

Internet Draft C. Adams
PKIX Working Group Entrust Technologies
November, 2000 S. Farrell
Expires in 6 Months Baltimore Technologies

 Internet X.509 Public Key Infrastructure
 Certificate Management Protocols
 <draft-ietf-pkix-rfc2510bis-02.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire in May, 2001. Comments or
 suggestions for improvement may be made on the "ietf-pkix" mailing
 list, or directly to the authors.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes the Internet X.509 Public Key Infrastructure
 (PKI) Certificate Management Protocols. Protocol messages are defined
 for all relevant aspects of certificate creation and management.
 Note that "certificate" in this document refers to an X.509v3
 Certificate as defined in [COR95, X509-AM].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
 as shown) are to be interpreted as described in [RFC2119].

Adams & Farrell Expires May 2001 [Page 1]

Table of Contents

1. PKI Management Overview .. 4
 1.1 PKI Management Model ... 4
 1.2 Definitions of PKI Entities 4
 1.3 PKI Management Requirements 6
 1.4 PKI Management Operations 8

2. Assumptions and Restrictions 12
 2.1 End Entity Initialization 12
 2.2 Initial Registration/Certification 12
 2.3 Proof of Possession (POP) of Private Key 15
 2.4 Root CA Key Update ... 17

3. Data Structures .. 21
 3.1 Overall PKI Message .. 21
 3.2 Common Data Structures ... 28
 3.3 Operation-Specific Data Structures 38
 3.3.1 Initialization Request 38
 3.3.2 Initialization Response 38
 3.3.3 Certification Request 38
 3.3.4 Certification Response 39
 3.3.5 Key Update Request 40
 3.3.6 Key Update Response 40
 3.3.7 Key Recovery Request 40
 3.3.8 Key Recovery Response 40
 3.3.9 Revocation Request 41
 3.3.10 Revocation Response 41
 3.3.11 Cross-Certification Request 41
 3.3.12 Cross-Certification Response 42
 3.3.13 CA Key Update Announcement 42
 3.3.14 Certificate Announcement 42
 3.3.15 Revocation Announcement 42
 3.3.16 CRL Announcement ... 43
 3.3.17 PKI Confirmation ... 43
 3.3.18 Certificate Confirmation 43
 3.3.19 PKI General Message 44
 3.3.20 PKI General Response 47
 3.3.21 Error Message .. 47

4. Mandatory PKI Management Functions 47
 4.1 Root CA Initialization ... 47
 4.2 Root CA Key Update ... 48
 4.3 Subordinate CA Initialization 48
 4.4 CRL Production ... 48
 4.5 PKI Information Request .. 48
 4.6 Cross-Certification .. 49
 4.7 End Entity Initialization 51
 4.8 Certificate Request .. 52
 4.9 Key Update ... 52

Adams & Farrell Expires May 2001 [Page 2]

5. Version Negotiation .. 53
 5.1 Supporting RFC 2510 Implementations 53

Security Considerations ... 54

References .. 55

Acknowledgements .. 56

Authors' Addresses .. 56

Appendix A: Reasons for the presence of RAs 57
Appendix B: PKI Management Message Profiles (REQUIRED) 58
Appendix C: PKI Management Message Profiles (OPTIONAL) 68
Appendix D: Request Message Behavioral Clarifications 75
Appendix E: The Use of "Revocation Passphrase" 76
Appendix F: "Compilable" ASN.1 Module Using 1988 Syntax 78
Appendix G: Registration of MIME Type for E-Mail or HTTP Use 88

Full Copyright Statement .. 89

Adams & Farrell Expires May 2001 [Page 3]

1 PKI Management Overview

 The PKI must be structured to be consistent with the types of
 individuals who must administer it. Providing such administrators
 with unbounded choices not only complicates the software required but
 also increases the chances that a subtle mistake by an administrator
 or software developer will result in broader compromise. Similarly,
 restricting administrators with cumbersome mechanisms will cause them
 not to use the PKI.

 Management protocols are REQUIRED to support on-line interactions
 between Public Key Infrastructure (PKI) components. For example, a
 management protocol might be used between a Certification Authority
 (CA) and a client system with which a key pair is associated, or
 between two CAs that issue cross-certificates for each other.

1.1 PKI Management Model

 Before specifying particular message formats and procedures we first
 define the entities involved in PKI management and their interactions
 (in terms of the PKI management functions required). We then group
 these functions in order to accommodate different identifiable types
 of end entities.

1.2 Definitions of PKI Entities

 The entities involved in PKI management include the end entity (i.e.,
 the entity to whom the certificate is issued) and the
 certification authority (i.e., the entity that issues the certificate).
 A registration authority MAY also be involved in PKI management.

1.2.1 Subjects and End Entities

 The term "subject" is used here to refer to the entity to whom the
 certificate is issued, typically named in the subject or
 subjectAltName field of a certificate. When we wish to distinguish the
 tools and/or software used by the subject (e.g., a local certificate
 management module) we will use the term "subject equipment". In
 general, the term "end entity" (EE) rather than subject is preferred
 in order to avoid confusion with the field name.

 It is important to note that the end entities here will include not
 only human users of applications, but also applications themselves
 (e.g., for IP security). This factor influences the protocols which
 the PKI management operations use; for example, application software
 is far more likely to know exactly which certificate extensions are
 required than are human users. PKI management entities are also end
 entities in the sense that they are sometimes named in the subject or
 subjectAltName field of a certificate or cross-certificate. Where

Adams & Farrell Expires May 2001 [Page 4]

 appropriate, the term "end-entity" will be used to refer to end
 entities who are not PKI management entities.

 All end entities require secure local access to some information --
 at a minimum, their own name and private key, the name of a CA which
 is directly trusted by this entity and that CA's public key (or a
 fingerprint of the public key where a self-certified version is
 available elsewhere). Implementations MAY use secure local storage
 for more than this minimum (e.g., the end entity's own certificate or
 application-specific information). The form of storage will also vary
 -- from files to tamper-resistant cryptographic tokens. Such local
 trusted storage is referred to here as the end entity's Personal
 Security Environment (PSE).

 Though PSE formats are beyond the scope of this document (they are
 very dependent on equipment, et cetera), a generic interchange format
 for PSEs is defined here - a certification response message MAY be
 used.

1.2.2 Certification Authority

 The certification authority (CA) may or may not actually be a real
 "third party" from the end entity's point of view. Quite often, the
 CA will actually belong to the same organization as the end entities
 it supports.

 Again, we use the term CA to refer to the entity named in the issuer
 field of a certificate; when it is necessary to distinguish the
 software or hardware tools used by the CA we use the term "CA
 equipment".

 The CA equipment will often include both an "off-line" component and
 an "on-line" component, with the CA private key only available to the
 "off-line" component. This is, however, a matter for implementers
 (though it is also relevant as a policy issue).

 We use the term "root CA" to indicate a CA that is directly trusted
 by an end entity; that is, securely acquiring the value of a root CA
 public key requires some out-of-band step(s). This term is not meant
 to imply that a root CA is necessarily at the top of any hierarchy,
 simply that the CA in question is trusted directly.

 A "subordinate CA" is one that is not a root CA for the end entity in
 question. Often, a subordinate CA will not be a root CA for any
 entity but this is not mandatory.

Adams & Farrell Expires May 2001 [Page 5]

1.2.3 Registration Authority

 In addition to end-entities and CAs, many environments call for the
 existence of a Registration Authority (RA) separate from the
 Certification Authority. The functions which the registration
 authority may carry out will vary from case to case but MAY include
 personal authentication, token distribution, revocation reporting,
 name assignment, key generation, archival of key pairs, et cetera.

 This document views the RA as an OPTIONAL component - when it is not
 present the CA is assumed to be able to carry out the RA's functions
 so that the PKI management protocols are the same from the end-
 entity's point of view.

 Again, we distinguish, where necessary, between the RA and the tools
 used (the "RA equipment").

 Note that an RA is itself an end entity. We further assume that all
 RAs are in fact certified end entities and that RAs have private keys
 that are usable for signing. How a particular CA equipment identifies
 some end entities as RAs is an implementation issue (i.e., this
 document specifies no special RA certification operation). We do not
 mandate that the RA is certified by the CA with which it is
 interacting at the moment (so one RA may work with more than one CA
 whilst only being certified once).

 In some circumstances end entities will communicate directly with a
 CA even where an RA is present. For example, for initial registration
 and/or certification the subject may use its RA, but communicate
 directly with the CA in order to refresh its certificate.

1.3 PKI Management Requirements

 The protocols given here meet the following requirements on PKI
 management.

 1. PKI management must conform to the ISO 9594-8 standard and the
 associated amendments (certificate extensions)

 2. PKI management must conform to the other parts of this series.

 3. It must be possible to regularly update any key pair without
 affecting any other key pair.

 4. The use of confidentiality in PKI management protocols must be
 kept to a minimum in order to ease regulatory problems.

Adams & Farrell Expires May 2001 [Page 6]

 5. PKI management protocols must allow the use of different
 industry-standard cryptographic algorithms, (specifically
 including RSA, DSA, MD5, SHA-1) -- this means that any given
 CA, RA, or end entity may, in principle, use whichever
 algorithms suit it for its own key pair(s).

 6. PKI management protocols must not preclude the generation of
 key pairs by the end-entity concerned, by an RA, or by a CA --
 key generation may also occur elsewhere, but for the purposes
 of PKI management we can regard key generation as occurring
 wherever the key is first present at an end entity, RA, or CA.

 7. PKI management protocols must support the publication of
 certificates by the end-entity concerned, by an RA, or by a CA.
 Different implementations and different environments may choose
 any of the above approaches.

 8. PKI management protocols must support the production of
 Certificate Revocation Lists (CRLs) by allowing certified end
 entities to make requests for the revocation of certificates -
 this must be done in such a way that the denial-of-service
 attacks which are possible are not made simpler.

 9. PKI management protocols must be usable over a variety of
 "transport" mechanisms, specifically including mail, http,
 TCP/IP and ftp.

 10. Final authority for certification creation rests with the CA;
 no RA or end-entity equipment can assume that any certificate
 issued by a CA will contain what was requested -- a CA may
 alter certificate field values or may add, delete or alter
 extensions according to its operating policy. In other words,
 all PKI entities (end-entities, RAs, and CAs) must be capable
 of handling responses to requests for certificates in which
 the actual certificate issued is different from that requested
 (for example, a CA may shorten the validity period requested).
 Note that policy may dictate that the CA must not publish or
 otherwise distribute the certificate until the requesting
 entity has reviewed and accepted the newly-created certificate
 (typically through use of the certConf message).

 11. A graceful, scheduled change-over from one non-compromised CA
 key pair to the next (CA key update) must be supported (note
 that if the CA key is compromised, re-initialization must be
 performed for all entities in the domain of that CA). An end
 entity whose PSE contains the new CA public key (following a
 CA key update) must also be able to verify certificates
 verifiable using the old public key. End entities who directly

Adams & Farrell Expires May 2001 [Page 7]

 trust the old CA key pair must also be able to verify
 certificates signed using the new CA private key. (Required
 for situations where the old CA public key is "hardwired" into
 the end entity's cryptographic equipment).

 12. The Functions of an RA may, in some implementations or
 environments, be carried out by the CA itself. The protocols
 must be designed so that end entities will use the same
 protocol (but, of course, not the same key!) regardless of
 whether the communication is with an RA or CA.

 13. Where an end entity requests a certificate containing a given
 public key value, the end entity must be ready to demonstrate
 possession of the corresponding private key value. This may be
 accomplished in various ways, depending on the type of
 certification request. See Section 2.3, "Proof of Possession
 of Private Key", for details of the in-band methods defined
 for the PKIX-CMP (i.e., Certificate Management Protocol)
 messages.

1.4 PKI Management Operations

 The following diagram shows the relationship between the entities
 defined above in terms of the PKI management operations. The letters
 in the diagram indicate "protocols" in the sense that a defined set
 of PKI management messages can be sent along each of the lettered
 lines.

Adams & Farrell Expires May 2001 [Page 8]

 +---+ cert. publish +------------+ j
 | | <--------------------- | End Entity | <-------
 | C | g +------------+ "out-of-band"
 | | | ^ loading
 | e | | | initial
 | r | a | | b registration/
 | t | | | certification
 | | | | key pair recovery
 | / | | | key pair update
 | | | | certificate update
 | C | PKI "USERS" V | revocation request
 | R | -------------------+-+-----+-+------+-+-------------------
 | L | PKI MANAGEMENT | ^ | ^
 | | ENTITIES a | | b a | | b
 | | V | | | | |
 | R | g +------+ d | |
 | e | <------------ | RA | <-----+ | |
 | p | cert. | | ----+ | | |
 | o | publish +------+ c | | | |
 | s | | | | |
 | i | V | V |
 | t | g +------------+ i
 | o | <------------------------| CA |------->
 | r | h +------------+ "out-of-band"
 | y | cert. publish | ^ publication
 | | CRL publish | |
 +---+ | | cross-certification
 e | | f cross-certificate
 | | update
 | |
 V |
 +------+
 | CA-2 |
 +------+

 Figure 1 - PKI Entities

 At a high level the set of operations for which management messages
 are defined can be grouped as follows.

 1 CA establishment: When establishing a new CA, certain steps are
 required (e.g., production of initial CRLs, export of CA public
 key).

 2 End entity initialization: this includes importing a root CA
 public key and requesting information about the options
 supported by a PKI management entity.

Adams & Farrell Expires May 2001 [Page 9]

 3 Certification: various operations result in the creation of new
 certificates:

 3.1 initial registration/certification: This is the process
 whereby an end entity first makes itself known to a CA or
 RA, prior to the CA issuing a certificate or certificates
 for that end entity. The end result of this process (when it
 is successful) is that a CA issues a certificate for an end
 entity's public key, and returns that certificate to the end
 entity and/or posts that certificate in a public repository.
 This process may, and typically will, involve multiple
 "steps", possibly including an initialization of the end
 entity's equipment. For example, the end entity's equipment
 must be securely initialized with the public key of a CA, to
 be used in validating certificate paths. Furthermore, an
 end entity typically needs to be initialized with its own
 key pair(s).

 3.2 key pair update: Every key pair needs to be updated
 regularly (i.e., replaced with a new key pair), and a new
 certificate needs to be issued.

 3.3 certificate update: As certificates expire they may be
 "refreshed" if nothing relevant in the environment has
 changed.

 3.4 CA key pair update: As with end entities, CA key pairs need
 to be updated regularly; however, different mechanisms are
 required.

 3.5 cross-certification request: One CA requests issuance of a
 cross-certificate from another CA. For the purposes of this
 standard, the following terms are defined. A "cross-
 certificate" is a certificate in which the subject CA and
 the issuer CA are distinct and SubjectPublicKeyInfo contains
 a verification key (i.e., the certificate has been issued
 for the subject CA's signing key pair). When it is
 necessary to distinguish more finely, the following terms
 may be used: a cross-certificate is called an "inter-domain
 cross-certificate" if the subject and issuer CAs belong to
 different administrative domains; it is called an "intra-
 domain cross-certificate" otherwise.

Adams & Farrell Expires May 2001 [Page 10]

 Notes:

 Note 1. The above definition of "cross-certificate" aligns
 with the defined term "CA-certificate" in X.509. Note that
 this term is not to be confused with the X.500 "cACertificate"
 attribute type, which is unrelated.

 Note 2. In many environments the term "cross-certificate",
 unless further qualified, will be understood to be synonymous
 with "inter-domain cross-certificate" as defined above.

 Note 3. Issuance of cross-certificates may be, but is not
 necessarily, mutual; that is, two CAs may issue
 cross-certificates for each other.

 3.6 cross-certificate update: Similar to a normal certificate
 update but involving a cross-certificate.

 4 Certificate/CRL discovery operations: some PKI management
 operations result in the publication of certificates or CRLs:

 4.1 certificate publication: Having gone to the trouble of
 producing a certificate, some means for publishing it is
 needed. The "means" defined in PKIX MAY involve the
 messages specified in Sections 3.3.13 - 3.3.16, or MAY
 involve other methods (LDAP, for example) as described in
 [RFC2559, RFC2585] (the "Operational Protocols" documents
 of the PKIX series of specifications).

 4.2 CRL publication: As for certificate publication.

 5 Recovery operations: some PKI management operations are used
 when an end entity has "lost" its PSE:

 5.1 key pair recovery: As an option, user client key materials
 (e.g., a user's private key used for decryption purposes)
 MAY be backed up by a CA, an RA, or a key backup system
 associated with a CA or RA. If an entity needs to recover
 these backed up key materials (e.g., as a result of a
 forgotten password or a lost key chain file), a protocol
 exchange may be needed to support such recovery.

 6 Revocation operations: some PKI operations result in the
 creation of new CRL entries and/or new CRLs:

 6.1 revocation request: An authorized person advises a CA of an
 abnormal situation requiring certificate revocation.

Adams & Farrell Expires May 2001 [Page 11]

 7 PSE operations: whilst the definition of PSE operations (e.g.,
 moving a PSE, changing a PIN, etc.) are beyond the scope of this
 specification, we do define a PKIMessage (CertRepMessage) which
 can form the basis of such operations.

 Note that on-line protocols are not the only way of implementing the
 above operations. For all operations there are off-line methods of
 achieving the same result, and this specification does not mandate
 use of on-line protocols. For example, when hardware tokens are
 used, many of the operations MAY be achieved as part of the physical
 token delivery.

 Later sections define a set of standard messages supporting the above
 operations. Transport protocols for conveying these exchanges in
 different environments (file based, on-line, E-mail, and WWW) are
 beyond the scope of this document and are specified separately.

2. Assumptions and restrictions

2.1 End entity initialization

 The first step for an end entity in dealing with PKI management
 entities is to request information about the PKI functions supported
 and to securely acquire a copy of the relevant root CA public key(s).

2.2 Initial registration/certification

 There are many schemes that can be used to achieve initial
 registration and certification of end entities. No one method is
 suitable for all situations due to the range of policies which a CA
 may implement and the variation in the types of end entity which can
 occur.

 We can however, classify the initial registration / certification
 schemes that are supported by this specification. Note that the word
 "initial", above, is crucial - we are dealing with the situation
 where the end entity in question has had no previous contact with the
 PKI. Where the end entity already possesses certified keys then some
 simplifications/alternatives are possible.

 Having classified the schemes that are supported by this
 specification we can then specify some as mandatory and some as
 optional. The goal is that the mandatory schemes cover a sufficient
 number of the cases which will arise in real use, whilst the optional
 schemes are available for special cases which arise less frequently.
 In this way we achieve a balance between flexibility and ease of
 implementation.

Adams & Farrell Expires May 2001 [Page 12]

 We will now describe the classification of initial registration /
 certification schemes.

2.2.1 Criteria used

2.2.1.1 Initiation of registration / certification

 In terms of the PKI messages which are produced we can regard the
 initiation of the initial registration / certification exchanges as
 occurring wherever the first PKI message relating to the end entity
 is produced. Note that the real-world initiation of the registration
 / certification procedure may occur elsewhere (e.g., a personnel
 department may telephone an RA operator).

 The possible locations are at the end entity, an RA, or a CA.

2.2.1.2 End entity message origin authentication

 The on-line messages produced by the end entity that requires a
 certificate may be authenticated or not. The requirement here is to
 authenticate the origin of any messages from the end entity to the
 PKI (CA/RA).

 In this specification, such authentication is achieved by the PKI
 (CA/RA) issuing the end entity with a secret value (initial
 authentication key) and reference value (used to identify the
 secret value) via some out-of-band means. The initial authentication
 key can then be used to protect relevant PKI messages.

 We can thus classify the initial registration/certification scheme
 according to whether or not the on-line end entity -> PKI messages
 are authenticated or not.

 Note 1: We do not discuss the authentication of the PKI -> end entity
 messages here as this is always REQUIRED. In any case, it can be
 achieved simply once the root-CA public key has been installed at the
 end entity's equipment or it can be based on the initial
 authentication key.

 Note 2: An initial registration / certification procedure can be
 secure where the messages from the end entity are authenticated via
 some out- of-band means (e.g., a subsequent visit).

2.2.1.3 Location of key generation

 In this specification, "key generation" is regarded as occurring
 wherever either the public or private component of a key pair first
 occurs in a PKIMessage. Note that this does not preclude a

Adams & Farrell Expires May 2001 [Page 13]

 centralized key generation service - the actual key pair MAY have
 been generated elsewhere and transported to the end entity, RA, or CA
 using a (proprietary or standardized) key generation request/response
 protocol (outside the scope of this specification).

 There are thus three possibilities for the location of "key
 generation": the end entity, an RA, or a CA.

2.2.1.4 Confirmation of successful certification

 Following the creation of an initial certificate for an end entity,
 additional assurance can be gained by having the end entity
 explicitly confirm successful receipt of the message containing (or
 indicating the creation of) the certificate. Naturally, this
 confirmation message must be protected (based on the initial
 authentication key or other means).

 This gives two further possibilities: confirmed or not.

2.2.2 Mandatory schemes

 The criteria above allow for a large number of initial registration /
 certification schemes. This specification mandates that conforming CA
 equipment, RA equipment, and EE equipment MUST support the second
 scheme listed below. Any entity MAY additionally support other
 schemes, if desired.

2.2.2.1 Centralized scheme

 In terms of the classification above, this scheme is, in some ways,
 the simplest possible, where:

 - initiation occurs at the certifying CA;
 - no on-line message authentication is required;
 - "key generation" occurs at the certifying CA (see Section 2.2.1.3);
 - no confirmation message is required.

 In terms of message flow, this scheme means that the only message
 required is sent from the CA to the end entity. The message must
 contain the entire PSE for the end entity. Some out-of-band means
 must be provided to allow the end entity to authenticate the message
 received and decrypt any encrypted values.

Adams & Farrell Expires May 2001 [Page 14]

2.2.2.2 Basic authenticated scheme

 In terms of the classification above, this scheme is where:

 - initiation occurs at the end entity;
 - message authentication is REQUIRED;
 - "key generation" occurs at the end entity (see Section 2.2.1.3);
 - a confirmation message is REQUIRED.

 In terms of message flow, the basic authenticated scheme is as
 follows:

 End entity RA/CA
 ========== =============
 out-of-band distribution of Initial Authentication
 Key (IAK) and reference value (RA/CA -> EE)
 Key generation
 Creation of certification request
 Protect request with IAK
 -->>--certification request-->>--
 verify request
 process request
 create response
 --<<--certification response--<<--
 handle response
 create confirmation
 -->>--cert conf message-->>--
 verify confirmation
 create response
 --<<-- conf ack (optional) --<<--
 handle response

 (Where verification of the cert confirmation message fails, the RA/CA
 MUST revoke the newly issued certificate if it has been published or
 otherwise made available.)

2.3 Proof of Possession (POP) of Private Key

 In order to prevent certain attacks and to allow a CA/RA to properly
 check the validity of the binding between an end entity and a key
 pair, the PKI management operations specified here make it possible
 for an end entity to prove that it has possession of (i.e., is able
 to use) the private key corresponding to the public key for which a
 certificate is requested. A given CA/RA is free to choose how to
 enforce POP (e.g., out-of-band procedural means versus PKIX-CMP in-
 band messages) in its certification exchanges (i.e., this may be a
 policy issue). However, it is REQUIRED that CAs/RAs MUST enforce POP
 by some means because there are currently many non-PKIX operational
 protocols in use (various electronic mail protocols are one example)
 that do not explicitly check the binding between the end entity and
 the private key. Until operational protocols that do verify the

Adams & Farrell Expires May 2001 [Page 15]

 binding (for signature, encryption, and key agreement key pairs)
 exist, and are ubiquitous, this binding can only be assumed to have
 been verified by the CA/RA. Therefore, if the binding is not verified
 by the CA/RA, certificates in the Internet Public-Key Infrastructure
 end up being somewhat less meaningful.

 POP is accomplished in different ways depending upon the type of key
 for which a certificate is requested. If a key can be used for
 multiple purposes (e.g., an RSA key) then any appropriate method MAY
 be used (e.g., a key which may be used for signing, as well as other
 purposes, SHOULD NOT be sent to the CA/RA in order to prove
 possession).

 This specification explicitly allows for cases where an end entity
 supplies the relevant proof to an RA and the RA subsequently attests
 to the CA that the required proof has been received (and validated!).
 For example, an end entity wishing to have a signing key certified
 could send the appropriate signature to the RA which then simply
 notifies the relevant CA that the end entity has supplied the
 required proof. Of course, such a situation may be disallowed by some
 policies (e.g., CAs may be the only entities permitted to verify POP
 during certification).

2.3.1 Signature Keys

 For signature keys, the end entity can sign a value to prove
 possession of the private key.

2.3.2 Encryption Keys

 For encryption keys, the end entity can provide the private key to
 the CA/RA, or can be required to decrypt a value in order to prove
 possession of the private key (see Section 3.2.8). Decrypting a value
 can be achieved either directly or indirectly.

 The direct method is for the RA/CA to issue a random challenge to
 which an immediate response by the EE is required.

 The indirect method is to issue a certificate which is encrypted for
 the end entity (and have the end entity demonstrate its ability to
 decrypt this certificate in the confirmation message). This allows a
 CA to issue a certificate in a form which can only be used by the
 intended end entity.

 This specification encourages use of the indirect method because this
 requires no extra messages to be sent (i.e., the proof can be
 demonstrated using the {request, response, confirmation} triple of
 messages).

Adams & Farrell Expires May 2001 [Page 16]

2.3.3 Key Agreement Keys

 For key agreement keys, the end entity and the PKI management entity
 (i.e., CA or RA) must establish a shared secret key in order to prove
 that the end entity has possession of the private key.

 Note that this need not impose any restrictions on the keys that can
 be certified by a given CA -- in particular, for Diffie-Hellman keys
 the end entity may freely choose its algorithm parameters -- provided
 that the CA can generate a short-term (or one-time) key pair with the
 appropriate parameters when necessary.

2.4 Root CA key update

 This discussion only applies to CAs that are a root CA for some end
 entity.

 The basis of the procedure described here is that the CA protects its
 new public key using its previous private key and vice versa. Thus
 when a CA updates its key pair it must generate two extra
 cACertificate attribute values if certificates are made available
 using an X.500 directory (for a total of four: OldWithOld;
 OldWithNew; NewWithOld; and NewWithNew).

 When a CA changes its key pair those entities who have acquired the
 old CA public key via "out-of-band" means are most affected. It is
 these end entities who will need access to the new CA public key
 protected with the old CA private key. However, they will only
 require this for a limited period (until they have acquired the new
 CA public key via the "out-of-band" mechanism). This will typically
 be easily achieved when these end entities' certificates expire.

 The data structure used to protect the new and old CA public keys is
 a standard certificate (which may also contain extensions). There are
 no new data structures required.

 Note 1. This scheme does not make use of any of the X.509 v3
 extensions as it must be able to work even for version 1
 certificates. The presence of the KeyIdentifier extension would make
 for efficiency improvements.

 Note 2. While the scheme could be generalized to cover cases where
 the CA updates its key pair more than once during the validity period
 of one of its end entities' certificates, this generalization seems
 of dubious value. Not having this generalization simply means that
 the validity period of a CA key pair must be greater than the
 validity period of any certificate issued by that CA using that key
 pair.

Adams & Farrell Expires May 2001 [Page 17]

 Note 3. This scheme ensures that end entities will acquire the new CA
 public key, at the latest by the expiry of the last certificate they
 owned that was signed with the old CA private key (via the
 "out-of-band" means). Certificate and/or key update operations
 occurring at other times do not necessarily require this (depending on
 the end entity's equipment).

2.4.1 CA Operator actions

 To change the key of the CA, the CA operator does the following:

 1. Generate a new key pair;

 2. Create a certificate containing the old CA public key signed
 with the new private key (the "old with new" certificate);

 3. Create a certificate containing the new CA public key signed
 with the old private key (the "new with old" certificate);

 4. Create a certificate containing the new CA public key signed
 with the new private key (the "new with new" certificate);

 5. Publish these new certificates via the repository and/or other
 means (perhaps using a CAKeyUpdAnn message);

 6. Export the new CA public key so that end entities may acquire
 it using the "out-of-band" mechanism (if required).

 The old CA private key is then no longer required. The old CA public
 key will however remain in use for some time. The time when the old
 CA public key is no longer required (other than for non-repudiation)
 will be when all end entities of this CA have securely acquired the
 new CA public key.

 The "old with new" certificate must have a validity period starting
 at the generation time of the old key pair and ending at the expiry
 date of the old public key.

 The "new with old" certificate must have a validity period starting
 at the generation time of the new key pair and ending at the time by
 which all end entities of this CA will securely possess the new CA
 public key (at the latest, the expiry date of the old public key).

 The "new with new" certificate must have a validity period starting
 at the generation time of the new key pair and ending at or before the
 time by which the CA will next update its key pair.

Adams & Farrell Expires May 2001 [Page 18]

2.4.2 Verifying Certificates.

 Normally when verifying a signature, the verifier verifies (among
 other things) the certificate containing the public key of the
 signer. However, once a CA is allowed to update its key there are a
 range of new possibilities. These are shown in the table below.

 Repository contains NEW Repository contains only OLD
 and OLD public keys public key (due to, e.g.,
 delay in publication)

 PSE PSE Contains PSE Contains PSE Contains
 Contains OLD public NEW public OLD public
 NEW public key key key
 key

 Signer's Case 1: Case 3: Case 5: Case 7:
 certifi- This is In this case Although the In this case
 cate is the the verifier CA operator the CA
 protected standard must access has not operator has
 using NEW case where the updated the not updated
 public the repository in repository the the repository
 key verifier order to get verifier can and so the
 can the value of verify the verification
 directly the NEW certificate will FAIL
 verify the public key directly -
 certificate this is thus
 without the same as
 using the case 1.
 repository

 Signer's Case 2: Case 4: Case 6: Case 8:
 certifi- In this In this case The verifier Although the
 cate is case the the verifier thinks this CA operator
 protected verifier can directly is the has not
 using OLD must verify the situation of updated the
 public access the certificate case 2 and repository the
 key repository without will access verifier can
 in order using the the verify the
 to get the repository repository; certificate
 value of however, the directly -
 the OLD verification this is thus
 public key will FAIL the same as
 case 4.

Adams & Farrell Expires May 2001 [Page 19]

2.4.2.1 Verification in cases 1, 4, 5 and 8.

 In these cases the verifier has a local copy of the CA public key
 which can be used to verify the certificate directly. This is the
 same as the situation where no key change has occurred.

 Note that case 8 may arise between the time when the CA operator has
 generated the new key pair and the time when the CA operator stores
 the updated attributes in the repository. Case 5 can only arise if the
 CA operator has issued both the signer's and verifier's certificates
 during this "gap" (the CA operator SHOULD avoid this as it leads to
 the failure cases described below).

2.4.2.2 Verification in case 2.

 In case 2 the verifier must get access to the old public key of the
 CA. The verifier does the following:

 1. Look up the caCertificate attribute in the repository and pick
 the OldWithNew certificate (determined based on validity
 periods);
 2. Verify that this is correct using the new CA key (which the
 verifier has locally);
 3. If correct, check the signer's certificate using the old CA
 key.

 Case 2 will arise when the CA operator has issued the signer's
 certificate, then changed key and then issued the verifier's
 certificate, so it is quite a typical case.

2.4.2.3 Verification in case 3.

 In case 3 the verifier must get access to the new public key of the
 CA. The verifier does the following:

 1. Look up the CACertificate attribute in the repository and pick
 the NewWithOld certificate (determined based on validity
 periods);
 2. Verify that this is correct using the old CA key (which the
 verifier has stored locally);
 3. If correct, check the signer's certificate using the new CA
 key.

 Case 3 will arise when the CA operator has issued the verifier's
 certificate, then changed key and then issued the signer's
 certificate, so it is also quite a typical case.

Adams & Farrell Expires May 2001 [Page 20]

2.4.2.4 Failure of verification in case 6.

 In this case the CA has issued the verifier's PSE containing the new
 key without updating the repository attributes. This means that the
 verifier has no means to get a trustworthy version of the CA's old
 key and so verification fails.

 Note that the failure is the CA operator's fault.

2.4.2.5 Failure of verification in case 7.

 In this case the CA has issued the signer's certificate protected
 with the new key without updating the repository attributes. This
 means that the verifier has no means to get a trustworthy version of
 the CA's new key and so verification fails.

 Note that the failure is again the CA operator's fault.

2.4.3 Revocation - Change of CA key

 As we saw above the verification of a certificate becomes more
 complex once the CA is allowed to change its key. This is also true
 for revocation checks as the CA may have signed the CRL using a newer
 private key than the one that is within the user's PSE.

 The analysis of the alternatives is as for certificate verification.

3. Data Structures

 This section contains descriptions of the data structures required
 for PKI management messages. Section 4 describes constraints on their
 values and the sequence of events for each of the various PKI
 management operations.

3.1 Overall PKI Message

 All of the messages used in this specification for the purposes of
 PKI management use the following structure:

 PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL
 }

 PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

Adams & Farrell Expires May 2001 [Page 21]

 The PKIHeader contains information which is common to many PKI
 messages.

 The PKIBody contains message-specific information.

 The PKIProtection, when used, contains bits that protect the PKI
 message.

 The extraCerts field can contain certificates that may be useful to
 the recipient. For example, this can be used by a CA or RA to present
 an end entity with certificates that it needs to verify its own new
 certificate (if, for example, the CA that issued the end entity's
 certificate is not a root CA for the end entity). Note that this
 field does not necessarily contain a certification path - the
 recipient may have to sort, select from, or otherwise process the
 extra certificates in order to use them.

3.1.1 PKI Message Header

 All PKI messages require some header information for addressing and
 transaction identification. Some of this information will also be
 present in a transport-specific envelope; however, if the PKI message
 is protected then this information is also protected (i.e., we make
 no assumption about secure transport).

 The following data structure is used to contain this information:

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { CMP1999(1), CMP2000(2) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient
 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable"; i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction; i.e., this will be the same in
 -- corresponding request, response and confirmation messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce

Adams & Farrell Expires May 2001 [Page 22]

 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions
 -- (this field is intended for human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information
 -- (this field not primarily intended for human consumption)
 }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 String [RFC2279] (note: each UTF8String
 -- MAY include an RFC 1766 language tag to indicate the
 -- language of the contained text -- see [RFC2482] for details)

 The pvno field is fixed (at 2) for this version of this
 specification.

 The sender field contains the name of the sender of the PKIMessage.
 This name (in conjunction with senderKID, if supplied) should be
 usable to verify the protection on the message. If nothing about the
 sender is known to the sending entity (e.g., in the init. req.
 message, where the end entity may not know its own Distinguished Name
 (DN), e-mail name, IP address, etc.), then the "sender" field MUST
 contain a "NULL" value; that is, the SEQUENCE OF relative
 distinguished names is of zero length. In such a case the senderKID
 field MUST hold an identifier (i.e., a reference number) which
 indicates to the receiver the appropriate shared secret information
 to use to verify the message.

 The recipient field contains the name of the recipient of the
 PKIMessage. This name (in conjunction with recipKID, if supplied)
 should be usable to verify the protection on the message.

 The protectionAlg field specifies the algorithm used to protect the
 message. If no protection bits are supplied (note that PKIProtection
 is OPTIONAL) then this field MUST be omitted; if protection bits are
 supplied then this field MUST be supplied.

 senderKID and recipKID are usable to indicate which keys have been
 used to protect the message (recipKID will normally only be required
 where protection of the message uses Diffie-Hellman (DH) keys).

Adams & Farrell Expires May 2001 [Page 23]

 The transactionID field within the message header is to be used to
 allow the recipient of a message to correlate this with an ongoing
 transaction. This is needed for all transactions that consist of
 more than just a single request/response pair. For transactions that
 consist of a single request/response pair the rules are as follows.
 A client MAY populate the transactionID field of the request. If a
 server receives such a request which has the transactionID field set,
 then it MUST set the transactionID field of the response to the same
 value; if a server receives such request with a missing transactionID
 field then it MAY set transactionID field of the response.

 For transactions that consist of more than just a single
 request/response pair the rules are as follows. Clients SHOULD
 generate a transactionID for the first request. If a server receives
 such a request which has the transactionID field set, then it MUST set
 the transactionID field of the response to the same value; if a server
 receives such request with a missing transactionID field then it MUST
 populate transactionID field of the response with a server-generated
 ID. Subsequent requests and responses MUST all set the transactionID
 field to the thus established value. In all cases where a
 transactionID is being used, a given client MUST NOT have more than
 one transaction with the same transactionID in progress at any time
 (to a given server). Servers are free to require uniqueness of the
 transactionID or not, as long as they are able to correctly associate
 messages with the corresponding transaction. Typically this means
 that a server will require the {client, transactionID} tuple to be
 unique, or even the transactionID alone to be unique if it cannot
 distinguish clients based on transport level information. A server
 receiving the first message of a transaction (which requires more than
 a single request/response pair) that contains a transactionID that
 does not allow it to meet the above constraints (typically because
 the transactionID is already in use) MUST send back an
 ErrorMsgContent with a PKIFailureInfo of transactionIdInUse. It is
 RECOMMENDED that the clients fill the transactionID field with 128 bits
 of (pseudo-) random data for the start of a transaction to reduce the
 probability of having the transactionID in use at the server.

 The senderNonce and recipNonce fields protect the PKIMessage against
 replay attacks. The senderNonce will typically be 128 bits of
 (pseudo-) random data generated by the sender, whereas the recipNonce
 is copied from the senderNonce of the previous message in the
 transaction.

 The messageTime field contains the time at which the sender created
 the message. This may be useful to allow end entities to correct/check
 their local time for consistency with the time on a central system.

 The freeText field may be used to send a human-readable message to
 the recipient (in any number of languages). The first language used
 in this sequence indicates the desired language for replies.

 The generalInfo field may be used to send machine-processable
 additional data to the recipient. The following generalInfo extensions
 are defined and MAY be supported.

Adams & Farrell Expires May 2001 [Page 24]

3.1.1.1 ImplicitConfirm

 This is used by the EE to inform the CA that it does not wish to send
 a certificate confirmation for issued certificates.

 implicitConfirm ::= {id-it 13}
 implicitConfirmValue ::= NULL

 If the CA grants the request to the EE, it MUST put the same extension
 in the PKIHeader of the response. If the EE does not find the
 extension in the response, it MUST send the certificate confirmation.

3.1.1.2 ConfirmWaitTime

 This is used by the CA to inform the EE how long it intends to wait for
 the certificate confirmation before revoking the certificate and
 deleting the transaction.

 confirmWaitTime ::= {id-it 14}
 confirmWaitTimeValue ::= GeneralizedTime - time CA will wait until

3.1.2 PKI Message Body

 PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] CertReqMessages, --Initialization Request
 ip [1] CertRepMessage, --Initialization Response
 cr [2] CertReqMessages, --Certification Request
 cp [3] CertRepMessage, --Certification Response
 p10cr [4] CertificationRequest, --PKCS #10 Cert. Req.
 -- the PKCS #10 certification request (see [PKCS10])
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Request
 krp [10] KeyRecRepContent, --Key Recovery Response
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response
 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Response
 ckuann [15] CAKeyUpdAnnContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent --Certificate confirm
 }

Adams & Farrell Expires May 2001 [Page 25]

 The specific types are described in Section 3.3 below.

3.1.3 PKI Message Protection

 Some PKI messages will be protected for integrity. (Note that if an
 asymmetric algorithm is used to protect a message and the relevant
 public component has been certified already, then the origin of the
 message can also be authenticated. On the other hand, if the public
 component is uncertified then the message origin cannot be
 automatically authenticated, but may be authenticated via out-of-band
 means.)

 When protection is applied the following structure is used:

 PKIProtection ::= BIT STRING

 The input to the calculation of PKIProtection is the DER encoding of
 the following data structure:

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

 There MAY be cases in which the PKIProtection BIT STRING is
 deliberately not used to protect a message (i.e., this OPTIONAL field
 is omitted) because other protection, external to PKIX, will instead
 be applied. Such a choice is explicitly allowed in this
 specification. Examples of such external protection include PKCS #7
 [PKCS7] and Security Multiparts [RFC1847] encapsulation of the
 PKIMessage (or simply the PKIBody (omitting the CHOICE tag), if the
 relevant PKIHeader information is securely carried in the external
 mechanism). It is noted, however, that many
 such external mechanisms require that the end entity already
 possesses a public-key certificate, and/or a unique Distinguished
 Name, and/or other such infrastructure-related information. Thus,
 they may not be appropriate for initial registration, key-recovery,
 or any other process with "boot-strapping" characteristics. For
 those cases it may be necessary that the PKIProtection parameter be
 used. In the future, if/when external mechanisms are modified to
 accommodate boot-strapping scenarios, the use of PKIProtection may
 become rare or non-existent.

 Depending on the circumstances the PKIProtection bits may contain a
 Message Authentication Code (MAC) or signature. Only the following
 cases can occur:

Adams & Farrell Expires May 2001 [Page 26]

 - shared secret information

 In this case the sender and recipient share secret information
 (established via out-of-band means or from a previous PKI management
 operation). PKIProtection will contain a MAC value and the
 protectionAlg will be the following (see also Appendix B2):

 PasswordBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 13}
 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 In the above protectionAlg the salt value is appended to the shared
 secret input. The OWF is then applied iterationCount times, where the
 salted secret is the input to the first iteration and, for each
 successive iteration, the input is set to be the output of the
 previous iteration. The output of the final iteration (called
 "BASEKEY" for ease of reference, with a size of "H") is what is used
 to form the symmetric key. If the MAC algorithm requires a K-bit key
 and K <= H, then the most significant K bits of BASEKEY are used. If
 K > H, then all of BASEKEY is used for the most significant H bits of
 the key, OWF("1" || BASEKEY) is used for the next most significant H
 bits of the key, OWF("2" || BASEKEY) is used for the next most
 significant H bits of the key, and so on, until all K bits have been
 derived. [Here "N" is the ASCII byte encoding the number N and "||"
 represents concatenation.]

 Note: it is RECOMMENDED that the fields of PBMParameter remain
 constant throughout the messages of a single transaction (e.g.,
 ir/ip/certConf/pkiConf) in order to reduce the overhead associated
 with PasswordBasedMac computation).

 - DH key pairs

 Where the sender and receiver possess Diffie-Hellman certificates
 with compatible DH parameters, then in order to protect the message
 the end entity must generate a symmetric key based on its private DH
 key value and the DH public key of the recipient of the PKI message.
 PKIProtection will contain a MAC value keyed with this derived
 symmetric key and the protectionAlg will be the following:

Adams & Farrell Expires May 2001 [Page 27]

 DHBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 30}

 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 In the above protectionAlg OWF is applied to the result of the
 Diffie-Hellman computation. The OWF output (called "BASEKEY" for ease
 of reference, with a size of "H") is what is used to form the
 symmetric key. If the MAC algorithm requires a K-bit key and K <= H,
 then the most significant K bits of BASEKEY are used. If K > H, then
 all of BASEKEY is used for the most significant H bits of the key,
 OWF("1" || BASEKEY) is used for the next most significant H bits of
 the key, OWF("2" || BASEKEY) is used for the next most significant H
 bits of the key, and so on, until all K bits have been derived. [Here
 "N" is the ASCII byte encoding the number N and "||" represents
 concatenation.]

 - signature

 In this case the sender possesses a signature key pair and simply signs
 the PKI message. PKIProtection will contain the signature value and
 the protectionAlg will be an AlgorithmIdentifier for a digital
 signature (e.g., md5WithRSAEncryption or dsaWithSha-1).

 - multiple protection

 In cases where an end entity sends a protected PKI message to an RA,
 the RA MAY forward that message to a CA, attaching its own protection
 (which MAY be a MAC or a signature, depending on the information and
 certificates shared between the RA and the CA). This is accomplished
 by nesting the entire message sent by the end entity within a new PKI
 message. The structure used is as follows.

 NestedMessageContent ::= PKIMessages

 (Note that the use of PKIMessages, a SEQUENCE OF PKIMessage, allows the
 RA to batch the requests of several EEs in a single new message.)
 If the RA wishes to modify the message in some way (e.g., add
 particular field values or new extensions), then it MAY create its own
 desired PKIBody. The original PKIMessage from the EE MAY be included
 in the generalInfo field of PKIHeader (to accommodate, for example,
 cases in which the CA wishes to check POP or other information on the
 original EE message). The infoType to be used in this situation is
 {id-it 15} (see Section 3.3.19 for the value of id-it) and the
 infoValue is PKIMessages (contents MUST be in the same order as the
 requests in PKIBody).

3.2 Common Data Structures

 Before specifying the specific types that may be placed in a PKIBody
 we define some data structures that are used in more than one case.

Adams & Farrell Expires May 2001 [Page 28]

3.2.1 Requested Certificate Contents

 Various PKI management messages require that the originator of the
 message indicate some of the fields that are required to be present
 in a certificate. The CertTemplate structure allows an end entity or
 RA to specify as much as it wishes about the certificate it requires.
 CertTemplate is identical to a Certificate but with all fields
 optional.

 Note that even if the originator completely specifies the contents of
 a certificate it requires, a CA is free to modify fields within the
 certificate actually issued. If the modified certificate is
 unacceptable to the requester, the requester MUST send back a certConf
 message which either does not include this certificate (via a
 CertHash), or does include this certificate (via a CertHash) along with
 a status of "rejected". See Section 3.3.18 for the definition and use
 of CertHash and the certConf message.

 See Appendix D and [rfc2511bis] for CertTemplate syntax.

3.2.2 Encrypted Values

 Where encrypted values (restricted, in this specification, to be
 either private keys or certificates) are sent in PKI messages the
 EncryptedValue data structure is used.

 See [rfc2511bis] for EncryptedValue syntax.

 Use of this data structure requires that the creator and intended
 recipient respectively be able to encrypt and decrypt. Typically,
 this will mean that the sender and recipient have, or are able to
 generate, a shared secret key.

 If the recipient of the PKIMessage already possesses a private key
 usable for decryption, then the encSymmKey field MAY contain a
 session key encrypted using the recipient's public key.

3.2.3 Status codes and Failure Information for PKI messages

 All response messages will include some status information. The
 following values are defined.

 PKIStatus ::= INTEGER {
 accepted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),
 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message

Adams & Farrell Expires May 2001 [Page 29]

 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- the key update request message
 }

 Responders may use the following syntax to provide more information
 about failure cases.

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (used for notary services)
 missingTimeStamp (8),
 -- when the timestamp is missing but should be there (by policy)
 badPOP (9),
 -- the proof-of-possession failed
 certRevoked (10),
 -- the certificate has already been revoked
 certConfirmed (11),
 -- the certificate has already been confirmed
 wrongIntegrity (12),
 -- invalid integrity, password based instead of signature or
 -- vice versa
 badRecipientNonce (13),
 -- invalid recipient nonce, either missing or wrong value

Adams & Farrell Expires May 2001 [Page 30]

 timeNotAvailable (14),
 -- the TSA's time source is not available
 unacceptedPolicy (15),
 -- the requested TSA policy is not supported by the TSA.
 unacceptedExtension (16),
 -- the requested extension is not supported by the TSA.
 addInfoNotAvailable (17),
 -- the additional information requested could not be understood
 -- or is not available
 badSenderNonce (18),
 -- invalid sender nonce, either missing or wrong size
 badCertTemplate (19),
 -- invalid certificate template or missing mandatory information
 signerNotTrusted (20),
 -- signer of the message unknown or not trusted
 transactionIdInUse (21),
 -- the transaction identifier is already in use
 unsupportedVersion (22),
 -- the version of the message is not supported
 notAuthorized (23),
 -- the sender was not authorized to make the preceding request
 -- or perform the preceding action
 systemUnavail (24),
 -- the request cannot be handled due to system unavailability
 systemFailure (25),
 -- the request cannot be handled due to system failure
 duplicateCertReq (26)
 -- certificate cannot be issued because a duplicate certificate
 -- already exists
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

Adams & Farrell Expires May 2001 [Page 31]

3.2.4 Certificate Identification

 In order to identify particular certificates the CertId data
 structure is used.

 See [rfc2511bis] for CertId syntax.

3.2.5 "Out-of-band" root CA public key

 Each root CA must be able to publish its current public key via some
 "out-of-band" means. While such mechanisms are beyond the scope of
 this document, we define data structures which can support such
 mechanisms.

 There are generally two methods available: either the CA directly
 publishes its self-signed certificate; or this information is
 available via the Directory (or equivalent) and the CA publishes a
 hash of this value to allow verification of its integrity before use.

 OOBCert ::= Certificate

 The fields within this certificate are restricted as follows:

 - The certificate MUST be self-signed (i.e., the signature must be
 verifiable using the SubjectPublicKeyInfo field);
 - The subject and issuer fields MUST be identical;
 - If the subject field is NULL then both subjectAltNames and
 issuerAltNames extensions MUST be present and have exactly the same
 value;
 - The values of all other extensions must be suitable for a self-
 signed certificate (e.g., key identifiers for subject and issuer
 must be the same).

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over the self-signed
 -- certificate with the identifier certID.
 }

 The intention of the hash value is that anyone who has securely
 received the hash value (via the out-of-band means) can verify a
 self-signed certificate for that CA.

Adams & Farrell Expires May 2001 [Page 32]

3.2.6 Archive Options

 Requesters may indicate that they wish the PKI to archive a private
 key value using the PKIArchiveOptions structure

 See [rfc2511bis] for PKIArchiveOptions syntax.

3.2.7 Publication Information

 Requesters may indicate that they wish the PKI to publish a
 certificate using the PKIPublicationInfo structure.

 See [rfc2511bis] for PKIPublicationInfo syntax.

3.2.8 Proof-of-Possession Structures

 If the certification request is for a signing key pair (i.e., a
 request for a verification certificate), then the proof of possession
 of the private signing key is demonstrated through use of the
 POPOSigningKey structure.

 See Appendix D and [rfc2511bis] for POPOSigningKey syntax, but note
 that POPOSigningKeyInput has the following semantic stipulations in
 this specification.

 POPOSigningKeyInput ::= SEQUENCE {
 authInfo CHOICE {
 sender [0] GeneralName,
 -- from PKIHeader (used only if an authenticated identity
 -- has been established for the sender (e.g., a DN from a
 -- previously-issued and currently-valid certificate))
 publicKeyMAC [1] PKMACValue
 -- used if no authenticated GeneralName currently exists for
 -- the sender; publicKeyMAC contains a password-based MAC
 -- (using the protectionAlg AlgId from PKIHeader) on the
 -- DER-encoded value of publicKey
 },
 publicKey SubjectPublicKeyInfo -- from CertTemplate
 }

 On the other hand, if the certification request is for an encryption
 key pair (i.e., a request for an encryption certificate), then the
 proof of possession of the private decryption key may be demonstrated
 in one of three ways.

 1) By the inclusion of the private key (encrypted) in the
 CertRequest (in the thisMessage field of POPOPrivKey (see
 Appendix D) or in the PKIArchiveOptions control structure,
 depending upon whether or not archival of the private key
 is also desired).

Adams & Farrell Expires May 2001 [Page 33]

 2) By having the CA return not the certificate, but an encrypted
 certificate (i.e., the certificate encrypted under a randomly-
 generated symmetric key, and the symmetric key encrypted under
 the public key for which the certification request is being
 made) -- this is the "indirect" method mentioned previously in
 Section 2.3.2. The end entity proves knowledge of the private
 decryption key to the CA by providing the correct CertHash for
 this certificate in the certConf message. This demonstrates POP
 because the EE can only compute the correct CertHash if it is
 able to recover the certificate, and it can only recover the
 certificate if it is able to decrypt the symmetric key using the
 required private key. Clearly, for this to work, the CA MUST NOT
 publish the certificate until the certConf message arrives (when
 certHash is to be used to demonstrate POP). See Section 3.3.18
 for further details.

 3) By having the end entity engage in a challenge-response
 protocol (using the messages POPODecKeyChall and
 POPODecKeyResp; see below) between CertReqMessages and
 CertRepMessage -- this is the "direct" method mentioned
 previously in Section 2.3.2. [This method would typically be
 used in an environment in which an RA verifies POP and then
 makes a certification request to the CA on behalf of the end
 entity. In such a scenario, the CA trusts the RA to have done
 POP correctly before the RA requests a certificate for the end
 entity.] The complete protocol then looks as follows (note
 that req' does not necessarily encapsulate req as a nested
 message):

 EE RA CA
 ---- req ---->
 <--- chall ---
 ---- resp --->
 ---- req' --->
 <--- rep -----
 ---- conf --->
 <--- ack -----
 <--- rep -----
 ---- conf --->
 <--- ack -----

 This protocol is obviously much longer than the 3-way exchange given
 in choice (2) above, but allows a local Registration Authority to be
 involved and has the property that the certificate itself is not
 actually created until the proof of possession is complete. In some
 environments a different order of the above messages may be required,
 such as the following (this may be determined by policy):

Adams & Farrell Expires May 2001 [Page 34]

 EE RA CA
 ---- req ---->
 <--- chall ---
 ---- resp --->
 ---- req' --->
 <--- rep -----
 <--- rep -----
 ---- conf --->
 ---- conf --->
 <--- ack -----
 <--- ack -----

 If the cert. request is for a key agreement key (KAK) pair, then the
 POP can use any of the 3 ways described above for enc. key pairs,
 with the following changes: (1) the parenthetical text of bullet 2)
 is replaced with "(i.e., the certificate encrypted under the
 symmetric key derived from the CA's private KAK and the public key
 for which the certification request is being made)"; (2) the first
 parenthetical text of the challenge field of "Challenge" below is
 replaced with "(using PreferredSymmAlg (see Section 3.3.19.4 and
 Appendix C5) and a symmetric key derived from the CA's private KAK
 and the public key for which the certification request is being
 made)". Alternatively, the POP can use the POPOSigningKey structure
 given in [rfc2511bis] (where the alg field is DHBasedMAC and the
 signature field is the MAC) as a fourth alternative for demonstrating
 POP if the CA already has a D-H certificate that is known to the EE.

Adams & Farrell Expires May 2001 [Page 35]

 The challenge-response messages for proof of possession of a private
 decryption key are specified as follows (see [MvOV97, p.404] for
 details). Note that this challenge-response exchange is associated
 with the preceding cert. request message (and subsequent cert.
 response and confirmation messages) by the transactionID used in the
 PKIHeader and by the protection (MACing or signing) applied to the
 PKIMessage.

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER MUST be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

 The text in this section provides several options with respect to POP
 techniques. Using "SK" for "signing key", "EK" for "encryption key",
 and "KAK" for "key agreement key", the techniques may be summarized as
 follows:

 RAVerified;
 SKPOP;
 EKPOPThisMessage;
 KAKPOPThisMessage;
 KAKPOPThisMessageDHMAC;
 EKPOPEncryptedCert;
 KAKPOPEncryptedCert;
 EKPOPChallengeResp; and
 KAKPOPChallengeResp.

Adams & Farrell Expires May 2001 [Page 36]

 Given this array of options, it is natural to ask how an end entity
 can know what is supported by the CA/RA (i.e., which options it may
 use when requesting certificates). The following guidelines should
 clarify this situation for EE implementers.

 RAVerified. This is not an EE decision; the RA uses this if and only
 if it has verified POP before forwarding the request on to the CA, so
 it is not possible for the EE to choose this technique.

 SKPOP. If the EE has a signing key pair, this is the only POP method
 specified for use in the request for a corresponding certificate.

 EKPOPThisMessage and KAKPOPThisMessage. It is an EE decision whether
 or not to give up its private key to the CA/RA. If the EE decides to
 reveal its key, then these are the only POP methods available in this
 specification to achieve this (and the key pair type will determine
 which of these two methods to use).

 KAKPOPThisMessageDHMAC. The EE can only use this method if (1) the CA
 has a DH certificate available for this purpose, and (2) the EE already
 has a copy of this certificate. If both these conditions hold, then
 this technique is clearly supported and may be used by the EE, if
 desired.

 EKPOPEncryptedCert, KAKPOPEncryptedCert, EKPOPChallengeResp,
 KAKPOPChallengeResp. The EE picks one of these (in the
 subsequentMessage field) in the request message, depending upon
 preference and key pair type. The EE is not doing POP at this point;
 it is simply indicating which method it wants to use. Therefore, if the
 CA/RA replies with a "badPOP" error, the EE can re-request using the
 other POP method chosen in subsequentMessage. Note, however, that this
 specification encourages the use of the EncryptedCert choice and,
 furthermore, says that the challenge-response would typically be used
 when an RA is involved and doing POP verification. Thus, the EE should
 be able to make an intelligent decision regarding which of these POP
 methods to choose in the request message.

Adams & Farrell Expires May 2001 [Page 37]

3.3 Operation-Specific Data Structures

3.3.1 Initialization Request

 An Initialization request message contains as the PKIBody a
 CertReqMessages data structure which specifies the requested
 certificate(s). Typically, SubjectPublicKeyInfo, KeyId, and Validity
 are the template fields which may be supplied for each certificate
 requested (see Appendix B profiles for further information). This
 message is intended to be used for entities first initializing into
 the PKI.

 See Appendix D and [rfc2511bis] for CertReqMessages syntax.

3.3.2 Initialization Response

 An Initialization response message contains as the PKIBody an
 CertRepMessage data structure which has for each certificate
 requested a PKIStatusInfo field, a subject certificate, and possibly
 a private key (normally encrypted with a session key, which is itself
 encrypted with the protocolEncrKey).

 See Section 3.3.4 for CertRepMessage syntax. Note that if the PKI
 Message Protection is "shared secret information" (see Section
 3.1.3), then any certificate transported in the caPubs field may be
 directly trusted as a root CA certificate by the initiator.

3.3.3 Certification Request

 A Certification request message contains as the PKIBody
 a CertReqMessages data structure which specifies the requested
 certificates. This message is intended to be used for existing PKI
 entities who wish to obtain additional certificates.

 See Appendix D and [rfc2511bis] for CertReqMessages syntax.

 Alternatively, the PKIBody MAY be a CertificationRequest (this
 structure is fully specified by the ASN.1 structure
 CertificationRequest given in [PKCS10]). This structure may be
 required for certificate requests for signing key pairs when
 interoperation with legacy systems is desired, but its use is
 strongly discouraged whenever not absolutely necessary.

Adams & Farrell Expires May 2001 [Page 38]

3.3.4 Certification Response

 A Certification response message contains as the PKIBody a
 CertRepMessage data structure which has a status value for each
 certificate requested, and optionally has a CA public key, failure
 information, a subject certificate, and an encrypted private key.

 CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs OCTET STRING defined
 -- for regInfo in CertReqMsg [rfc2511bis]
 }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedValue OPTIONAL,
 -- see [rfc2511bis] for comment on encoding
 publicationInfo [1] PKIPublicationInfo OPTIONAL
 }

 CertOrEncCert ::= CHOICE {
 certificate [0] Certificate,
 encryptedCert [1] EncryptedValue
 }

 Only one of the failInfo (in PKIStatusInfo) and certificate (in
 CertifiedKeyPair) fields can be present in each CertResponse
 (depending on the status). For some status values (e.g., waiting)
 neither of the optional fields will be present.

 Given an EncryptedCert and the relevant decryption key the
 certificate may be obtained. The purpose of this is to allow a CA to
 return the value of a certificate, but with the constraint that only
 the intended recipient can obtain the actual certificate. The benefit
 of this approach is that a CA may reply with a certificate even in
 the absence of a proof that the requester is the end entity which can
 use the relevant private key (note that the proof is not obtained

Adams & Farrell Expires May 2001 [Page 39]

 until the certConf message is received by the CA). Thus the CA will
 not have to revoke that certificate in the event that something goes
 wrong with the proof of possession (but MAY do so anyway, depending
 upon policy).

3.3.5 Key update request content

 For key update requests the CertReqMessages syntax is used.
 Typically, SubjectPublicKeyInfo, KeyId, and Validity are the template
 fields which may be supplied for each key to be updated. This
 message is intended to be used to request updates to existing (non-
 revoked and non-expired) certificates (therefore, it is sometimes
 referred to as a "Certificate Update" operation). An update is a
 replacement certificate containing either a new subject public key or
 the current subject public key (although the latter practice may not
 be appropriate for some environments).

 See Appendix D and [rfc2511bis] for CertReqMessages syntax.

3.3.6 Key Update response content

 For key update responses the CertRepMessage syntax is used. The
 response is identical to the initialization response.

 See Section 3.3.4 for CertRepMessage syntax.

3.3.7 Key Recovery Request content

 For key recovery requests the syntax used is identical to the
 initialization request CertReqMessages. Typically,
 SubjectPublicKeyInfo and KeyId are the template fields which may be
 used to supply a signature public key for which a certificate is
 required (see Appendix B profiles for further information).

 See Appendix D and [rfc2511bis] for CertReqMessages syntax. Note that
 if a key history is required, the requester must supply a Protocol
 Encryption Key control in the request message.

3.3.8 Key recovery response content

 For key recovery responses the following syntax is used. For some
 status values (e.g., waiting) none of the optional fields will be
 present.

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] Certificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 Certificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

Adams & Farrell Expires May 2001 [Page 40]

3.3.9 Revocation Request Content

 When requesting revocation of a certificate (or several certificates)
 the following data structure is used. The name of the requester is
 present in the PKIHeader structure.

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 crlEntryDetails Extensions OPTIONAL
 -- requested crlEntryExtensions
 }

3.3.10 Revocation Response Content

 The response to the above message. If produced, this is sent to the
 requester of the revocation. (A separate revocation announcement
 message MAY be sent to the subject of the certificate for which
 revocation was requested.)

 RevRepContent ::= SEQUENCE {
 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
 }

3.3.11 Cross certification request content

 Cross certification requests use the same syntax (CertReqMessages) as
 for normal certification requests with the restriction that the key
 pair MUST have been generated by the requesting CA and the private
 key MUST NOT be sent to the responding CA. This request MAY also be
 used by subordinate CAs to get their certificates signed by the parent
 CA.

 See Appendix D and [rfc2511bis] for CertReqMessages syntax.

Adams & Farrell Expires May 2001 [Page 41]

3.3.12 Cross certification response content

 Cross certification responses use the same syntax (CertRepMessage) as
 for normal certification responses with the restriction that no
 encrypted private key can be sent.

 See Section 3.3.4 for CertRepMessage syntax.

3.3.13 CA Key Update Announcement content

 When a CA updates its own key pair the following data structure MAY
 be used to announce this event.

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew Certificate, -- old pub signed with new priv
 newWithOld Certificate, -- new pub signed with old priv
 newWithNew Certificate -- new pub signed with new priv
 }

3.3.14 Certificate Announcement

 This structure MAY be used to announce the existence of certificates.

 Note that this message is intended to be used for those cases (if
 any) where there is no pre-existing method for publication of
 certificates; it is not intended to be used where, for example, X.500
 is the method for publication of certificates.

 CertAnnContent ::= Certificate

3.3.15 Revocation Announcement

 When a CA has revoked, or is about to revoke, a particular
 certificate it MAY issue an announcement of this (possibly upcoming)
 event.

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
 }

Adams & Farrell Expires May 2001 [Page 42]

 A CA MAY use such an announcement to warn (or notify) a subject that
 its certificate is about to be (or has been) revoked. This would
 typically be used where the request for revocation did not come from
 the subject concerned.

 The willBeRevokedAt field contains the time at which a new entry will
 be added to the relevant CRLs.

3.3.16 CRL Announcement

 When a CA issues a new CRL (or set of CRLs) the following data
 structure MAY be used to announce this event.

 CRLAnnContent ::= SEQUENCE OF CertificateList

3.3.17 PKI Confirmation content

 This data structure is used in the protocol exchange as the final
 PKIMessage. Its content is the same in all cases - actually there is
 no content since the PKIHeader carries all the required information.

 PKIConfirmContent ::= NULL

 Use of this message for certificate confirmation is NOT RECOMMENDED;
 certConf SHOULD be used instead. The recipient on receiving a
 PKIConfirm for a certificate response MAY treat it as a certConf
 with all certificates being accepted.

3.3.18 Certificate Confirmation content

 This data structure is used by the client to send a confirmation to the
 CA/RA to accept or reject certificates.

 CertConfirmContent ::= SEQUENCE of CertStatus

 CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 -- the hash of the certificate, using the same hash algorithm
 -- as is used to create and verify the certificate signature
 certReqId INTEGER,
 -- to match this confirmation with the corresponding req/rep
 statusInfo PKIStatusInfo OPTIONAL
 }

Adams & Farrell Expires May 2001 [Page 43]

 For any particular CertStatus, omission of the statusInfo field
 indicates ACCEPTANCE of the specified certificate. Alternatively,
 explicit status details (with respect to acceptance or rejection) MAY
 be provided in the statusInfo field, perhaps for auditing purposes at
 the CA/RA.

 Within CertConfirmContent, omission of a CertStatus structure
 corresponding to a certificate supplied in the previous response
 message indicates REJECTION of the certificate. Thus, an empty
 CertConfirmContent (a zero-length SEQUENCE) MAY be used to indicate
 rejection of all supplied certificates. See Section 3.2.8, item (2),
 for a discussion of the certHash field with respect to
 proof-of-possession.

3.3.19 PKI General Message content

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- Example InfoTypeAndValue contents include, but are not limited to
 -- the following (see subsequent subsections for further details):
 -- { CAProtEncCert = {id-it 1}, Certificate }
 -- { SignKeyPairTypes = {id-it 2}, SEQUENCE OF AlgorithmIdentifier }
 -- { EncKeyPairTypes = {id-it 3}, SEQUENCE OF AlgorithmIdentifier }
 -- { PreferredSymmAlg = {id-it 4}, AlgorithmIdentifier }
 -- { CAKeyUpdateInfo = {id-it 5}, CAKeyUpdAnnContent }
 -- { CurrentCRL = {id-it 6}, CertificateList }
 -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
 -- This construct MAY also be used to define new PKIX Certificate
 -- Management Protocol request and response messages, or general-
 -- purpose (e.g., announcement) messages for future needs or for
 -- specific environments.

 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue
 -- May be sent by EE, RA, or CA (depending on message content).
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue will typically
 -- be omitted in GenMsg for some of the examples given above (i.e., it
 -- will be used only in the corresponding GenRep message). The receiver
 -- is free to ignore any contained OBJ. IDs that it does not recognize.
 -- If sent from EE to CA, the empty set indicates that the CA may send
 -- any/all information that it wishes.

Adams & Farrell Expires May 2001 [Page 44]

3.3.19.1 CA Protocol Encryption Certificate

 This MAY be used by the EE to get from the CA a certificate to use to
 protect sensitive information during the protocol.

 GenMsg: {id-it 1}, <absent>

 GenRep: {id-it 1}, Certificate | <absent>

 EEs MUST ensure that the correct certificate is used for this purpose.

3.3.19.2 Signing Key Pair Types

 This MAY be used by the EE to get the list of signature algorithms
 (e.g., RSA, DSA) whose subject public key values the CA is willing to
 certify. Note that for the purposes of this exchange, rsaEncryption
 and rsaWithSHA1, for example, are considered to be equivalent; the
 question being asked is, "Is the CA willing to certify an RSA public
 key?"

 GenMsg: {id-it 2}, <absent>

 GenRep: {id-it 2}, SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

3.3.19.3 Encryption/Key Agreement Key Pair Types

 This MAY be used by the client to get the list of encryption/key
 agreement algorithms whose subject public key values the CA is willing
 to certify.

 GenMsg: {id-it 3}, <absent>

 GenRep: {id-it 3}, SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

3.3.19.4 Preferred Symmetric Algorithm

 This MAY be used by the client to get the CA-preferred symmetric
 encryption algorithm for any confidential information that needs to
 be exchanged between the EE and the CA (for example, if the EE wants
 to send its private decryption key to the CA for archival purposes).

 GenMsg: {id-it 4}, <absent>

 GenRep: {id-it 4}, AlgorithmIdentifier

3.3.19.5 Updated CA Key Pair

 This MAY be used by the CA to announce a CA key update event.

 GenMsg: {id-it 5}, CAKeyUpdAnnContent

Adams & Farrell Expires May 2001 [Page 45]

3.3.19.6 CRL

 This MAY be used by the client to get a copy of the latest CRL.

 GenMsg: {id-it 6}, <absent>
 GenRep: {id-it 6}, CertificateList

3.3.19.7 Unsupported Object Identifiers

 This is used by the server to return a list of object
 identifiers that it does not recognize or support from
 the list submitted by the client.

 GenRep: {id-it 7}, SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

3.3.19.8 Key Pair Parameters

 This MAY be used by the EE to request the domain parameters to use
 for generating the key pair for certain public-key algorithms. It can
 be used, for example, to request the appropriate P, Q and G to generate
 the DH/DSA key, or to request a set of well-known elliptic curves.

 GenMsg: {id-it 10}, OBJECT IDENTIFIER -- (Algorithm object-id)
 GenRep: {id-it 11}, AlgorithmIdentifier | <absent>

 An absent infoValue in the GenRep indicates that the algorithm
 specified in GenMsg is not supported.

 EEs MUST ensure that the parameters are acceptable to it and that the
 GenRep message is authenticated (to avoid substitution attacks).

3.3.19.9 Revocation Passphrase

 This MAY be used by the EE to send a passphrase to a CA/RA for the
 purpose of authenticating a later revocation request (in the case that
 the appropriate signing private key is no longer available to
 authenticate the request). See Appendix E for further details on the
 use of this mechanism.

 GenMsg: {id-it 12}, EncryptedValue
 GenRep: {id-it 12}, <absent>

3.3.19.10 ImplicitConfirm

 See Section 3.1.1.1 for the definition and use of {id-it 13}.

3.3.19.11 ConfirmWaitTime

 See Section 3.1.1.2 for the definition and use of {id-it 14}.

3.3.19.12 Original PKIMessage

 See Section 3.1.3 for the definition and use of {id-it 15}.

Adams & Farrell Expires May 2001 [Page 46]

3.3.20 PKI General Response content

 GenRepContent ::= SEQUENCE OF InfoTypeAndValue
 -- The receiver is free to ignore any contained OBJ. IDs that it does
 -- not recognize.

 Example GenRep that MAY be supported include those listed in the
 subsections of 3.3.19.

3.3.21 Error Message content

 This data structure MAY be used by EE, CA, or RA to convey error info.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

 This message MAY be generated at any time during a PKI transaction.
 If the client sends this request the server MUST respond with a
 PKIConfirm response, or another ErrorMsg if any part of the header
 is not valid. Both sides MUST treat this message as the end of the
 transaction (if a transaction is in progress).

 If protection is desired on the message, the client MUST protect it
 using the same technique (i.e., signature or MAC) as the starting
 message of the transaction. The CA MUST always sign it with a
 signature key.

4. Mandatory PKI Management functions

 Some of the PKI management functions outlined in Section 1 above are
 described in this section.

 This section deals with functions that are "mandatory" in the sense
 that all end entity and CA/RA implementations MUST be able to provide
 the functionality described. This part is effectively the
 profile of the PKI management functionality that MUST be supported.
 Note, however, that the management functions described in this section
 do not need to be accomplished using the PKI messages defined in
 Section 3 if alternate means are suitable for a given environment (see
 Appendix B for profiles of the PKIMessages that MUST be supported).

4.1 Root CA initialization

 [See Section 1.2.2 for this document's definition of "root CA".]

 A newly created root CA must produce a "self-certificate" which is a
 Certificate structure with the profile defined for the "newWithNew"
 certificate issued following a root CA key update.

Adams & Farrell Expires May 2001 [Page 47]

 In order to make the CA's self certificate useful to end entities
 that do not acquire the self certificate via "out-of-band" means, the
 CA must also produce a fingerprint for its public key. End entities
 that acquire this fingerprint securely via some "out-of-band" means
 can then verify the CA's self-certificate and hence the other
 attributes contained therein.

 The data structure used to carry the fingerprint is the OOBCertHash.

4.2 Root CA key update

 CA keys (as all other keys) have a finite lifetime and will have to
 be updated on a periodic basis. The certificates NewWithNew,
 NewWithOld, and OldWithNew (see Section 2.4.1) MAY be issued by the CA
 to aid existing end entities who hold the current self-signed CA
 certificate (OldWithOld) to transition securely to the new self-
 signed CA certificate (NewWithNew), and to aid new end entities who
 will hold NewWithNew to acquire OldWithOld securely for verification
 of existing data.

4.3 Subordinate CA initialization

 [See Section 1.2.2 for this document's definition of "subordinate
 CA".]

 From the perspective of PKI management protocols the initialization
 of a subordinate CA is the same as the initialization of an end
 entity. The only difference is that the subordinate CA must also
 produce an initial revocation list.

4.4 CRL production

 Before issuing any certificates a newly established CA (which issues
 CRLs) must produce "empty" versions of each CRL which is to be
 periodically produced.

4.5 PKI information request

 When a PKI entity (CA, RA, or EE) wishes to acquire information about
 the current status of a CA it MAY send that CA a request for such
 information.

 The CA must respond to the request by providing (at least) all of the
 information requested by the requester. If some of the information
 cannot be provided then an error must be conveyed to the requester.

 If PKIMessages are used to request and supply this PKI information,
 then the request MUST be the GenMsg message, the response MUST be the
 GenRep message, and the error MUST be the Error message. These
 messages are protected using a MAC based on shared secret information
 (i.e., PasswordBasedMAC) or any other authenticated means (if the end
 entity has an existing certificate).

Adams & Farrell Expires May 2001 [Page 48]

4.6 Cross certification

 The requester CA is the CA that will become the subject of the
 cross-certificate; the responder CA will become the issuer of the
 cross-certificate.

 The requester CA must be "up and running" before initiating the
 cross-certification operation.

4.6.1 One-way request-response scheme:

 The cross-certification scheme is essentially a one way operation;
 that is, when successful, this operation results in the creation of
 one new cross-certificate. If the requirement is that cross-
 certificates be created in "both directions" then each CA in turn
 must initiate a cross-certification operation (or use another
 scheme).

 This scheme is suitable where the two CAs in question can already
 verify each other's signatures (they have some common points of
 trust) or where there is an out-of-band verification of the origin of
 the certification request.

 Detailed Description:

 Cross certification is initiated at one CA known as the responder.
 The CA administrator for the responder identifies the CA it wants to
 cross certify and the responder CA equipment generates an
 authorization code. The responder CA administrator passes this
 authorization code by out-of-band means to the requester CA
 administrator. The requester CA administrator enters the
 authorization code at the requester CA in order to initiate the on-
 line exchange.

 The authorization code is used for authentication and integrity
 purposes. This is done by generating a symmetric key based on the
 authorization code and using the symmetric key for generating Message
 Authentication Codes (MACs) on all messages exchanged. (Authentication
 may alternatively be done using signatures instead of MACs, if the CAs
 are able to retrieve and validate the required public keys by some
 means, such as an out-of-band hash comparison.)

 The requester CA initiates the exchange by generating a cross-
 certification request (ccr) with a fresh random number(requester random
 number). The requester CA then sends to the responder CA the ccr
 message. The fields in this message are protected from modification
 with a MAC based on the authorization code.

 Upon receipt of the ccr message, the responder CA validates the message
 and the MAC, saves the requester random number, and generates its own
 random number (responder random number). It then

Adams & Farrell Expires May 2001 [Page 49]

 generates (and archives, if desired) a new requester certificate that
 contains the requester CA public key and is signed with the responder
 CA signature private key. The responder CA responds with the cross
 certification response (ccp) message. The fields in this message are
 protected from modification with a MAC based on the authorization code.

 Upon receipt of the ccp message, the requester CA validates the message
 (including the received random numbers) and the MAC. The requester CA
 responds with the certConf message. The fields in this message are
 protected from modification with a MAC based on the authorization
 code. The requester CA MAY write the requester certificate to the
 Repository as an aid to later certificate path construction.

 Upon receipt of the certConf message, the responder CA validates the
 message and the MAC, and sends back an acknowledgment using the
 PKIConfirm message. It MAY also publish the requester certificate as
 an aid to later path construction.

 Notes:

 1. The ccr message must contain a "complete" certification request,
 that is, all fields except the serial number (including, e.g., a
 BasicConstraints extension) must be specified by the requester CA.
 2. The ccp message SHOULD contain the verification certificate of the
 responder CA - if present, the requester CA must then verify this
 certificate (for example, via the "out-of-band" mechanism).

 (A simpler, non-interactive model of cross-certification may also be
 envisioned, in which the issuing CA acquires the subject CA's public
 key from some repository, verifies it via some out-of-band mechanism,
 and creates and publishes the cross-certificate without the subject
 CA's explicit involvement. This model may be perfectly legitimate for
 many environments, but since it does not require any protocol message
 exchanges, its detailed description is outside the scope of this
 specification.)

Adams & Farrell Expires May 2001 [Page 50]

4.7 End entity initialization

 As with CAs, end entities must be initialized. Initialization of end
 entities requires at least two steps:

 - acquisition of PKI information
 - out-of-band verification of one root-CA public key

 (other possible steps include the retrieval of trust condition
 information and/or out-of-band verification of other CA public keys).

4.7.1 Acquisition of PKI information

 The information REQUIRED is:

 - the current root-CA public key
 - (if the certifying CA is not a root-CA) the certification path
 from the root CA to the certifying CA together with appropriate
 revocation lists
 - the algorithms and algorithm parameters which the certifying CA
 supports for each relevant usage

Adams & Farrell Expires May 2001 [Page 51]

 Additional information could be required (e.g., supported extensions
 or CA policy information) in order to produce a certification request
 which will be successful. However, for simplicity we do not mandate
 that the end entity acquires this information via the PKI messages.
 The end result is simply that some certification requests may fail
 (e.g., if the end entity wants to generate its own encryption key but
 the CA doesn't allow that).

 The required information MAY be acquired as described in Section 4.5.

4.7.2 Out-of-Band Verification of Root-CA Key

 An end entity must securely possess the public key of its root CA.
 One method to achieve this is to provide the end entity with the CA's
 self-certificate fingerprint via some secure "out-of-band" means. The
 end entity can then securely use the CA's self-certificate.

 See Section 4.1 for further details.

4.8 Certificate Request

 An initialized end entity MAY request an additional certificate at any
 time (for any purpose). This request will be made using the
 certification request (cr) message. If the end entity already
 possesses a signing key pair (with a corresponding verification
 certificate), then this cr message will typically be protected by the
 entity's digital signature. The CA returns the new certificate (if the
 request is successful) in a CertRepMessage.

4.9 Key Update

 When a key pair is due to expire the relevant end entity MAY request
 a key update - that is, it MAY request that the CA issue a new
 certificate for a new key pair (or, in certain circumstances, a new
 certificate for the same key pair). The request is made using a key
 update request (kur) message (referred to, in some environments, as a
"Certificate Update" operation). If the end entity already possesses
 a signing key pair (with a corresponding verification certificate),
 then this message will typically be protected by the entity's digital
 signature. The CA returns the new certificate (if the request is
 successful) in a key update response (kup) message, which is
 syntactically identical to a CertRepMessage.

Adams & Farrell Expires May 2001 [Page 52]

5. Version Negotiation

 This section defines version negotiation used to support older
 protocols between client and servers.

 If a client knows the protocol version(s) supported by the server
 (e.g. from a previous PKIMessage exchange or via some out-of-band
 means) then it MUST send a PKIMessage with the highest version
 supported by both it and the server. If a client does not know what
 version(s) the server supports then it MUST send a PKIMessage using
 the highest version it supports.

 If a server receives a message with a version that it supports, then
 the version of the response message MUST be the same as the received
 version. If a server receives a message with a version higher or
 lower than it supports, then it MUST send back an ErrorMsg
 with the unsupportedVersion bit set (in the failureInfo field of the
 pKIStatusInfo). If the received version is higher than the highest
 supported version then the version in the error message MUST be the
 highest version the server supports; if the received version is lower
 than the lowest supported version then the version in the error
 message MUST be the lowest version the server supports.

 If a client gets back an ErrorMsgContent with the unsupportedVersion
 bit set and a version it supports, then it MAY retry the request with
 that version.

5.1 Supporting RFC 2510 implementations

 RFC 2510 did not specify the behaviour of implementations receiving
 versions they did not understand since there was only one version in
 existence. With the introduction of the present revision of the
 specification, the following versioning behaviour is recommended.

5.1.1 Clients talking to RFC 2510 servers

 If, after sending a CMP2000 message, a client receives an
 ErrorMsgContent with a version of CMP1999 then it MUST abort the
 current transaction. It MAY subsequently retry the transaction
 using version CMP1999 messages.

 If client receives a non-error PKIMessage with a version of CMP1999
 then it MAY decide to continue the transaction (if the transaction
 hasn't finished) using RFC 2510 semantics. If it does not choose to
 do so and the transaction is not finished, then it MUST abort the
 transaction and send an ErrorMsgContent with a version of CMP1999.

5.1.2 Servers receiving version CMP1999 PKIMessages

 If a server receives a version CMP1999 message it MAY revert to RFC
 2510 behaviour and respond with version CMP1999 messages. If it does
 not choose to do so, then it MUST send back an ErrorMsgContent as
 described above in Section 5.

Adams & Farrell Expires May 2001 [Page 53]

SECURITY CONSIDERATIONS

 This entire memo is about security mechanisms.

 Some cryptographic considerations are worth explicitly spelling out. In
 the protocols specified above, when an end entity is required to
 prove possession of a decryption key, it is effectively challenged to
 decrypt something (its own certificate). This scheme (and many
 others!) could be vulnerable to an attack if the possessor of the
 decryption key in question could be fooled into decrypting an
 arbitrary challenge and returning the cleartext to an attacker.
 Although in this specification a number of other failures in security
 are required in order for this attack to succeed, it is conceivable
 that some future services (e.g., notary, trusted time) could
 potentially be vulnerable to such attacks. For this reason we re-
 iterate the general rule that implementations should be very careful
 about decrypting arbitrary "ciphertext" and revealing recovered
 "plaintext" since such a practice can lead to serious security
 vulnerabilities.

 Note also that exposing a private key to the CA/RA as a proof-of-
 possession technique can carry some security risks (depending upon
 whether or not the CA/RA can be trusted to handle such material
 appropriately). Implementers are advised to exercise caution in
 selecting and using this particular POP mechanism.

 A small subgroup attack during a Diffie-Hellman key exchange may be
 carried out as follows. A malicious end entity may deliberately
 choose D-H parameters that enable him/her to derive (a significant
 number of bits of) the D-H private key of the CA during a key
 archival or key recovery operation. Armed with this knowledge, the
 EE would then be able to retrieve the decryption private key of
 another unsuspecting end entity, EE2, during EE2's legitimate key
 archival or key recovery operation with that CA. In order to avoid
 the possibility of such an attack, two courses of action are
 available. (1) The CA may generate a fresh D-H key pair to be used
 as a protocol encryption key pair for each EE with which it
 interacts. (2) The CA may enter into a key validation protocol (not
 specified in this document) with each requesting end entity to ensure
 that the EE's protocol encryption key pair will not facilitate this
 attack. Option (1) is clearly simpler (requiring no extra protocol
 exchanges from either party) and is therefore RECOMMENDED.

Adams & Farrell Expires May 2001 [Page 54]

References

 [COR95] ISO/IEC JTC 1/SC 21, Technical Corrigendum 2 to ISO/IEC
 9594-8: 1990 & 1993 (1995:E), July 1995.

 [MvOV97] A. Menezes, P. van Oorschot, S. Vanstone, "Handbook of
 Applied Cryptography", CRC Press, 1997.

 [PKCS7] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS10] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City, California,
 November 1993 Release.

 [PKCS11] RSA Laboratories, "The Public-Key Cryptography Standards -
 PKCS #11: Cryptographic token interface standard", RSA
 Data Security Inc., Redwood City, California, April 28,
 1995. (See also PKCS #11 v2.10, December 1999.)

 [RFC1766] Alvestrand, H., "Tags for the Identification of Languages",
 RFC 1766, March 1995.

 [RFC1847] Galvin, J., Murphy, S. Crocker, S. and N. Freed, "Security
 Multiparts for MIME: Multipart/Signed and Multipart/
 Encrypted", RFC 1847, October 1995.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2202] Cheng, P. and R. Glenn, "Test Cases for HMAC-MD5 and HMAC-
 SHA-1", RFC 2202, September 1997.

 [RFC2279] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646",
 RFC 2279, January 1998.

 [RFC2482] Whistler, K., Adams, G., "Language Tagging in Unicode
 Plain Text", RFC 2482, January 1999.

 [rfc2511bis] Myers, M., Adams, C., Solo, D. and D. Kemp, "Certificate
 Request Message Format", Internet Draft, work in progress
 (see also Appendix D in this specification for some
 behavioral clarifications to the rfc2511bis ASN.1 module
 definition).

Adams & Farrell Expires May 2001 [Page 55]

 [RFC2559] Boeyen, S., Howes, T., Richard, P., "Internet X.509
 Public Key Infrastructure, Operational Protocols: LDAPv2",
 RFC 2559, April 1999.

 [RFC2585] Housley, R., Hoffman, P., "Internet X.509 Public Key
 Infrastructure, Operational Protocols: FTP and HTTP",
 RFC 2585, May 1999.

 [X509-AM] ISO/IEC JTC1/SC 21, Draft Amendments DAM 4 to ISO/IEC
 9594-2, DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7,
 and DAM 1 to ISO/IEC 9594-8 on Certificate Extensions, 1
 December, 1996.

Acknowledgements

 The authors gratefully acknowledge the contributions of various
 members of the IETF PKIX Working Group and the ICSA CA-talk mailing
 list (a list solely devoted to discussing CMP interoperability
 efforts). Many of these contributions significantly clarified and
 improved the utility of this specification.

Authors' Addresses

 Carlisle Adams
 Entrust Technologies
 1000 Innovation Drive,
 Ottawa, Ontario
 Canada K2K 3E7

 EMail: cadams@entrust.com

 Stephen Farrell
 Baltimore Technologies
 61 Fitzwilliam Lane
 Dublin 2
 IRELAND

 EMail: stephen.farrell@baltimore.ie

Adams & Farrell Expires May 2001 [Page 56]

APPENDIX A: Reasons for the presence of RAs

 The reasons which justify the presence of an RA can be split into
 those which are due to technical factors and those which are
 organizational in nature. Technical reasons include the following.

 -If hardware tokens are in use, then not all end entities will have
 the equipment needed to initialize these; the RA equipment can
 include the necessary functionality (this may also be a matter of
 policy).

 -Some end entities may not have the capability to publish
 certificates; again, the RA may be suitably placed for this.

 -The RA will be able to issue signed revocation requests on behalf
 of end entities associated with it, whereas the end entity may not
 be able to do this (if the key pair is completely lost).

 Some of the organizational reasons which argue for the presence of an
 RA are the following.

 -It may be more cost effective to concentrate functionality in the
 RA equipment than to supply functionality to all end entities
 (especially if special token initialization equipment is to be
 used).

 -Establishing RAs within an organization can reduce the number of
 CAs required, which is sometimes desirable.

 -RAs may be better placed to identify people with their
 "electronic" names, especially if the CA is physically remote from
 the end entity.

 -For many applications there will already be in place some
 administrative structure so that candidates for the role of RA are
 easy to find (which may not be true of the CA).

Adams & Farrell Expires May 2001 [Page 57]

Appendix B. PKI Management Message Profiles (REQUIRED).

 This appendix contains detailed profiles for those PKIMessages which
 MUST be supported by conforming implementations (see Section 4).

 Profiles for the PKIMessages used in the following PKI management
 operations are provided:

 - initial registration/certification
 - basic authenticated scheme
 - certificate request
 - key update

B1. General Rules for interpretation of these profiles.

 1. Where OPTIONAL or DEFAULT fields are not mentioned in individual
 profiles, they SHOULD be absent from the relevant message (i.e., a
 receiver can validly reject a message containing such fields as
 being syntactically incorrect).
 Mandatory fields are not mentioned if they have an obvious value
 (e.g., in this version of the specification, pvno is always 2).
 2. Where structures occur in more than one message, they are
 separately profiled as appropriate.
 3. The algorithmIdentifiers from PKIMessage structures are profiled
 separately.
 4. A "special" X.500 DN is called the "NULL-DN"; this means a DN
 containing a zero-length SEQUENCE OF RelativeDistinguishedNames
 (its DER encoding is then '3000'H).
 5. Where a GeneralName is required for a field but no suitable
 value is available (e.g., an end entity produces a request before
 knowing its name) then the GeneralName is to be an X.500 NULL-DN
 (i.e., the Name field of the CHOICE is to contain a NULL-DN).
 This special value can be called a "NULL-GeneralName".
 6. Where a profile omits to specify the value for a GeneralName
 then the NULL-GeneralName value is to be present in the relevant
 PKIMessage field. This occurs with the sender field of the
 PKIHeader for some messages.
 7. Where any ambiguity arises due to naming of fields, the profile
 names these using a "dot" notation (e.g., "certTemplate.subject"
 means the subject field within a field called certTemplate).
 8. Where a "SEQUENCE OF types" is part of a message, a zero-based
 array notation is used to describe fields within the SEQUENCE OF
 (e.g., crm[0].certReq.certTemplate.subject refers to a
 subfield of the first CertReqMsg contained in a request message).
 9. All PKI message exchanges in Sections B4-B6 require a certConf
 message to be sent by the initiating entity and a PKIConfirm to be
 sent by the responding entity. The PKIConfirm is not included in
 some of the profiles given since its body is NULL and its header
 contents are clear from the context. Any authenticated means can
 be used for the protectionAlg (e.g., password-based MAC, if shared
 secret information is known, or signature).

Adams & Farrell Expires May 2001 [Page 58]

B2. Algorithm Use Profile

 The following table contains definitions of algorithm uses within PKI
 management protocols. The columns in the table are:

Name: an identifier used for message profiles
Use: description of where and for what the algorithm is used
Mandatory: an AlgorithmIdentifier which MUST be supported by
 conforming implementations
Others: alternatives to the mandatory AlgorithmIdentifier

 Name Use Mandatory Others

 MSG_SIG_ALG Protection of PKI DSA/SHA-1 RSA/MD5,
 messages using signature ECDSA, ...
 MSG_MAC_ALG protection of PKI PasswordBasedMac HMAC,
 messages using MACing X9.9...
 SYM_PENC_ALG symmetric encryption of 3-DES (3-key- RC5,
 an end entity's private EDE, CBC mode) CAST-128...
 key where symmetric
 key is distributed
 out-of-band
 PROT_ENC_ALG asymmetric algorithm D-H RSA,
 used for encryption of ECDH, ...
 (symmetric keys for
 encryption of) private
 keys transported in
 PKIMessages
 PROT_SYM_ALG symmetric encryption 3-DES (3-key- RC5,
 algorithm used for EDE, CBC mode) CAST-128...
 encryption of private
 key bits (a key of this
 type is encrypted using
 PROT_ENC_ALG)

Mandatory AlgorithmIdentifiers and Specifications:

DSA/SHA-1:
 AlgId: {1 2 840 10040 4 3};
 NIST, FIPS PUB 186: Digital Signature Standard, 1994;
 Public Modulus size: 1024 bits.

PasswordBasedMac:
 {1 2 840 113533 7 66 13}, with SHA-1 {1 3 14 3 2 26} as the owf
 parameter and HMAC-SHA1 {1 3 6 1 5 5 8 1 2} as the mac parameter;
 (this specification), along with
 NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995;
 H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed-Hashing for Message
 Authentication", Internet Request for Comments 2104, February 1997.
 HMAC key size: 160 bits (i.e., "K" = "H" in Section 3.1.3, "Shared
 secret information")

Adams & Farrell Expires May 2001 [Page 59]

3-DES:
 {1 2 840 113549 3 7};
 (used in RSA's BSAFE and in S/MIME).

D-H:
 AlgId: {1 2 840 10046 2 1};
 ANSI X9.42;
 Public Modulus Size: 1024 bits.
 DomainParameters ::= SEQUENCE {
 p INTEGER, -- odd prime, p=jq +1
 g INTEGER, -- generator, g^q = 1 mod p
 q INTEGER, -- prime factor of p-1
 j INTEGER OPTIONAL, -- cofactor, j>=2
 validationParms ValidationParms OPTIONAL
 }

 ValidationParms ::= SEQUENCE {
 seed BIT STRING, -- seed for prime generation
 pGenCounter INTEGER -- parameter verification
 }

B3. Proof of Possession Profile

 POP fields for use (in signature field of pop field of
 ProofOfPossession structure) when proving possession of a private
 signing key which corresponds to a public verification key for which
 a certificate has been requested.

 Field Value Comment

 algorithmIdentifier MSG_SIG_ALG only signature protection is
 allowed for this proof
 signature present bits calculated using MSG_SIG_ALG

 <<Proof of possession of a private decryption key which corresponds
 to a public encryption key for which a certificate has been requested
 does not use this profile; the CertHash field of the certConf message
 is used instead.>>

 Not every CA/RA will do Proof-of-Possession (of signing key,
 decryption key, or key agreement key) in the PKIX-CMP in-band
 certification request protocol (how POP is done MAY ultimately be a
 policy issue which is made explicit for any given CA in its
 publicized Policy OID and Certification Practice Statement).
 However, this specification MANDATES that CA/RA entities MUST do POP
 (by some means) as part of the certification process. All end
 entities MUST be prepared to provide POP (i.e., these components of
 the PKIX-CMP protocol MUST be supported).

Adams & Farrell Expires May 2001 [Page 60]

B4. Initial Registration/Certification (Basic Authenticated Scheme)

 An (uninitialized) end entity requests a (first) certificate from a
 CA. When the CA responds with a message containing a certificate, the
 end entity replies with a certificate confirmation. The CA sends a
 PKIConfirm back, closing the transaction. All messages are
 authenticated.

 This scheme allows the end entity to request certification of a
 locally-generated public key (typically a signature key). The end
 entity MAY also choose to request the centralized generation and
 certification of another key pair (typically an encryption key pair).

 Certification may only be requested for one locally generated public
 key (for more, use separate PKIMessages).

 The end entity MUST support proof-of-possession of the private key
 associated with the locally-generated public key.

 Preconditions:

 1. The end entity can authenticate the CA's signature based on
 out-of-band means
 2. The end entity and the CA share a symmetric MACing key

 Message flow:
 Step# End entity PKI
 1 format ir
 2 -> ir ->
 3 handle ir
 4 format ip
 5 <- ip <-
 6 handle ip
 7 format certConf
 8 -> certConf ->
 9 handle certConf
 10 format PKIConf
 11 <- PKIConf <-
 12 handle PKIConf

 For this profile, we mandate that the end entity MUST include all
 (i.e., one or two) CertReqMsg in a single PKIMessage and that the PKI
 (CA) MUST produce a single response PKIMessage which contains the
 complete response (i.e., including the OPTIONAL second key pair, if
 it was requested and if centralized key generation is supported). For
 simplicity, we also mandate that this message MUST be the final one
 (i.e., no use of "waiting" status value).

 The end entity has an out of band interaction with the CA/RA. This
 transaction established the shared secret, the referenceNumber and
 OPTIONALLY the distinguished name used for both sender and subject
 name in the certificate template. It is RECOMMENDED that the shared
 secret be at least 12 characters long.

Adams & Farrell Expires May 2001 [Page 61]

ir:
Field Value

recipient CA name
 -- the name of the CA who is being asked to produce a certificate
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this request, based on
 -- initial authentication key
senderKID referenceNum
 -- the reference number which the CA has previously issued to
 -- the end entity (together with the MACing key)
transactionID present
 -- implementation-specific value, meaningful to end entity.
 -- [If already in use at the CA then a rejection message MUST be
 -- produced by the CA]
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value

Adams & Farrell Expires May 2001 [Page 62]

body ir (CertReqMessages)
 only one or two CertReqMsg
 are allowed
 -- if more certificates are required requests MUST be packaged in
 -- separate PKIMessages
CertReqMsg one or two present
 -- see below for details, note: crm[0] means the first (which MUST
 -- be present), crm[1] means the second (which is OPTIONAL, and used
 -- to ask for a centrally-generated key)

crm[0].certReq. fixed value of zero
 certReqId
 -- this is the index of the template within the message
crm[0].certReq present
 certTemplate
 -- MUST include subject public key value, otherwise unconstrained
crm[0].pop... optionally present if public key
 POPOSigningKey from crm[0].certReq.certTemplate is
 a signing key
 -- proof of possession MAY be required in this exchange (see Section
 -- B3 for details)
crm[0].certReq. optionally present
 controls.archiveOptions
 -- the end entity MAY request that the locally-generated private key
 -- be archived
crm[0].certReq. optionally present
 controls.publicationInfo
 -- the end entity MAY ask for publication of resulting cert.

crm[1].certReq fixed value of one
 certReqId
 -- the index of the template within the message
crm[1].certReq present
 certTemplate
 -- MUST NOT include actual public key bits, otherwise unconstrained
 -- (e.g., the names need not be the same as in crm[0])
crm[1].certReq. present [object identifier MUST be PROT_ENC_ALG]
 controls.protocolEncrKey
 -- if centralized key generation is supported by this CA, this
 -- short-term asymmetric encryption key (generated by the end entity)
 -- will be used by the CA to encrypt (a symmetric key used to encrypt)
 -- a private key generated by the CA on behalf of the end entity
crm[1].certReq. optionally present
 controls.archiveOptions
crm[1].certReq. optionally present
 controls.publicationInfo
protection present
 -- bits calculated using MSG_MAC_ALG

Adams & Farrell Expires May 2001 [Page 63]

ip:
Field Value

sender CA name
 -- the name of the CA who produced the message
messageTime present
 -- time at which CA produced message
protectionAlg MS_MAC_ALG
 -- only MAC protection is allowed for this response
senderKID referenceNum
 -- the reference number which the CA has previously issued to the
 -- end entity (together with the MACing key)
transactionID present
 -- value from corresponding ir message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
 -- value from senderNonce in corresponding ir message
freeText any valid value
body ir (CertRepMessage)
 contains exactly one response
 for each request
 -- The PKI (CA) responds to either one or two requests as appropriate.
 -- crc[0] denotes the first (always present); crc[1] denotes the
 -- second (only present if the ir message contained two requests and
 -- if the CA supports centralized key generation).
crc[0]. fixed value of zero
 certReqId
 -- MUST contain the response to the first request in the corresponding
 -- ir message
crc[0].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[0].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[0]. present if and only if
 certifiedKeyPair crc[0].status.status is
 "accepted" or "grantedWithMods"
certificate present unless end entity's public
 key is an encryption key and POP
 is done in this in-band exchange
encryptedCert present if and only if end entity's
 public key is an encryption key and
 POP done in this in-band exchange
publicationInfo optionally present
 -- indicates where certificate has been published (present at
 -- discretion of CA)

Adams & Farrell Expires May 2001 [Page 64]

crc[1]. fixed value of one
 certReqId
 -- MUST contain the response to the second request in the
 -- corresponding ir message
crc[1].status. present, positive values allowed:
 status "accepted", "grantedWithMods"
 negative values allowed:
 "rejection"
crc[1].status. present if and only if
 failInfo crc[0].status.status is "rejection"
crc[1]. present if and only if
 certifiedKeyPair crc[0].status.status is "accepted"
 or "grantedWithMods"
certificate present
privateKey present (see Appendix D)
publicationInfo optionally present
 -- indicates where certificate has been published (present at
 -- discretion of CA)
protection present
 -- bits calculated using MSG_MAC_ALG
extraCerts optionally present
 -- the CA MAY provide additional certificates to the end entity

certConf:
Field Value

sender present
 -- same as in ir
recipient CA name
 -- the name of the CA who was asked to produce a certificate
transactionID present
 -- value from corresponding ir and ip messages
senderNonce present
 -- 128 (pseudo-) random bits
recipNonce present
 -- value from senderNonce in corresponding ip message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message. The MAC is
 -- based on the initial authentication key shared between the EE and the CA.
senderKID referenceNum
 -- the reference number which the CA has previously issued to the
 -- end entity (together with the MACing key)
body certConf

protection present
 -- bits calculated using MSG_MAC_ALG

Adams & Farrell Expires May 2001 [Page 65]

PKIConf:
Field Value

sender present
 -- same as in ip
recipient present
 -- sender name from certConf
transactionID present
 -- value from certConf message
senderNonce present
 -- 128 (pseudo-) random bits
recipNonce present
 -- value from senderNonce from certConf message
protectionAlg MSG_MAC_ALG
 -- only MAC protection is allowed for this message.
senderKID referenceNum
body PKIConf
protection present
 -- bits calculated using MSG_MAC_ALG

Adams & Farrell Expires May 2001 [Page 66]

B5. Certificate Request

 An (initialized) end entity requests a certificate from a CA (for any
 reason). When the CA responds with a message containing a
 certificate, the end entity replies with a certificate confirmation.
 The CA replies with a PKIConfirm, to close the transaction. All
 messages are authenticated.

 The profile for this exchange is identical to that given in Section
 B4 with the following exceptions:

 - sender name SHOULD be present
 - protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
 also be supported) in request, response, certConfirm and
 PKIConfirm messages;
 - senderKID and recipKID are only present if required for message
 verification;
 - body is cr or cp;
 - protection bits are calculated according to the protectionAlg
 field.

B6. Key Update Request

 An (initialized) end entity requests a certificate from a CA (to
 update the key pair and/or corresponding certificate that it already
 possesses). When the CA responds with a message containing a
 certificate, the end entity replies with a certificate confirmation.
 The CA replies with a PKIConfirm, to close the transaction. All
 messages are authenticated.

 The profile for this exchange is identical to that given in Section
 B4 with the following exceptions:

 - sender name SHOULD be present
 - protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
 also be supported) in request, response, certConfirm and
 PKIConfirm messages;
 - senderKID and recipKID are only present if required for message
 verification;
 - body is kur or kup;
 - protection bits are calculated according to the protectionAlg
 field;
 - regCtrl OldCertId SHOULD be used (unless it is clear to both
 sender and receiver - by means not specified in this document -
 that it is not needed).

Adams & Farrell Expires May 2001 [Page 67]

Appendix C. PKI Management Message Profiles (OPTIONAL).

 This appendix contains detailed profiles for those PKIMessages which
 MAY be supported by implementations (in addition to the messages which
 MUST be supported - see Section 4 and Appendix B).

 Profiles for the PKIMessages used in the following PKI management
 operations are provided:

 - root CA key update
 - information request/response
 - cross-certification request/response (1-way)
 - in-band initialization using external identity certificate

 <<Later versions of this document may extend the above to include
 profiles for the operations listed below (along with other
 operations, if desired).>>

 - revocation request
 - certificate publication
 - CRL publication

C1. General Rules for interpretation of these profiles.

 (Identical to Appendix B1.)

C2. Algorithm Use Profile

 (Identical to Appendix B2.)

C3. "Self-signed" certificates

 Profile of how a Certificate structure may be "self-signed". These
 structures are used for distribution of "root" CA public keys. This
 can occur in one of three ways (see Section 2.4 above for a
 description of the use of these structures):

 Type Function

 newWithNew a true "self-signed" certificate; the contained public
 key MUST be usable to verify the signature (though this
 provides only integrity and no authentication whatsoever)
 oldWithNew previous root CA public key signed with new private key
 newWithOld new root CA public key signed with previous private key

Adams & Farrell Expires May 2001 [Page 68]

 <<Such certificates (including relevant extensions) must contain
 "sensible" values for all fields. For example, when present
 subjectAltName MUST be identical to issuerAltName, and when present
 keyIdentifiers must contain appropriate values, et cetera.>>

C4. Root CA Key Update

 A root CA updates its key pair. It then produces a CA key update
 announcement message which can be made available (via some
 transport mechanism) to the relevant end entities. A confirmation
 message is NOT REQUIRED from the end entities.

 ckuann message:

 Field Value Comment

 sender CA name CA name
 body ckuann(CAKeyUpdAnnContent)
 oldWithNew present see Section C3 above
 newWithOld present see Section C3 above
 newWithNew present see Section C3 above
 extraCerts optionally present can be used to "publish"
 certificates (e.g.,
 certificates signed using
 the new private key)

C5. PKI Information request/response

 The end entity sends general message to the PKI requesting details
 which will be required for later PKI management operations. RA/CA
 responds with general response. If an RA generates the response then
 it will simply forward the equivalent message which it previously
 received from the CA, with the possible addition of certificates
 to the extraCerts fields of the PKIMessage. A confirmation message is
 NOT REQUIRED from the end entity.

Message Flows:

Step# End entity PKI

 1 format genm
 2 -> genm ->
 3 handle genm
 4 produce genp
 5 <- genp <-
 6 handle genp

Adams & Farrell Expires May 2001 [Page 69]

genM:

Field Value

recipient CA name
 -- the name of the CA as contained in issuerAltName extensions or
 -- issuer fields within certificates
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
SenderKID present if required
 -- must be present if required for verification of message protection
freeText any valid value
body genr (GenReqContent)
GenMsgContent empty SEQUENCE
 -- all relevant information requested
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG

genP:

Field Value

sender CA name
 -- name of the CA which produced the message
protectionAlg MSG_MAC_ALG or MSG_SIG_ALG
 -- any authenticated protection alg.
senderKID present if required
 -- must be present if required for verification of message protection
body genp (GenRepContent)
CAProtEncCert present (object identifier one
 of PROT_ENC_ALG), with relevant
 value
 -- to be used if end entity needs to encrypt information for the CA
 -- (e.g., private key for recovery purposes)
SignKeyPairTypes present, with relevant value
 -- the set of signature algorithm identifiers which this CA will
 -- certify for subject public keys
EncKeyPairTypes present, with relevant value
 -- the set of encryption/key agreement algorithm identifiers which
 -- this CA will certify for subject public keys
PreferredSymmAlg present (object identifier one
 of PROT_SYM_ALG) , with relevant
 value
 -- the symmetric algorithm which this CA expects to be used in later
 -- PKI messages (for encryption)
CAKeyUpdateInfo optionally present, with
 relevant value
 -- the CA MAY provide information about a relevant root CA key pair
 -- using this field (note that this does not imply that the responding
 -- CA is the root CA in question)

Adams & Farrell Expires May 2001 [Page 70]

CurrentCRL optionally present, with relevant value
 -- the CA MAY provide a copy of a complete CRL (i.e., fullest possible
 -- one)
protection present
 -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG
extraCerts optionally present
 -- can be used to send some certificates to the end entity. An RA MAY
 -- add its certificate here.

C6. Cross certification request/response (1-way)

 Creation of a single cross-certificate (i.e., not two at once). The
 requesting CA MAY choose who is responsible for publication of the
 cross-certificate created by the responding CA through use of the
 PKIPublicationInfo control.

 Preconditions:

 1. Responding CA can verify the origin of the request (possibly
 requiring out-of-band means) before processing the request.
 2. Requesting CA can authenticate the authenticity of the origin of
 the response (possibly requiring out-of-band means) before
 processing the response

 The use of certificate confirmation and the corresponding server
 confirmation is determined by the generalInfo field in the PKIHeader
 (see Section 3.1.1). The following profile does not mandate support
 for either confirmation.

Message Flows:

Step# Requesting CA Responding CA
 1 format ccr
 2 -> ccr ->
 3 handle ccr
 4 produce ccp
 5 <- ccp <-
 6 handle ccp

Adams & Farrell Expires May 2001 [Page 71]

ccr:
Field Value

sender Requesting CA name
 -- the name of the CA who produced the message
recipient Responding CA name
 -- the name of the CA who is being asked to produce a certificate
messageTime time of production of message
 -- current time at requesting CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this request
senderKID present if required
 -- must be present if required for verification of message protection
recipKID present if required
 -- must be present if required for verification of message protection
transactionID present
 -- implementation-specific value, meaningful to requesting CA.
 -- [If already in use at responding CA then a rejection message
 -- MUST be produced by responding CA]
senderNonce present
 -- 128 (pseudo-)random bits
freeText any valid value
body ccr (CertReqMessages)
 only one CertReqMsg
 allowed
 -- if multiple cross certificates are required they MUST be packaged
 -- in separate PKIMessages
certTemplate present
 -- details follow
version v1 or v3
 -- <<v3 STRONGLY RECOMMENDED>>
signingAlg present
 -- the requesting CA must know in advance with which algorithm it
 -- wishes the certificate to be signed
subject present
 -- may be NULL-DN only if subjectAltNames extension value proposed
validity present
 -- MUST be completely specified (i.e., both fields present)
issuer present
 -- may be NULL-DN only if issuerAltNames extension value proposed
publicKey present
 -- the key to be certified (which must be for a signing algorithm)
extensions optionally present
 -- a requesting CA must propose values for all extensions which it
 -- requires to be in the cross-certificate
POPOSigningKey present
 -- see "Proof of possession profile" (Section B3)
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that requester wishes
 -- to include

Adams & Farrell Expires May 2001 [Page 72]

ccp:
Field Value

sender Responding CA name
 -- the name of the CA who produced the message
recipient Requesting CA name
 -- the name of the CA who asked for production of a certificate
messageTime time of production of message
 -- current time at responding CA
protectionAlg MSG_SIG_ALG
 -- only signature protection is allowed for this message
senderKID present if required
 -- must be present if required for verification of message
 -- protection
recipKID present if required
transactionID present
 -- value from corresponding ccr message
senderNonce present
 -- 128 (pseudo-)random bits
recipNonce present
-- senderNonce from corresponding ccr message
freeText any valid value
body ccp (CertRepMessage)
 only one CertResponse allowed
 -- if multiple cross certificates are required they MUST be packaged
 -- in separate PKIMessages
response present
status present
PKIStatusInfo.status present
 -- if PKIStatusInfo.status is one of:
 -- accepted, or
 -- grantedWithMods,
 -- then certifiedKeyPair MUST be present and failInfo MUST be absent
failInfo present depending on
 PKIStatusInfo.status
 -- if PKIStatusInfo.status is:
 -- rejection
 -- then certifiedKeyPair MUST be absent and failInfo MUST be present
 -- and contain appropriate bit settings

certifiedKeyPair present depending on
 PKIStatusInfo.status
certificate present depending on
 certifiedKeyPair
 -- content of actual certificate must be examined by requesting CA
 -- before publication
protection present
 -- bits calculated using MSG_SIG_ALG
extraCerts optionally present
 -- MAY contain any additional certificates that responder wishes
 -- to include

Adams & Farrell Expires May 2001 [Page 73]

C7. In-band initialization using external identity certificate

 An (uninitialized) end entity wishes to initialize into the PKI with
 a CA, CA-1. It uses, for authentication purposes, a pre-existing
 identity certificate issued by another (external) CA, CA-X. A trust
 relationship must already have been established between CA-1 and CA-X
 so that CA-1 can validate the EE identity certificate signed by CA-X.
 Furthermore, some mechanism must already have been established within
 the Personal Security Environment (PSE) of the EE that would allow it
 to authenticate and verify PKIMessages signed by CA-1 (as one example,
 the PSE may contain a certificate issued for the public key of CA-1,
 signed by another CA that the EE trusts on the basis of out-of-band
 authentication techniques).

 The EE sends an initialization request to start the transaction.
 When CA-1 responds with a message containing the new certificate, the
 end entity replies with a certificate confirmation. CA-1 replies with
 a PKIConfirm to close the transaction. All messages are signed (the EE
 messages are signed using the private key corresponding to the public
 key in its external identity certificate; the CA-1 messages are signed
 using the private key corresponding to the public key in a certificate
 that can be chained to a trust anchor in the EE's PSE).

 The profile for this exchange is identical to that given in Section
 B4 with the following exceptions:

 - the EE and CA-1 do not share a symmetric MACing key (i.e., there is
 no out-of-band shared secret information between these entities);
 - sender name in ir MUST be present (and identical to the subject
 name present in the external identity certificate);
 - protectionAlg of MSG_SIG_ALG MUST be used in all messages;
 - external identity cert. MUST be carried in ir extraCerts field
 - senderKID and recipKID are not used;
 - body is ir or ip;
 - protection bits are calculated according to the protectionAlg
 field.

Adams & Farrell Expires May 2001 [Page 74]

Appendix D: Request Message Behavioral Clarifications

The following definitions are from rfc2511bis. They are included here
in order to codify behavioral clarifications to that request
message; otherwise, all syntax and semantics are identical to rfc2511bis.

CertRequest ::= SEQUENCE {
 certReqId INTEGER,
 certTemplate CertTemplate,
 controls Controls OPTIONAL }
-- If certTemplate is an empty SEQUENCE (i.e., all fields omitted), then
-- controls MAY contain the id-regCtrl-altCertTemplate control, specifying
-- a template for a certificate other than an X.509v3 public-key
-- certificate. Conversely, if certTemplate is not empty (i.e., at least
-- one field is present), then controls MUST NOT contain id-regCtrl-
-- altCertTemplate. The new control is defined as follows:
id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= {id-regCtrl 7}
AltCertTemplate ::= AttributeTypeAndValue

POPOSigningKey ::= SEQUENCE {
 poposkInput [0] POPOSigningKeyInput OPTIONAL,
 algorithmIdentifier AlgorithmIdentifier,
 signature BIT STRING }
-- **********
-- * For the purposes of this specification, the ASN.1 comment given
-- * in rfc2511bis pertains not only to certTemplate, but also to
-- * the altCertTemplate control. That is,
-- **********
-- * The signature (using "algorithmIdentifier") is on the DER-encoded
-- * value of poposkInput (i.e., the "value" OCTETs of the
-- * POPOSigningKeyInput DER). NOTE: If CertReqMsg certReq certTemplate
-- * (or the altCertTemplate control) contains the subject and publicKey
-- * values, then poposkInput MUST be omitted and the signature MUST be
-- * computed on the DER-encoded value of CertReqMsg certReq. If
-- * certTemplate/altCertTemplate does not contain both the subject
-- * and public key values (i.e., if it contains only one of these, or
-- * neither), then poposkInput MUST be present and MUST be signed.
-- **********

POPOPrivKey ::= CHOICE {
 thisMessage [0] BIT STRING,
-- **********
-- * the type of "thisMessage" is given as BIT STRING in
-- * rfc2511bis; it should be "EncryptedValue" (in accordance with
-- * Section 3.2.2 of this specification). Therefore, this document makes
-- * the behavioral clarification of specifying that the contents of
-- * "thisMessage" MUST be encoded as an EncryptedValue and then wrapped
-- * in a BIT STRING. This allows the necessary conveyance and protection
-- * of the private key while maintaining bits-on-the-wire compatibility
-- * with rfc2511bis.
-- **********
 subsequentMessage [1] SubsequentMessage,
 dhMAC [2] BIT STRING }

Adams & Farrell Expires May 2001 [Page 75]

Appendix E: The Use of "Revocation Passphrase"

A revocation request must incorporate suitable security mechanisms,
including proper authentication, in order to reduce the probability of
successful denial-of-service attacks. A digital signature on the request
 - MANDATORY to support within this specification if revocation requests
are supported - can provide the authentication required, but there are
circumstances under which an alternative mechanism may be desirable (e.g.,
when the private key is no longer accessible and the entity wishes to
request a revocation prior to re-certification of another key pair).

A mechanism that has seen use in some environments is "revocation
passphrase", in which a value of sufficient entropy (i.e., a relatively
long passphrase rather than a short password) is shared between (only)
the entity and the CA/RA at some point prior to revocation, and this
value is later used to authenticate the revocation request.

In this specification, revocation passphrase is OPTIONAL to support and,
furthermore, its acceptability is subject to local security policy for a
given environment. Its precise use in CMP messages is as follows.

 - The OID and value specified in Section 3.3.19.9 MAY be sent in a
 GenMsg message at any time, or MAY be sent in the generalInfo field
 of the PKIHeader of any PKIMessage at any time. (In particular, the
 EncryptedValue may be sent in the header of the certConf message that
 confirms acceptance of certificates requested in an initialization
 request or certificate request message.) This conveys a revocation
 passphrase chosen by the entity to the relevant CA/RA; furthermore,
 the transfer is accomplished with appropriate confidentiality
 characteristics (since the passphrase is encrypted under the CA/RA's
protocolEncryptionKey).

 - If a CA/RA receives the revocation passphrase (OID and value specified
 in Section 3.3.19.9) in a GenMsg, it MUST construct and send a GenRep
 message which includes the OID (with absent value) specified in
 Section 3.3.19.9. If the CA/RA receives the revocation passphrase
 in the generalInfo field of a PKIHeader of any PKIMessage, it MUST
 include the OID (with absent value) in the generalInfo field of the
 PKIHeader of the corresponding response PKIMessage. If the CA/RA is
 unable to return the appropriate response message for any
 reason, it MUST send an error message with a status of "rejection"
 and, optionally, a failInfo reason set.

 - The valueHint field of EncryptedValue MAY contain a key identifier
 (chosen by the entity, along with the passphrase itself) to assist
 in later retrieval of the correct passphrase (e.g., when the
 revocation request is constructed by the entity and received by the
 CA/RA).

Adams & Farrell Expires May 2001 [Page 76]

- The revocation request message is protected by a PasswordBasedMAC,
 with the revocation passphrase as the key. If appropriate, the
 senderKID field in the PKIHeader MAY contain the value previously
 transmitted in valueHint.

Using the technique specified above, the revocation passphrase may be
initially established and updated at any time without requiring extra
messages or out-of-band exchanges. For example, the revocation request
message itself (protected and authenticated through a MAC that uses the
revocation passphrase as a key) may contain in the PKIHeader a new
revocation passphrase to be used for authenticating future revocation
requests for any of the entity's other certificates. In some
environments this may be preferable to mechanisms that reveal the
passphrase in the revocation request message, since this can allow a
denial-of-service attack in which the revealed passphrase is used by
an unauthorized third party to authenticate revocation requests on the
entity's other certificates. However, because the passphrase is not
revealed in the request message, there is no requirement that the
passphrase must always be updated when a revocation request is made
(that is, the same passphrase MAY be used by an entity to authenticate
revocation requests for different certificates at different times).

Furthermore, the above technique can provide strong cryptographic
protection over the entire revocation request message even when a
digital signature is not used. Techniques that do authentication of
the revocation request by simply revealing the revocation passphrase
typically do not provide cryptographic protection over the fields of
the request message (so that a request for revocation of one certificate
may be modified by an unauthorized third party to a request for
revocation of another certificate for that entity).

Adams & Farrell Expires May 2001 [Page 77]

Appendix F: "Compilable" ASN.1 Module using 1988 Syntax

 PKIXCMP {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-cmp2000(16)}

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 Certificate, CertificateList, Extensions, AlgorithmIdentifier
 FROM PKIX1Explicit88 {iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit-88(1)}

 GeneralName, KeyIdentifier
 FROM PKIX1Implicit88 {iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-implicit-88(2)}

 CertTemplate, PKIPublicationInfo, EncryptedValue, CertId,
 CertReqMessages
 FROM PKIXCRMF {iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-mod-crmf(5)}
 -- see also the behavioral clarifications to CRMF codified in
 -- Appendix D of this specification

 -- CertificationRequest
 -- FROM PKCS10 {no standard ASN.1 module defined;
 -- implementers need to create their own module to import
 -- from, or directly include the PKCS10 syntax in this module}

Adams & Farrell Expires May 2001 [Page 78]

 -- Locally defined OIDs and constructs --

 CMPCertificate ::= CHOICE {
 x509v3PKCert Certificate
 }

-- This syntax, while bits-on-the-wire compatible with the standard
-- X.509 definition of "Certificate", allows the possibility of future
-- certificate types (such as X.509 attribute certificates, ANSI X9.68
-- "short" certificates, or WAP WTLS certificates) within this
-- certificate management protocol, should a need ever arise to support
-- such generality. Those implementations that do not foresee a need to
-- ever support other certificate types MAY, if they wish, comment out
-- the above structure and "un-comment" the following one prior to
-- compiling this ASN.1 module. (Note that interoperability with
-- implementations that don't do this will be unaffected by this change.)

-- CMPCertificate ::= Certificate

 PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection [0] PKIProtection OPTIONAL,
 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL
 }

 PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { CMP1999(1), CMP2000(2) },
 sender GeneralName,
 -- identifies the sender
 recipient GeneralName,
 -- identifies the intended recipient

Adams & Farrell Expires May 2001 [Page 79]

 messageTime [0] GeneralizedTime OPTIONAL,
 -- time of production of this message (used when sender
 -- believes that the transport will be "suitable"; i.e.,
 -- that the time will still be meaningful upon receipt)
 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 -- algorithm used for calculation of protection bits
 senderKID [2] KeyIdentifier OPTIONAL,
 recipKID [3] KeyIdentifier OPTIONAL,
 -- to identify specific keys used for protection
 transactionID [4] OCTET STRING OPTIONAL,
 -- identifies the transaction; i.e., this will be the same in
 -- corresponding request, response, certConf, and PKIConf messages
 senderNonce [5] OCTET STRING OPTIONAL,
 recipNonce [6] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 freeText [7] PKIFreeText OPTIONAL,
 -- this may be used to indicate context-specific instructions
 -- (this field is intended for human consumption)
 generalInfo [8] SEQUENCE SIZE (1..MAX) OF
 InfoTypeAndValue OPTIONAL
 -- this may be used to convey context-specific information
 -- (this field not primarily intended for human consumption)
 }

 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
 -- text encoded as UTF-8 String [RFC2279] (note: each UTF8String
 -- MAY include an RFC 1766 language tag to indicate the language
 -- of the contained text - see [RFC2482] for details)

 PKIBody ::= CHOICE { -- message-specific body elements
 ir [0] CertReqMessages, --Initialization Request
 ip [1] CertRepMessage, --Initialization Response
 cr [2] CertReqMessages, --Certification Request
 cp [3] CertRepMessage, --Certification Response
 p10cr [4] CertificationRequest, --imported from [PKCS10]
 popdecc [5] POPODecKeyChallContent, --pop Challenge
 popdecr [6] POPODecKeyRespContent, --pop Response
 kur [7] CertReqMessages, --Key Update Request
 kup [8] CertRepMessage, --Key Update Response
 krr [9] CertReqMessages, --Key Recovery Request
 krp [10] KeyRecRepContent, --Key Recovery Response
 rr [11] RevReqContent, --Revocation Request
 rp [12] RevRepContent, --Revocation Response

Adams & Farrell Expires May 2001 [Page 80]

 ccr [13] CertReqMessages, --Cross-Cert. Request
 ccp [14] CertRepMessage, --Cross-Cert. Response
 ckuann [15] CAKeyUpdAnnContent, --CA Key Update Ann.
 cann [16] CertAnnContent, --Certificate Ann.
 rann [17] RevAnnContent, --Revocation Ann.
 crlann [18] CRLAnnContent, --CRL Announcement
 pkiconf [19] PKIConfirmContent, --Confirmation
 nested [20] NestedMessageContent, --Nested Message
 genm [21] GenMsgContent, --General Message
 genp [22] GenRepContent, --General Response
 error [23] ErrorMsgContent, --Error Message
 certConf [24] CertConfirmContent --Certificate confirm
 }

 PKIProtection ::= BIT STRING

 ProtectedPart ::= SEQUENCE {
 header PKIHeader,
 body PKIBody
 }

 PasswordBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 13}
 PBMParameter ::= SEQUENCE {
 salt OCTET STRING,
 -- note: implementations MAY wish to limit acceptable sizes
 -- of this string to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 iterationCount INTEGER,
 -- number of times the OWF is applied
 -- note: implementations MAY wish to limit acceptable sizes
 -- of this integer to values appropriate for their environment
 -- in order to reduce the risk of denial-of-service attacks
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 DHBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 30}
 DHBMParameter ::= SEQUENCE {
 owf AlgorithmIdentifier,
 -- AlgId for a One-Way Function (SHA-1 recommended)
 mac AlgorithmIdentifier
 -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
 } -- or HMAC [RFC2104, RFC2202])

 NestedMessageContent ::= PKIMessages

 PKIStatus ::= INTEGER {
 accepted (0),
 -- you got exactly what you asked for
 grantedWithMods (1),

Adams & Farrell Expires May 2001 [Page 81]

 -- you got something like what you asked for; the
 -- requester is responsible for ascertaining the differences
 rejection (2),
 -- you don't get it, more information elsewhere in the message
 waiting (3),
 -- the request body part has not yet been processed,
 -- expect to hear more later
 revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent
 revocationNotification (5),
 -- notification that a revocation has occurred
 keyUpdateWarning (6)
 -- update already done for the oldCertId specified in
 -- CertReqMsg
 }

 PKIFailureInfo ::= BIT STRING {
 -- since we can fail in more than one way!
 -- More codes may be added in the future if/when required.
 badAlg (0),
 -- unrecognized or unsupported Algorithm Identifier
 badMessageCheck (1),
 -- integrity check failed (e.g., signature did not verify)
 badRequest (2),
 -- transaction not permitted or supported
 badTime (3),
 -- messageTime was not sufficiently close to the system time,
 -- as defined by local policy
 badCertId (4),
 -- no certificate could be found matching the provided criteria
 badDataFormat (5),
 -- the data submitted has the wrong format
 wrongAuthority (6),
 -- the authority indicated in the request is different from the
 -- one creating the response token
 incorrectData (7),
 -- the requester's data is incorrect (for notary services)
 missingTimeStamp (8),
 -- when the timestamp is missing but should be there (by policy)
 badPOP (9),
 -- the proof-of-possession failed
 certRevoked (10),
 -- the certificate has already been revoked
 certConfirmed (11),
 -- the certificate has already been confirmed
 wrongIntegrity (12),
 -- invalid integrity, password based instead of signature or
 -- vice versa
 badRecipientNonce (13),
 -- invalid recipient nonce, either missing or wrong value

Adams & Farrell Expires May 2001 [Page 82]

 timeNotAvailable (14),
 -- the TSA's time source is not available
 unacceptedPolicy (15),
 -- the requested TSA policy is not supported by the TSA.
 unacceptedExtension (16),
 -- the requested extension is not supported by the TSA.
 addInfoNotAvailable (17),
 -- the additional information requested could not be understood
 -- or is not available
 badSenderNonce (18),
 -- invalid sender nonce, either missing or wrong size
 badCertTemplate (19),
 -- invalid cert. template or missing mandatory information
 signerNotTrusted (20),
 -- signer of the message unknown or not trusted
 transactionIdInUse (21),
 -- the transaction identifier is already in use
 unsupportedVersion (22),
 -- the version of the message is not supported
 notAuthorized (23),
 -- the sender was not authorized to make the preceding request
 -- or perform the preceding action
 systemUnavail (24),
 -- the request cannot be handled due to system unavailability
 systemFailure (25),
 -- the request cannot be handled due to system failure
 duplicateCertReq (26)
 -- certificate cannot be issued because a duplicate certificate
 -- already exists
 }

 PKIStatusInfo ::= SEQUENCE {
 status PKIStatus,
 statusString PKIFreeText OPTIONAL,
 failInfo PKIFailureInfo OPTIONAL
 }

Adams & Farrell Expires May 2001 [Page 83]

 OOBCert ::= CMPCertificate

 OOBCertHash ::= SEQUENCE {
 hashAlg [0] AlgorithmIdentifier OPTIONAL,
 certId [1] CertId OPTIONAL,
 hashVal BIT STRING
 -- hashVal is calculated over DER encoding of the
 -- subjectPublicKey field of the corresponding cert.
 }

 POPODecKeyChallContent ::= SEQUENCE OF Challenge
 -- One Challenge per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages).

 Challenge ::= SEQUENCE {
 owf AlgorithmIdentifier OPTIONAL,
 -- MUST be present in the first Challenge; MAY be omitted in any
 -- subsequent Challenge in POPODecKeyChallContent (if omitted,
 -- then the owf used in the immediately preceding Challenge is
 -- to be used).
 witness OCTET STRING,
 -- the result of applying the one-way function (owf) to a
 -- randomly-generated INTEGER, A. [Note that a different
 -- INTEGER MUST be used for each Challenge.]
 challenge OCTET STRING
 -- the encryption (under the public key for which the cert.
 -- request is being made) of Rand, where Rand is specified as
 -- Rand ::= SEQUENCE {
 -- int INTEGER,
 -- - the randomly-generated INTEGER A (above)
 -- sender GeneralName
 -- - the sender's name (as included in PKIHeader)
 -- }
 }

 POPODecKeyRespContent ::= SEQUENCE OF INTEGER
 -- One INTEGER per encryption key certification request (in the
 -- same order as these requests appear in CertReqMessages). The
 -- retrieved INTEGER A (above) is returned to the sender of the
 -- corresponding Challenge.

 CertRepMessage ::= SEQUENCE {
 caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL,
 response SEQUENCE OF CertResponse
 }

Adams & Farrell Expires May 2001 [Page 84]

 CertResponse ::= SEQUENCE {
 certReqId INTEGER,
 -- to match this response with corresponding request (a value
 -- of -1 is to be used if certReqId is not specified in the
 -- corresponding request)
 status PKIStatusInfo,
 certifiedKeyPair CertifiedKeyPair OPTIONAL,
 rspInfo OCTET STRING OPTIONAL
 -- analogous to the id-regInfo-utf8Pairs OCTET STRING defined
 -- for regInfo in CertReqMsg [rfc2511bis]
 }

 CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedValue OPTIONAL,
 -- see [rfc2511bis] for comment on encoding
 publicationInfo [1] PKIPublicationInfo OPTIONAL
 }

 CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedValue
 }

 KeyRecRepContent ::= SEQUENCE {
 status PKIStatusInfo,
 newSigCert [0] CMPCertificate OPTIONAL,
 caCerts [1] SEQUENCE SIZE (1..MAX) OF
 CMPCertificate OPTIONAL,
 keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
 CertifiedKeyPair OPTIONAL
 }

 RevReqContent ::= SEQUENCE OF RevDetails

 RevDetails ::= SEQUENCE {
 certDetails CertTemplate,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g., for cases in which serialNumber is not available)
 crlEntryDetails Extensions OPTIONAL
 -- requested crlEntryExtensions
 }

 RevRepContent ::= SEQUENCE {

Adams & Farrell Expires May 2001 [Page 85]

 status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
 -- in same order as was sent in RevReqContent
 revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
 -- IDs for which revocation was requested (same order as status)
 crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL
 -- the resulting CRLs (there may be more than one)
 }

 CAKeyUpdAnnContent ::= SEQUENCE {
 oldWithNew CMPCertificate, -- old pub signed with new priv
 newWithOld CMPCertificate, -- new pub signed with old priv
 newWithNew CMPCertificate -- new pub signed with new priv
 }

 CertAnnContent ::= CMPCertificate

 RevAnnContent ::= SEQUENCE {
 status PKIStatus,
 certId CertId,
 willBeRevokedAt GeneralizedTime,
 badSinceDate GeneralizedTime,
 crlDetails Extensions OPTIONAL
 -- extra CRL details(e.g., crl number, reason, location, etc.)
 }

 CRLAnnContent ::= SEQUENCE OF CertificateList

 CertConfirmContent ::= SEQUENCE of CertStatus

 CertStatus ::= SEQUENCE {
 certHash OCTET STRING,
 -- the hash of the certificate, using the same hash algorithm
 -- as is used to create and verify the certificate signature
 statusInfo PKIStatusInfo OPTIONAL
 }

 PKIConfirmContent ::= NULL

Adams & Farrell Expires May 2001 [Page 86]

 InfoTypeAndValue ::= SEQUENCE {
 infoType OBJECT IDENTIFIER,
 infoValue ANY DEFINED BY infoType OPTIONAL
 }
 -- Example InfoTypeAndValue contents include, but are not limited to:
 -- { CAProtEncCert = {id-it 1}, CMPCertificate }
 -- { SignKeyPairTypes = {id-it 2}, SEQUENCE OF AlgorithmIdentifier }
 -- { EncKeyPairTypes = {id-it 3}, SEQUENCE OF AlgorithmIdentifier }
 -- { PreferredSymmAlg = {id-it 4}, AlgorithmIdentifier }
 -- { CAKeyUpdateInfo = {id-it 5}, CAKeyUpdAnnContent }
 -- { CurrentCRL = {id-it 6}, CertificateList }
 -- { UnsupportedOIDs = {id-it 7}, SEQUENCE OF OBJECT IDENTIFIER }
 -- { KeyPairParamReq = {id-it 10}, OBJECT IDENTIFIER }
 -- { KeyPairParamRep = {id-it 11}, AlgorithmIdentifer }
 -- { RevPassphrase = {id-it 12}, EncryptedValue }
 -- { ImplicitConfirm = {id-it 13}, NULL }
 -- { ConfirmWaitTime = {id-it 14}, GeneralizedTime }
 -- { OrigPKIMessage = {id-it 15}, PKIMessages }
 -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
 -- This construct MAY also be used to define new PKIX Certificate
 -- Management Protocol request and response messages, or general-
 -- purpose (e.g., announcement) messages for future needs or for
 -- specific environments.

 GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

 -- May be sent by EE, RA, or CA (depending on message content).
 -- The OPTIONAL infoValue parameter of InfoTypeAndValue will typically
 -- be omitted for some of the examples given above. The receiver is
 -- free to ignore any contained OBJ. IDs that it does not recognize.
 -- If sent from EE to CA, the empty set indicates that the CA may send
 -- any/all information that it wishes.

 GenRepContent ::= SEQUENCE OF InfoTypeAndValue
 -- The receiver is free to ignore any contained OBJ. IDs that it does
 -- not recognize.

 ErrorMsgContent ::= SEQUENCE {
 pKIStatusInfo PKIStatusInfo,
 errorCode INTEGER OPTIONAL,
 -- implementation-specific error codes
 errorDetails PKIFreeText OPTIONAL
 -- implementation-specific error details
 }

 -- The following definition is provided for compatibility reasons with
 -- 1988 and 1993 ASN.1 compilers which allow the use of UNIVERSAL class
 -- tags (not a part of formal ASN.1); 1997 and subsequent compilers
 -- SHOULD comment out this line.
 UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

END -- of CMP module

Adams & Farrell Expires May 2001 [Page 87]

Appendix G: Registration of MIME Type for E-Mail or HTTP use

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/pkixcmp

 MIME media type name: application

 MIME subtype name: pkixcmp

 Required parameters: -

 Optional parameters: -

 Encoding considerations:
 Content may contain arbitrary octet values (the ASN.1 DER encoding of
 a PKI message, as defined in the IETF PKIX Working Group
 specifications). base64 encoding is required for MIME e-mail; no
 encoding is necessary for HTTP.

 Security considerations:
 This MIME type may be used to transport Public-Key Infrastructure
 (PKI) messages between PKI entities. These messages are defined by
 the IETF PKIX Working Group and are used to establish and maintain an
 Internet X.509 PKI. There is no requirement for specific security
 mechanisms to be applied at this level if the PKI messages themselves
 are protected as defined in the PKIX specifications.

 Interoperability considerations: -

 Published specification: this document

 Applications which use this media type:
 Applications using certificate management, operational, or ancillary
 protocols (as defined by the IETF PKIX Working Group) to send PKI
 messages via E-Mail or HTTP.

 Additional information:

 Magic number (s): -
 File extension (s): ".PKI"
 Macintosh File Type Code (s): -

 Person and email address to contact for further information:
 Carlisle Adams, cadams@entrust.com

 Intended usage: COMMON

 Author/Change controller: Carlisle Adams

Adams & Farrell Expires May 2001 [Page 88]

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Adams & Farrell Expires May 2001 [Page 89]

	Internet X.509 Public Key Infrastructure Certificate Management Protocols
	November 2000, Internet Engineering Task Force
	Abstract
	Table of Contents
	1 PKI Management Overview
	1.1 PKI Management Model
	1.2 Definitions of PKI Entities
	1.2.1 Subjects and End Entities
	1.2.2 Certification Authority
	1.2.3 Registration Authority

	1.3 PKI Management Requirements
	1.4 PKI Management Operations

	2. Assumptions and restrictions
	2.1 End entity initialization
	2.2 Initial registration/certification
	2.2.1 Criteria used
	2.2.1.1 Initiation of registration / certification
	2.2.1.2 End entity message origin authentication
	2.2.1.3 Location of key generation
	2.2.1.4 Confirmation of successful certification

	2.2.2 Mandatory schemes
	2.2.2.1 Centralized scheme
	2.2.2.2 Basic authenticated scheme

	2.3 Proof of Possession (POP) of Private Key
	2.3.1 Signature Keys
	2.3.2 Encryption Keys
	2.3.3 Key Agreement Keys

	2.4 Root CA key update
	2.4.1 CA Operator actions
	2.4.2 Verifying Certificates.
	2.4.2.1 Verification in cases 1, 4, 5 and 8.
	2.4.2.2 Verification in case 2.
	2.4.2.3 Verification in case 3.
	2.4.2.4 Failure of verification in case 6.
	2.4.2.5 Failure of verification in case 7.

	2.4.3 Revocation - Change of CA key

	3. Data Structures
	3.1 Overall PKI Message
	3.1.1 PKI Message Header
	3.1.1.1 ImplicitConfirm
	3.1.1.2 ConfirmWaitTime

	3.1.2 PKI Message Body
	3.1.3 PKI Message Protection

	3.2 Common Data Structures
	3.2.1 Requested Certificate Contents
	3.2.2 Encrypted Values
	3.2.3 Status codes and Failure Information for PKI messages
	3.2.4 Certificate Identification
	3.2.5 "Out-of-band" root CA public key
	3.2.6 Archive Options
	3.2.7 Publication Information
	3.2.8 Proof-of-Possession Structures

	3.3 Operation-Specific Data Structures
	3.3.1 Initialization Request
	3.3.2 Initialization Response
	3.3.3 Certification Request
	3.3.4 Certification Response
	3.3.5 Key update request content
	3.3.6 Key Update response content
	3.3.7 Key Recovery Request content
	3.3.8 Key recovery response content
	3.3.9 Revocation Request Content
	3.3.10 Revocation Response Content
	3.3.11 Cross certification request content
	3.3.12 Cross certification response content
	3.3.13 CA Key Update Announcement content
	3.3.14 Certificate Announcement
	3.3.15 Revocation Announcement
	3.3.16 CRL Announcement
	3.3.17 PKI Confirmation content
	3.3.18 Certificate Confirmation content
	3.3.19 PKI General Message content
	3.3.19.1 CA Protocol Encryption Certificate
	3.3.19.2 Signing Key Pair Types
	3.3.19.3 Encryption/Key Agreement Key Pair Types
	3.3.19.4 Preferred Symmetric Algorithm
	3.3.19.5 Updated CA Key Pair
	3.3.19.6 CRL
	3.3.19.7 Unsupported Object Identifiers
	3.3.19.8 Key Pair Parameters
	3.3.19.9 Revocation Passphrase
	3.3.19.10 ImplicitConfirm
	3.3.19.11 ConfirmWaitTime
	3.3.19.12 Original PKIMessage

	3.3.20 PKI General Response content
	3.3.21 Error Message content

	4. Mandatory PKI Management functions
	4.1 Root CA initialization
	4.2 Root CA key update
	4.3 Subordinate CA initialization
	4.4 CRL production
	4.5 PKI information request
	4.6 Cross certification
	4.6.1 One-way request-response scheme:

	4.7 End entity initialization
	4.7.1 Acquisition of PKI information
	4.7.2 Out-of-Band Verification of Root-CA Key

	4.8 Certificate Request
	4.9 Key Update

	5. Version Negotiation
	5.1 Supporting RFC 2510 implementations
	5.1.1 Clients talking to RFC 2510 servers
	5.1.2 Servers receiving version CMP1999 PKIMessages

	SECURITY CONSIDERATIONS
	References
	Acknowledgements
	Authors' Addresses
	A: Reasons for the presence of RAs
	B. PKI Management Message Profiles (REQUIRED).
	B1. General Rules for interpretation of these profiles.
	B2. Algorithm Use Profile
	B3. Proof of Possession Profile
	B4. Initial Registration/Certification (Basic Authenticated Scheme)
	B5. Certificate Request
	B6. Key Update Request

	C. PKI Management Message Profiles (OPTIONAL).
	C1. General Rules for interpretation of these profiles.
	C2. Algorithm Use Profile
	C3. "Self-signed" certificates
	C4. Root CA Key Update
	C5. PKI Information request/response
	C6. Cross certification request/response (1-way)
	C7. In-band initialization using external identity certificate

	D: Request Message Behavioral Clarifications
	E: The Use of "Revocation Passphrase"
	F: "Compilable" ASN.1 Module using 1988 Syntax
	G: Registration of MIME Type for E-Mail or HTTP use

	
	IETF Title Page

