

Internet Draft M. Myers (Verisign)
PKIX Working Group C. Adams (Entrust Technologies)
November 2000 D. Solo (Citicorp)
expires in six months D. Kemp (DoD)

 Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)
 <draft-ietf-pkix-rfc2511bis-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 Copyright (C) The Internet Society (2000). All Rights Reserved.

1. Abstract

 This document describes the Certificate Request Message Format
 (CRMF). This syntax is used to convey a request for a certificate to
 a Certification Authority (CA) (possibly via a Registration Authority
 (RA)) for the purposes of X.509 certificate production. The request
 will typically include a public key and associated registration
 information.

 The key words "MUST", "REQUIRED", "SHOULD", "RECOMMENDED", and "MAY"
 in this document (in uppercase, as shown) are to be interpreted as
 described in RFC 2119.

2. Overview

 Construction of a certification request involves the following steps:

 a) A CertRequest value is constructed. This value may include the
 public key, all or a portion of the end-entity's (EE's) name,
 other requested certificate fields, and additional control
 information related to the registration process.

Myers, et. al. Expires May 2001 [Page 1]

Internet Draft November 2000

 b) A proof of possession (of the private key corresponding to the
 public key for which a certificate is being requested) value may
 be calculated across the CertRequest value.

 c) Additional registration information may be combined with the
 proof of possession value and the CertRequest structure to form a
 CertReqMessage.

 d) The CertReqMessage is securely communicated to a CA. Specific
 means of secure transport are beyond the scope of this
 specification.

3. CertReqMessage Syntax

 A certificate request message is composed of the certificate request,
 an optional proof of possession field and an optional registration
 information field.

CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertReqMsg ::= SEQUENCE {
 certReq CertRequest,
 pop ProofOfPossession OPTIONAL,
 -- content depends upon key type
 regInfo SEQUENCE SIZE(1..MAX) of AttributeTypeAndValue OPTIONAL }

 The proof of possession field is used to demonstrate that the entity
 to be associated with the certificate is actually in possession of
 the corresponding private key. This field may be calculated across
 the contents of the certReq field and varies in structure and content
 by public key algorithm type and operational mode.

 The regInfo field SHOULD only contain supplementary information
 related to the context of the certification request when such
 information is required to fulfill a certification request. This
 information MAY include subscriber contact information, billing
 information or other ancillary information useful to fulfillment of
 the certification request.

 Information directly related to certificate content SHOULD be
 included in the certReq content. However, inclusion of additional
 certReq content by RAs may invalidate the pop field. Data therefore
 intended for certificate content MAY be provided in regInfo.

 See Section 8 and Appendix B for example regInfo contents.

Myers, et. al. Expires May 2001 [Page 2]

Internet Draft November 2000

4. Proof of Possession (POP)

 In order to prevent certain attacks and to allow a CA/RA to properly
 check the validity of the binding between an end entity and a key
 pair, the PKI management operations specified here make it possible
 for an end entity to prove that it has possession of (i.e., is able
 to use) the private key corresponding to the public key for which a
 certificate is requested. A given CA/RA is free to choose how to
 enforce POP (e.g., out-of-band procedural means versus the CRMF in-
 band message) in its certification exchanges (i.e., this may be a
 policy issue). However, it is MANDATED that CAs/RAs MUST enforce POP
 by some means because there are currently many non-PKIX operational
 protocols in use (various electronic mail protocols are one example)
 that do not explicitly check the binding between the end entity and
 the private key. Until operational protocols that do verify the
 binding (for signature, encryption, and key agreement key pairs)
 exist, and are ubiquitous, this binding can only be assumed to have
 been verified by the CA/RA. Therefore, if the binding is not verified
 by the CA/RA, certificates in the Internet Public-Key Infrastructure
 end up being somewhat less meaningful.

 POP is accomplished in different ways depending on the type of key
 for which a certificate is requested. If a key can be used for
 multiple purposes (e.g., an RSA key) then any of the methods MAY be
 used.

 This specification allows for cases where POP is validated by the CA,
 the RA, or both. Some policies may require the CA to verify POP
 during certification, in which case the RA MUST forward the end
 entity's CertRequest and ProofOfPossession fields unaltered to the
 CA, and as an option MAY also verify POP. If the CA is not required
 by policy to verify POP, then the RA SHOULD forward the end entity's
 request and proof unaltered to the CA as above. If this is not
 possible (for example because the RA verifies POP by an out-of-band
 method), then the RA MAY attest to the CA that the required proof has
 been validated. If the CA uses an out-of-band method to verify POP
 (such as physical delivery of CA-generated private keys), then the
 ProofOfPossession field is not used.

4.1 Signature Keys

 For signature keys, the end entity can sign a value to prove
 possession of the private key.

Myers, et. al. Expires May 2001 [Page 3]

Internet Draft November 2000

4.2 Key Encipherment Keys

 For key encipherment keys, the end entity can provide the private key
 to the CA/RA, or can be required to decrypt a value in order to prove
 possession of the private key. Decrypting a value can be achieved
 either directly or indirectly.

 The direct method is for the RA/CA to issue a random challenge to
 which an immediate response by the end entity is required.

 The indirect method is to issue a certificate which is encrypted for
 the end entity (and have the end entity demonstrate its ability to
 decrypt this certificate in a confirmation message). This allows a CA
 to issue a certificate in a form which can only be used by the
 intended end entity.

4.3 Key Agreement Keys

 For key agreement keys, the end entity can use any of the three
 methods given in Section 5.2 for encryption keys. For the direct and
 indirect methods, the end entity and the PKI management entity (i.e.,
 CA or RA) must establish a shared secret key in order to prove that
 the end entity has possession of the private key (i.e., in order to
 decrypt the encrypted certificate or to construct the response to the
 issued challenge). Note that this need not impose any restrictions
 on the keys that can be certified by a given CA -- in particular, for
 Diffie-Hellman keys the end entity may freely choose its algorithm
 parameters -- provided that the CA can generate a short-term (or
 one-time) key pair with the appropriate parameters when necessary.

 The end entity may also MAC the certificate request (using a shared
 secret key derived from a Diffie-Hellman computation) as a fourth
 alternative for demonstrating POP. This option may be used only if
 the CA already has a DH certificate that is known to the end entity
 and if the EE is willing to use the CA's DH parameters.

4.4 Proof of Possession Syntax

 ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 -- used if the RA has already verified that the requester is in
 -- possession of the private key
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey }

 POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSigningKeyInput OPTIONAL,

Myers, et. al. Expires May 2001 [Page 4]

Internet Draft November 2000

 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING }
 -- The signature (using "algorithmIdentifier") is on the
 -- DER-encoded value of poposkInput. NOTE: If the CertReqMsg
 -- certReq CertTemplate contains the subject and publicKey values,
 -- then poposkInput MUST be omitted and the signature MUST be
 -- computed on the DER-encoded value of CertReqMsg certReq. If
 -- the CertReqMsg certReq CertTemplate does not contain both the
 -- public key and subject values (i.e., if it contains only one
 -- of these, or neither), then poposkInput MUST be present and
 -- MUST be signed.

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 -- used only if an authenticated identity has been
 -- established for the sender (e.g., a DN from a
 -- previously-issued and currently-valid certificate)
 publicKeyMAC PKMACValue },
 -- used if no authenticated GeneralName currently exists for
 -- the sender; publicKeyMAC contains a password-based MAC
 -- on the DER-encoded value of publicKey
 publicKey SubjectPublicKeyInfo } -- from CertTemplate

 PKMACValue ::= SEQUENCE {
 algId AlgorithmIdentifier,
 -- the algorithm value shall be PasswordBasedMac
 -- {1 2 840 113533 7 66 13}
 -- the parameter value is PBMParameter
 value BIT STRING }

 POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING,
 -- posession is proven in this message (which contains the private
 -- key itself (encrypted for the CA))
 subsequentMessage [1] SubsequentMessage,
 -- possession will be proven in a subsequent message
 dhMAC [2] BIT STRING }
 -- for keyAgreement (only), possession is proven in this message
 -- (which contains a MAC (over the DER-encoded value of the
 -- certReq parameter in CertReqMsg, which must include both subject
 -- and publicKey) based on a key derived from the end entity's
 -- private DH key and the CA's public DH key);
 -- the dhMAC value MUST be calculated as per the directions given
 -- in Appendix A.

 SubsequentMessage ::= INTEGER {

Myers, et. al. Expires May 2001 [Page 5]

Internet Draft November 2000

 encrCert (0),
 -- requests that resulting certificate be encrypted for the
 -- end entity (following which, POP will be proven in a
 -- confirmation message)
 challengeResp (1) }
 -- requests that CA/RA engage in challenge-response exchange with
 -- end entity in order to prove private key possession

 It is expected that protocols which incorporate this specification
 will include the confirmation and challenge-response messages
 necessary to a complete protocol.

4.4.1 Use of Password-Based MAC

 The following algorithm SHALL be used when publicKeyMAC is used in
 POPOSigningKeyInput to prove the authenticity of a request.

 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 The process of using PBMParameter to compute publicKeyMAC and so
 authenticate the origin of a public key certification request
 consists of two stages. The first stage uses shared secret
 information to produce a MAC key. The second stage MACs the public
 key in question using this MAC key to produce an authenticated value.

 Initialization of the first stage of algorithm assumes the existence
 of a shared secret distributed in a trusted fashion between CA/RA and
 end-entity. The salt value is appended to the shared secret and the
 one way function (owf) is applied iterationCount times, where the
 salted secret is the input to the first iteration and, for each
 successive iteration, the input is set to be the output of the
 previous iteration, yielding a key K.

 In the second stage, K and the public key are inputs to HMAC as
 documented in [HMAC] to produce a value for publicKeyMAC as follows:

 publicKeyMAC = Hash(K XOR opad, Hash(K XOR ipad, public key))

 where ipad and opad are defined in [RFC2104].

Myers, et. al. Expires May 2001 [Page 6]

Internet Draft November 2000

 The AlgorithmIdentifier for owf SHALL be SHA-1 {1 3 14 3 2 26} and
 for mac SHALL be HMAC-SHA1 {1 3 6 1 5 5 8 1 2}.

5. CertRequest syntax

 The CertRequest syntax consists of a request identifier, a template
 of certificate content, and an optional sequence of control
 information.

CertRequest ::= SEQUENCE {
 certReqId INTEGER, -- ID for matching request and reply
 certTemplate CertTemplate, -- Selected fields of cert to be issued
 controls Controls OPTIONAL } -- Attributes affecting issuance

CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 serialNumber [1] INTEGER OPTIONAL,
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 issuer [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 subject [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL,
 subjectUID [8] UniqueIdentifier OPTIONAL,
 extensions [9] Extensions OPTIONAL }

 OptionalValidity ::= SEQUENCE {
 notBefore [0] Time OPTIONAL,
 notAfter [1] Time OPTIONAL } --at least one must be present

 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

6. Controls Syntax

 The generator of a CertRequest may include one or more control values
 pertaining to the processing of the request.

 Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

 The following controls are defined (it is recognized that this list
 may expand over time): regToken; authenticator; pkiPublicationInfo;
 pkiArchiveOptions; oldCertID; protocolEncrKey.

Myers, et. al. Expires May 2001 [Page 7]

Internet Draft November 2000

6.1 Registration Token Control

 A regToken control contains one-time information (either based on a
 secret value or on knowledge) intended to be used by the CA to verify
 the identity of the subject prior to issuing a certificate. Upon
 receipt of a certification request containing a value for regToken,
 the receiving CA verifies the information in order to confirm the
 identity claimed in the certification request.

 The value for regToken may be generated by the CA and provided out of
 band to the subscriber, or may otherwise be available to both the CA
 and the subscriber. The security of any out-of-band exchange should
 be commensurate with the risk of the CA accepting an intercepted
 value from someone other than the intended subscriber.

 The regToken control would typically be used only for initialization
 of an end entity into the PKI, whereas the authenticator control (see
 Section 7.2) would typically be used for initial as well as
 subsequent certification requests.

 In some instances of use the value for regToken could be a text
 string or a numeric quantity such as a random number. The value in
 the latter case could be encoded either as a binary quantity or as a
 text string representation of the binary quantity. To ensure a
 uniform encoding of values regardless of the nature of the quantity,
 the encoding of regToken SHALL be UTF8.

6.2 Authenticator Control.

 An authenticator control contains information used in an ongoing
 basis to establish a non-cryptographic check of identity in
 communication with the CA. Examples include: mother's maiden name,
 last four digits of social security number, or other knowledge-based
 information shared with the subscriber's CA; a hash of such
 information; or other information produced for this purpose. The
 value for an authenticator control may be generated by the subscriber
 or by the CA.

 In some instances of use the value for regToken could be a text
 string or a numeric quantity such as a random number. The value in
 the latter case could be encoded either as a binary quantity or as a
 text string representation of the binary quantity. To ensure a
 uniform encoding of values regardless of the nature of the quantity,
 the encoding of authenticator SHALL be UTF8.

Myers, et. al. Expires May 2001 [Page 8]

Internet Draft November 2000

6.3 Publication Information Control

 The pkiPublicationInfo control enables subscribers to control the
 CA's publication of the certificate. It is defined by the following
 syntax:

 PKIPublicationInfo ::= SEQUENCE {
 action INTEGER {
 dontPublish (0),
 pleasePublish (1) },
 pubInfos SEQUENCE SIZE (1..MAX) OF SinglePubInfo OPTIONAL }

 -- pubInfos MUST NOT be present if action is "dontPublish"
 -- (if action is "pleasePublish" and pubInfos is omitted,
 -- "dontCare" is assumed)

 SinglePubInfo ::= SEQUENCE {
 pubMethod INTEGER {
 dontCare (0),
 x500 (1),
 web (2),
 ldap (3) },
 pubLocation GeneralName OPTIONAL }

 If the dontPublish option is chosen, the requester indicates that the
 PKI should not publish the certificate (this may indicate that the
 requester intends to publish the certificate him/herself).

 If the dontCare method is chosen, or if the PKIPublicationInfo
 control is omitted from the request, the requester indicates that the
 PKI MAY publish the certificate using whatever means it chooses.

 If the requester wishes the certificate to appear in at least some
 locations but wishes to enable the CA to make the certificate
 available in other repositories, set two values of SinglePubInfo for
 pubInfos: one with x500, web or ldap value and one with dontCare.

 The pubLocation field, if supplied, indicates where the requester
 would like the certificate to be found (note that the CHOICE within
 GeneralName includes a URL and an IP address, for example).

6.4 Archive Options Control

 The pkiArchiveOptions control enables subscribers to supply
 information needed to establish an archive of the private key
 corresponding to the public key of the certification request. It is
 defined by the following syntax:

Myers, et. al. Expires May 2001 [Page 9]

Internet Draft November 2000

PKIArchiveOptions ::= CHOICE {
 encryptedPrivKey [0] EncryptedKey,
 -- the actual value of the private key
 keyGenParameters [1] KeyGenParameters,
 -- parameters which allow the private key to be re-generated
 archiveRemGenPrivKey [2] BOOLEAN }
 -- set to TRUE if sender wishes receiver to archive the private
 -- key of a key pair which the receiver generates in response to
 -- this request; set to FALSE if no archival is desired.

EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue,
 envelopedData [0] EnvelopedData }
 -- The encrypted private key MUST be placed in the envelopedData
 -- encryptedContentInfo encryptedContent OCTET STRING.

EncryptedValue ::= SEQUENCE {
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL,
 -- algorithm used to encrypt the symmetric key
 valueHint [4] OCTET STRING OPTIONAL,
 -- a brief description or identifier of the encValue content
 -- (may be meaningful only to the sending entity, and used only
 -- if EncryptedValue might be re-examined by the sending entity
 -- in the future)
 encValue BIT STRING }
-- When EncryptedValue is used to carry a private key (as opposed to
-- a certificate, implementations MUST support the encValue field
-- containing an encrypted PrivateKeyInfo as defined in [PKCS11],
-- section 12.9, with the exception that the D-H algorithm OID and
-- parameters MUST be as defined in ANSI X9.42. In this case,
-- the intendedAlg field is unnecessary (since this information is
-- included in PrivateKeyInfo) and MUST be omitted.
-- If encValue contains some other format/encoding for the private
-- key, intendedAlg MUST be present. Furthermore, the first octet of
-- valueHint MAY be used to indicate the format/encoding (but note
-- that the possible values of this octet are not specified at this
-- time).

KeyGenParameters ::= OCTET STRING

 An alternative to sending the key is to send the information about
 how to re-generate the key using the KeyGenParameters choice (e.g.,
 for many RSA implementations one could send the first random numbers
 tested for primality). The actual syntax for this parameter may be
 defined in a subsequent version of this document or in another
 standard.

Myers, et. al. Expires May 2001 [Page 10]

Internet Draft November 2000

6.5 OldCert ID Control

 If present, the OldCertID control specifies the certificate to be
 updated by the current certification request. The syntax of its
 value is:

 CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER
 }

6.6 Protocol Encryption Key Control

 If present, the protocolEncrKey control specifies a key the CA is to
 use in encrypting a response to CertReqMessages.

 This control can be used when a CA has information to send to the
 subscriber that needs to be encrypted. Such information includes a
 private key generated by the CA for use by the subscriber.

 The encoding of protocolEncrKey SHALL be SubjectPublicKeyInfo.

7. Object Identifiers

 The OID id-pkix has the value

 id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) }

 -- arc for Internet X.509 PKI protocols and their components
 id-pkip OBJECT IDENTIFIER :: { id-pkix pkip(5) }

 -- Registration Controls in CRMF
 id-regCtrl OBJECT IDENTIFIER ::= { id-pkip regCtrl(1) }
 id-regCtrl-regToken OBJECT IDENTIFIER ::= { id-regCtrl 1 }
 id-regCtrl-authenticator OBJECT IDENTIFIER ::= { id-regCtrl 2 }
 id-regCtrl-pkiPublicationInfo OBJECT IDENTIFIER ::= { id-regCtrl 3 }
 id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::= { id-regCtrl 4 }
 id-regCtrl-oldCertID OBJECT IDENTIFIER ::= { id-regCtrl 5 }
 id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::= { id-regCtrl 6 }

 -- Registration Info in CRMF
 id-regInfo OBJECT IDENTIFIER ::= { id-pkip id-regInfo(2) }
 id-regInfo-utf8Pairs OBJECT IDENTIFIER ::= { id-regInfo 1 }
 --with syntax UTF8STRING
 id-regInfo-certReq OBJECT IDENTIFIER ::= { id-regInfo 2 }
 --with syntax CertRequest

Myers, et. al. Expires May 2001 [Page 11]

Internet Draft November 2000

8. Security Considerations

 The security of CRMF delivery is reliant upon the security mechanisms
 of the protocol or process used to communicate with CAs. Such
 protocol or process needs to ensure the integrity, data origin
 authenticity, and privacy of the message. Encryption of a CRMF is
 strongly recommended if it contains subscriber-sensitive information
 and if the CA has an encryption certificate that is known to the end
 entity.

9. References

 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February 1997.

10. Acknowledgments

 The authors gratefully acknowledge the contributions of Barbara Fox,
 Warwick Ford, Russ Housley and John Pawling, whose review and
 comments significantly clarified and improved the utility of this
 specification. The members of the ca-talk mailing list also
 provided significant input with respect to interoperability testing.

Myers, et. al. Expires May 2001 [Page 12]

Internet Draft November 2000

11. Authors' Addresses

 Michael Myers
 VeriSign, Inc.
 1390 Shorebird Way
 Mountain View, CA 94019

 EMail: mmyers@verisign.com

 Carlisle Adams
 Entrust Technologies
 1000 Innovation Drive,
 Ottawa, Canada, K2K 3E7

 EMail: cadams@entrust.com

 Dave Solo
 Citicorp
 666 Fifth Ave, 3rd Floor
 New York, Ny 10103

 EMail: david.solo@citicorp.com

 David Kemp
 National Security Agency
 Suite 6734
 9800 Savage Road
 Fort Meade, MD 20755

 EMail: dpkemp@missi.ncsc.mil

Myers, et. al. Expires May 2001 [Page 13]

Internet Draft November 2000

Appendix A. Constructing "dhMAC"

 This Appendix describes the method for computing the bit string
 "dhMAC" in the proof-of-possession POPOPrivKey structure for Diffie-
 Hellman certificate requests.

 1. The entity generates a DH public/private key-pair.

 The DH parameters used to calculate the public SHOULD be those
 specified in the CA's DH certificate.

 From CA's DH certificate:
 CApub = g^x mod p (where g and p are the established DH
 parameters and x is the CA's private
 DH component)
 For entity E:
 DH private value = y
 Epub = DH public value = g^y mod p

 2. The MACing process will then consist of the following steps.

 a) The value of the certReq field is DER encoded, yielding a binary
 string. This will be the 'text' referred to in [HMAC], the data to
 which HMAC-SHA1 is applied.

 b) A shared DH secret is computed, as follows,
 shared secret = Kec = g^xy mod p

 [This is done by the entity E as CApub^y and by the CA as Epub^x,
 where CApub is retrieved from the CA's DH certificate and Epub is
 retrieved from the actual certification request.]

 c) A key K is derived from the shared secret Kec and the subject and
 issuer names in the CA's certificate as follows:

 K = SHA1(DER-encoded-subjectName | Kec | DER-encoded-issuerName)

 where "|" means concatenation. If subjectName in the CA
 certificate is an empty SEQUENCE then DER-encoded-subjectAltName
 should be used instead; similarly, if issuerName is an empty
 SEQUENCE then DER-encoded-issuerAltName should be used instead.

 d) Compute HMAC-SHA1 over the data 'text' as per [RFC2104] as:
 SHA1(K XOR opad, SHA1(K XOR ipad, text))

Myers, et. al. Expires May 2001 [Page 14]

Internet Draft November 2000

 where,
 opad (outer pad) = the byte 0x36 repeated 64 times
 and
 ipad (inner pad) = the byte 0x5C repeated 64 times.

 Namely,

 (1) Append zeros to the end of K to create a 64 byte string
 (e.g., if K is of length 16 bytes it will be appended with
 48 zero bytes 0x00).
 (2) XOR (bitwise exclusive-OR) the 64 byte string computed in
 step (1) with ipad.
 (3) Append the data stream 'text' to the 64 byte string
 resulting from step (2).
 (4) Apply SHA1 to the stream generated in step (3).
 (5) XOR (bitwise exclusive-OR) the 64 byte string computed in
 step (1) with opad.
 (6) Append the SHA1 result from step (4) to the 64 byte string
 resulting from step (5).
 (7) Apply SHA1 to the stream generated in step (6) and output
 the result.

 Sample code is also provided in [RFC2104, RFC2202].

 e) The output of (d) is encoded as a BIT STRING (the value "dhMAC").

 3. The proof-of-possession process requires the CA to carry out
 steps (a) through (d) and then simply compare the result of step
 (d) with what it received as the "dhMAC" value. If they match then
 the following can be concluded.

 1) The Entity possesses the private key corresponding to the
 public key in the certification request (because it needed the
 private key to calculate the shared secret).

 2) Only the intended CA can actually verify the request (because
 the CA requires its own private key to compute the same shared
 secret). This helps to protect from rogue CAs.

References

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2202] Cheng, P. and R. Glenn, "Test Cases for HMAC-MD5 and HMAC-
 SHA-1", RFC 2202, September 1997.

Myers, et. al. Expires May 2001 [Page 15]

Internet Draft November 2000

Acknowledgements

 The details of this Appendix were provided by Hemma Prafullchandra.

 Appendix B. Use of RegInfo for Name-Value Pairs

 The "value" field of the id-regInfo-utf8Pairs OCTET STRING (with
 "tag" field equal to 12 and appropriate "length" field) will contain
 a series of UTF8 name/value pairs.

 This Appendix lists some common examples of such pairs for the
 purpose of promoting interoperability among independent
 implementations of this specification. It is recognized that this
 list is not exhaustive and will grow with time and implementation
 experience.

B.1. Example Name/Value Pairs

 When regInfo is used to convey one or more name-value pairs (via id-
 regInfo-utf8Pairs), the first and subsequent pairs SHALL be
 structured as follows:

 [name?value][%name?value]*%

 This string is then encoded into a UTF8STRING and placed into the
 regInfo SEQUENCE.

 Reserved characters are encoded using the %xx mechanism of [RFC1738],
 unless they are used for their reserved purposes.

 The following table defines a recommended set of named elements.
 The value in the column "Name Value" is the exact text string that
 will appear in the regInfo.

 Name Value

 version -- version of this variation of regInfo use
 corp_company -- company affiliation of subscriber
 org_unit -- organizational unit
 mail_firstName -- personal name component
 mail_middleName -- personal name component
 mail_lastName -- personal name component
 mail_email -- subscriber's email address
 jobTitle -- job title of subscriber
 employeeID -- employee identification number or string
 mailStop -- mail stop
 issuerName -- name of CA

Myers, et. al. Expires May 2001 [Page 16]

Internet Draft November 2000

 subjectName -- name of Subject
 validity -- validity interval

 For example:

 version?1%corp_company?Acme, Inc.%org_unit?Engineering%
 mail_firstName?John%mail_lastName?Smith%jobTitle?Team Leader%
 mail_email?john@acme.com%

B.1.1. IssuerName, SubjectName and Validity Value Encoding

 When they appear in id-regInfo-utf8Pairs syntax as named elements,
 the encoding of values for issuerName, subjectName and validity SHALL
 use the following syntax. The characters [] indicate an optional
 field, ::= and | have their usual BNF meanings, and all other symbols
 (except spaces which are insignificant) outside non-terminal names
 are terminals. Alphabetics are case-sensitive.

 issuerName ::= <names>
 subjectName ::= <names>
 <names> ::= <name> | <names>:<name>

 <validity> ::= validity ? [<notbefore>]-[<notafter>]
 <notbefore> ::= <time>
 <notafter> ::= <time>

 Where <time> is UTC time in the form YYYYMMDD[HH[MM[SS]]]. HH, MM,
 and SS default to 00 and are omitted if at the and of value 00.

 Example validity encoding:

 validity?-19991231%

 is a validity interval with no value for notBefore and a value of
 December 31, 1999 for notAfter.

 Each name comprises a single character name form identifier followed
 by a name value of one or UTF8 characters. Within a name value, when
 it is necessary to disambiguate a character which has formatting
 significance at an outer level, the escape sequence %xx SHALL be
 used, where xx represents the hex value for the encoding concerned.
 The percent symbol is represented by %%.

 <name> ::= X<xname>|O<oname>|E<ename>|D<dname>|U<uname>|I<iname>

 Name forms and value formats are as follows:

 X.500 directory name form (identifier "X"):

Myers, et. al. Expires May 2001 [Page 17]

Internet Draft November 2000

 <xname> ::= <rdns>
 <rdns> ::= <rdn> | <rdns> , <rdn>
 <rdn> ::= <avas>
 <avas> ::= <ava> | <avas> + <ava>
 <ava> ::= <attyp> = <avalue>
 <attyp> ::= OID.<oid> | <stdat>

 Standard attribute type <stdat> is an alphabetic attribute type
 identifier from the following set:

 C (country)
 L (locality)
 ST (state or province)
 O (organization)
 OU (organizational unit)
 CN (common name)
 STREET (street address)
 E (E-mail address).

 <avalue> is a name component in the form of a UTF8 character string
 of 1 to 64 characters, with the restriction that in the IA5 subset of
 UTF8 only the characters of ASN.1 PrintableString may be used.

 Other name form (identifier "O"):
 <oname> ::= <oid> , <utf8string>

 E-mail address (rfc822name) name form (identifier "E"):
 <ename> ::= <ia5string>

 DNS name form (identifier "D"):
 <dname> ::= <ia5string>

 URI name form (identifier "U"):
 <uname> ::= <ia5string>

 IP address (identifier "I"):
 <iname> ::= <oid>

 For example:

 issuerName?XOU=Our CA,O=Acme,C=US%
 subjectName?XCN=John Smith, O=Acme, C=US, E=john@acme.com%

References

 [RFC1738] Berners-Lee, T., Masinter, L. and M. McCahill,
 "Uniform Resource Locators (URL)", RFC 1738, December 1994.

Myers, et. al. Expires May 2001 [Page 18]

Internet Draft November 2000

Appendix C. ASN.1 Structures and OIDs

PKIXCRMF {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-crmf(5)}

CRMF DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS
 -- Directory Authentication Framework (X.509)
 Version, AlgorithmIdentifier, Name, Time,
 SubjectPublicKeyInfo, Extensions, UniqueIdentifier
 FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit-88(1)}

 -- Certificate Extensions (X.509)
 GeneralName
 FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit-88(2)}

 -- Cryptographic Message Syntax
 EnvelopedData
 FROM CryptographicMessageSyntax { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 modules(0) cms(1) };

CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertReqMsg ::= SEQUENCE {
 certReq CertRequest,
 pop ProofOfPossession OPTIONAL,
 -- content depends upon key type
 regInfo SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue OPTIONAL }

CertRequest ::= SEQUENCE {
 certReqId INTEGER, -- ID for matching request and reply
 certTemplate CertTemplate, -- Selected fields of cert to be issued
 controls Controls OPTIONAL } -- Attributes affecting issuance

CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 serialNumber [1] INTEGER OPTIONAL,
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 issuer [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL,
 subject [5] Name OPTIONAL,

Myers, et. al. Expires May 2001 [Page 19]

Internet Draft November 2000

 publicKey [6] SubjectPublicKeyInfo OPTIONAL,
 issuerUID [7] UniqueIdentifier OPTIONAL,
 subjectUID [8] UniqueIdentifier OPTIONAL,
 extensions [9] Extensions OPTIONAL }

OptionalValidity ::= SEQUENCE {
 notBefore [0] Time OPTIONAL,
 notAfter [1] Time OPTIONAL } --at least one MUST be present

Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
 type OBJECT IDENTIFIER,
 value ANY DEFINED BY type }

ProofOfPossession ::= CHOICE {
 raVerified [0] NULL,
 -- used if the RA has already verified that the requester is in
 -- possession of the private key
 signature [1] POPOSigningKey,
 keyEncipherment [2] POPOPrivKey,
 keyAgreement [3] POPOPrivKey }

POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSigningKeyInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING }
 -- The signature (using "algorithmIdentifier") is on the
 -- DER-encoded value of poposkInput. NOTE: If the CertReqMsg
 -- certReq CertTemplate contains the subject and publicKey values,
 -- then poposkInput MUST be omitted and the signature MUST be
 -- computed on the DER-encoded value of CertReqMsg certReq. If
 -- the CertReqMsg certReq CertTemplate does not contain both the
 -- public key and subject values (i.e., if it contains only one
 -- of these, or neither), then poposkInput MUST be present and
 -- MUST be signed.

POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 -- used only if an authenticated identity has been
 -- established for the sender (e.g., a DN from a
 -- previously-issued and currently-valid certificate
 publicKeyMAC PKMACValue },
 -- used if no authenticated GeneralName currently exists for
 -- the sender; publicKeyMAC contains a password-based MAC
 -- on the DER-encoded value of publicKey

Myers, et. al. Expires May 2001 [Page 20]

Internet Draft November 2000

 publicKey SubjectPublicKeyInfo } -- from CertTemplate

PKMACValue ::= SEQUENCE {
 algId AlgorithmIdentifier,
 -- algorithm value shall be PasswordBasedMac {1 2 840 113533 7 66 13}
 -- parameter value is PBMParameter
 value BIT STRING }

PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
} -- or HMAC [RFC2104, RFC2202])

POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING,
 -- posession is proven in this message (which contains the private
 -- key itself (encrypted for the CA))
 subsequentMessage [1] SubsequentMessage,
 -- possession will be proven in a subsequent message
 dhMAC [2] BIT STRING }
 -- for keyAgreement (only), possession is proven in this message
 -- (which contains a MAC (over the DER-encoded value of the
 -- certReq parameter in CertReqMsg, which MUST include both subject
 -- and publicKey) based on a key derived from the end entity's
 -- private DH key and the CA's public DH key);
 -- the dhMAC value MUST be calculated as per the directions given
 -- in Appendix A.

SubsequentMessage ::= INTEGER {
 encrCert (0),
 -- requests that resulting certificate be encrypted for the
 -- end entity (following which, POP will be proven in a
 -- confirmation message)
 challengeResp (1) }
 -- requests that CA engage in challenge-response exchange with
 -- end entity in order to prove private key possession

-- Object identifier assignments --

id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) 7 }

-- arc for Internet X.509 PKI protocols and their components

Myers, et. al. Expires May 2001 [Page 21]

Internet Draft November 2000

id-pkip OBJECT IDENTIFIER ::= { id-pkix 5 }

-- Registration Controls in CRMF
id-regCtrl OBJECT IDENTIFIER ::= { id-pkip 1 }

-- The following definition may be uncommented for use with
-- ASN.1 compilers which do not understand UTF8String.

-- UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

id-regCtrl-regToken OBJECT IDENTIFIER ::= { id-regCtrl 1 }
--with syntax:
RegToken ::= UTF8String

id-regCtrl-authenticator OBJECT IDENTIFIER ::= { id-regCtrl 2 }
--with syntax:
Authenticator ::= UTF8String

id-regCtrl-pkiPublicationInfo OBJECT IDENTIFIER ::= { id-regCtrl 3 }
--with syntax:

PKIPublicationInfo ::= SEQUENCE {
 action INTEGER {
 dontPublish (0),
 pleasePublish (1) },
 pubInfos SEQUENCE SIZE (1..MAX) OF SinglePubInfo OPTIONAL }
 -- pubInfos MUST NOT be present if action is "dontPublish"
 -- (if action is "pleasePublish" and pubInfos is omitted,
 -- "dontCare" is assumed)

SinglePubInfo ::= SEQUENCE {
 pubMethod INTEGER {
 dontCare (0),
 x500 (1),
 web (2),
 ldap (3) },
 pubLocation GeneralName OPTIONAL }

id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::= { id-regCtrl 4 }
--with syntax:
PKIArchiveOptions ::= CHOICE {
 encryptedPrivKey [0] EncryptedKey,
 -- the actual value of the private key
 keyGenParameters [1] KeyGenParameters,
 -- parameters which allow the private key to be re-generated
 archiveRemGenPrivKey [2] BOOLEAN }
 -- set to TRUE if sender wishes receiver to archive the private
 -- key of a key pair which the receiver generates in response to

Myers, et. al. Expires May 2001 [Page 22]

Internet Draft November 2000

 -- this request; set to FALSE if no archival is desired.

EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue,
 envelopedData [0] EnvelopedData }
 -- The encrypted private key MUST be placed in the envelopedData
 -- encryptedContentInfo encryptedContent OCTET STRING.

EncryptedValue ::= SEQUENCE {
 intendedAlg [0] AlgorithmIdentifier OPTIONAL,
 -- the intended algorithm for which the value will be used
 symmAlg [1] AlgorithmIdentifier OPTIONAL,
 -- the symmetric algorithm used to encrypt the value
 encSymmKey [2] BIT STRING OPTIONAL,
 -- the (encrypted) symmetric key used to encrypt the value
 keyAlg [3] AlgorithmIdentifier OPTIONAL,
 -- algorithm used to encrypt the symmetric key
 valueHint [4] OCTET STRING OPTIONAL,
 -- a brief description or identifier of the encValue content
 -- (may be meaningful only to the sending entity, and used only
 -- if EncryptedValue might be re-examined by the sending entity
 -- in the future)
 encValue BIT STRING }
 -- the encrypted value itself
-- When EncryptedValue is used to carry a private key (as opposed to
-- a certificate, implementations MUST support the encValue field
-- containing an encrypted PrivateKeyInfo as defined in [PKCS11],
-- section 12.9, with the exception that the D-H algorithm OID and
-- parameters MUST be as defined in ANSI X9.42. In this case,
-- the intendedAlg field is unnecessary (since this information is
-- included in PrivateKeyInfo) and MUST be omitted.
-- If encValue contains some other format/encoding for the private
-- key, intendedAlg MUST be present. Furthermore, the first octet of
-- valueHint MAY be used to indicate the format/encoding (but note
-- that the possible values of this octet are not specified at this
-- time).

Myers, et. al. Expires May 2001 [Page 23]

Internet Draft November 2000

KeyGenParameters ::= OCTET STRING

id-regCtrl-oldCertID OBJECT IDENTIFIER ::= { id-regCtrl 5 }
--with syntax:
OldCertId ::= CertId

CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER }

id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::= { id-regCtrl 6 }
--with syntax:
ProtocolEncrKey ::= SubjectPublicKeyInfo

-- Registration Info in CRMF
id-regInfo OBJECT IDENTIFIER ::= { id-pkip 2 }

id-regInfo-utf8Pairs OBJECT IDENTIFIER ::= { id-regInfo 1 }
--with syntax
UTF8Pairs ::= UTF8String

id-regInfo-certReq OBJECT IDENTIFIER ::= { id-regInfo 2 }
--with syntax
CertReq ::= CertRequest

END

Myers, et. al. Expires May 2001 [Page 24]

Internet Draft November 2000

APPENDIX D - Full Copyright Statement

 Copyright (C) The Internet Society 1999. All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of develop-
 ing Internet standards in which case the procedures for copyrights
 defined in the Internet Standards process shall be followed, or as
 required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns. This
 document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
 NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
 OR FITNESS FOR A PARTICULAR PURPOSE.

Myers, et. al. Expires May 2001 [Page 25]

	Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)
	November 2000, Internet Engineering Task Force
	1. Abstract
	2. Overview
	3. CertReqMessage Syntax
	4. Proof of Possession (POP)
	4.1 Signature Keys
	4.2 Key Encipherment Keys
	4.3 Key Agreement Keys
	4.4 Proof of Possession Syntax
	4.4.1 Use of Password-Based MAC

	5. CertRequest syntax
	6. Controls Syntax
	6.1 Registration Token Control
	6.2 Authenticator Control.
	6.3 Publication Information Control
	6.4 Archive Options Control
	6.5 OldCert ID Control
	6.6 Protocol Encryption Key Control

	7. Object Identifiers
	8. Security Considerations
	9. References
	10. Acknowledgments
	11. Authors' Addresses
	A. Constructing "dhMAC"
	Acknowledgements

	B. Use of RegInfo for Name-Value Pairs
	B.1. Example Name/Value Pairs
	B.1.1. IssuerName, SubjectName and Validity Value Encoding

	References

	C. ASN.1 Structures and OIDs
	D - Full Copyright Statement

	
	IETF Title Page

