
PAM working group A.G. Morgan
Internet Draft: October 6, 1999
Document: draft-morgan-pam-07.txt
Expires: June 13, 2000
Obsoletes: draft-morgan-pam-06.txt

 Pluggable Authentication Modules

 1 Status of this memo

 This document is an draft specification. The latest version of this
 draft may be obtained from here:

 http://linux.kernel.org/pub/linux/libs/pam/pre/doc/

 As

 Linux-PAM-’version’-docs.tar.gz

 It is also contained in the Linux-PAM tar ball.

 2 Abstract

 This document is concerned with the definition of a general
 infrastructure for module based authentication. The infrastructure is
 named Pluggable Authentication Modules (PAM for short).

 3 Introduction

 Computers are tools. They provide services to people and other
 computers (collectively we shall call these _users_ entities). In
 order to provide convenient, reliable and individual service to
 different entities, it is common for entities to be labelled. Having
 defined a label as referring to a some specific entity, the label is
 used for the purpose of protecting and allocating data resources.

 All modern operating systems have a notion of labelled entities and
 all modern operating systems face a common problem: how to
 authenticate the association of a predefined label with applicant
 entities.

 There are as many authentication methods as one might care to count.
 None of them are perfect and none of them are invulnerable. In
 general, any given authentication method becomes weaker over time. It
 is common then for new authentication methods to be developed in
 response to newly discovered weaknesses in the old authentication
 methods.

 The problem with inventing new authentication methods is the fact that
 old applications do not support them. This contributes to an inertia
 that discourages the overhaul of weakly protected systems. Another
 problem is that individuals (people) are frequently powerless to layer
 the protective authentication around their systems. They are forced
 to rely on single (lowest common denominator) authentication schemes
 even in situations where this is far from appropriate.

 PAM, as discussed in this document, is a generalization of the

 approach first introduced in [1]. In short, it is a
 general framework of interfaces that abstract the process of
 authentication. With PAM, a service provider can custom protect
 individual services to the level that they deem is appropriate.

 PAM has nothing explicit to say about transport layer encryption.
 Within the context of this document encryption and/or compression of
 data exchanges are application specific (strictly between client and
 server) and orthogonal to the process of authentication.

 4 Definitions

 Here we pose the authentication problem as one of configuring defined
 interfaces between two entities.

 4.1 Players in the authentication process

 PAM reserves the following words to specify unique entities in the
 authentication process:

 applicant
 the entity (user) initiating an application for service
 [PAM associates the PAM_RUSER _item_ with this requesting user].

 arbitrator
 the entity (user) under whose identity the service application
 is negotiated and with whose authority service is granted.

 user
 the entity (user) whose identity is being authenticated
 [PAM associates the PAM_USER _item_ with this identity].

 server
 the application that provides service, or acts as an
 authenticated gateway to the requested service. This
 application is completely responsible for the server end of
 the transport layer connecting the server to the client.
 PAM makes no assumptions about how data is encapsulated for
 exchanges between the server and the client, only that full
 octet sequences can be freely exchanged without corruption.

 client
 application providing the direct/primary interface to
 applicant. This application is completely responsible
 for the client end of the transport layer connecting the
 server to the client. PAM makes no assumptions about how data
 is encapsulated for exchanges between the server and the
 client, only that full octet sequences can be freely
 exchanged without corruption.

 module
 authentication binary that provides server-side support for
 some (arbitrary) authentication method.

 agent
 authentication binary that provides client-side support for
 some (arbitrary) authentication method.

 Here is a diagram to help orient the reader:

 +-------+ +--------+
 | agent | .| module |
 . +-------+ .+--------+
 V | . |
 . | V |
 +---------+ +-------+ . +------+
 | | |libpamc| . |libpam|
 | | +-------+ . +------+
 |applicant| | . |
 | | +--------+ +----------+
 | |---| client |-----------| server |
 +---------+ +--------+ +----------+

 Solid lines connecting the boxes represent two-way interaction. The
 dotted-directed lines indicate an optional connection beteween the
 plugin module (agent) and the server (applicant). In the case of the
 module, this represents the module invoking the ’conversation’
 callback function provided to libpam by the server application when it
 inititializes the libpam library. In the case of the agent, this may
 be some out-of-PAM API interaction (for example directly displaying a
 dialog box under X).

 4.2 Defined Data Types

 In this draft, we define two composite data types, the text string and
 the binary prompt. They are the data types used to communicate
 authentication requests and responses.

 4.2.1 text string

 The text string is a simple sequence of non-NUL (NUL = 0x00)
 octets. Terminated with a single NUL (0x00) octet. The character set
 employed in the octet sequence may be negotiated out of band, but
 defaults to utf-8.

 [character data | NUL]
 [octet sequence | 0x00]

 Within the rest of this text, PAM text strings are delimited with a
 pair of double quotes. Example, "this" = {’t’;’h’;’i’;’s’;0x00}.

 4.2.2 binary prompt

 A binary prompt consists of a stream of octets arranged as follows:

 --
 [u32 | u8 | (length-5 octets)]
 [length | control | data]
 --

 That is, a 32-bit unsigned integer in network byte order, a single
 unsigned byte of control information and a sequence of octets of

 length (length-5). The composition of the _data_ is context dependent
 but is generally not a concern for either the server or the client. It
 is very much the concern of modules and agents.

 For purposes of interoperability, we define the following control
 characters as legal.

 value symbol description

 0x01 PAM_BPC_OK - continuation packet
 0x02 PAM_BPC_SELECT - initialization packet
 0x03 PAM_BPC_DONE - termination packet
 0x04 PAM_BPC_FAIL - unable to execute

 The following control characters are only legal for exchanges between
 an agent and a client (it is the responsibility of the client to
 enforce this rule in the face of a rogue server):

 0x41 PAM_BPC_GETENV - obtain client env.var
 0x42 PAM_BPC_PUTENV - set client env.var
 0x43 PAM_BPC_TEXT - display message
 0x44 PAM_BPC_ERROR - display error message
 0x45 PAM_BPC_PROMPT - echo’d text prompt
 0x46 PAM_BPC_PASS - non-echo’d text prompt

 Note, length is always equal to the total length of the binary
 prompt and represented by a network ordered unsigned 32 bit integer.

 4.2.2.1 PAM_BPC_SELECT binary prompts

 Binary prompts of control type PAM_BPC_SELECT have a defined
 data part. It is composed of three elements:

 {agent_id;’/’;data}

 The agent_id is a sequence of characters satisfying the following
 regexp:

 /^[a-z0-9_]+(@[a-z0-9_.]+)?$/

 and has a specific form for each independent agent.

 o Agent_ids that do not contain an at-sign (@) are reserved to be
 assigned by IANA (Internet Assigned Numbers Authority). Names of
 this format MUST NOT be used without first registering with IANA.
 Registered names MUST NOT contain an at-sign (@).

 o Anyone can define additional agents by using names in the format
 name@domainname, e.g. "ouragent@example.com". The part following
 the at-sign MUST be a valid fully qualified internet domain name
 [RFC-1034] controlled by the person or organization defining the
 name. (Said another way, if you control the email address that
 your agent has as an identifier, they you are entitled to use
 this identifier.) It is up to each domain how it manages its local
 namespace.

 The ’/’ character is a mandatory delimiter, indicating the end of the

 agent_id. The trailing data is of a format specific to the agent with
 the given agent_id.

 4.3 Special cases

 In a previous section (4.1) we identified the most general
 selection of authentication participants. In the case of network
 authentication, it is straightforward to ascribe identities to the
 defined participants. However, there are also special (less general)
 cases that we recognize here.

 The primary authentication step, when a user is directly introduced
 into a computer system (log’s on to a workstation) is a special case.
 In this situation, the client and the server are generally one
 application. Before authenticating such a user, the applicant is
 formally unknown: PAM_RUSER is NULL.

 Some client-server implementations (telnet for example) provide
 effective full tty connections. In these cases, the four simple text
 string prompting cases (see below) can be handled as in the primary
 login step. In other words, the server absorbs most of the overhead of
 propagating authentication messages. In these cases, there is special
 client/server support for handling binary prompts.

 5 Defined interfaces for information flow

 Here, we discuss the information exchange interfaces between the
 players in the authentication process. It should be understood that
 the server side is responsible for driving the authentication of the
 applicant. Notably, every request received by the client from the
 server must be matched with a single response from the client to the
 server.

 5.1 Applicant <-> client

 Once the client is invoked, requests to the applicant entity are
 initiated by the client application. General clients are able to make
 the following requests directly to an applicant:

 echo text string
 echo error text string
 prompt with text string for echo’d text string input
 prompt with text string for concealed text string input

 the nature of the interface provided by the client for the benefit of
 the applicant entity is client specific and not defined by PAM.

 5.2 Client <-> agent

 In general, authentication schemes require more modes of exchange than
 the four defined in the previous section (5.1). This
 provides a role for client-loadable agents. The client and agent
 exchange binary-messages that can have one of the following forms:

 client -> agent
 binary prompt agent expecting binary prompt reply to client

 agent -> client
 binary prompt reply from agent to clients binary prompt

 Following the acceptance of a binary prompt by the agent, the agent
 may attempt to exchange information with the client before returning
 its binary prompt reply. Permitted exchanges are binary prompts of the
 following types:

 agent -> client
 set environment variable (A)
 get environment variable (B)
 echo text string (C)
 echo error text string (D)
 prompt for echo’d text string input (E)
 prompt for concealed text string input (F)

 In response to these prompts, the client must legitimately respond
 with a corresponding binary prompt reply. We list a complete set of
 example exchanges, including each type of legitimate response (passes
 and a single fail):

 Type | Agent request | Client response

 (A) | {13;PAM_BPC_PUTENV;"FOO=BAR"} | {5;PAM_BPC_OK;}
 | {10;PAM_BPC_PUTENV;"FOO="} | {5;PAM_BPC_OK;}
 | {9;PAM_BPC_PUTENV;"FOO"} (*) | {5;PAM_BPC_OK;}
 | {9;PAM_BPC_PUTENV;"BAR"} (*) | {5;PAM_BPC_FAIL;}

 (B) | {10;PAM_BPC_GETENV;"TERM"} | {11;PAM_BPC_OK;"vt100"}
 | {9;PAM_BPC_GETENV;"FOO"} | {5;PAM_BPC_FAIL;}

 (C) | {12;PAM_BPC_TEXT;"hello!"} | {5;PAM_BPC_OK;}
 | {12;PAM_BPC_TEXT;"hello!"} | {5;PAM_BPC_FAIL;}

 (D) | {11;PAM_BPC_TEXT;"ouch!"} | {5;PAM_BPC_OK;}
 | {11;PAM_BPC_TEXT;"ouch!"} | {5;PAM_BPC_FAIL;}

 (E) | {13;PAM_BPC_PROMPT;"login: "} | {9;PAM_BPC_OK;"joe"}
 | {13;PAM_BPC_PROMPT;"login: "} | {6;PAM_BPC_OK;""}
 | {13;PAM_BPC_PROMPT;"login: "} | {5;PAM_BPC_FAIL;}

 (F) | {16;PAM_BPC_PASS;"password: "} | {9;PAM_BPC_OK;"XYZ"}
 | {16;PAM_BPC_PASS;"password: "} | {6;PAM_BPC_OK;""}
 | {16;PAM_BPC_PASS;"password: "} | {5;PAM_BPC_FAIL;}

 (*) Used to attempt the removal of a pre-existing environment
 variable.

 5.3 Client <-> server

 Once the client has established a connection with the server (the
 nature of the transport protocol is not specified by PAM), the server
 is responsible for driving the authentication process.

 General servers can request the following from the client:

 (to be forwarded by the client to the applicant)
 echo text string
 echo error text string
 prompt for echo’d text string response
 prompt for concealed text string response

 (to be forwarded by the client to the appropriate agent)
 binary prompt for a binary prompt response

 Client side agents are required to process binary prompts. The
 agents’ binary prompt responses are returned to the server.

 5.4 Server <-> module

 Modules drive the authentication process. The server provides a
 conversation function with which it encapsulates module-generated
 requests and exchanges them with the client. Every message sent by a
 module should be acknowledged.

 General conversation functions can support the following five
 conversation requests:

 echo text string
 echo error string
 prompt for echo’d text string response
 prompt for concealed text string response
 binary prompt for binary prompt response

 The server is responsible for redirecting these requests to the
 client.

 6 C API for application interfaces (client and server)

 6.1 Applicant <-> client

 No API is defined for this interface. The interface is considered to
 be specific to the client application. Example applications include
 terminal login, (X)windows login, machine file transfer applications.

 All that is important is that the client application is able to
 present the applicant with textual output and to receive textual
 input from the applicant. The forms of textual exchange are listed
 in an earlier section (5.1). Other methods of
 data input/output are better suited to being handled via an
 authentication agent.

 6.2 Client <-> agent

 The client makes use of a general API for communicating with
 agents. The client is not required to communicate directly with
 available agents, instead a layer of abstraction (in the form of a
 library: libpamc) takes care of loading and maintaining communication
 with all requested agents. This layer of abstraction will choose which
 agents to interact with based on the content of binary prompts it
 receives that have the control type PAM_BPC_SELECT.

 6.2.1 Client <-> libpamc

 6.2.1.1 Compilation information

 The C-header file provided for client-agent abstraction is included
 with the following source line:

 #include <security/pam_client.h>

 The library providing the corresponding client-agent abstraction
 functions is, libpamc.

 cc -lpamc

 6.2.1.2 Initializing libpamc

 The libpamc library is initialized with a call to the following
 function:

 pamc_handle_t pamc_start(void);

 This function is responsible for configuring the library and
 registering the location of available agents. The location of the
 available agents on the system is implementation specific.

 pamc_start() function returns NULL on failure. Otherwise, the return
 value is a pointer to an opaque data type which provides a handle to
 the libpamc library. On systems where threading is available, the
 libpamc libraray is thread safe provided a single (pamc_handler_t *)
 is used by each thread.

 6.2.1.3 Client (Applicant) selection of agents

 For the purpose of applicant and client review of available agents,
 the following function is provided.

 char **pamc_list_agents(pamc_handle_t pch);

 This returns a list of pointers to the agent_id’s of the agents which
 are available on the system. The list is terminated by a NULL pointer.
 It is the clients responsibility to free this memory area by calling
 free() on each agent id and the block of agent_id pointers in the
 result.

 PAM represents a server-driven authentication model, so by default
 any available agent may be invoked in the authentication process.

 6.2.1.3.1 Client demands agent

 If the client requires that a specific authentication agent is
 satisfied during the authentication process, then the client should
 call the following function, immediately after obtaining a
 pamc_handle_t from pamc_start().

 int pamc_load(pamc_handle_t pch, const char *agent_id);

 agent_id is a PAM text string (see section 4.2.2.1) and is not
 suffixed with a ’/’ delimiter. The return value for this function is:

 PAM_BPC_TRUE - agent located and loaded.
 PAM_BPC_FALSE - agent is not available.

 Note, although the agent is loaded, no data is fed to it. The agent’s
 opportunity to inform the client that it does not trust the server is
 when the agent is shutdown.

 6.2.1.3.2 Client marks agent as unusable

 The applicant might prefer that a named agent is marked as not
 available. To do this, the client would invoke the following function
 immediately after obtaining a pamc_handle_t from pam_start().

 int pamc_disable(pamc_handle_t pch, const char *agent_id);

 here agent_id is a PAM text string containing an agent_id (section
 4.2.2.1).

 The return value for this function is:

 PAM_BPC_TRUE - agent is disabled. This is the response
 independent of whether the agent is locally
 available.

 PAM_BPC_FALSE - agent cannot be disabled (this may be because
 it has already been invoked).

 6.2.1.4 Allocating and manipulating binary prompts

 All conversation between an client and an agent takes place with
 respect to binary prompts. A binary prompt (see section 4.2.2), is
 obtained, resized and deleted via the following C-macro:

 CREATION of a binary prompt with control X1 and data length Y1:

 pamc_bp_t prompt = NULL;
 PAM_BP_RENEW(&prompt, X1, Y1);

 REPLACEMENT of a binary prompt with a control X2 and data length Y2:

 PAM_BP_RENEW(&prompt, X2, Y2);

 DELETION of a binary prompt (the referenced prompt is scrubbed):

 PAM_BP_RENEW(&prompt, 0, 0);

 Note, the PAM_BP_RENEW macro always overwrites any prompt that you
 call it with, deleting and liberating the old contents in a secure
 fashion. Also note that PAM_BP_RENEW, when returning a prompt of data
 size Y1>0, will always append a ’\0’ byte to the end of the prompt (at
 data offset Y1). It is thus, by definition, acceptable to treat the
 data contents of a binary packet as a text string (see 4.2.1).

 FILLING a binary prompt from a memory pointer U1 from offset O1 of
 length L1:

 PAM_BP_FILL(prompt, O1, L1, U1);

 the CONTROL type for the packet can be obtained as follows:

 control = PAM_PB_CONTROL(prompt);

 the LENGTH of a data within the prompt (_excluding_ its header
 information) can be obtained as follows:

 length = PAM_BP_LENGTH(prompt);

 the total SIZE of the prompt (_including_ its header information)
 can be obtained as follows:

 size = PAM_BP_SIZE(prompt);

 EXTRACTING data from a binary prompt from offset O2 of length L2 to
 a memory pointer U2:

 PAM_BP_EXTRACT(prompt, O2, L2, U2);

 If you require direct access to the raw prompt DATA, you should use
 the following macro:

 __u8 *raw_data = PAM_BP_DATA(prompt);

 6.2.1.5 Client<->agent conversations

 All exchanges of binary prompts with agents are handled with the
 single function:

 int pamc_converse(pamc_handle_t *pch, pamc_bp_t *prompt_p);

 The return value for pamc_converse(...) is PAM_BPC_TRUE when there is
 a response packet and PAM_BPC_FALSE when the client is unable to
 handle the request represented by the original prompt. In this latter
 case, *prompt_p is set to NULL.

 This function takes a binary prompt and returns a replacement binary
 prompt that is either a request from an agent to be acted upon by the
 client or the ’result’ which should be forwarded to the server. In the
 former case, the following macro will return 1 (PAM_BPC_TRUE) and in
 all other cases, 0 (PAM_BPC_FALSE):

 PAM_BPC_FOR_CLIENT(/* pamc_bp_t */ prompt)

 Note, all non-NULL binary prompts returned by pamc_converse(...), are
 terminated with a ’\0’, even when the full length of the prompt (as
 returned by the agent) does not contain this delimiter. This is a
 defined property of the PAM_BP_RENEW macro, and can be relied upon.

 Important security note: in certain implementations, agents are
 implemented by executable binaries, which are transparently loaded and
 managed by the PAM client library. To ensure there is never a leakage
 of elevated privilege to an unprivileged agent, the client application
 should go to some effort to lower its level of privilege. It remains
 the responsibility of the applicant and the client to ensure that it

 is not compromised by a rogue agent.

 6.2.1.6 Termination of agents

 When closing the authentication session and severing the connection
 between a client and a selection of agents, the following function is
 used:

 int pamc_end(pamc_handle_t *pch);

 Following a call to pamc_end, the pamc_handle_t will be invalid.

 The return value for this function is one of the following:

 PAM_BPC_TRUE - all invoked agents are content with
 authentication (the server is _not_ judged
 _un_trustworthy by any agent)

 PAM_BPC_FALSE - one or more agents were unsatisfied at
 being terminated. In general, the client
 should terminate its connection to the
 server and indicate to the applicant that
 the server is untrusted.

 6.2.2 libpamc <-> agents

 The agents are manipulated from within libpamc. Each agent is an
 executable in its own right. This permits the agent to have access to
 sensitive data not accessible directly from the client. The mode of
 communication between libpamc and an agent is through a pair of
 pipes. The agent reads binary prompts (section 4.2.2)
 through its standard input file descriptor and writes response (to the
 server) binary prompts and instruction binary prompts (instructions
 for the client) through its standard output file descriptor.

 6.3 Client <-> server

 This interface is concerned with the exchange of text and binary
 prompts between the client application and the server application. No
 API is provided for this as it is considered specific to the transport
 protocol shared by the client and the server.

 6.4 Server <-> modules

 The server makes use of a general API for communicating with
 modules. The client is not required to communicate directly with
 available modules. By abstracting the authentication interface, it
 becomes possible for the local administrator to make a run time
 decision about the authentication method adopted by the server.

 6.4.1 Functions and definitions available to servers and modules

 [This section will document the following functions

 pam_set_item()
 pam_get_item()
 pam_fail_delay(pam_handle_t *pamh, unsigned int micro_sec)

 pam_get_env(pam_handle_t *pamh, const char *varname)
 pam_strerror(pam_handle_t *pamh, int pam_errno)
]

 6.4.2 Server <-> libpam

 [This section will document the following pam_ calls:

 pam_start
 pam_end
 pam_authenticate (*)
 pam_setcred
 pam_acct_mgmt
 pam_open_session
 pam_close_session
 pam_chauthtok (*)

 The asterisked functions may return PAM_INCOMPLETE. In such cases, the
 application should be aware that the conversation function was called
 and that it returned PAM_CONV_AGAIN to a module. The correct action
 for the application to take in response to receiving PAM_INCOMPLETE,
 is to acquire the replies so that the next time the conversation
 function is called it will be able to provide the desired
 responses. And then recall pam_authenticate (pam_chauthtok) with the
 same arguments. Libpam will arrange that the module stack is resumed
 from the module that returned before. This functionality is required
 for programs whose user interface is maintained by an event loop.]

 6.4.3 libpam <-> modules

 [This section will document the following pam_ and pam_sm_ calls:

 functions provided by libpam

 pam_set_data
 pam_get_data

 functions provided to libpam by each module

 groups:
 AUTHENTICATION
 pam_sm_authenticate
 pam_sm_setcred
 ACCOUNT
 pam_sm_acct_mgmt
 SESSION
 pam_sm_open_session
 pam_sm_close_session
 AUTHENTICATION TOKEN MANAGEMENT
 pam_sm_chauthtok
]

 7 Security considerations

 This document is devoted to standardizing authentication
 infrastructure: everything in this document has implications for
 security.

 8 Contact

 The email list for discussing issues related to this document is
 <pam-list@redhat.com>.

 9 References

 [1] OSF RFC 86.0, "Unified Login with Pluggable Authentication
 Modules (PAM)", October 1995

 10 Author’s Address

 Andrew G. Morgan
 Email: morgan@ftp.kernel.org

 $Id: draft-morgan-pam.raw,v 1.8 1999/12/14 06:31:57 morgan Exp $

	Pluggable Authentication Modules
	Internet Draft, October 6, 1999
	1 Status of this memo
	2 Abstract
	3 Introduction
	4 Definitions
	4.1 Players in the authentication process
	4.2 Defined Data Types
	4.2.1 text string
	4.2.2 binary prompt
	4.2.2.1 PAM_BPC_SELECT binary prompts

	4.3 Special cases

	5 Defined interfaces for information flow
	5.1 Applicant <-> client
	5.2 Client <-> agent
	5.3 Client <-> server
	5.4 Server <-> module

	6 C API for application interfaces (client and server)
	6.1 Applicant <-> client
	6.2 Client <-> agent
	6.2.1 Client <-> libpamc
	6.2.1.1 Compilation information
	6.2.1.2 Initializing libpamc
	6.2.1.3 Client (Applicant) selection of agents
	6.2.1.3.1 Client demands agent
	6.2.1.3.2 Client marks agent as unusable

	6.2.1.4 Allocating and manipulating binary prompts
	6.2.1.5 Client<->agent conversations
	6.2.1.6 Termination of agents

	6.2.2 libpamc <-> agents

	6.3 Client <-> server
	6.4 Server <-> modules
	6.4.1 Functions and definitions available to servers and modules
	6.4.2 Server <-> libpam
	6.4.3 libpam <-> modules

	7 Security considerations
	8 Contact
	9 References
	10 Author’s Address

	
	IETF Title Page

