PAM wor ki ng group A. G Morgan
Internet Draft: Cct ober 6, 1999
Docunent: draft-norgan- pam 07.t xt

Expi res: June 13, 2000

bsol et es: draft-norgan- pam 06. t xt

Pl uggabl e Aut henti cation Mdul es
1 Status of this meno

This docunent is an draft specification. The |l atest version of this
draft nmay be obtained from here

http://1inux. kernel.org/pub/linux/libs/pam pre/doc/
As

Li nux- PAM ' versi on’ -docs.tar. gz
It is also contained in the Linux-PAMtar ball
2 Abstract

This docunent is concerned with the definition of a genera
infrastructure for nodul e based authentication. The infrastructure is
naned Pl uggabl e Aut henticati on Modul es (PAM for short).

3 Introduction

Conputers are tools. They provide services to people and ot her
conputers (collectively we shall call these _users_entities). In
order to provide convenient, reliable and individual service to
different entities, it is common for entities to be labelled. Having
defined a | abel as referring to a sone specific entity, the label is
used for the purpose of protecting and allocating data resources.

Al'l nodern operating systens have a notion of labelled entities and
all nodern operating systenms face a common problem how to

aut henticate the association of a predefined |abel with applicant
entities.

There are as nmany authentication nethods as one night care to count.
None of them are perfect and none of themare invulnerable. In
general, any given authentication nethod becones weaker over tine. It
is conmon then for new authentication nmethods to be devel oped in
response to newy di scovered weaknesses in the old authentication

net hods.

The problemw th inventing new aut hentication nethods is the fact that
old applications do not support them This contributes to an inertia
that discourages the overhaul of weakly protected systens. Another
problemis that individuals (people) are frequently powerless to |ayer
the protective authentication around their systens. They are forced
to rely on single (lowest common denomi nator) authentication schenes
even in situations where this is far from appropriate.

PAM as discussed in this docunment, is a generalization of the

approach first introduced in [1]. In short, it is a

general framework of interfaces that abstract the process of

aut hentication. Wth PAM a service provider can custom protect
i ndi vidual services to the |level that they deemis appropriate.

PAM has nothing explicit to say about transport |ayer encryption
Wthin the context of this docunment encryption and/or conpression of
dat a exchanges are application specific (strictly between client and
server) and orthogonal to the process of authentication

4 Definitions

Here we pose the authentication problem as one of configuring defined
interfaces between two entities.

4.1 Players in the authentication process

PAM reserves the following words to specify unique entities in the
aut henti cation process:

appl i cant
the entity (user) initiating an application for service
[PAM associ ates the PAM RUSER _item with this requesting user].

arbitrator
the entity (user) under whose identity the service application
is negotiated and with whose authority service is granted.

user
the entity (user) whose identity is being authenticated
[PAM associates the PAMUSER item with this identity].

server
the application that provides service, or acts as an
aut henticated gateway to the requested service. This
application is conpletely responsible for the server end of
the transport layer connecting the server to the client.
PAM nmakes no assunptions about how data is encapsul ated for
exchanges between the server and the client, only that ful
octet sequences can be freely exchanged w thout corruption

i ent

application providing the direct/primary interface to
applicant. This application is conpletely responsible

for the client end of the transport |ayer connecting the
server to the client. PAM nmakes no assunptions about how data
i s encapsul ated for exchanges between the server and the
client, only that full octet sequences can be freely

exchanged wi t hout corruption

c

nodul e
aut hentication binary that provides server-side support for
sonme (arbitrary) authentication method.

agent
aut hentication binary that provides client-side support for
sonme (arbitrary) authentication method.

Here is a diagramto help orient the reader

Fomm - + S R +
| agent | .| nodul e
. F------- + B R +
Y | . [
. | Vv [
F--- - - - + F------- + I R +
| | | I'i bpanc| | I'i bpam
| | Fomm - + Hom o - +
| appli cant| | . [
S + S +
| |---] client |----------- | server
E R + Fomm oo + S R +

Solid lines connecting the boxes represent two-way interaction. The
dotted-directed lines indicate an optional connection beteween the

pl ugi n nodul e (agent) and the server (applicant). In the case of the
nodul e, this represents the nodul e i nvoki ng the ’'conversation
cal | back function provided to |ibpam by the server application when it
inititializes the libpamlibrary. In the case of the agent, this may
be some out-of-PAM APl interaction (for exanple directly displaying a
di al og box under X).

4.2 Defined Data Types

In this draft, we define two conposite data types, the text string and
the binary pronpt. They are the data types used to conmunicate
aut hentication requests and responses.

4.2.1 text string

The text string is a sinple sequence of non-NUL (NUL = 0x00)

octets. Terminated with a single NUL (0x00) octet. The character set
enpl oyed in the octet sequence may be negoti ated out of band, but
defaults to utf-8.

[character data | NUL]
[octet sequence | 0x00]

Wthin the rest of this text, PAMtext strings are delinmted with a
pair of double quotes. Exanple, "this" = {"t’;"h ;’i’;’s’;0x00}.

4.2.2 binary pronpt

A binary pronpt consists of a stream of octets arranged as foll ows:

[u32 | u8 | (length-5 octets)]
[length | control | dat a

That is, a 32-bit unsigned integer in network byte order, a single
unsi gned byte of control information and a sequence of octets of

I ength (Il ength-5). The conposition of the _data_ is context dependent
but is generally not a concern for either the server or the client. It
is very much the concern of npdul es and agents.

For purposes of interoperability, we define the follow ng contro
characters as | egal

val ue synbol description

0x01 PAM BPC K - continuation packet
0x02 PAM BPC SELECT - initialization packet
0x03 PAM BPC_DONE - term nation packet
0x04 PAM BPC _FAI L - unable to execute

The followi ng control characters are only |legal for exchanges between
an agent and a client (it is the responsibility of the client to
enforce this rule in the face of a rogue server):

0x41 PAM BPC GETENV - obtain client env.var
0x42 PAM BPC PUTENV - set client env.var
0x43 PAM BPC TEXT - di splay nessage

0x44 PAM BPC ERROR - display error nmessage
0x45 PAM BPC_PROVWPT - echo’d text pronpt
0x46 PAM BPC_PASS - non-echo’d text pronpt

Note, length is always equal to the total length of the binary
pronpt and represented by a network ordered unsigned 32 bit integer

4.2.2.1 PAM BPC SELECT bi nary pronpts

Bi nary pronpts of control type PAM BPC SELECT have a defined
data part. It is conmposed of three el enents:

{agent _id;’/’;data}

The agent _id is a sequence of characters satisfying the follow ng
regexp:

/" a-z0-9\ _]+(@a-z0-9_.]+)?%/
and has a specific formfor each independent agent.

0 Agent _ids that do not contain an at-sign (@ are reserved to be
assigned by I ANA (Internet Assigned Nunbers Authority). Names of
this format MJST NOT be used without first registering with | ANA
Regi st ered nanes MJST NOT contain an at-sign (@.

0 Anyone can define additional agents by using nanmes in the fornmat
nane@omai nnane, e.g. "ouragent @xanpl e.cont. The part foll ow ng
the at-sign MJUST be a valid fully qualified internet domai n nanme
[RFC-1034] controlled by the person or organization defining the
nane. (Said another way, if you control the email address that
your agent has as an identifier, they you are entitled to use
this identifier.) It is up to each domain how it nmanages its |oca
namespace.

The '/’ character is a mandatory delimter, indicating the end of the

agent _id. The trailing data is of a format specific to the agent with
the given agent _id.

4.3 Special cases

In a previous section (4.1) we identified the nbst genera

sel ection of authentication participants. In the case of network
authentication, it is straightforward to ascribe identities to the
defined participants. However, there are al so special (less general)
cases that we recogni ze here.

The primary authentication step, when a user is directly introduced
into a computer system(log's on to a workstation) is a special case.
In this situation, the client and the server are generally one
application. Before authenticating such a user, the applicant is
formal |y unknown: PAM RUSER is NULL.

Sone client-server inplenmentations (telnet for exanple) provide
effective full tty connections. In these cases, the four sinple text
string pronpting cases (see below) can be handled as in the prinmary
login step. In other words, the server absorbs nost of the overhead of
propagati ng authenticati on messages. In these cases, there is special
client/server support for handling binary pronpts.

5 Defined interfaces for information flow

Here, we discuss the information exchange interfaces between the

pl ayers in the authentication process. It should be understood that
the server side is responsible for driving the authentication of the
applicant. Notably, every request received by the client fromthe
server nust be matched with a single response fromthe client to the
server.

5.1 Applicant <-> client

Once the client is invoked, requests to the applicant entity are
initiated by the client application. General clients are able to nmake
the follow ng requests directly to an applicant:

echo text string

echo error text string

pronpt with text string for echo' d text string input
pronpt with text string for conceal ed text string input

the nature of the interface provided by the client for the benefit of
the applicant entity is client specific and not defined by PAM

5.2 dient <-> agent

In general, authentication schenmes require nore nodes of exchange than
the four defined in the previous section (5.1). This

provides a role for client-loadable agents. The client and agent
exchange bi nary-nmessages that can have one of the follow ng forns:

client -> agent
bi nary pronpt agent expecting binary pronpt reply to client

agent -> client
bi nary pronpt reply fromagent to clients binary pronpt

Fol | owi ng the acceptance of a binary pronpt by the agent, the agent
may attenpt to exchange information with the client before returning
its binary pronpt reply. Pernmitted exchanges are binary pronpts of the
foll owi ng types:

agent -> client

set environment variable (A

get environnent variable (B)

echo text string (Q)

echo error text string (D

pronpt for echo’'d text string input (E)
pronpt for concealed text string input (F)

In response to these pronpts, the client nust
with a correspondi ng binary pronpt
exanpl e exchanges,
and a single fail):

legitimately respond
reply. We list a conplete set of
i ncludi ng each type of legitimate response (passes

Type | Agent request | dient response
(A | {13; PAM BPC PUTENV; "FOO=BAR'} | {5; PAM BPC CX;}

| {10; PAM BPC_PUTENV; " FOO="} | {5; PAM BPC ;}

| {9; PAM BPC PUTENV; "FOO'} (*) | {5; PAM BPC CK;}

| {9; PAM BPC PUTENV; "BAR'} (*) | {5; PAMBPC FAIL;}
(B) | {10; PAM BPC GETENV; "TERM'} | {11; PAM BPC _OK; "vt 100"}

| {9; PAM BPC GETENV, "FOO'} | {5; PAM BPC FAIL;}
(© | {12; PAM BPC TEXT; "hello!"} | {5; PAM BPC CX;}

| {12; PAM BPC _TEXT; "hel l o! "} | {5; PAM BPC FAIL;}
(D) | {11; PAM BPC TEXT; "ouch!"} | {5; PAM BPC X;}

| {11; PAM BPC TEXT; "ouch!"} | {5; PAM BPC FAIL;}
(E) | {13; PAM BPC PROWPT;"login: "} | {9; PAMBPC CK; "joe"}

| {13; PAM BPC PROWPT; "login: "} | {6; PAMBPC COK;""}

| {13; PAM BPC PROWPT; "login: "} | {5, PAMBPC FAIL;}
(F) | {16; PAM BPC PASS; "password: "} | {9; PAM BPC CK; " XYZ"}

| {16; PAM BPC PASS; "password: "} | {6; PAMBPC OK;""}

| {16; PAM BPC PASS; "password: "} | {5; PAMBPC FAIL;}

(*) Used to attenpt the renoval

vari abl e.

of a

5.3 dient <-> server

Once the client
nature of the transport

pr ot ocol

pre-exi sting environnent

has established a connection with the server (the
is not specified by PAM,

t he server

is responsible for driving the authentication process.

Cener al

servers can request the following fromthe client:

(to be forwarded by the client to the applicant)
echo text string

echo error text string

pronpt for echo’d text string response

pronpt for conceal ed text string response

(to be forwarded by the client to the appropriate agent)
bi nary pronpt for a binary pronpt response

Cient side agents are required to process binary pronpts. The
agents’ binary pronpt responses are returned to the server

5.4 Server <-> nodul e

Modul es drive the authentication process. The server provides a
conversation function with which it encapsul ates nodul e-gener at ed
requests and exchanges themwi th the client. Every nmessage sent by a
nodul e shoul d be acknow edged.

CGeneral conversation functions can support the following five
conversation requests:

echo text string

echo error string

pronpt for echo’d text string response
pronpt for conceal ed text string response
bi nary pronpt for binary pronpt response

The server is responsible for redirecting these requests to the
client.

6 C APl for application interfaces (client and server)
6.1 Applicant <-> client

No APl is defined for this interface. The interface is considered to
be specific to the client application. Exanple applications include
term nal login, (X)windows |ogin, nachine file transfer applications.

All that is inmportant is that the client application is able to
present the applicant with textual output and to receive textua
input fromthe applicant. The forms of textual exchange are |isted
in an earlier section (5.1). Oher nethods of

data i nput/output are better suited to being handled via an

aut henti cati on agent.

6.2 dient <-> agent

The client nmakes use of a general APl for communicating with

agents. The client is not required to comunicate directly with
avai | abl e agents, instead a |ayer of abstraction (in the formof a
library: |ibpant) takes care of |oading and naintaining conmmunication
with all requested agents. This |ayer of abstraction will choose which
agents to interact with based on the content of binary pronpts it

recei ves that have the control type PAM BPC SELECT

6.2.1 dient <-> |ibpant

6.2.1.1 Conpilation information

The C-header file provided for client-agent abstraction is included
with the follow ng source |ine:

#i ncl ude <security/pamclient. h>

The library providing the corresponding client-agent abstraction
functions is, |ibpant.

cc -lpanc
6.2.1.2 Initializing |ibpant

The libpant library is initialized with a call to the foll ow ng
function:

panct_handl e_t pant_start(void);

This function is responsible for configuring the library and
registering the location of available agents. The |ocation of the
avai |l abl e agents on the systemis inplenentation specific.

panc_start() function returns NULL on failure. Gtherwi se, the return
value is a pointer to an opaque data type which provides a handle to
the libpant library. On systenms where threading is available, the
libpant libraray is thread safe provided a single (panc_handler_t *)
is used by each thread.

6.2.1.3 dient (Applicant) selection of agents

For the purpose of applicant and client review of avail abl e agents,
the following function is provided.

char **pant_|ist_agents(pant_handl e t pch);

This returns a list of pointers to the agent_id s of the agents which
are available on the system The list is termnated by a NULL pointer
It is the clients responsibility to free this nmenory area by calling
free() on each agent id and the bl ock of agent _id pointers in the
result.

PAM represents a server-driven authentication nodel, so by default
any avail able agent nay be invoked in the authentication process.

6.2.1.3.1 dient denands agent
If the client requires that a specific authentication agent is
satisfied during the authentication process, then the client should
call the following function, immediately after obtaining a
panc_handl e_t from panc_start().

i nt pant_| oad(pant_handl e _t pch, const char *agent id);

agent _idis a PAMtext string (see section 4.2.2.1) and is not
suffixed with a '/’ delimter. The return value for this function is:

PAM BPC _TRUE - agent |ocated and | oaded.
PAM BPC FALSE - agent is not avail able.

Not e, although the agent is |loaded, no data is fed to it. The agent’s
opportunity to informthe client that it does not trust the server is
when the agent is shutdown.
6.2.1.3.2 dient marks agent as unusabl e
The applicant night prefer that a nanmed agent is marked as not
available. To do this, the client would invoke the follow ng function
i medi ately after obtaining a panc_handle t frompamstart().

i nt pant_di sabl e(pant_handl e_t pch, const char *agent _id);

here agent_id is a PAMtext string containing an agent_id (section
4.2.2.1).

The return value for this function is:

PAM BPC _TRUE - agent is disabled. This is the response
i ndependent of whether the agent is locally
avai l abl e.

PAM BPC FALSE - agent cannot be disabled (this may be because

it has al ready been invoked).
6.2.1.4 Allocating and mani pul ati ng binary pronpts
Al'l conversation between an client and an agent takes place with
respect to binary prompts. A binary pronpt (see section 4.2.2), is
obt ai ned, resized and del eted via the followi ng C macro:

CREATI ON of a binary pronpt with control X1 and data length Y1

pant_bp_t pronpt = NULL
PAM BP_RENEW &pronpt, X1, Y1);

REPLACEMENT of a binary pronpt with a control X2 and data |ength Y2:
PAM _BP_RENEW &pronpt, X2, Y2);
DELETI ON of a binary pronpt (the referenced pronpt is scrubbed):
PAM BP_RENEW &pr onpt, 0, 0);
Not e, the PAM BP_RENEW rmacro al ways overwrites any pronpt that you
call it with, deleting and liberating the old contents in a secure
fashion. Also note that PAM BP_RENEW when returning a pronpt of data
size Y1>0, will always append a '\0’ byte to the end of the pronpt (at
data offset Y1). It is thus, by definition, acceptable to treat the
data contents of a binary packet as a text string (see 4.2.1).

FILLING a binary pronpt froma nmenory pointer Ul fromoffset Ol of
| ength L1:

PAM BP_FI LL(pronpt, O1, L1, Ul);
the CONTROL type for the packet can be obtained as foll ows:
control = PAM PB_CONTROL(pronpt);

the LENGTH of a data within the pronpt (_excluding_its header
i nformati on) can be obtained as foll ows:

| ength = PAM BP_LENGTH(pr onpt) ;

the total SIZE of the pronpt (_including_ its header information)
can be obtained as follows:

size = PAM BP_SI ZE(pronpt) ;

EXTRACTI NG data froma binary pronpt fromoffset O2 of length L2 to
a nmenory pointer U2:

PAM BP_EXTRACT(pronpt, 2, L2, U2);

If you require direct access to the raw pronpt DATA, you shoul d use
the foll owi ng nacro:

__u8 *raw _data = PAM BP_DATA(pronpt);
6.2.1.5 dient<->agent conversations

Al'l exchanges of binary pronpts with agents are handled with the
single function:

i nt panct_converse(panc_handl e_t *pch, panc_bp_t *pronpt_p);

The return value for pant_converse(...) is PAM BPC TRUE when there is
a response packet and PAM BPC FALSE when the client is unable to
handl e the request represented by the original pronpt. In this latter
case, *pronpt_p is set to NULL.

This function takes a binary pronpt and returns a replacenent binary
pronpt that is either a request froman agent to be acted upon by the
client or the 'result’ which should be forwarded to the server. In the
fornmer case, the following nmacro will return 1 (PAM BPC TRUE) and in
all other cases, 0 (PAM BPC_FALSE):

PAM BPC FOR CLIENT(/* pant_bp_t */ pronpt)

Note, all non-NULL binary pronpts returned by pant_converse(...), are
termnated with a "\0’, even when the full length of the pronpt (as
returned by the agent) does not contain this delimter. This is a
defined property of the PAM BP_RENEW nmacro, and can be relied upon.

I nportant security note: in certain inplenentations, agents are

i mpl ement ed by executabl e binaries, which are transparently | oaded and
managed by the PAMclient library. To ensure there is never a | eakage
of elevated privilege to an unprivileged agent, the client application
should go to sone effort to lower its level of privilege. It remains
the responsibility of the applicant and the client to ensure that it

is not conpronised by a rogue agent.
6.2.1.6 Term nation of agents

When closing the authentication session and severing the connection
between a client and a selection of agents, the following function is
used:

i nt pant_end(pant_handl e t *pch);
Following a call to panct_end, the pant_handle t will be invalid.
The return value for this function is one of the follow ng:

PAM BPC _TRUE - all invoked agents are content with
aut hentication (the server is _not_ judged
_un_trustworthy by any agent)

PAM BPC_FALSE - one or nore agents were unsatisfied at
being termnated. |In general, the client
should terminate its connection to the
server and indicate to the applicant that
the server is untrusted.

6.2.2 |ibpant <-> agents

The agents are mani pulated fromwi thin |ibpanc. Each agent is an
executable in its own right. This pernmits the agent to have access to
sensitive data not accessible directly fromthe client. The node of
conmuni cati on between |ibpant and an agent is through a pair of

pi pes. The agent reads binary pronpts (section 4.2.2)

through its standard input file descriptor and wites response (to the
server) binary pronpts and instruction binary pronpts (instructions
for the client) through its standard output file descriptor

6.3 dient <-> server

This interface is concerned with the exchange of text and binary
pronpts between the client application and the server application. No
APl is provided for this as it is considered specific to the transport
protocol shared by the client and the server

6.4 Server <-> nodul es

The server nmakes use of a general APl for communicating with

nodul es. The client is not required to communicate directly with
avai |l abl e nodul es. By abstracting the authentication interface, it
becomes possible for the local administrator to make a run tinme
deci si on about the authentication nethod adopted by the server

6.4.1 Functions and definitions available to servers and nodul es
[This section will docunent the follow ng functions
pam set item()

pam get item()
pam fail _del ay(pam handl e_t *panh, unsigned int mnicro_sec)

pam get env(pam handl e_t *panh, const char *varnane)
pam strerror(pam handle_t *panmh, int pam errno)

]

6.4.2 Server <-> |ibpam
[This section will docunent the follow ng pam calls:

pam st art

pam end

pam aut henticate (*)
pam set cred

pam acct _ngnt

pam open_sessi on
pam cl ose_sessi on
pam chaut ht ok (*)

The asterisked functions may return PAM | NCOWLETE. |In such cases, the
application should be aware that the conversation function was called
and that it returned PAM CONV_AGAIN to a nodule. The correct action
for the application to take in response to receiving PAM | NCOVPLETE

is to acquire the replies so that the next time the conversation
function is called it will be able to provide the desired

responses. And then recall pam authenticate (pam chauthtok) with the
same argunents. Libpamw || arrange that the nodule stack is resuned
fromthe nodule that returned before. This functionality is required
for prograns whose user interface is maintained by an event |oop.]

6.4.3 |ibpam <-> nopdul es
[This section will docunent the follow ng pam and pamsm calls:
functions provided by Iibpam

pam set data
pam get data

functions provided to |ibpam by each nodul e

groups:
AUTHENTI CATI ON
pam sm aut henti cate
pam sm setcred
ACCOUNT
pam sm acct _ngnt
SESSI ON
pam sm open_sessi on
pam sm cl ose_sessi on
AUTHENTI CATI ON TOKEN MANAGEMENT
pam sm chaut ht ok

]
7 Security considerations
This docunent is devoted to standardi zi ng authentication

infrastructure: everything in this docunent has inplications for
security.

8 Contact

The emai|l list for discussing issues related to this docunent is
<pam | i st @ edhat . conp.

9 References

[1] OSF RFC 86.0, "Unified Login with Pluggabl e Authentication
Modul es (PAM ", Cctober 1995

10 Aut hor’'s Address

Andrew G Morgan
Emai | ;. norgan@tp. kernel . org

$ld: draft-norgan-pamraw,v 1.8 1999/12/14 06: 31:57 norgan Exp $

	Pluggable Authentication Modules
	Internet Draft, October 6, 1999
	1 Status of this memo
	2 Abstract
	3 Introduction
	4 Definitions
	4.1 Players in the authentication process
	4.2 Defined Data Types
	4.2.1 text string
	4.2.2 binary prompt
	4.2.2.1 PAM_BPC_SELECT binary prompts

	4.3 Special cases

	5 Defined interfaces for information flow
	5.1 Applicant <-> client
	5.2 Client <-> agent
	5.3 Client <-> server
	5.4 Server <-> module

	6 C API for application interfaces (client and server)
	6.1 Applicant <-> client
	6.2 Client <-> agent
	6.2.1 Client <-> libpamc
	6.2.1.1 Compilation information
	6.2.1.2 Initializing libpamc
	6.2.1.3 Client (Applicant) selection of agents
	6.2.1.3.1 Client demands agent
	6.2.1.3.2 Client marks agent as unusable

	6.2.1.4 Allocating and manipulating binary prompts
	6.2.1.5 Client<->agent conversations
	6.2.1.6 Termination of agents

	6.2.2 libpamc <-> agents

	6.3 Client <-> server
	6.4 Server <-> modules
	6.4.1 Functions and definitions available to servers and modules
	6.4.2 Server <-> libpam
	6.4.3 libpam <-> modules

	7 Security considerations
	8 Contact
	9 References
	10 Author’s Address

	
	IETF Title Page

