Domain via
 an USER AGENT to access PRESENCE and INSTANT MESSAGING SERVICES.

 In particular, a Service Domain is composed by Presence and/or
 Instant Messaging Servers.

 +------------------+ +------------------+
 | SERVICE DOMAIN |<-------->| SERVICE DOMAIN |
 +------------------+ +------------------+
 ^ ^ ^ ^
 | | | |
 | | | |
 v v v v
 +------+ +------+ +------+ +------+
 | UA | | UA | | UA | | UA |
 +------+ +------+ +------+ +------+

Mazzoldi et al. [Page 6]

INTERNET DRAFT PRIM Specification March 2001

 Figure 1. PRIM Service Architecture

 PRIM adopts a Client-Server-Server-Client architecture. A USER AGENT
 only communicates with servers in its HOME DOMAIN, and only servers
 can communicate with other servers. These servers may be located in
 different domains.

3.1. Service Domain Clustering

 It may be necessary to have multiple Presence and/or IM Servers to
 handle PRINCIPALS of a given domain. It is beyond the scope of this
 document to describe how servers within a domain choose to locate
 each other and what protocol they choose to communicate with.

4. Connection Model

 PRIM is a connection-based protocol. Every protocol command is
 exchanged through TCP connections established between clients and
 servers and servers and servers.

4.1. Client-server Connections

 Both for the PRESENCE SERVICE and the INSTANT MESSAGING SERVICE, USER
 AGENTS need to open a TCP connection with each server. This
 connection will remain open while the USER AGENT wishes to send or
 receive information to/from the PRESENCE or IM SERVICES.

 When a USER AGENT establishes a connection to a server, it
 authenticate its PRINCIPAL using SASL. If the authentication process
 succeeds, the server associates that connection with the specific
 PRINCIPAL. After that, the server MUST ensure each request it
 receives through that connection pertains to that PRINCIPAL. If a
 request pertains to an unauthorized principal the server returns an
 error message.

 Details of the authentication process is described in section 13.1.

4.2. Server-server Connections

 When a Presence or Instant Messaging Server needs to exchange
 information with another server, it will resolve the recipient’s
 name, and start a connection. The connection may be closed by either
 side at any time when there are no outstanding commands on the
 connection from that server’s point of view. Any commands sent to a
 server which closed the connection before sending a reply can safely
 be assumed to have gone unprocessed.

Mazzoldi et al. [Page 7]

INTERNET DRAFT PRIM Specification March 2001

 When a server establishes a connection to another server, that
 connection end-point can be authorized to communicate on behalf of
 multiple PRESENTITIES or INBOXES. This authorization can take place
 either at connection time, or throughout the duration of the
 connection.

 For example, if server A receives a subscription request from server
 B, on behalf of user thanos@networkprojects.com, server A MUST verify
 that server B is one of the servers of the networkprojects.com
 domain. If so, it will then accept other requests from server B that
 pertain to users of the networkprojects.com domain.

 PRIM provides several methods to authenticate and authorize servers,
 which are described in section 13.2.

4.3. Shared Connections for Both Services

 Although the PRESENCE SERVICE and the INSTANT MESSAGING SERVICE are
 separate, there may be implementations that choose to implement both.
 Additionally those implementations may prefer to share a TCP
 connection for both services. To do so, a USER AGENT would open a
 single connection and authenticate itself twice using the LOGIN
 command, once to the PRESENCE SERVICE and once to the INSTANT
 MESSAGING SERVICE. This feature is OPTIONAL for the PRIM
 implementations.

 The server can differentiate between the commands for either service
 by examining the version in the request line that indicates which
 service the command pertains to. If the connection is to use TLS,
 the STARTTLS connection will only be issued once. The version used
 in the STARTTLS command can be that of either service.

5. Presence Model

 PRIM adopts the lease model for publishing PRESENCE INFORMATION. That
 is, a PRESENTITY MAY have two pieces of PRESENCE INFORMATION, a lease
 value and a permanent value, for each tuple of the PRESENCE
 INFORMATION. The USER AGENT publishes the lease value and specifies
 a duration for that lease. The lease needs to be renewed by the USER
 AGENT when the duration elapses, otherwise the permanent value is
 published automatically by the server. If no permanent value exists,
 that tuple will be removed and no longer published.

 This feature provides a flexible solution to handle PRESENCE
 INFORMATION for different communication means. While availability of
 some devices is subject to unexpected failure or constantly changing

Mazzoldi et al. [Page 8]

INTERNET DRAFT PRIM Specification March 2001

 communication environment, that of other communication means might
 always be acquirable from a particular entity. The latter do not
 have to use the lease value. Instead it can just change the
 permanent value of the PRESENCE INFORMATION.

5.1. Presence Subscriptions

 PRINCIPALS can subscribe to a PRESENTITY in order to receive
 NOTIFICATIONS when the PRESENCE INFORMATION of that PRESENTITY
 changes.

 SUBSCRIPTIONS have a duration under which they are in effect. This
 duration is specified at the time that the subscription is placed (or
 renewed). Once that period elapses, the SUBSCRIPTION has to be either
 renewed by the SUBSCRIBER, or else it MUST be removed by the
 PRESENTITY’s Presence Server.

 This renewal may be either issued by the USER AGENT, or by the
 SUBSCRIBER’s Presence Server on behalf of the SUBSCRIBER.

5.2. PRESENCE Publication & Distribution

 Every time the PRINCIPAL controlling a PRESENTITY publishes a
 PRESENCE TUPLE, NOTIFICATIONS will be issued to the SUBSCRIBERS of
 that PRESENTITY containing the updated PRESENCE INFORMATION.

 PRESENTITIES need to be able to publish different PRESENCE
 INFORMATION to different WATCHERS. PRESENTITIES may also choose not
 to publish PRESENCE INFORMATION to designated WATCHERS ("polite
 blocking"). To do so, each PRESENTITY can classify WATCHERS in
 different Classes. A WATCHER MUST only exist in one Class. This
 classification takes place in the Class Table.

 Every presence update request MUST contain Class information for
 which it is published. When the server receives the update request,
 it retrieves from the Class Table the WATCHERS that need to receive
 the update NOTIFCATIONS.

 Note: PRINCIPALS can update one PRESENCE TUPLE at a time. However
 NOTIFICATIONS contain the whole PRESENCE INFORMATION for a
 PRESENTITY. The reason for this is that PRESENCE INFORMATION may be
 encrypted end-to-end and thus, if only one PRESENCE TUPLE was
 published the receiving remote server may not be able to determine
 which existing tuple the new one should replace.

6. Instant Messaging Model

Mazzoldi et al. [Page 9]

INTERNET DRAFT PRIM Specification March 2001

 INSTANT INBOXes are entities that receive INSTANT MESSAGES. When a
 USER AGENT wishes to start receiving INSTANT MESSAGES, it issues a
 LISTEN command to that INSTANT INBOX. Conversely, when it no longer
 wishes to receive INSTANT MESSAGES from that INSTANT INBOX, it issues
 a SILENCE command.

 INSTANT INBOXes have two states, as described in RFC 2779: OPEN and
 CLOSED. An INBOX is OPEN when at least one PRINCIPAL is listening to
 that inbox. It is CLOSED when there are no PRINCIPALS listening to
 the INBOX.

 If an INSTANT MESSAGE is sent to an INBOX that has multiple
 PRINCIPALS listening, the message is considered to be delivered
 successfully if at least one PRINCIPAL receives it.

7. Namespace

 In the following sections including this, the protocol specification
 of PRIM is described. The ABNF [RFC 2234] is used to define the
 syntax of the protocol elements.

7.1. Identifiers

 The next ABNF defines a Presence or IM identifiers, which are used to
 identify PRESENTITIES and INSTANT INBOXes respectively. It also
 defines IP address formats to be refered in some header definitions.

 presence-id = word-pres ":" local-part "@" domain
 im-id = word-im ":" local-part "@" domain
 local-part = 1*(unreserved / escaped)
 unreserved = ALPHA / DIGIT / "!" / "$" / "&" / "’" / "*"
 / "." / "+" / "-" / "/" / "=" / "?" / "_" / "~"
 escaped = "%" hex-char hex-char
 hex-char = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 / "a" / "b" / "c" / "d" / "e" / "f"
 domain = 1*domain-label *("." 1*domain-label)
 domain-label = 1*(unreserved / escaped)
 word-pres = %x70.72.65.73 ; "pres"
 word-im = %x69.6D ; "im"
 decimal-byte = 1*3DIGIT
 ALPHA = <defined by RFC 2234 -- ’A’-’Z’ / ’a’-’z’>
 DIGIT = <defined by RFC 2234 -- ’0’-’9’>

 hex4 = 1*4hex-char
 hexseq = hex4 *(":" hex4)
 ip6-address = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
 ip4-address = "::" 1*1decimal-byte 3*3("." 1*1decimal-byte)

Mazzoldi et al. [Page 10]

INTERNET DRAFT PRIM Specification March 2001

 The PRIM Presence and IM identifiers are defined so as to align with
 CPIM [CPIM]. They have the form of URI [RFC2396] and the same URI
 schemes are selected for Presence identifiers ("pres:") and IM
 identifiers ("im:").

 The syntax for the "local-part" and "domain" of those identifiers are
 similar to that for email addresses, specified as addr-spec in
 [RFC822]. But, the characters defined in this specification is
 restricted so as to conform to the URI syntax [RFC2396]. The
 characters which are not allowed in this definition MUST be escaped.
 Also note that, unlike a mailto: URL [RFC 2368], a pres: or im: URL
 cannot contain multiple addresses.

 Moreover, The syntax for "domain-label" here is so defined that it
 will be conformant to the prospective specification of the
 Internationalized Domain Name [IDN]. A string for "domain" MUST be a
 valid domain name according to the rules currently in existence.

 Followings are some examples of valid Presence and IM identifiers:

 pres:joe@example.net
 im:%22Jane%20Smith%22@domain.com

 A PRIM USER AGENT SHOULD recognize a PRESENTITY or INSTANT INBOX
 identifier without the scheme if it is entered in a PRESENCE or
 INSTANT MESSAGING context. Similarly, a USER AGENT SHOULD display a
 PRESENCE or INSTANT MESSAGING identifier without the scheme if it is
 displayed in a PRESENCE or INSTANT MESSAGING context.

 A PRINCIPAL may or may not have the same IDENTIFIER for its
 PRESENTITY and its IM INBOX. However, for an integrated Presence and
 IM service, the service SHOULD NOT assign the IDENTIFIERS which are
 different only in the scheme part to different PRINCIPALS.

7.2. Name Resolution

 Should two PRINCIPALS, each in a different SERVICE DOMAIN, need to
 communicate, their corresponding Servers will need to locate each
 other, given the IDENTIFIERS of the PRINCIPALS. Moreover, when a
 USER AGENT wishes to connect to the SERVICE DOMAIN, it also needs to
 locate the servers. PRIM reuses the existing Domain Name Services to
 achieve this.

 If the domain of the two PRINCIPALS is the same, and they are handled
 by different servers, there needs to be a protocol to allow the
 servers to interact. This protocol is not in the scope of the
 current document.

Mazzoldi et al. [Page 11]

INTERNET DRAFT PRIM Specification March 2001

7.2.1. Client-Server Connections

 A USER AGENT MAY support site-specific means of server discovery, but
 it SHOULD support the following standard discovery algorithm: the
 USER AGENT performs a SRV [RFC 2782] lookup for its home domain using
 the protocol "tcp" and the service "presence-clients" for the
 PRESENCE SERVICE or "im-clients" for the INSTANT MESSAGING SERVICE.

 If no SRV record is present, the USER AGENT performs an A-record look
 up on the domain and uses the resulting IP addresses with the
 allocated port [xxx] for the PRESENCE SERVICE or [xxx] for the
 INSTANT MESSAGING SERVICE.

7.2.2. Server-Server Connections

 A server MUST discover a remote domain’s server using the following
 algorithm: the server performs a SRV lookup for the remote domain
 using the protocol "tcp" and the service "presence" (for PRESENCE) or
 "im" (for INSTANT MESSAGING). If no SRV record is present, the
 server performs an A lookup on the remote domain and uses the
 resulting IP addresses with the allocated port [xxx] for PRESENCE or
 [xxx] for INSTANT MESSAGING.

 Note: The protocol is capable of using four different TCP ports: two
 for the PRESENCE SERVICE and two for the INSTANT MESSAGING SERVICE.
 Within each service, there may be different ports for client and
 server connections. However, the usage of one, two, three or four
 ports will be possible for different needs. The protocol ensures
 there is no ambiguity between commands received from different
 services, or from clients/servers.

8. Command Structure

 A connection transports a sequence of commands. The underlying
 character set for commands is Unicode, represented in UTF-8 [RFC
 2279]. Command bodies are an exception; they should be treated as
 unprocessed octets. An implementation MUST properly handle arbitrary
 binary data in the body. A command is either a request or a
 response.

 PRIM-command = request / response

 Requests and responses use the generic command format of [RFC822] for
 transferring entities (the body of the command). Both types of
 command consist of a start-line, one or more header fields (also
 known as "headers"), an empty line (i.e., a line with nothing
 preceding the CRLF) indicating the end of the header fields, and an

Mazzoldi et al. [Page 12]

INTERNET DRAFT PRIM Specification March 2001

 optional command-body.

 generic-command = start-line
 *command-header
 CRLF
 [command-body]

 start-line = request-line / response-line

 Receivers of commands SHOULD ignore any empty line(s) received where
 a start-line is expected.

8.1. Requests

 A request method includes the method to be applied to the resource,
 the protocol version, and the data needed for asynchronous requests.

 request-line = method
 SP version
 SP request-identifier
 SP content-length
 CRLF

8.1.1. Method

 The method token indicates the method to be performed on the
 resource.

 method = "LOGIN" ; Section 10.1
 / "STARTTLS" ; Section 10.2
 / "LOGOUT" ; Section 10.3
 / "PING" ; Section 10.4
 / "VERIFYSERVER" ; Section 10.5
 / "SETACL" ; Section 10.6.1
 / "GETACL" ; Section 10.6.2
 / "SUBSCRIBE" ; Section 11.1.1
 / "UNSUBSCRIBE" ; Section 11.1.2
 / "CANCELSUBSCRIPTION" ; Section 11.1.3
 / "FETCH" ; Section 11.1.4
 / "PUBLISH" ; Section 11.2.1
 / "REMOVE" ; Section 11.2.2
 / "NOTIFY" ; Section 11.3
 / "SETCLASSTABLE" ; Section 11.4.2
 / "GETCLASSTABLE" ; Section 11.4.3
 / "STARTWATCHERNOTIFY" ; Section 11.4.4
 / "STOPWATCHERNOTIFY" ; Section 11.4.5
 / "WATCHERNOTIFY" ; Section 11.4.6
 / "LISTEN" ; Section 12.1.1

Mazzoldi et al. [Page 13]

INTERNET DRAFT PRIM Specification March 2001

 / "SILENCE" ; Section 12.1.2
 / "SEND" ; Section 12.2

8.1.2. Version

 The version identifies the version of the protocol in use.

 version = "PP/1.0" / "IMP/1.0"

 PP is used to identify the Presence Protocol, and is used for all the
 requests and responses within the PRESENCE SERVICE. IMP is utilized
 by all requests and responses within the INSTANT MESSAGING SERVICE.

 [Note that the definition of the "version" should be amended to be
 more generally. Also, the versioning policy and the semantics are
 necessary to be described. TBD.]

8.1.3. Request Identifier

 Request identifiers are used to implement asynchronous requests.

 request-identifier = 1*[ALPHA / DIGIT] / "-"

 An endpoint of a connection is responsible for generating request
 identifiers, and the request identifiers are used to match responses
 it receives with the requests it has sent. The other endpoint of a
 connection is responsible for labeling a response with the identifier
 it received in the request. An identifier may be reused after the
 endpoint receives the response to the request with the identifier.

 The request identifier of a command is "-" if and only if the request
 expects no reply. If an endpoint receives a request with the request
 identifier "-", it MUST NOT send any response to the request.

8.1.4. Content Length

 The content-length header contains the length of the command body in
 bytes.

 content-length = 1*DIGIT

8.2. Responses

 A response includes many of the same fields as a request with the
 addition of a status code and a response phrase.

Mazzoldi et al. [Page 14]

INTERNET DRAFT PRIM Specification March 2001

 response-line = version
 SP request-identifier
 SP content-length
 SP status-code
 SP response-phrase
 CRLF

 The request identifier in the response MUST NOT be "-".

 The status-code is a 3 digit code and the response-phrase is a short
 message description. The values are defined in Appendix A.

 Some status codes are common to all commands, whereas others are only
 used by a subset of commands. Common status codes to all commands
 are:

 200 OK
 300 Redirect
 400 Bad Request
 401 Unauthorized (except for LOGIN)
 402 Forbidden (except for LOGIN, STARTTLS, PING)
 501 Internal Server Error
 503 Version Not Supported

9. Command Headers

 Command headers are defined as follows:

 command-header = (common-header
 / presence-header
 / im-header
)
 CRLF

 common-header = (from-header
 / to-header
 / auth-state-header
 / SASL-mechanism-header
 / redirect-header
 / content-type-header
 / server-address-header
 / astrength-header
 / user-agent-id-header
 / max-content-length-header
 / date-header
)

Mazzoldi et al. [Page 15]

INTERNET DRAFT PRIM Specification March 2001

 presence-header = (class-header
 / tuple-id-header
 / duration-header
 / pi-type-header
 / watcher-type-header
)

 im-header = (message-id-header
 / conversation-id-header
 / reply-to-header
)

9.1. Common Headers

9.1.1. From

 Identifies the PRESENTITY or INBOX that issued this command, or that
 it was issued on behalf of.

 from-header = "From: " (presence-id / im-id)

 The receiving end of a command SHOULD always check that the sender is
 authorized to send commands on behalf of the identifier in the from-
 header, as described in Sections 13.

9.1.2. To

 Specifies the PRESENTITY or INBOX this command is intended to.

 to-header = "To: " (presence-id / im-id)

9.1.3. Auth-State

 Indicates the status in the authentication process in the LOGIN
 command.

 auth-state-header = "Auth-State: "
 ("init"
 / "continue"
 / "abort")

9.1.4. SASL-Mechanism

 Specifies the SASL mechanism in the LOGIN request or the response to
 the LOGIN request. In the request, the SASL mechanism the USER AGENT
 wants to use MUST be specified. When used in the response, one or
 more mechanisms which the server supports MAY be specified.

Mazzoldi et al. [Page 16]

INTERNET DRAFT PRIM Specification March 2001

 SASL-mechanism-header = "SASL-Mech: " mechanisms
 mechanisms = mechanism [*(SP mechanism)]
 mechanism = 1*20(ALPHA / DIGIT / "-" / "_")

9.1.5. Redirect

 When a server cannot handle requests from a USER AGENT or other
 server, it issues an error repsponse "300 Redirect" which includes the
 redirect-header. This lets the caller know that its request cannot
 be handled at this server and an alternative server address and port
 are provided.

 redirect-header = "Redirect: " address SP port
 address = domain / ip4-address / ip6-address
 port = 1*DIGIT

9.1.6. Content-Type

 A command-body MUST NOT be included unless the description of the
 particular method allows it. If a command-body is included, the
 protocol command headers MAY include a Content-Type as specified in
 [RFC 2045]; if no Content-Type is provided, the default is
 "application/presence" for Presence commands, "text/plain;
 charset=UTF-8" for Instant Messaging commands, and
 "application/octet- stream" for the LOGIN command.

 The Content-Transfer-Encoding header from [RFC 2045] is not necessary
 and MUST NOT be included in any command or response. An
 implementation which receives a Content-Transfer-Encoding header
 should reject the command with an error 400 Bad Request.

9.1.7. Server-Address

 Indicates the IP address for the server that is initiating the
 connection. This header is used in the VERIFYSERVER method to show
 the address of the server that needs verification (see Sections 10.5
 and 13.2).

 server-address-header = "Server-Address: "
 (ip4-address / ip6-address)

9.1.8. AStrength

 When a server acts as a relay, it MUST communicate to the next node a
 rough indication of the authentication strength of the previous hops
 using the "Astrength" header. The syntax for the Astrength header
 is:

Mazzoldi et al. [Page 17]

INTERNET DRAFT PRIM Specification March 2001

 astrength-header = "AStrength: " astrength
 astrength = "strong" / "medium" / "weak" / "none"

 The meanings of the astrength values are:

 strong Command authenticity and integrity cannot be
 compromised by an attacker who has full
 control of all network links, assuming no
 compromise of keying materials, installed
 software, or cryptographic algorithms.

 medium Command authenticity or integrity could be
 compromised by a packet substitution or DNS
 spoofing attack.

 weak Command could be forged by an attacker who has
 previously been a passive listener on one or
 more network links.

 none Command could be forged by an attacker with no
 special information.

 Examples of medium protection include one-time passwords [RFC 2289]
 and HTTP digest authentication [RFC 2617 section 3]. Examples of
 weak protection include cleartext passwords or security protocols
 subject to replay attacks.

 If a server or USER AGENT receives a command with no Astrength
 header, it should assume that the equivalent Astrength is "none",
 with one exception: If a server receives a command directly from a
 USER AGENT, it should determine the strength of that connection and
 use the appropriate AStrength.

 A server relaying a command MUST communicate the weaker of the
 strength of the connection it received the command on and the
 Astrength value communicated from the last entity.

 A server MAY choose to reject a command with a "410 AStrength Too
 Weak" error because it does not come with sufficient authentication
 strength (either as reported by the Astrength value or based on the
 connection from the immediate requestor). A relay MUST NOT reject a
 response on the basis of insufficient authentication strength.

 Note that, separately from connection-level authentication, an
 operation may be authenticated using an end-to-end signature. The
 Astrength header does not bear any relation to this kind of
 authentication.

Mazzoldi et al. [Page 18]

INTERNET DRAFT PRIM Specification March 2001

 An example scenario: a PRIM USER AGENT connects to a server for
 example.net and authenticates using a weak mechanism. It then issues
 a "send" command from alice@example.net to bob@domain.com. The
 example.net server connects to domain.com, authenticates using
 DNSSEC- signed public keys and forwards the IM with "Astrength: weak"
 because the previous link was authenticated with a weak. The
 domain.com server sends the command to the clients receiving commands
 for bob@domain.com with "Astrength: weak" since that was the
 authentication value claimed by example.net, even though domain.com
 received the command over a strongly authenticated link.

 Another example scenario: a PRIM client connects to a server for
 example.net and authenticates using some strong SASL mechanism as
 alice. It then issues a "send" command from alice@example.net to
 bob@domain.com. The example.net server connects to domain.com and
 authenticates, but example.net’s public key DNS record is not signed,
 so it could have been forged by a DNS spoofing attack. The
 example.net server sends the IM with "Astrength: strong" because it
 received the command from Alice over a strongly authenticated link;
 however, the domain.com server will weaken the Astrength to "Medium"
 when forwarding the command to Bob’s clients.

9.1.9. User-Agent-ID

 For a single PRINCIPAL, mutliple USER AGENTS can open TCP connections
 to a server. A User Agent ID is used to distinguish these USER
 AGENTS of the same PRINCIPAL by the server. A User Agent ID is
 generated by the server and contained in a response to a LOGIN
 command.

 user-agent-id-header = "User-Agent-ID: " 1*(unreserved / escaped)

 [This header might be unnecesary once we discarded multiple
 connections.]

9.1.10. Max-Content-Length

 Used by the USER AGENT to indicate to the server that it MUST NOT
 send commands with length greater than the value supplied.

 max-content-length-header = "Max-Content-Length: " 1*DIGIT

9.1.11. Date

 Specifies the date and time this command was originally issued. PRIM
 adopts the date syntax as defined in Section 15.5, i.e. specified in
 [RFC1123].

Mazzoldi et al. [Page 19]

INTERNET DRAFT PRIM Specification March 2001

 date-header = "Date: " date-time
 ; as defined in Section 15.5

 [It will be affected by the CPIM specification because it would be
 preferable to have the same format with it. Need more discussions.]

9.2. Presence Headers

9.2.1. Class

 Identifies the class(es) to which the PRESENCE TUPLE should be
 published (See Section 14.1).

 class-header = "Class: " class [SP class]
 class = 1*(unreserved / escaped)

9.2.2. Tuple-ID

 Identifies the PRESENCE TUPLE that is being published. This can be
 any string that uniquely identifies the tuple or it MAY be the
 CONTACT ADDRESS for the communication means that corresponds to the
 PRESENCE TUPLE.

 tuple-id-header = "Tuple-ID: " 1*(unreserved / escaped)

9.2.3. Duration

 Specifies the amount of seconds this command should remain in effect.
 Used for the leased operations.

 duration-header = "Duration: " 1*DIGIT

9.2.4. PI-Type

 Indicates whether new leased PRESENCE INFORMATION is being published,
 an existing lease is being renewed, a permanent value is being
 published, or a leased value is being replaced with a permanent
 value.

 pi-type-header = "PI-Type: "
 ("leased"
 / "permanent"
 / "renew"
 / "revert")

Mazzoldi et al. [Page 20]

INTERNET DRAFT PRIM Specification March 2001

9.2.5. Watcher-Type

 Used by the NOTIFYWATCHER command to specify whether a FETCH or
 SUBSCRIBE operation has occured.

 watcher-type-header = "Watcher-Type: " ("fetch" / "subscribe")

9.3. IM Headers

9.3.1. Message-ID

 The message-id-header specifies the identifier of each IM, which
 distinguishes the message from others. The sender must generate a
 unique message-id for each IM sent.

 message-id-header = "Message-ID" 1*(DIGIT / ALPHA) ": " im-id

9.3.2. Conversation-ID

 The conversation-id is used in the SEND command to identify the
 conversation channel shared by the participants of an IM exchange. A
 "conversation channel" means a virtual channel which consists of a
 thread of IMs. When a PRINCIPAL replies to an IM, the reply MUST
 have the same conversation-id header.

 conversation-id-header = "Conversation-ID: " 1*(unreserved / escaped)

9.3.3. Reply-To

 The reply-to-header is optionally specified in a SEND command. It
 indicates an INSTANT INBOX identifier where the sender would prefer
 to receive any replies. The recipient SHOULD use the "reply-to"
 header, instead of the "from" header, if the former exists.

 reply-to-header = "Reply-To: " im-id

10. Common Commands

 The commands described in this section apply to both the PRESENCE and
 INSTANT MESSAGING services.

10.1. Connection Setup - LOGIN

 Direction: C->S
 Required Headers: from-header,
 auth-state-header,

Mazzoldi et al. [Page 21]

INTERNET DRAFT PRIM Specification March 2001

 SASL-mechanism-header,
 max-content-length
 Optional Headers: none
 Command Body: Required

 The initiating client MUST issue a LOGIN request to the server in
 order to start the authentication process. As described in Section
 13.2, server-server connections are not authenticated at connection
 time.

 If the authentication process is not successful the TCP connection
 MUST be dropped. The LOGIN request MAY be preceded by the STARTTLS
 request when the implementations support TLS for a secure connection.
 Any other requests that are received before the authentication
 completed MUST receive an "Unauthorized" response.

 The authentication process is not necessarily completed in a single
 request/response pair, but it can be fulfilled in a sequence of the
 request/response pairs. The auth-state-header MUST be used to
 indicate the state of the authentication process.

 The command-body in the LOGIN request carries the challenge
 information for the respective SASL mechanism.

 Return Codes:

 100 Authentication Continued: This response may possibly carry a
 command-body with information pertaining to the SASL challenge, and
 a SASL-mechanism-header specifying the SASL mechanism supported by
 the server. The originator needs to send other LOGIN command, with
 auth-state-header as "continue", and the response to the challenge
 in the command-body.

 200 OK: The sender is authenticated and the connection may be used
 to transport further commands. The server MUST include the user-
 agent-id-header in its response. If this is the first connection
 from a USER AGENT, the server will assign a new value, unique to
 the connecting PRESENTITY or INSTANT INBOX. If this is an
 additional connection, the server will simply return the header as
 sent by the client.

 406 Authorization Failed: The operation failed to authenticate the
 connection. No further commands are allowed and the receiver MUST
 terminate the connection.

 409 Already Authenticated: This is returned if a LOGIN command has
 already succeeded.

Mazzoldi et al. [Page 22]

INTERNET DRAFT PRIM Specification March 2001

10.2. Connection Setup - STARTTLS

 Direction: C->S, S->S
 Required Headers: none
 Optional Headers: none
 Command Body: none

 A client or server MAY issue STARTTLS request to upgrade a TCP
 connection to a TLS [TLS] enabled one. Implementations that support
 TLS MAY issue a STARTTLS request prior to issuing any other requests.

 Once the client credentials are successfully exchanged using TLS
 negotiation, the "EXTERNAL" SASL mechanism MAY be used in the
 subsequent LOGIN process. The "PLAIN" SASL mechanism SHOULD NOT be
 used if the STARTTLS upgrading process fails to establish a fully
 strong encryption layer.

 The Response MUST NOT carry a command-body.

 Return Codes:

 200 OK: The TLS negotiation should start. Once a STARTTLS command
 issued, the initiator MUST NOT issue further requests until a
 server response is received and the TLS negotiation is completed.

 501 Not Implemented: TLS is not implemented and thus the client
 must authenticate itself using the LOGIN method.

10.3. Connection Shutdown - LOGOUT

 Direction: C->S, S->S
 Required Headers: none
 Optional Headers: none
 Command Body: none

 The receiver of the LOGOUT command MUST NOT send any response.

10.4. Testing a connection - PING

 Direction: C->S, S->S, C->S
 Required Headers: none
 Optional Headers: none
 Command Body: none

 When a peer in a connection wants to verify if the connection is
 alive, it may send a PING command. No response is expected from the
 other peer.

Mazzoldi et al. [Page 23]

INTERNET DRAFT PRIM Specification March 2001

 A successful transmission of a PING does not guarantee its reception
 at the other end, nor does it verify that all is well with its peer.
 However the transmission of the PING may provoke an error, and
 thereby causing the sending peer to realize there is a problem with
 the connection. If this happens the USER AGENT or server assumes an
 implicit LOGOUT command.

10.5. Verifying a server’s authority - VERIFYSERVER

 Direction: S->S
 Required Headers: server-address-header
 Optional Headers: none
 Command Body: none

 As described in section 13.2, when a server needs to verify whether
 another server (known through its IP address) belongs to a given
 domain, it performs one or more DNS lookups. Large domains with a
 significant amount of servers might not be able to publish every
 entry for every server, due to DNS limitations. Thus a DNS lookup
 might not be sufficient to determine whether a given server belongs
 to a given domain.

 If it is not possible to verify the domain of a server through a DNS
 lookup, a VERIFYSERVER command can be issued.

 The VERIFYSERVER MAY be issued in a new TCP connection, without
 previous LOGIN. The verifying server will issue the command to any
 of the addresses returned in the DNS lookup.

 The server-address-header specifies the IP address of the server that
 needs verification.

 The response MUST NOT have a command body.

 Return Codes:

 200 OK: the server does belong to that domain.

 403 Resource Not Found: the server does not belong to this domain.

10.6. Access Control

 The PRESENCE and INSTANT MESSAGING SERVICES use the Access Control
 Lists to determine what operations PRESENTITIES and INSTANT INBOXES
 are permitted to perform on protected resources. The operations that
 can be performed on PRESENTITIES are different than those for INSTANT
 INBOXES. However, the access control mechanisms are the same and
 thus we will describe them together.

Mazzoldi et al. [Page 24]

INTERNET DRAFT PRIM Specification March 2001

10.6.1. SETACL

 Direction: C->S
 Required Headers: from-header,
 Optional Headers: none
 Command Body: Required

 This operation is used by the USER AGENT to send an access control
 list to the server.

 The command-body MUST carry a valid XML document according to the DTD
 given in Section 14.

 The from-header specifies the PRESENTITY or INBOX this ACL pertains
 to.

 The Response MUST NOT have a command-body.

 Return Codes:

 200 OK: The access control list sent replaced the one currently
 active in the server.

 400 Bad Request: The command was malformed or the command-body did
 not carry a valid XML document. The access control list did not
 replace the current one.

 402 Forbidden: The PRINCIPAL authenticated in the current
 connection does not own the requested resource, thus cannot set the
 ACL for it. The access control list did not replace the current
 one.

 403 Resource Not Found: The resource (PRESENTITY or IM INBOX) does
 not exist. The access control list did not replace the current
 one.

10.6.2. GETACL

 Direction: C->S
 Required Headers: from-header,
 Optional Headers: none
 Command Body: Required

 This method is issued to retrieve the current access control list for
 a specific resource from a Presence or IM server.

 The from-header specifies the identifier of the resource (PRESENTITY
 or IM INBOX) for which the ACL is required.

Mazzoldi et al. [Page 25]

INTERNET DRAFT PRIM Specification March 2001

 The Return Codes are:

 200 OK: The command-body of the Response has a valid XML document
 according to the DTD presented in Section 14, representing the
 current ACL for the resource requested.

 402 Forbidden: The PRINCIPAL authenticated in the current
 connection does not own the requested resource, thus cannot get the
 ACL for it. No command-body is present.

 403 Resource Not Found: The resource (PRESENTITY or IM INBOX) does
 not exist. No command-body is present.

11. Presence Service Commands

 This section describes the details of the protocol for the PRESENCE
 SERVICE.

11.1. Placement, Renewal and Removal of SUBSCRIPTIONS

11.1.1. SUBSCRIBE

 Direction: C->S, S->S
 Required Headers: from-header,
 to-header,
 duration-header,
 astrength-header (optional on C->S)
 Optional Headers: none
 Command Body: none

 The SUBSCRIBE method is used to express a WATCHER’s interest on the
 PRESENCE INFORMATION of a PRESENTITY. There are two scenarios where
 the method is issued: when a

 o WATCHER wishes to establish a new SUBSCRIPTION to a PRESENTITY,
 or

 o Presence Server or USER AGENT needs to renew a SUBSCRIPTION on
 behalf of a WATCHER

 The from-header identifies the PRESENTITY requesting the
 SUBSCRIPTION.

 The to-header specifies the PRESENTITY to subscribe to.

 The duration-header specifies the amount of seconds that this
 subscription is valid for.

Mazzoldi et al. [Page 26]

INTERNET DRAFT PRIM Specification March 2001

 The Return Codes are:

 200 OK: The SUBSCRIPTION was placed successfully. The command-body
 carries the current PRESENCE INFORMATION for the PRESENTITY.

 201 Duration Adjusted: The SUBSRIPTION was placed successfully, yet
 a different duration was set and this is indicated in the duration-
 header of the response.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights (through the current ACL) to
 SUBSCRIBE to the PRESENTITY requested. No command-body is present.

 403 Resource Not Found: The PRESENTITY does not exist. No command-
 body is present.

 505 Too Many Subscriptions: The maximum amount of SUBSCRIPTIONS for
 that PRESENTITY has been reached. No command-body is present.

 If a SUBSCRIPTION already exists between a WATCHER and a PRESENTITY,
 then a successful SUBSCRIBE request from the WATCHER updates the
 duration of the SUBSCRIPTION to the value carried in the request.

11.1.2. UNSUBSCRIBE

 Direction: C->S, S->S
 Required Headers: from-header,
 to-header,
 astrength-header (optional on C->S)
 Optional Headers: none
 Command Body: none

 The UNSUBSCRIBE method indicates that a WATCHER is no longer
 interested in receiving NOTIFICATIONS for changes in PRESENCE
 INFORMATION of a PRESENTITY.

 It may either be issued by a USER AGENT or a Presence Server on
 behalf of the WATCHER.

 The from-header identifies the WATCHER requesting the SUBSCRIPTION
 cancellation.

 The to-header specifies the PRESENTITY to unsubscribe from.

 The Response MUST NOT carry a command-body. The Return Codes in the
 Response are:

Mazzoldi et al. [Page 27]

INTERNET DRAFT PRIM Specification March 2001

 200 OK: The SUBSCRIPTION was removed.

 404 Subscription Not Found: there is no SUBSCRIPTION from the
 specified WATCHER to the specified PRESENTITY.

 Note: When the duration of a SUBSCRIPTION elapses, without the
 reception of a renewal, the Presence Server MUST assume an implicit
 UNSUBSCRIBE method has been received.

11.1.3. CANCELSUBSCRIPTION

 Direction: S->S, S->C
 Required Headers: from-header,
 to-header,
 astrength-header
 Optional Headers: none
 Command Body: none

 The CANCELSUBSCRIPTION method is used when a PRINCIPAL controlling a
 PRESENTITY denies SUBSCRIPTION access (through a SETACL) to a current
 WATCHER.

 The Presence Server, realizing that the WATCHER already had a
 subscription, will send a CANCELSUBSCRIPTION command to the WATCHER,
 letting it know that its SUBSCRIPTION has been cancelled. No future
 NOTIFICATIONS will be sent to this WATCHER.

 The from-header specifies the PRESENTITY that is cancelling the
 subscription.

 The to-header specifies the WATCHER who’s SUBSCRIPTION has been
 cancelled.

 No response is needed for this command.

11.1.4. FETCH

 Direction: C->S, S->S
 Required Headers: from-header,
 to-header,
 astrength-header (optional on C->S)
 Optional Headers: none
 Command Body: none

 The FETCH method is used when a WATCHER wishes to retrieve the
 present value of the PRESENCE INFORMATION for a PRESENTITY.

 The from-header identifies the WATCHER requesting the PRESENCE

Mazzoldi et al. [Page 28]

INTERNET DRAFT PRIM Specification March 2001

 INFORMATION

 The to-header specifies the PRESENTITY that the WATCHER is interested
 in.

 The Return Codes are:

 200 OK: The FETCH was successful. The command-body carries the
 current PRESENCE INFORMATION for the PRESENTITY.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights (through the current ACL) to FETCH
 the PRESENCE INFO. No command-body is present.

 403 Resource Not Found: The PRESENTITY does not exist. No command-
 body is present.

11.2. Publication & Removal of PRESENCE INFORMATION

11.2.1. PUBLISH

 Direction: C->S
 Required Headers: from-header,
 pi-type-header,
 duration-header,
 class-header,
 tuple-id-header
 Optional Headers: none
 Command Body: Required

 This method is used to publish one TUPLE of PRESENCE INFORMATION for
 a PRESENTITY. It is used to set the leased and permanent values of
 the PRESENCE INFORMATION.

 The command-body MUST carry one XML document as described in Section
 15, corresponding to the PRESENCE TUPLE the USER AGENT wishes to
 publish.

 The USER AGENT SHOULD ensure that at most one PRESENCE TUPLE is
 published for a given address at any moment for a specific class.

 All successful PUBLISH operations will cause NOTIFICATIONS to be sent
 to all the SUBSCRIBERS of that PRESENTITY, except:

 o Renewal of an existing lease
 o Publishing of permanent PI, while a valid lease exists

 In addition, the expiration of a lease will also cause NOTIFICATIONS

Mazzoldi et al. [Page 29]

INTERNET DRAFT PRIM Specification March 2001

 to be sent to all the SUBSCRIBERS of the PRESENTITY.

 The headers used for this method are:

 from-header: identifies the PRESENTITY publishing the PRESENCE
 INFORMATION

 pi-type-header: if this header carries the value "leased", the
 PRESENCE INFORMATION will be valid only for the period of time
 specified in the duration-header (in seconds). After that time
 elapses and the lease is not renewed the PRESENCE INFORMATION
 reverts to its permanent value.

 The leased value can be renewed if the USER AGENT issues a PUBLISH
 operation with a "renew" pi-type-header.

 The leased value can be removed if the USER AGENT issues a PUBLISH
 operation with a "revert" pi-type-header.

 If "permanent" is specified, this determines that value that the
 PRESENCE INFORMATION will revert to when the lease expires.

 duration-header: only available for the "leased" value in the type-
 header, it represents the amount of seconds for which the PRESENCE
 TUPLE sent will be valid. After that period, if no PUBLISH method
 is received, the server MUST publish the permanent value of the
 PRESENCE TUPLE or, if no permanent value exists it MUST remove the
 PRESENCE TUPLE.

 class-header: the Classes the PRESENCE TUPLE should be published
 to. This value is used to determine which WATCHERS should receive
 this information.

 tuple-id-header: identifies the PRESENCE TUPLE that is being
 published. The server uses this value to determine which existing
 PRESENCE TUPLE it must remove or replace with the current one.

 The Response for this command MUST NOT carry any command-body. The
 Return codes for this command are:

 200 OK: the PRESENCE TUPLE has been accepted. If it is leased or
 if it is permanent and no lease exists, the PRESENTITY’S PRESENCE
 INFO will be distributed to all SUBSCRIBERS in the classes
 specified in the class-header.

 400 Bad Request: The command was malformed or the command-body did
 not carry valid PRESENCE INFORMATION as defined in section 15. The
 PRESENCE TUPLE was not accepted.

Mazzoldi et al. [Page 30]

INTERNET DRAFT PRIM Specification March 2001

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights (through the current ACL) to
 PUBLISH PRESENCE INFORMATION for this PRESENTITY.

 403 Resource Not Found: The PRESENTITY does not exist.

11.2.2. REMOVE

 Direction: C->S
 Required Headers: from-header,
 class-header,
 tuple-id-header
 Optional Headers: none
 Command Body: none

 This method is used to remove one TUPLE of PRESENCE INFORMATION for a
 PRESENTITY. Once removed the PRESENCE TUPLE will no longer be
 published to WATCHERS.

 This command will remove both the leased and permanent values of the
 tuple, and also trigger the appropriate NOTIFICATIONS.

 The headers used by this method are:

 from-header: identifies the PRESENTITY publishing the PRESENCE
 INFORMATION

 class-header: the Classes from which the PRESENCE TUPLE should be
 removed from. This value is used to determine which WATCHERS
 should receive this information.

 tuple-id-header: identifies the PRESENCE TUPLE that is being
 removed.

 The Response for this command MUST NOT carry any command-body. The
 Return codes for this command are:

 200 OK: the PRESENCE TUPLE has been removed

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights (through the current ACL) to REMOVE
 any PRESENCE TUPLES.

 403 Resource Not Found: The PRESENTITY does not exist or the tuple
 does not exist.

 The successful removal of a PRESENCE TUPLE will trigger the server to
 send NOTIFICATION commands to all the SUBSCRIBERS for that

Mazzoldi et al. [Page 31]

INTERNET DRAFT PRIM Specification March 2001

 PRESENTITY.

11.3. Propagation of PRESENCE INFORMATION - NOTIFY

 Direction: S->S, S->C
 Required Headers: from-header,
 to-header,
 astrength-header (optional on C->S)
 Optional Headers: none
 Command Body: Required

 The NOTIFY command informs WATCHERS when the PRESENCE INFORMATION of
 the PRESENTITY they have SUBSCRIPTIONS to has changed. This command
 is always issued by Presence Servers.

 When a successful PUBLISH method with "lease" type is processed by
 the Presence Server, it will go through the list of SUBSCRIPTIONS,
 filtered by the Class Table, and identify all the WATCHERS that need
 to be notified of the change. It will then send one NOTIFY command
 for each of these WATCHERS.

 When some tuple of leased PRESENCE INFORMATION expires (the duration
 time elapses) without receiving another PUBLISH command, that
 PRESENCE INFORMATION needs to be reverted to the permanent values.
 The Presence Server, then, with the same algorithm as before, sends
 new NOTIFY commands to the WATCHERS. The NOTIFY will carry the whole
 PRESENCE INFORMATION and not just the modified tuple.

 The command-body MUST carry a valid XML document as described in
 Section 15, corresponding to the PRESENCE INFORMATION for the
 PRESENTITY.

 The headers for this command are:

 from-header: the PRESENTITY this NOTIFICATION is about

 to-header: the WATCHER that needs to receive this information

 The Response MUST NOT carry any command-body. The Return Codes are:

 200 OK: the PRESENCE INFORMATION was received and processed
 correctly.

 400 Bad Request: The command was malformed or the command-body did
 not carry a valid XML document. The PRESENCE INFORMATION was not
 accepted.

 403 Resource Not Found: no such WATCHER exists.

Mazzoldi et al. [Page 32]

INTERNET DRAFT PRIM Specification March 2001

11.4. Presence Privacy Management

11.4.1. Access Control List

 For the purposes of the PRESENCE SERVICE the operations available for
 the SETACL and GETACL methods defined in Section 10.6 are restricted
 to FETCH, SUBSCRIBE, PUBLISH and REMOVE.

11.4.2. SETCLASSTABLE

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: Required

 Through the SETCLASSTABLE method, the USER AGENT sets the list of
 WATCHERS belonging to a given Class.

 The command-body of the SETCLASSTABLE command MUST carry a CLASSTABLE
 XML Element, as described in Section 14.1.

 The from-header specifies the PRESENTITY for which this Class Table
 should be set.

 The Response MUST NOT carry a command-body. The possible Return
 Codes are:

 200 OK: The class table sent replaced the one currently active in
 the server.

 400 Bad Request: The command was malformed or the command-body did
 not carry a valid XML document. The Class table did not replace
 the current one.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not own the PRESENTITY specified in the from-
 header. The Class table did not replace the current one.

 403 Resource Not Found: The PRESENTITY does not exist. The Class
 table did not replace the current one.

11.4.3. GETCLASSTABLE

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: none

Mazzoldi et al. [Page 33]

INTERNET DRAFT PRIM Specification March 2001

 The GETCLASSTABLE method is used by the USER AGENT to retrieve the
 Class Table for a given PRESENTITY. The response to GETCLASSTABLE
 command contains a CLASSTABLE XML element in the command-body.

 The from-header specifies the identifier of the PRESENTITY for which
 the Class Table is required.

 The Return Codes are:

 200 OK: The command-body of the Response carries a CLASSTABLE XML
 Element, as described in Section 14.1., representing the Class
 Table for the PRESENTITY requested.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not own the PRESENTITY in the from-header. No
 command-body is present.

 403 Resource Not Found: The PRESENTITY does not exist. No command-
 body is present.

11.4.4. STARTWATCHERNOTIFY

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: none

 This command instructs a server to start sending watcher information
 to a USER AGENT.

 The from-header identifies the PRESENTITY requesting the
 NOTIFICATIONS.

 The Response to STARTWATCHERNOTIFY may carry a command-body,
 depending on the return Code:

 200 OK: The server will start sending NOTIFICATIONS when new
 SUBSCRIPTIONS are placed or when the a FETCH is perfored on the
 PRESENTITY. The command-body carries an XML document SUBSCRIBERS
 with the information about the current SUBSCRIBERS of the specified
 presentity.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights to perform the requested operation.
 No command-body is present.

 403 Resource Not Found: The PRESENTITY does not exist. No command-

Mazzoldi et al. [Page 34]

INTERNET DRAFT PRIM Specification March 2001

 body is present.

 The XML document carried in the command-body if the operation is
 successful MUST be valid under the following DTD:

 <!ELEMENT SUBSCRIBERS (subscriber)*>
 <!ELEMENT subscriber (#PCDATA)>

 Each subscriber element carries the identifier of one WATCHER
 SUBSCRIBED to the requested PRESENTITY.

11.4.5. STOPWATCHERNOTIFY

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: none

 This command instructs a server to stop sending watcher information
 to a USER AGENT.

 The from-header identifies the PRESENTITY requesting the termination
 of the NOTIFICATIONS.

 The Response to STARTWATCHERNOTIFY MUST NOT carry a command-body.

 200 OK: The server will stop sending watcher information
 NOTIFICATIONS.

 402 Forbidden: The PRESENTITY authenticated in the current
 connection does not have rights to perform the requested operation.

 403 Resource Not Found: The PRESENTITY does not exist.

11.4.6. WATCHERNOTIFY

 Direction: S->C
 Required Headers: from-header,
 to-header,
 watcher-type-header
 Optional Headers: none
 Command Body: none

 Notifies the PRINCIPAL that a FETCH or SUBSCRIBE operation was
 performed on the PRESENTITY indicated in the to-header, by the
 PRESENTITY indicated in the from-header.

 The headers for this method are:

Mazzoldi et al. [Page 35]

INTERNET DRAFT PRIM Specification March 2001

 from-header: identifies the PRESENTITY performing the FETCH or
 SUBSCRIBE

 to-header: specifies the PRESENTITY that the FETCH or SUBSCRIBE was
 performed upon.

 watcher-type-header: specifies whether a FETCH or SUBSCRIBE
 occurred.

12. Instant Messaging Service Commands

12.1. Listening to INSTANT INBOXes

12.1.1. LISTEN

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: none

 Whenever a USER AGENT needs to receive messages targeted to an
 INSTANT INBOX, it MUST issue a LISTEN command to its IM Server.

 The from-header specifies the INSTANT INBOX identifier that the
 PRINCIPAL wishes to listen to.

 The Response MUST NOT carry a command-body either, and the possible
 Return Codes are:

 200 OK: the PRINCIPAL is now listening to the INSTANT INBOX, and
 will receive any messages sent to it.

 402 Forbidden: The PRINCIPAL authenticated in the current
 connection does not have rights (through the current ACL) to LISTEN
 to the INSTANT INBOX requested.

 403 Resource Not Found: The INSTANT INBOX does not exist.

12.1.2. SILENCE

 Direction: C->S
 Required Headers: from-header
 Optional Headers: none
 Command Body: none

 When a PRINCIPAL is not interested to receive any more messages from
 an INSTANT INBOX, it issues a SILENCE method, through which it

Mazzoldi et al. [Page 36]

INTERNET DRAFT PRIM Specification March 2001

 instructs the IM Server not to forward any messages arriving to the
 specified INBOX through its connection.

 The from-header specifies the INSTANT INBOX identifier the PRINCIPAL
 does not want to listen to any more.

 The response to this command MUST NOT have any command-body either,
 and the return codes are:

 200 OK: the PRINCIPAL will not longer receive any messages for the
 specified INBOX. This does not imply that the INBOX is closed,
 since there may be other PRINCIPALS listening to the same INBOX.

 403 Resource Not Found: The INBOX does not exist.

 408 Inbox Is Closed: the PRINCIPAL is not currently listening to
 that INBOX.

12.2. Sending Messages - SEND

 Direction: C->S, S->S, S->C
 Required Headers: from-header,
 to-header,
 message-id-header,
 conversation-id-header,
 astrength-header (optional on C->S)
 Optional Headers: reply-to-header
 Command Body: Required

 [Note. It would be necessary to make the "SEND" command syntax
 compatible with the CPIM specification. We need more discussion.]

 The SEND command is used to transport an INSTANT MESSAGE from the
 SENDER’s USER AGENT to the RECEIVER’s USER AGENT.

 The command-body carries an INSTANT MESSAGE, as described in section
 16.

 The from-header identifies the SENDER of the message.

 The to-header identifies the INSTANT INBOX the message is sent to.

 The astrength-header indicates the lowest authentication strength for
 previous hops of the command.

 The message-id-header specifies a unique identifier for each INSTANT
 MESSAGE.

Mazzoldi et al. [Page 37]

INTERNET DRAFT PRIM Specification March 2001

 The conversation-id-header specifies a unique identifier to
 distinguish a given conversation thread between multiple
 participants.

 The reply-to-header indicates an INSTANT INBOX identifier where the
 sender would prefer to receive any replies.

 The response to this method MUST NOT carry any command-body, and MAY
 have the following return codes:

 101 Unknown Delivery Status: The IM Service cannot assure that the
 message was delivered.

 200 OK: the INSTANT MESSAGE was delivered at least to one PRINCIPAL
 that was listening to the recipient INSTANT INBOX.

 402 Forbidden: The PRINCIPAL authenticated in the current
 connection does not have rights (through the current ACL) to send
 messages to the recipient INSTANT INBOX.

 408 Inbox Is Closed: the INSTANT MESSAGE could not be delivered
 because the recipient INSTANT INBOX was closed. This may be issued
 by either the IM Server if there is no-one listening to that inbox,
 or by a USER AGENT if it decides to block the sender (see
 explanation below).

 The response code sent by the IM Server hosting the recipient INSTANT
 INBOX is always the most positive response from all the connections
 listening to that INBOX. Thus, if at least one USER AGENT
 acknowledges the message, then its server will acknowledge it too.

 Note: It is important to remember that PRESENCE INFORMATION may be
 revealed through the responses to INSTANT MESSAGES. For example, it
 may be possible for someone to "ping" an INSTANT INBOX by sending
 messages to it, in order to deduce PRESENCE INFORMATION from the
 state of that INBOX. USER AGENT implementations can prevent that if
 necessary by returning 408 Inbox Is Closed if the sender of an
 INSTANT MESSAGE should not know that the INBOX is OPEN.

12.3. Access Control Lists

 For the purposes of the INSTANT MESSAGING SERVICE the operations
 available for the SETACL and GETACL methods defined in Section 10.6
 are restricted to LISTEN, SILENCE and SEND.

13. Authentication

Mazzoldi et al. [Page 38]

INTERNET DRAFT PRIM Specification March 2001

 PRIM implements security on a per-connection basis: each connection
 end-point is authenticated in order to establish the PRESENTITIES and
 INBOXES on behalf of which that end-point can communicate.

 After authentication succeeds, the other end-point will accept
 requests pertaining to those PRESENTITIES or INBOXes, and direct
 requests to them over that connection.

13.1. Client-Server Authentication

 When a USER AGENT establishes a connection to a server it issues a
 LOGIN command to authenticate its PRINCIPAL. The authentication
 procedure in PRIM uses SASL [SASL]. The LOGIN request and response
 MUST include a SASL-Mechanism header field so that the USER AGENT and
 the server could negotiate the SASL mechanism to be used. As SASL
 mechanisms, every PRIM implementation MUST implement PLAIN [SASL-
 PLAIN] and is RECOMMENDED to implement CRAM-MD5 [CRAM-MD5], and
 EXTERNAL [SASL]. It MAY also implement other mechanisms as needed.

 If the authentication process succeeds, the server associates that
 connection with the specific PRINCIPAL. After that, the server MUST
 ensure each request it receives through that connection pertains to
 that PRINCIPAL. If a request pertains to an unauthorized principal
 the server returns an error message.

 The LOGIN authentication procedure is sketched as follows;

 (1) The initial LOGIN request

 A USER AGENT issues a LOGIN request including the Auth-State header
 with the value "init". It MUST also contain the SASL-Mechanism
 header whose value is a comma-separated list of SASL mechanisms the
 USER AGENT is capable to use in the descending order of preference.

 [Example]

 LOGIN PP/1.0 0224 0
 From: pres:suga@prim.fujitsu.com
 Auth-State: init
 SASL-Mech: CRAM-MD5 PLAIN

 If the LOGIN request is acceptable, the server SHOULD respond with
 ’100 Authentication Continued’ response. It MUST contains the
 SASL-Mechanism header with the value of at least one selected SASL
 mechanism by the server. If a challenge-response mechanism is
 selected, the response MUST contain a challenge data in the body.

 PP/1.0 0224 48 100 Authentication Continued

Mazzoldi et al. [Page 39]

INTERNET DRAFT PRIM Specification March 2001

 From: pres:suga@prim.fujitsu.com
 Auth-State: init
 SASL-Mech: CRAM-MD5

 <20010226095208.1018677043.foo1.bar.fujitsu.com>

 (2) The subsequent LOGIN requests

 If a USER AGENT receives a ’100 Authentication Continued’ response
 to the initial LOGIN request, it SHOULD try another LOGIN request
 with the header ’Auth-State: continue’. This LOGIN request MUST
 contain the SASL-Mechanism header with the single value of selected
 SASL machanism.

 The LOGIN request MAY contain the PRINCIPAL’s authentication
 information in the body required by the selected mechanism. Details
 in the case of CRAM-MD5, PLAIN, and EXTERNAL are described in the
 following subsections.

 If the LOGIN request is validated, the server respond with a ’200
 OK’ response. If the same PRINCIPAL is already authenticated by a
 preceding LOGIN procedure, the server MAY respond with a ’409
 Already Authenticated’. Otherwise, a ’406 Authentication Failed’
 response SHOULD be returned to the USER AGENT. In this case, the
 USER AGENT MUST NOT send any other request commands in this
 connection.

 (2-a) CRAM-MD5

 The USER AGENT calculates the response data using the keyed MD5
 algorithm [KEYED-MD5] where the key is the shared pass phrase and
 the text is the challenge data. Then, it sends the hexadecimal
 string of the response octets prepended by the user name and CRLF
 in the body of the LOGIN request.

 [Example]

 LOGIN PP/1.0 0225 55
 From: pres:suga@prim.fujitsu.com
 Auth-State: continue
 SASL-Mech: CRAM-MD5
 Content-Type: text/plain

 suga@prim.fujitsu.com
 106d12b16fc323dc2f3d19b587f8d0ff

Mazzoldi et al. [Page 40]

INTERNET DRAFT PRIM Specification March 2001

 (2-b) PLAIN

 The PLAIN mechanism is intended to be used only on a fully secured
 connection, such as one already encrypted using a prior STARTTLS
 command. In this case, the body part of the LOGIN request contains
 the user name and the pass phrase in a plain text separated by
 CRLF.

 [Example]

 LOGIN PP/1.0 84505230 32
 From: pres:suga@prim.fujitsu.com
 Auth-State: continue
 SASL-Mech: PLAIN
 Content-Type: text/plain

 suga@prim.fujitsu.com
 hi there!

 (2-c) EXTERNAL

 The EXTERNAL mechanism is intended to be used in the case that the
 PRINCIPAL has been already authenticated with some external
 authentication method, such as TLS client authentication. The LOGIN
 command using this mechanism contains nothing in the body.

13.2. Server-Server Authentication

 When a server establishes a connection to another server, that
 connection end-point can be authorized to communicate on behalf of
 multiple PRESENTITIES or INBOXES. This authorization can take place
 either at connection time, or throughout the duration of the
 connection.

 If the connection uses TLS, then the domains served by each end-point
 are established in the beginning, through the certificates provided.

 If the connection does not use TLS, then each end-point will
 establish that a domain is being served by the other end-point when
 the first request pertaining to that domain is received. This can
 happen more than once per connection.

 For example, if server A receives a subscription request from server
 B, on behalf of user thanos@networkprojects.com, server A MUST verify
 that server B is one of the servers of the networkprojects.com
 domain. If so, it will then accept other requests from server B that

Mazzoldi et al. [Page 41]

INTERNET DRAFT PRIM Specification March 2001

 pertain to users of the networkprojects.com domain.

 Verification that a given server is responsible for a given domain is
 done by performing a name resolution (as described in section 7.2).
 It is possible that due to DNS limitations, in the case of a domain
 with a large number of servers, only partial DNS records are
 advertised. Thus, the address of the server initiating the
 connection may not be in the records received. In this case a
 VERIFYSERVER method is performed to establish whether the initiating
 server has authority over the corresponding domain. This is
 described in Section 10.5.

14. Privacy Management

14.1. Presence Publication Control

 When a USER AGENT publishes a PRESENCE TUPLE, it issues a PUBLISH
 request to the server. It MUST contain a Class header which
 specifies the class of WATCHERS that will receive that PRESENCE
 TUPLE. The server retrieves the relevant WATCHERS from the Class
 Table when it receives the PUBLISH request.

14.1.1. Class Table

 Class Tables are stored at the server and manipulated by the USER
 AGENTS through the GETCLASSTABLE and SETCLASSTABLE commands. A
 SETCLASSTABLE request and GETCLASSTABLE response contain an XML
 encoded Class Table in its body. The DTD of the Class Table is
 defined as follows:

 <!ELEMENT CLASSTABLE (class)*>
 <!ELEMENT class (watcher)*>
 <!ATTLIST class name CDATA #REQUIRED>
 <!ELEMENT watcher (#PCDATA)>

 The matching of WATCHERS to entries in the Class Table goes from

14.1.2. Example

 As an example, consider the following Class Table document for
 bob@workdomain.com:

 <classtable>
 <class name="important_people">

Mazzoldi et al. [Page 42]

INTERNET DRAFT PRIM Specification March 2001

 <watcher>wife@example.com</watcher>
 <watcher>@workdomain.com</watcher>
 </class>
 <class name="not_so_important_people">
 <watcher>friend@otherexample.com</watcher>
 <watcher>uncle@otherdomain.com</watcher>
 <watcher>slacker@workdomain.com</watcher>
 </class>
 <class name="everyone">
 <watcher>.</watcher>
 </class>
 </classtable>

 Every publication of a PRESENCE TUPLE for "important_people" will
 only be distributed to "wife@example.com" and all WATCHERS from

 "workdomain.com" (except "slacker@workdomain.com").

 Every publication of a PRESENCE TUPLE for "not_so_important_people"
 will only be distributed to "friend@otherexample.com",
 "uncle@otherdomain.com" and "slacker@workdomain.com".

 Finally, every publication of a PRESENCE TUPLE for "everyone" will go
 to all WATCHERS that their identifier doesn’t match any of the above
 classes.

14.2. Access Control

14.2.1. Overview

 There are two kinds of protected resources: PRESENTITIES and INSTANT
 INBOXES. Certain requests pertaining to those resources are subject
 to access control and may only be invoked on behalf of a restricted
 set of PRINCIPALS. Thus each protected resource has an access
 control list.

 In order to decide if a particular request for an INBOX or a
 PRESENTITY is permitted, an access control list is used. Abstractly,
 the decision depends on three parameters, the originator of the
 request, the operation requested, and the parameters of the
 operation. The originator of the request is identified in the "From"
 field of a request. There are several operations that pertain to
 PRESENTITY ACLs, some that pertain to INSTANT INBOX ACLs, and some
 that pertain to both.

 Access control decisions on behalf of the PRINCIPALS are made at

Mazzoldi et al. [Page 43]

INTERNET DRAFT PRIM Specification March 2001

 their home servers. The USER AGENT sets the access control list on
 the Presence and Instant Messaging servers.

 More specific ACL entries are evaluated before less specific ones:

 o If the ACL object has an entry with the requestor’s
 identifier as a key, the value of that entry is the list of
 permitted operations.

 o Next, if the ACL object has an entry with domain name of the
 requestor’s identifier, the value of that entry is the list of
 permitted operations.

 o Next, if there is an entry with the key ".", the value of that
 entry is the list of permitted operations.

 o Finally, no operations are permitted if there is no corresponding
 key.

 In representing an access control list as an ACL object, each key is
 either a PRIM identifier, a Domain identifier (preceded by "@") or
 "." for everybody. The value associated with a key is a set of
 elements representing permitted operations.

 Note that the Server may distinguish if each ACL object is
 referencing a PRIM identifier, a domain or "everybody" by comparing
 the first character with "@" and ".".

 SUBSCRIBE, FETCH, PUBLISH and REMOVE give the target the right to
 perform that operation to the ACL owner’s PRESENCE INFORMATION.

 SEND, LISTEN and SILENCE give the target the right to perform that
 operation to the ACL owner’s INSTANT INBOX.

14.2.2. PRESENTITY ACL

 The ACL for a PRESENTITY conforms to the following DTD. This is used
 by the GETACL and SETACL commands, described in Sections 10.6.1 and
 10.6.2.

 <!ELEMENT ACL (entry)*>
 <!ELEMENT entry (target, allow)>
 <!ELEMENT target (address+)>
 <!ELEMENT address #PCDATA>
 <!ELEMENT allow (fetch | subscribe | publish | remove)*>

 <!ELEMENT fetch EMPTY>

Mazzoldi et al. [Page 44]

INTERNET DRAFT PRIM Specification March 2001

 <!ELEMENT subscribe EMPTY>
 <!ELEMENT publish EMPTY>
 <!ELEMENT remove EMPTY>

14.2.3. INSTANT INBOX ACL

 The ACL for an INSTANT INBOX conforms to the following DTD. This is
 used by the GETACL and SETACL commands, described in Section 10.6.1
 and 10.6.2.

 <!ELEMENT ACL (entry)*>
 <!ELEMENT entry (target, allow)>
 <!ELEMENT target (address+)>
 <!ELEMENT address #PCDATA>
 <!ELEMENT allow (send | listen | silence)*>

 <!ELEMENT send EMPTY>
 <!ELEMENT listen EMPTY>
 <!ELEMENT silence EMPTY>

14.2.4. Example

 A sample access control list represented as an ACL object follows.
 In this example:

 o The user permits all operations from "secretary@mycompany.com".
 Note that she can even PUBLISH my PRESENCE INFORMATION.

 o Forbids all operations from any user at "badguys.com", except
 "goodfriend@badguys.com" who is permitted to FETCH and SUBSCRIBE.

 o Permits FETCH and SUBSCRIBE from all users from "@mycompany.com".

 o Allows FETCH operations from all other users.

 <ACL>

 <entry>
 <target>
 <address>secretary@mycompany.com</address>
 </target>
 <allow>
 <FETCH/>
 <SUBSCRIBE/>
 <PUBLISH/>
 <REMOVE/>
 </allow>

Mazzoldi et al. [Page 45]

INTERNET DRAFT PRIM Specification March 2001

 </entry>

 <entry>
 <target>
 <address>@mycompany.com</address>
 <address>goodfriend@badguys.com</address>
 </target>
 <allow>
 <FETCH/>
 <SUBSCRIBE/>
 </allow>
 </entry>

 <entry>
 <target>
 <address>@badguys.com</address>
 </target>
 <allow>
 </allow>
 </entry>

 <entry>
 <target>
 <address>.</address>
 </target>
 <allow>
 <FETCH/>
 </allow>
 </entry>

 </ACL>

15. Presence Information Data Format (PIDF)

 [Note: This section should be rewritten in order to conform to CPIM
 when the presence format of CPIM is defined.]

15.1. General Design

 Presence information in PRIM is encoded as a MIME-encapsulated XML
 object. XML is adopted for a base format because of its
 expressiveness for structured data and its broad acceptance on the
 Internet. MIME is used to wrap presence XML objects to suit with the
 [RFC822] style command syntax of PRIM. MIME would also be preferable

Mazzoldi et al. [Page 46]

INTERNET DRAFT PRIM Specification March 2001

 when MIME based security mechanism (S/MIME or PGP/MIME) is needed for
 end-to-end security.

 We have designed PIDF so that the XML part can be transfered end-to-
 end without requiring any interpretation or modification of the
 contents at the Home Servers and any relaying servers. Furthermore,
 as we assume a case that different devices (e.g. PC, PDA, and cell
 phone) can update parts of PRESENCE INFORMATION of a single
 PRESENTITY, PIDF is designed so that the presence servers can handle
 each part independently of others. This is important to solve the
 race-condition induced by this use case.

 The smallest unit of transporting PRESENCE INFORMATION is a PRESENCE
 TUPLE. Thus, a tuple is a single XML document encapsulated by MIME.
 The MIME type for a tuple is "application/presence". In a case that
 multiple tuples are to be transferred in a single PRIM command, those
 tuples are combined in a single MIME object by a MIME multipart
 mechanim. The MIME type used for such a composite object is
 "multipart/mixed".

15.2. Required Headers for PIDF

 All PRIM commands transporting PIDF formatted presence documents MUST
 have a Content-Type header, whose value is the MIME type of the
 presence document.

 A tuple, a MIME object whose MIME type is "application/presence",
 MUST have a non-MIME-related header: tuple-id-header. The tuple-id-
 header header is used to identify the TUPLE by the USER AGENTs and
 the presence server storing the PRESENCE INFORMATION.

 Following the MIME specification, the topmost MIME entity MUST have
 the MIME-Version header.

 The Content-Transfer-Encoding header MUST NOT appear in any PRIM
 commands. Other MIME related headers, such as Content-ID or Content-
 Description, MAY be appear in a presence document, but they MUST NOT
 affect the server behavior at all.

15.3. XML Format Definition

 The XML part of a presence document MUST be a well-formed XML
 document [XML]. The presence XML language is defined as a DTD in
 section 15.7. However, clients and servers are not required to
 validate the presence documents according to that DTD.

 A presence document SHOULD NOT include any processor instructions or
 CDATA sections. Client implementations MAY discard them silently.

Mazzoldi et al. [Page 47]

INTERNET DRAFT PRIM Specification March 2001

 This is because PRIM assumes the existence of resource-limited
 terminals, that may have only a very simple parser.

 Elements not defined in this document MAY appear in a presence
 document. But, such elements do not have any particular meaning, and
 SHOULD be silently discarded by clients.

15.4. XML tags and attributes definitions

15.4.1. The <presence> element

 The root element of the presence document is defined as <presence>.
 This element contains one optional <presentity> element and zero or
 more <contact> elements.

 The root element has two attributes as defined below:

 o address: this attributes indicates the unique identifier of the
 PRESENTITY publishing this presence document.

 o date: this attribute contains an indication of the date and time
 when this presence document was published. The format for
 expressing date and time is defined in 15.5.

15.4.2. The <presentity> element

 The <presentity> element contains one <display-name> element, an
 optional <note> element, and an optional <other-markup> element.

 The intention of this element is to contain information not related
 to any <contact> information but related to the PRESENTITY itself.
 Examples for such information may include the user’s mental state
 (contained in <note>) or some profile of the user like vcard info
 (maybe contained in <other-markup>).

15.4.3. The <contact> element

 The <contact> element contains the PRESENCE INFORMATION related to
 one PRESENCE TUPLE. It MUST contain <display-name> and <status>
 elements, and MAY be followed by <preference>, <note> and <other-
 markup> elements.

 The <contact> element also MUST contain one "address" attribute, that
 contains the URL form [RFC1738] of the communication address.

15.4.4. The <status> element

 The <status> element has no children elements, but it has the "value"

Mazzoldi et al. [Page 48]

INTERNET DRAFT PRIM Specification March 2001

 attribute containing the status value. In order to simplify client
 implementations, the same values will be used for all types of
 contact addresses (IM, e-mail, phone, ...).

 The value of the "value" attribute MUST be one of the following
 strings:

 open
 closed

 "open" implies that the contact address is in normal working order
 and messages will be read in a timely fashion. "closed" implies that
 the contact address will temporarily not work.

 The <status> element MAY have a optional attribute "details", which
 describes the detailed information about status. Currently, the only
 value specified for this attribute is "deferred", which implies that
 a greater than normal delay will be experienced before the principal
 receives communications sent to the contact address.

15.4.5. The <display-name> element

 The <display-name> element contains a string for the purpose of the
 display by the USER AGENT.

15.4.6. The <note> element

 The <note> element of the presence document contains some comments
 related to one PRESENTITY or address. This element SHOULD only
 contain text, without any tags.

 Note that, in future versions, the specification may support XML
 namespaces, what would allow more advanced formatting of these notes
 very easily (e.g. by including some XHTML markup)

 The content of the note SHOULD be sufficiently small to be rendered
 in several user interfaces, including a small GSM screen, a "tooltip"
 on a PC screen and other space-limited situations.

15.4.7. The <preference> element

 The <preference> element is an empty element which has only the
 "value" attribute. The value of this attribute is an unsigned
 integer, represented in decimal, specifying the preference of a
 contact relative to the other contacts. Preference values MUST be
 less than 2^32. A lower preference value indicates a more desirable
 contact address. A contact without a preference value is less
 desirable than any contact address with a preference value.

Mazzoldi et al. [Page 49]

INTERNET DRAFT PRIM Specification March 2001

15.5. Date Format

 As the format for expressing "date", PRIM adopts the syntax from
 [RFC822] section 5 as amended by [RFC1123] section 5.2.14. Time
 zones MUST be expressed numerically. For reference, the ABNF
 resulting from these references and restrictions is (note that ABNF
 strings are case-insensitive, so ASCII case-folding MUST be performed
 when matching day and month strings):

 date-time = [day ","] date time
 day = "Mon" / "Tue" / "Wed" / "Thu" / "Fri"
 / "Sat" / "Sun"
 date = 1*2DIGIT month 4DIGIT
 month = "Jan" / "Feb" / "Mar" / "Apr" / "May"
 / "Jun" / "Jul" / "Aug" / "Sep" / "Oct"
 / "Nov" / "Dec"
 time = hour zone
 hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT]
 zone = ("+" / "-") 4DIGIT ; hours+min (HHMM)

 Example: date = "Thu, 30 Mar 2000 09:59:34 -0500"

15.6. Examples

 The following example is a simple, but complete PRESENCE INFORMATION
 record that could be sent from the Presence Service to a WATCHER,
 including INSTANT MESSAGING and telephone addresses.

 Content-Length: xxx
 Content-Type: multipart/mixed; boundary="0123456789"
 MIME-Version: 1.0

 --0123456789
 Content-Type: application/presence
 Tuple-ID: im:foo@bar.com

 <presence identifier="pres:foo@bar.com"
 date="Thu, 5 Sep 2000 15:45:45 -0500">
 <presentity>
 <display-name>FOO (^^)v</display-name>
 <note>I’m Hungry.</note>
 </presentity>
 <contact address="im:foo@bar.com">
 <display-name>IM</display-name>
 <status value="open"/>
 <preference value="1"/>
 </contact>

Mazzoldi et al. [Page 50]

INTERNET DRAFT PRIM Specification March 2001

 </presence>

 --0123456789
 Content-Type: application/presence
 Tuple-ID: tel:+1-800-IGOTYOU

 <presence identifier="pres:foo@bar.com"
 date="Thu, 5 Sep 2000 16:30:28 -0500">
 <contact address="tel:+1-800-IGOTYOU">
 <display-name>Phone(Office)</display-name>
 <status value="open" detail="deferred"/>
 </contact>
 </presence>

 --0123456789

15.7. Presence Document DTD

 <!ENTITY % URI "CDATA">
 <!ENTITY % statuses "open|closed">
 <!-- The entity "details" is defined as CDATA for
 extensibility. But, the only distiuguished value
 "deferred" has a meaning at present. -->
 <!ENTITY % details "CDATA">

 <!-- the presence tag is the top-level tag for presence. -->
 <!ELEMENT presence (presentity?,contact)>
 <!ATTLIST presence identifier %URI; #REQUIRED>
 <!ATTLIST presence date CDATA #REQUIRED>

 <!ELEMENT presentity (display-name, note?, other-markup?)>

 <!ELEMENT display-name (#PCDATA)>

 <!ELEMENT note (#PCDATA)>

 <!ELEMENT other-markup (#PCDATA)>

 <!-- the contact tag is for each tuple. -->
 <!ELEMENT contact (display-name, status,
 preference?, note?,
 other-markup?)>

 <!ATTLIST contact address %URI; #IMPLIED>

 <!ELEMENT status EMPTY>
 <!ATTLIST status value (%statuses;) #REQUIRED>
 <!ATTLIST status detail %details; #IMPLIED>

Mazzoldi et al. [Page 51]

INTERNET DRAFT PRIM Specification March 2001

 <!ELEMENT preference EMPTY>
 <!ATTLIST preference value CDATA #REQUIRED>

16. IM Format

 INSTANT MESSAGES are opaque payloads transferred by SEND commands
 tagged by a MIME [MIME] content type.

 A SEND command MUST contain a Content-Type header which specifies the
 content type of the payload. It MAY contain any proper MIME header
 which may not be defined here.

 For the CPIM conformance, A USER AGENT MUST understand and generate
 messages of the content type ’message/cpim’[CPIM-MSG]. In
 particular, a USER AGENT MUST generate an INSTANT MESSAGE of the type
 ’message/cpim’ if it sends the message to other domains which do not
 or may not understand PRIM. The correspondence between the PRIM and
 CPIM message format is described in Section 17.

 The PRIM servers MUST forward the message as is when the message is
 relayed to the clients or other servers. That is, the servers MUST
 NOT delete or modify any header which appears in the command.

17. CPIM/PRIM Mapping

17.1. Presence Protocol

 CPIM defines a slightly different subscription model as a common
 protocol framework for the presence service. In CPIM, a "subscribe"
 operation will invoke a response reporting only the result of the
 operation and another immediate "notify" operation conveying the
 PRESENCE INFORMATION, while the response of the SUBSCRIBE command in
 PRIM contains the PRESENCE INFORMATION at the same time.

 A CPIM gateway SHOULD be implemented to absorb this difference when
 the "subscribe" operation is gatewayed.

 [[Note: More investigation needed. Another choice would be to modify
 the PRIM spec to align the CPIM framework.]]

 When the CPIM presence format is finished, the mapping between the
 elements of PRIM presence format and those of CPIM will be described.

17.2. Instant Messaging Protocol

 The CPIM message format document [CPIM-MSG] defines the common format

Mazzoldi et al. [Page 52]

INTERNET DRAFT PRIM Specification March 2001

 for INSTANT MESSAGES for the sake of interoperability and the
 capability to achieve end-to-end security.

 A gateway to other domains which does not or may not understand PRIM
 MUST send INSTANT MESSAGES in the CPIM message format of the content
 type ’message/cpim’. The gateway MUST convert the SEND request to
 the corresponding request to the "message" operation [CPIM] of the
 protocol on the other side. The incoming response MUST be converted
 to the corresponding PRIM response message. [Details will be
 described in the next revision.]

 If a USER AGENT send a signed or encrypted INSTANT MESSAGES, it MUST
 compose them in the CPIM message format.

 For mapping the PRIM command format to the CPIM message format, the
 following rules SHOULD be applied. [Note: Obviously, more
 investigation is needed.]

 o To, From, and Date headers in a PRIM command are copied to the
 message header part in the CPIM message. [Reply-to, too?]

 o Message-ID and Conversation-ID headers in a PRIM command is
 converted using the CPIM namespace mechanism and moved to the
 message header part in the CPIM message as follows;

 NS: PRIM <http://www.fujitsulabs.com/prim/>
 PRIM.Message-ID: [[a unique id for this message]]
 PRIM.Conversation-ID: [[a unique id for this conversation]]

 o Content-type header in a PRIM command are moved to the content
 header part in the CPIM message.

18. Security Considerations

 There exists many kind of security threats in the Presence / Instant
 Messaging services and applications as described in the IMPP
 Requirements [RFC 1778] and the CPIM document [CPIM].

 PRIM specifies mechanisms to achieve connection security and to
 realize access control including presence publication control.

 The future PRIM specifications will conform to the expected CPIM data
 formats for secure and interoperable Presence information and IM
 exchanges [CPIM,CPIM-MSG]. It will acquire the message level
 security such as end-to-end confidentiality and integrity.

Mazzoldi et al. [Page 53]

INTERNET DRAFT PRIM Specification March 2001

19. Appendix A: Response Codes

 The policy for assigning response codes follows the convention used
 in HTTP/1.1 [HTTP1.1].

 o 1xx: Informational - Request received, continuing process

 o 2xx: Success - The action was successfully received, understood,
 and accepted

 o 3xx: Redirection - Further action must be taken in order to
 complete the request

 o 4xx: Request Error - The request contains bad syntax or cannot be
 fulfilled

 o 5xx: Server Error - The server failed to fulfill an apparently
 valid request

 100 Authentication Continued

 The request for authentication has been accepted and the
 authentication process is continued.

 101 Unknown Delivery Status

 The server was unable to determine that the message was
 successfully delivered to an INSTANT INBOX or that the transmission
 failed. This could be because the message was delivered on a best-
 effort basis, or it was delivered to an "offline" message store.

 200 OK

 Everything is dandy!

 201 Duration Adjusted

 The SUBSRIPTION was placed successfully, yet its duration was not
 acceptable to the server. A new duration was set and this was
 indicated in the duration-header of the response.

 300 Redirect

 The server was unable to deal with the request and instructs the
 caller to reconnect to a different server and reissue the operation
 there.

 400 Bad Request

Mazzoldi et al. [Page 54]

INTERNET DRAFT PRIM Specification March 2001

 The request could not be understood by the server due to malformed
 syntax of the headers or malformed content. The client SHOULD NOT
 repeat the request without modifications.

 401 Unauthorized

 The request requires user authentication. The client MUST
 authenticate itself through the LOGIN request.

 402 Forbidden

 The server understood the request, but it has not been authorized.

 403 Resource Not Found

 The specified resource was not found at the server.

 404 Subscription Not Found

 The SUBSCRIPTION specified in the Subscription-ID header was not
 found at the resource. This status code MAY appear in the response
 to the UNSUBSCRIBE and CANCELSUBSCRIPTION requests, and the
 SUBSCRIBE request in "renew" mode.

 406 Authentication Failed

 The authentication process has failed. The reason for it is one of
 the following:

 o The authentication process using the specified SASL-Mechanism
 failed.

 o The LOGIN request specifies an inappropriate SASL Mechanism.

 o In the midst of the authentication process, the client tries to
 start another authentication process by specifying ’Auth-State:
 init’.

 407 Timeout

 The server timed-out after waiting for a response from another
 client or server.

 408 Inbox Is Closed

 The INSTANT INBOX is not currently accepting messages.

 409 Already Authenticated

Mazzoldi et al. [Page 55]

INTERNET DRAFT PRIM Specification March 2001

 The connection was authenticated previously through a LOGIN
 command.

 410 Astrength Too Weak

 The command was rejected because the server requires a higher level
 of security and this could not be provided.

 500 Internal Server Error

 The request has not been fulfilled because of the error internal to
 the server.

 501 Not Implemented

 The server does not support the functionality required to fulfill
 the request.

 503 Version Not Supported

 The server or client does not support the specified protocol
 version used for the request.

 505 Too Many Subscriptions

 The SUBSCRIBE request has not been fulfilled because the request
 exceeds the specified maximum number of SUBSCRIPTIONS at the
 resource. When this status code is received, the client SHOULD NOT
 retry the SUBSCRIPTION immediately.

20. References

 [CPIM] D. Crocker et al., "A Common Profile for Instant Messaging
 (CPIM)", draft-ietf-impp-cpim-01.txt, Work in Progress.

 [CPIM-MSG] D. Atkins and G. Klyne, "Common Presence and Instant
 Messaging Message Format", draft-ietf-impp-cpim-msgfmt-00.txt,
 Work in Progress.

 [CRAM-MD5] J.Klensin, R.Catoe and P. Krumviede, "IMAP/POP AUTHorize
 Extension for Simple Challenge/Response", RFC 2195, September 997.

 [HTTP1.1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
 P. Leach, and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999

 [MIME] Multipurpose Internet Mail Extensions. See RFC 822, RFC 2045,

Mazzoldi et al. [Page 56]

INTERNET DRAFT PRIM Specification March 2001

 RFC 2046, RFC 2047, RFC 2048, and RFC 2049.

 [OpenPGP] J. Callas, etc., "OpenPGP Message Format", RFC2440,
 November 1998.

 [RFC822] Crocker, D., "Standard for the format of ARPA Internet text
 messages", RFC 822, STD 11, Aug 1982.

 [RFC1123] R. Braden, "Requirements for Internet Hosts -- Application
 and Support", RFC 1123, October 1989

 [RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, "Uniform Resource
 Locators", RFC 1738, December 1994.

 [RFC2778] M. Day, J. Rosenberg, H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000.

 [RFC2779] M.Day, S.Aggarwal, G.Mohr, and J.Vincent, "Instant
 Messaging / Presence Protocol Requirements", RFC 2779, February 2000.

 [SASL] J. Myers, "Simple Authentication and Security Layer (SASL)",
 RFC2222, October 1997.

 [SASL-PLAIN] C. Newman, "Using TLS with IMAP, POP3 and ACAP",
 RFC2595, June 1999.

 [SMIME] P. Hoffman, Ed, "S/MIME Version 3 Message Specification",
 RFC2633, June 1999.

 [TLS] T.Dierks, and C. Allen, "The TLS Protocol Version 1.0",
 RFC2246, January 1999.

 [URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC2396, August 1998.

 [XML] Extensible Mark Up Language. A W3C recommendation. See
 http://www.w3.org/TR/1998/REC-xml-19980210 for the 10 February 1998
 version.

21. Acknowledgements

 The authors greatly appreciate helpful comments from John Stracke and
 Harald Alvestrand.

 This document is based upon several Internet Drafts submitted to the
 IMPP-WG:

Mazzoldi et al. [Page 57]

INTERNET DRAFT PRIM Specification March 2001

 IMTP/PITP: G. Hudson, MIT
 OneIM: A. Diacakis, F. Mazzoldi, Network Projects, Inc.
 PePP: H. Sugano et al, Fujitsu
 SIMP: J. Ramsdell, MITRE Corporation

22. Author’s Addresses

 F. Mazzoldi
 flo@networkprojects.com
 Network Projects, Inc.
 4516 Henry Street, Suite 113
 Pittsburgh PA 15213
 USA

 A. Diacakis
 thanos@networkprojects.com
 Network Projects, Inc.
 4516 Henry Street, Suite 113
 Pittsburgh, PA 15213
 USA

 S. Fujimoto
 shingo@fla.fujitsu.com
 Fujitsu Laboratories of America, Inc.
 595 Lawrence Expressway
 Sunnyvale, CA 94085
 USA

 G. Hudson
 ghudson@mit.edu
 Massachusetts Institue of Technology
 Cambridge, MA 02139
 USA

 J. D. Ramsdell
 ramsdell@mitre.org
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730-1420
 USA

 H. Sugano
 suga@flab.fujitsu.co.jp
 Fujitsu Laboratories Ltd.
 64, Nishiwaki
 Ohkubo-cho
 Akashi 674

Mazzoldi et al. [Page 58]

INTERNET DRAFT PRIM Specification March 2001

 Japan

23. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC editor function is currently provided by the
 Internet Society.

Mazzoldi et al. [Page 59]

	Presence and Instant Messaging Protocol (PRIM)
	Internet Draft, March 2001
	Staus of this Memo
	Abstract
	Table of Contents
	1. Introduction
	1.1 Design Goals and Assumptions

	2. Terminology
	3. Architecture
	3.1 Service Domain Clustering

	4. Connection Model
	4.1 Client-server Connections
	4.2 Server-server Connections
	4.3 Shared Connections for Both Services

	5. Presence Model
	5.1 Presence Subscriptions
	5.2 PRESENCE Publication & Distribution

	6. Instant Messaging Model
	7. Namespace
	7.1 Identifiers
	7.2 Name Resolution
	7.2.1 Client-Server Connections
	7.2.2 Server-Server Connections

	8. Command Structure
	8.1 Requests
	8.1.1 Method
	8.1.2 Version
	8.1.3 Request Identifier
	8.1.4 Content Length

	8.2 Responses

	9. Command Headers
	9.1 Common Headers
	9.1.1 Form
	9.1.2 To
	9.1.3 Auth-State
	9.1.4 SASL-Mechanism
	9.1.5 Redirect
	9.1.6 Content-Type
	9.1.7 Server-Address
	9.1.8 AStrength
	9.1.9. User-Agent-ID
	9.1.10. Max-Content-Length
	9.1.11. Date

	9.2 Presence Headers
	9.2.1. Class
	9.2.2. Tuple-ID
	9.2.3. Duration
	9.2.4. PI-Type
	9.2.5. Watcher-Type

	9.3. IM Headers
	9.3.1. Message-ID
	9.3.2. Conversation-ID
	9.3.3. Reply-To

	10. Common Commands
	10.1 Connection Setup - LOGIN
	10.2 Connection Setup - STARTTLS
	10.3 Connection Shutdown - LOGOUT
	10.4 Testing a connection - PING
	10.5 Verifying a server's authority - VERIFYSERVER
	10.6 Access Control
	10.6.1. SETACL
	10.6.2. GETACL

	11. Presence Service Commands
	11.1 Placement, Renewal and Removal of SUBSCRIPTIONS
	11.1.1. SUBSCRIBE
	11.1.2. UNSUBSCRIBE
	11.1.3. CANCELSUBSCRIPTION
	11.1.4. FETCH

	11.2 Publication & Removal of PRESENCE INFORMATION
	11.2.1. PUBLISH
	11.2.2. REMOVE

	11.3 Propagation of PRESENCE INFORMATION - NOTIFY
	11.4 Presence Privacy Management
	11.4.1. Access Control List
	11.4.2. SETCLASSTABLE
	11.4.3. GETCLASSTABLE
	11.4.4. STARTWATCHERNOTIFY
	11.4.5. STOPWATCHERNOTIFY
	11.4.6. WATCHERNOTIFY

	12. Instant Messaging Service Commands
	12.1 Listening to INSTANT INBOXes
	12.1.1. LISTEN
	12.1.2. SILENCE

	12.2 Sending Messages - SEND
	12.3 Access Control Lists

	13. Authentication
	13.1 Client-Server Authentication
	13.2 Server-Server Authentication

	14. Privacy Management
	14.1 Presence Publication Control
	14.1.1. Class Table
	14.1.2. Example

	14.2 Access Control
	14.2.1. Overview
	14.2.2. PRESENTITY ACL
	14.2.3. INSTANT INBOX ACL
	14.2.4. Example

	15. Presence Information Data Format (PIDF)
	15.1 General Design
	15.2 Required Headers for PIDF
	15.3 XML Format Definition
	15.4 XML tags and attributes definitions
	15.4.1. The <presence> element
	15.4.2. The <presentity> element
	15.4.3. The <contact> element
	15.4.4. The <status> element
	15.4.5. The <display-name> element
	15.4.6. The <note> element
	15.4.7. The <preference> element

	15.5 Date Format
	15.6 Examples
	15.7 Presence Document DTD

	16. IM Format
	17. CPIM/PRIM Mapping
	17.1 Presence Protocol
	17.2 Instant Messaging Protocol

	18. Security Considerations
	19. Appendix A: Response Codes
	20. References
	21. Acknowledgements
	22. Author's Addresses
	23. Full Copyright Statement

	
	IETF Title Page

