Net wor k Wor ki ng Group Paul J. Leach, M crosoft
| NTERNET- DRAFT Rich Salz, Certco
<draft-Ieach-uui ds-gui ds-01.txt>

Cat egory: Standards Track

Expi res August 4, 1998 February 4, 1998

UUI Ds and GUI Ds
STATUS OF THIS MEMO

This docunent is an Internet-Draft. Internet-Drafts are working
docunents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may al so distribute
wor ki ng docunments as Internet-Drafts.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress".

To learn the current status of any Internet-Draft, please check the
"lid-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rm, ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

Distribution of this docunent is unlinmted. Please send coments to
the authors or the CIFS mailing list at <cifs@li scuss. mcrosoft. conp.
Di scussions of the mailing Iist are archived at

<URL: http://discuss. nicrosoft.com archives/index.

ABSTRACT

This specification defines the format of UUI Ds (Universally Unique
IDentifier), also known as GQUIDs (dobally Unique IDentifier). A UUD
is 128 bits long, and if generated according to the one of the
mechani sms in this docunent, is either guaranteed to be different
fromall other UUI Ds/GJI Ds generated until 3400 A.D. or extrenely
likely to be different (depending on the nechani sm chosen). UUl Ds
were originally used in the Network Conmputing System (NCS) [1] and
later in the Open Software Foundation's (OSF) Distributed Conputing
Envi ronment [2].

This specification is derived fromthe latter specification with the
ki nd permi ssion of the CSF.

Tabl e of Contents

1. INtroduCti ON ..o 3

[Page 1]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

2. MOtI VAT ON .o 3
3. Specificati On 3
3. L FOr ML . . 4
.11 Variant. ..o 4
3.1.2 UUID L AYOUL . oo v et e e e e e e e 5
3. 1.3 VeI S ON. oo 5
3. 1.4 TiMBSt AN, . ot 6
3.1.5 CoCK SEOUENCE. . .. ittt e e e e e 6
31,6 NOAe. .o 7
.17 NT UUID. .. 7
3.2 Algorithns for creating a time-based UUID......................... 7
3.2.1 Basic algorithm 7
3.2.2 Reading stable storage............ . .. 8
3.2.3 Systemclock resolution.......... i, 8
3.2.4 Witing stable storage........ 9
3.2.5 Sharing state acroSS PrOCESSES. . . .ottt 9
3.2.6 UUD CGeneration details............. ... 9
3.3 Algorithmfor creating a name-based UUID......................... 10
3.4 Algorithns for creating a UUD fromtruly random or pseudo-random
MU S o ot e e e e 11
3.5 String Representation of UUIDs.......... 12
3.6 Conmparing UUIDs for equality....... 12
3.7 Conparing UU Ds for relative order......... i, 13
3.8 Byte order of UUIDS. e 13
4. Node | Ds when no | EEE 802 network card is available 14
5. Obtaining | EEE 802 addr @SSES ittt 15
6. Security Considerati ONS 15
7. Acknow edgemBNt S e 15

Leach, Salz expires Aug 1998 [Page 2]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

8. Ref erenCes 15
9. AUthOrs' addresSsSes i 16
10, NOtT CB .ot 16
11. Ful | Copyright Statenment 16
Appendix A _ UUID Sanple Inmplenmentation.................. 17
Appendi x B _ Sanmple output of utest........ i 27
Appendi x C _ Some name space IDs. 27

1. Introduction

This specification defines the format of UUI Ds (Universally Unique
I Dentifiers), also known as QU Ds (G obally Unique IDentifiers). A
UUIDis 128 bits long, and if generated according to the one of the
mechani sms in this docunent, is either guaranteed to be different
fromall other UUI Ds/GJI Ds generated until 3400 A.D. or extrenely
likely to be different (depending on the nechani sm chosen).

2. Motivation

One of the main reasons for using UWUDs is that no centralized
authority is required to adm nister them (beyond the one that

al l ocates | EEE 802.1 node identifiers). As a result, generation on
demand can be conpletely automated, and they can be used for a wide
vari ety of purposes. The UU D generation algorithm described here
supports very high allocation rates: 10 mllion per second per
machine if you need it, so that they could even be used as
transaction | Ds.

UUI Ds are fixed-size (128-bits) which is reasonably snmall relative to
other alternatives. This fixed, relatively small size lends itself
well to sorting, ordering, and hashing of all sorts, storing in

dat abases, sinple allocation, and ease of programing in general

3. Specification

A UUDIs an identifier that is unique across both space and tine,
with respect to the space of all UU Ds. To be precise, the UUD
consists of a finite bit space. Thus the tine value used for
constructing a UWIDis linmted and will roll over in the future
(approxi mately at A.D. 3400, based on the specified algorithn. A
UUI D can be used for multiple purposes, fromtagging objects with an
extremely short lifetine, to reliably identifying very persistent

obj ects across a network.

Leach, Salz expires Aug 1998 [Page 3]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

The generation of UU Ds does not require that a registration
authority be contacted for each identifier. Instead, it requires a
uni que val ue over space for each UU D generator. This spatially

uni que value is specified as an | EEE 802 address, which is usually
al ready avail able to network-connected systenms. This 48-bit address
can be assigned based on an address bl ock obtained through the | EEE
registration authority. This section of the UUI D specification
assunes the availability of an | EEE 802 address to a systemdesiring
to generate a UUID, but if one is not available section 4 specifies a
way to generate a probabilistically unique one that can not conflict
with any properly assigned | EEE 802 address.

.1 For mat

Inits nmost general form all that can be said of the UUD format is
that a UUIDis 16 octets, and that sone bits of octet 8 of the UU D
called the variant field (specified in the next section) deternine
finer structure.

.1.1 Variant

The variant field determnes the |layout of the UUD. That is, the
interpretation of all other bits in the UU D depends on the setting
of the bits in the variant field. The variant field consists of a
vari abl e nunber of the nsbs of octet 8 of the UU D

The following table lists the contents of the variant field.

MsbO Msbl Msb2 Description

0 - - Reserved, NCS backward conpatibility.
1 0 - The variant specified in this docunent.
1 1 0 Reserved, M crosoft Corporation backward

conpatibility

1 1 1 Reserved for future definition

O her UUID variants nay not interoperate with the UU D vari ant
specified in this docunent, where interoperability is defined as the
applicability of operations such as string conversion and | exica
ordering across different systens. However, UUl Ds all ocated according
to the stricture of different variants, though they may define
different interpretations of the bits outside the variant field, wll
not result in duplicate UUID allocation, because of the differing

val ues of the variant field itself.

The remaining fields described bel ow (version, tinmestanp, etc.) are
defined only for the UUI D variant noted above.

Leach, Salz expires Aug 1998 [Page 4]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

3.1.2 UU D | ayout
The following table gives the format of a UU D for the variant
specified herein. The UUI D consists of a record of 16 octets. To
m ni m ze confusion about bit assignments within octets, the UUID
record definition is defined only in ternms of fields that are
i ntegral numbers of octets. The fields are in order of significance
for conparison purposes, with "time_|ow' the nost significant, and
"node" the least significant.

Field Data Type Cctet Note
#
time_| ow unsi gned 32 0-3 The low field of the
bit integer ti mestanp.
time_md unsi gned 16 4-5 The mddle field of the
bit integer ti mestanp.

time_hi _and_version unsi gned 16 6-7 The high field of the
bit integer ti mestanmp mul tipl exed
wi th the version nunber.

cl ock_seq_hi _and_rese unsigned 8 8 The high field of the
rved bit integer cl ock sequence
nmul ti pl exed with the
vari ant.
cl ock_seq_I| ow unsi gned 8 9 The low field of the
bit integer cl ock sequence.
node unsi gned 48 10-15 The spatial ly unique
bit integer node identifier

3.1.3 Version
The version nunber is in the nost significant 4 bits of the tine
stanmp (tine_hi_and_version).
The following table lists currently defined versions of the UU D

MsbO Msbl Msb2 Msb3 Version Description

0 0 0 1 1 The tine-based version
specified in this
docunent .

0 0 1 0 2 Reserved for DCE

Security version, wth
enbedded POSI X Ul Ds.

0 0 1 1 3 The nane- based version
specified in this

Leach, Salz expires Aug 1998 [Page 5]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

docunent

0 1 0 0 4 The randomy or pseudo-
randonl y gener at ed
version specified in
thi s docunent

3.1.4 Timestanp
The tinestanp is a 60 bit value. For UU D version 1, this is
represented by Coordinated Universal Tinme (UTC) as a count of 100-
nanosecond i ntervals since 00:00:00.00, 15 Cctober 1582 (the date of
Gregorian reformto the Christian cal endar).

For systenms that do not have UTC avail abl e, but do have |ocal tine,
they MAY use local tinme instead of UTC, as long as they do so

consi stently throughout the system This is NOT RECOMMVENDED, however,
and it should be noted that all that is needed to generate UTC, given
local tine, is a time zone offset.

For UUID version 3, it is a 60 bit value constructed froma nane.

For UUI D version 4, it is a randomy or pseudo-randomy generated 60
bit val ue.

3.1.5 dock sequence
For UUI D version 1, the clock sequence is used to help avoid
duplicates that could arise when the clock is set backwards in tine
or if the node ID changes.

If the clock is set backwards, or even m ght have been set backwards
(e.g., while the systemwas powered off), and the UUI D generator can
not be sure that no UU Ds were generated with tinmestanps |arger than
the value to which the clock was set, then the clock sequence has to
be changed. If the previous value of the clock sequence is known, it
can be just increnented; otherwise it should be set to a random or

hi gh-qual ity pseudo random val ue.

Simlarly, if the node ID changes (e.g. because a network card has
been noved between machi nes), setting the clock sequence to a random
nunber mnini zes the probability of a duplicate due to slight
differences in the clock settings of the machines. (If the value of
cl ock sequence associated with the changed node I D were known, then
the cl ock sequence could just be incremented, but that is unlikely.)

The cl ock sequence MUST be originally (i.e., once in the lifetine of
a systen) initialized to a random nunber to minimze the correlation
across systens. This provides naxi mum protection agai nst node
identifiers that may nmove or switch fromsystemto systemrapidly.
The initial value MJUST NOT be correlated to the node identifier

For UUID version 3, it is a 14 bit value constructed from a nane.

Leach, Salz expires Aug 1998 [Page 6]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

For UUID version 4, it is a randomy or pseudo-randomy generated 14
bit val ue.

. 1.6 Node

For UU D version 1, the node field consists of the | EEE address,
usual Iy the host address. For systems with multiple | EEE 802
addresses, any avail abl e address can be used. The | owest addressed
octet (octet number 10) contains the global/local bit and the

uni cast/nulticast bit, and is the first octet of the address
transmtted on an 802.3 LAN.

For systens with no | EEE address, a randomy or pseudo-randonly
generated val ue may be used (see section 4). The multicast bit rmnust
be set in such addresses, in order that they will never conflict with
addr esses obtained fromnetwork cards.

For UUI D version 3, the node field is a 48 bit value constructed from
a nane.

For UUI D version 4, the node field is a randonmy or pseudo-randomy
generated 48 bit val ue.

1.7 Nl UUD
The nil UUDis special formof UUDthat is specified to have al
128 bits set to 0 (zero).

.2 Algorithnms for creating a tine-based UUI D

Various aspects of the algorithmfor creating a version 1 UUD are
di scussed in the followi ng sections. UU D generation requires a
guar ant ee of uni queness within the node ID for a given variant and

version. Interoperability is provided by conplying with the specified
data structure

.2.1 Basic algorithm

The following algorithmis sinple, correct, and inefficient:
htain a system w de gl obal [ock
From a system wi de shared stable store (e.g., a file), read the
UUI D generator state: the values of the time stanp, clock sequence,

and node I D used to generate the last UU D

CGet the current tinme as a 60 bit count of 100-nanosecond intervals
si nce 00: 00: 00. 00, 15 Cctober 1582

Get the current node ID

Leach, Salz expires Aug 1998 [Page 7]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

If the state was unavail abl e (non-exi stent or corrupted), or the
saved node IDis different than the current node I D, generate a
random cl ock sequence val ue

If the state was available, but the saved tine stanp is later than
the current tine stanp, increnent the clock sequence val ue

Format a UUID fromthe current time stanp, clock sequence, and node
I D val ues according to the structure in section 3.1 (see section
3.2.6 for nore details)

Save the state (current time stanmp, clock sequence, and node | D)
back to the stable store

Rel ease the system wi de gl obal | ock

If UUIDs do not need to be frequently generated, the above al gorithm
may be perfectly adequate. For higher perfornmance requirenents,
however, issues with the basic al gorithminclude:

Readi ng the state from stable storage each tinme is inefficient
The resolution of the system clock nmay not be 100- nanoseconds
Witing the state to stable storage each tine is inefficient

Sharing the state across process boundaries may be inefficient

Each of these issues can be addressed in a nodul ar fashion by |oca
i mprovenents in the functions that read and wite the state and read
the clock. W address each of themin turn in the followi ng sections.

. 2.2 Readi ng stabl e storage

The state only needs to be read from stabl e storage once at boot
time, if it is read into a systemw de shared volatile store (and
updat ed whenever the stable store is updated).

If an inplenentati on does not have any stable store avail able, then
it can always say that the values were unavailable. This is the |east
desirabl e inmplenentation, because it will increase the frequency of
creation of new cl ock sequence nunbers, which increases the
probability of duplicates.

If the node I D can never change (e.g., the net card is inseparable
fromthe systen), or if any change also reinitializes the clock
sequence to a random val ue, then instead of keeping it in stable
store, the current node I D may be returned.

.2.3 Systemcl ock resol ution
The tine stanp is generated fromthe system

i me, whose resolution
may be | ess than the resolution of the UUIDtine

i st anp.

— —+

Leach, Salz expires Aug 1998 [Page 8]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

If UU Ds do not need to be frequently generated, the tine stanp can
simply be the systemtinme multiplied by the nunber of 100-nanosecond
intervals per systemtine interval.

If a systemoverruns the generator by requesting too many UUl Ds
within a single systemtinme interval, the UUI D service MJST either
return an error, or stall the UU D generator until the system cl ock
cat ches up.

A high resolution tinme stanp can be sinulated by keeping a count of
how many UUl Ds have been generated with the sane val ue of the system
time, and using it to construction the loworder bits of the tine
stanmp. The count will range between zero and the nunber of 100-
nanosecond intervals per systemtinme interval.

Note: if the processors overrun the UU D generation frequently,
addi ti onal node identifiers can be allocated to the system which
will permt higher speed allocation by making multiple UU Ds
potentially avail able for each tine stanp val ue.

.2.4 Witing stable storage

The state does not always need to be witten to stable store every
time a UWID is generated. The tinestanp in the stable store can be
periodically set to a value larger than any yet used in a UUID; as

I ong as the generated UU Ds have time stanps |ess than that val ue,
and the cl ock sequence and node ID remai n unchanged, only the shared
volatile copy of the state needs to be updated. Furthernmore, if the
time stanp value in stable store is in the future by less than the
typical time it takes the systemto reboot, a crash will not cause a
reinitialization of the clock sequence.

.2.5 Sharing state across processes

If it is too expensive to access shared state each tine a UUID is
generated, then the system wi de generator can be inplenented to

all ocate a block of tine stanps each tinme it is called, and a per-
process generator can allocate fromthat block until it is exhausted.

.2.6 UUID Generation details
UUI Ds are generated according to the follow ng al gorithm

- Deternine the values for the UTC based tinestanp and cl ock sequence
to be used in the UU D, as described above.

- For the purposes of this algorithm consider the timestanp to be a
60-bit unsigned integer and the clock sequence to be a 14-bit

unsi gned integer. Sequentially nunber the bits in a field, starting
fromO (zero) for the least significant bit.

- Set the tine lowfield equal to the l|east significant 32-bits (bits

nunbered 0 to 31 inclusive) of the time stanmp in the same order of
si gni fi cance.

Leach, Salz expires Aug 1998 [Page 9]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

- Set the tine_nmd field equal to the bits nunbered 32 to 47
inclusive of the time stanp in the same order of significance.

- Set the 12 least significant bits (bits nunbered 0 to 11 incl usive)
of the tine_hi_and version field equal to the bits nunbered 48 to 59
inclusive of the time stanp in the same order of significance.

- Set the 4 nost significant bits (bits nunbered 12 to 15 incl usive)
of the tinme_hi_and version field to the 4-bit version nunber
corresponding to the UU D version being created, as shown in the
table in section 3.1.3.

- Set the clock seq low field to the 8 least significant bits (bits
nunbered 0 to 7 inclusive) of the clock sequence in the same order of
si gni ficance.

- Set the 6 least significant bits (bits nunbered 0 to 5 inclusive)
of the clock_seq_hi_and reserved field to the 6 nost significant bits
(bits nunmbered 8 to 13 inclusive) of the clock sequence in the sane
order of significance.

- Set the 2 nost significant bits (bits nunbered 6 and 7) of the
cl ock_seq_hi _and _reserved to 0 and 1, respectively.

- Set the node field to the 48-bit | EEE address in the sanme order of
significance as the address.

.3 Algorithm for creating a name-based UU D

The version 3 UUID is neant for generating UU Ds from "nanes" that
are drawn from and unique within, some "nane space". Sone exanpl es
of names (and, inplicitly, name spaces) m ght be DNS nanmes, URLs, |SO
ohject IDs (O Ds), reserved words in a programi ng | anguage, or X 500
Di sti ngui shed Nanes (DNs); thus, the concept of nane and nane space
shoul d be broadly construed, and not linmted to textual nanes. The
mechani snms or conventions for allocating names from and ensuring
their uniqueness within, their name spaces are beyond the scope of
this specification.

The requirenents for such UU Ds are as foll ows:

The UUI Ds generated at different tines fromthe sane nane in the
sane nanespace MJST be equa

The UUI Ds generated fromtwo different nanmes in the sanme nanespace
shoul d be different (with very high probability)

The UUI Ds generated fromthe same nane in two di fferent nanespaces
shoul d be different with (very high probability)

If two UUI Ds that were generated from names are equal, then they

were generated fromthe sane nane in the same namespace (with very
hi gh probability).

Leach, Salz expires Aug 1998 [Page 10]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98
The algorithm for generating the a UUID froma nane and a nane space
are as foll ows:

Al'locate a UUID to use as a "name space ID" for all UU Ds generated
fromnames in that nane space

Convert the nanme to a canoni cal sequence of octets (as defined by
t he standards or conventions of its nanme space); put the nanme space
IDin network byte order

Conmpute the MD5 [3] hash of the nanme space I D concatenated with the
nane

Set octets 0-3 of tinme lowfield to octets 0-3 of the MD5 hash
Set octets 0-1 of tinme_md field to octets 4-5 of the MD5 hash

Set octets 0-1 of time_hi_and version field to octets 6-7 of the
MD5 hash

Set the clock _seq_hi _and_reserved field to octet 8 of the MD5 hash
Set the clock _seq_lowfield to octet 9 of the MD5 hash
Set octets 0-5 of the node field to octets 10-15 of the MD5 hash

Set the 2 nmpst significant bits (bits nunbered 6 and 7) of the
cl ock_seq_hi _and reserved to 0 and 1, respectively.

Set the 4 nmpst significant bits (bits nunbered 12 to 15 incl usive)
of the tine_hi_and version field to the 4-bit version nunber
corresponding to the UU D version being created, as shown in the
tabl e above.

Convert the resulting UU D to | ocal byte order
3.4 Algorithns for creating a UUD fromtruly random or pseudo-random
number s

The version 4 UUID is neant for generating UUI Ds fromtruly-random or
pseudo-r andom nunbers.

The algorithmis as foll ows:

Set the 2 nost significant bits (bits nunbered 6 and 7) of the
cl ock_seq_hi _and _reserved to 0 and 1, respectively.

Set the 4 nost significant bits (bits nunbered 12 to 15 incl usive)
of the tinme_hi_and version field to the 4-bit version nunber
corresponding to the UU D version being created, as shown in the

t abl e above.

Leach, Salz expires Aug 1998 [Page 11]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

Set all the other bits to randomy (or pseudo-randonmly) chosen
val ues.

Here are several possible ways to generate the random val ues:

Use a physical source of randomess: for exanple, a white noise
generator, radioactive decay, or a lava |anp.

Use a cryptographic strength random nunber generator.

.5 String Representation of UU Ds

For use in human readable text, a UUID string representation is
specified as a sequence of fields, sone of which are separated by
si ngl e dashes.

Each field is treated as an integer and has its value printed as a
zero-filled hexadecinal digit string with the nost significant digit
first. The hexadecinmal values a to f inclusive are output as |ower
case characters, and are case insensitive on input. The sequence is
the sane as the UU D constructed type.

The formal definition of the UU D string representation is provided
by the followi ng extended BNF:

uJl D = <time_low "-" <tine_md> "-"
<tinme_high_and _version> "-"
<cl ock_seq_and_reserved>
<cl ock_seq_low> "-" <node>

tinme_| ow = 4*<hexCct et >
time_md = 2*<hexCct et >
ti me_high_and_version = 2*<hexCctet>
cl ock_seq_and reserved = <hexCctet >
cl ock_seq_I| ow = <hexCctet>
node = 6*<hexCct et
hexCct et = <hexDi gi t > <hexDi gi t>
hexDigit =
“o" | "1 | 2" | "3" | "4" | "5" | "€e" | "7 | "8" | "9"
"a' | "b" | "c¢" | "d" | "e" | "f"
| tA] B e] D] E] E

The following is an exanple of the string representation of a UUID;

f 81d4f ae- 7dec- 11d0- a765- 00a0c91e6bf 6
.6 Conparing UUIDs for equality
Consi der each field of the UU D to be an unsigned integer as shown in
the table in section 3.1. Then, to conpare a pair of UU Ds,
arithmetically conpare the corresponding fields fromeach UUD in

order of significance and according to their data type. Two UUI Ds are
equal if and only if all the corresponding fields are equal

Leach, Salz expires Aug 1998 [Page 12]

Internet-Draft

Note: as a practical matter,

UUI Ds and GUI Ds (DRAFT)

02/ 04/ 98

on many systens conparison of two UU Ds

for equality can be performed sinply by conparing the 128 bits of

their in-nmenory representation consi
integer. Here, it is presuned that

dered as a 128 bit unsigned

by the time the in-nenory

representation is obtained the appropriate byte-order

canoni cal i zati ons have been carri ed

.7 Conparing UU Ds for

rel ati ve order

out .

Two UUI Ds all ocated according to the same variant can al so be ordered

| exi cographically. For the UUID vari
two UUIDs follows the second if the
the WIDs differ is greater for the
of UUI Ds precedes the second if the
the WIDs differ is greater for the

.8 Byte order of UU Ds

UUI Ds may be transnmitted in many different forns,

be dependent on the presentation or
UUI D may be used. |n such cases,
the UUIDs fields on the wire will

or application protocol. However,

the order of the fields conformw th ordering set out
t he payl oad size of each field in the application
MUST be | arge enough that
in the process of encoding themfor transm ssion

above. Furthernore,
or presentation protoco
| ost

In the absence of explicit applicati
specification to the contrary, a UU
as follows:

t he order,
depend on the rel evant

the fields are encoded as 16 octets,

ant herein defined, the first of
nost significant field in which
first UWUD. The first of a pair
nost significant field in which
second UUI D.

some of which may
application protocol where the
sizes and byte orders of
presentation
t is strongly RECOMVENDED t hat

in section 3.1

no i nformation
on or presentation protoco

D is encoded as a 128-bit object,
with the sizes and

order of the fields defined in section 3.1, and with each field
encoded with the Most Significant Byte first (also known as network
byte order).

0 1 2 3

01234567890123456789012345678901

i i S e e o S o e

| time_| ow

s i I S e e s T i

| time_md

+- +++-+-+-+-+-+-+-+-+-+-+-+-

_hi_res | clk_seq_low

+ + T ek sk e S
node (2-5)

Bl o b ik i S S i S e R TR R

+- - - -
| cl k eq
+- - - -
I
+

Leach, Salz expires

Aug 1998

T Sl I S S S
B i s o SR S S S S S S |+
time_hi _and_version
B T ik i A S N S S
node (0-1)
T St R S S S

i S S S S T SN S SRR S

|
+-+
|

[Page 13]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

Node | Ds when no | EEE 802 network card is avail abl e

If a systemwants to generate UUI Ds but has no | EE 802 conpli ant
network card or other source of |EEE 802 addresses, then this section
descri bes how to generate one.

The ideal solution is to obtain a 47 bit cryptographic quality random
nunber, and use it as the low 47 bits of the node ID, with the npst
significant bit of the first octet of the node ID set to 1. This bit
is the unicast/nulticast bit, which will never be set in | EEE 802
addr esses obtained fromnetwork cards; hence, there can never be a
conflict between UU Ds generated by machines with and wi t hout network
cards.

If a system does not have a prinmtive to generate cryptographic

qual ity random nunbers, then in nost systens there are usually a
fairly large nunber of sources of randomess avail able from which one
can be generated. Such sources are system specific, but often

i ncl ude:

- the percent of nemory in use
- the size of main nmenory in bytes
- the anpbunt of free main nmenory in bytes
- the size of the paging or swap file in bytes
- free bytes of paging or swap file
- the total size of user virtual address space in bytes
- the total avail able user address space bytes
- the size of boot disk drive in bytes
- the free disk space on boot drive in bytes
- the current tine
- the anpbunt of tinme since the system booted
- the individual sizes of files in various systemdirectories
- the creation, last read, and nodification tines of files in various
systemdirectories
- the utilization factors of various systemresources (heap, etc.)
- current nouse cursor position
- current caret position
- current nunber of running processes, threads
- handl es or I1Ds of the desktop wi ndow and the active w ndow
- the value of stack pointer of the caller
- the process and thread ID of caller
various processor architecture specific performnce counters
(|nstruct|ons execut ed, cache misses, TLB nisses)

(Note that it precisely the above kinds of sources of randomess that
are used to seed cryptographic quality random nunmber generators on
systenms w thout special hardware for their construction.)

In addition, itens such as the conmputer's nane and the nane of the
operating system while not strictly speaking random will help
differentiate the results fromthose obtained by other systens.

The exact algorithmto generate a node ID using these data is system
specific, because both the data avail able and the functions to obtain

Leach, Salz expires Aug 1998 [Page 14]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

them are often very system specific. However, assum ng that one can
concatenate all the values fromthe randommess sources into a buffer
and that a cryptographic hash function such as MD5 [3] is avail abl e,
then any 6 bytes of the MD5 hash of the buffer, with the nulticast
bit (the high bit of the first byte) set will be an appropriately
random node | D.

O her hash functions, such as SHA-1 [4], can al so be used. The only
requirenent is that the result be suitably random _ in the sense that
the outputs froma set uniformy distributed inputs are thensel ves
uniformy distributed, and that a single bit change in the input can
be expected to cause half of the output bits to change.

ot ai ni ng | EEE 802 addresses
At the time of witing, the follow ng URL

http://standards. i eee. org/ db/oui/forns/

contains informati on on how to obtain an | EEE 802 address bl ock. At
the tinme of witing, the cost is $1250 US

Security Considerations

It should not be assuned that UUI Ds are hard to guess; they should
not be used as capabilities.

Acknowl edgenent s
Thi s docunent draws heavily on the OSF DCE specification for UU Ds.
Ted Ts' o provided hel pful comments, especially on the byte ordering
section which we nostly plagiarized froma proposed wordi ng he
supplied (all errors in that section are our responsibility,
however) .

Ref erences

[1] Lisa Zahn, et. al., Network Conputing Architecture, Prentice
Hal I, Englewood Ciffs, NJ, 1990

[2] DCE: Renmpte Procedure Call, Open G oup CAE Specification C309
| SBN 1-85912-041-5 28cm 674p. pbk. 1,655g. 8/94

[3] R Rivest, RFC 1321, "The MD5 Message-Di gest Al gorithnt
04/ 16/ 1992.

[4] NIST FIPS PUB 180-1, "Secure Hash Standard," National Institute

of Standards and Technol ogy, U.S. Departnent of Commerce, DRAFT, My
31, 1994,

Leach, Salz expires Aug 1998 [Page 15]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

9. Aut hors' addresses

Paul J. Leach

M crosoft

1 Mcrosoft Way

Redrmond, WA, 98052, U. S. A
paul | e@n crosoft.com

Tel . 425 882 8080

Fax. 425 936 7329

Rich Sal z

100 Canbridge Park Drive
Canbri dge MA 02140

sal zr @ertco. com

Tel . 617 499 4075

Fax. 617 576 0019

10. Notice

The | ETF takes no position regarding the validity or scope of any
intell ectual property or other rights that mght be clainmed to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; neither does it represent that it
has made any effort to identify any such rights. [Information on the
| ETF's procedures with respect to rights in standards-track and
standards-rel ated docunentation can be found in BCP-11. Copi es of
clains of rights nade avail able for publication and any assurances of
licenses to be nade available, or the result of an attenpt nade to
obtain a general |icense or perm ssion for the use of such
proprietary rights by inplenmentors or users of this specification can
be obtained fromthe |IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technol ogy that nmay be required to practice
this standard. Please address the information to the | ETF Executive
Director.

11. Full Copyright Statenent
Copyright (C The Internet Society 1997. Al Rights Reserved.

This docunent and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other

I nternet organi zati ons, except as needed for the purpose of

Leach, Salz expires Aug 1998 [Page 16]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into | anguages other than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the infornmation contained herein is provided on an
"AS |'S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPOSE.

Appendi x A _ UUI D Sanple |nplenmentation

This inplenmentation consists of 5 files: uuid.h, uuid.c, sysdep.h,
sysdep.c and utest.c. The uuid.* files are the system i ndependent

i mpl enentation of the UU D generation algorithms descri bed above,
with all the optinizations described above except efficient state
sharing across processes included. The code has been tested on Linux
(Red Hat 4.0) wth GCC (2.7.2), and Wndows NT 4.0 with VC++ 5.0. The
code assunes 64 bit integer support, which nakes it a lot clearer

Al'l the follow ng source files should be considered to have the
foll owi ng copyright notice included:

copyrt.h

/*

** Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.

** Copyright (c) 1989 by Hewl ett-Packard Conpany, Palo Alto, Ca. &
** Digital Equipnment Corporation, Maynard, Mass.

** Copyright (c) 1998 M crosoft.

** To anyone who acknow edges that this file is provided "AS I S"

** wi thout any express or inplied warranty: perm ssion to use, copy,
** nodify, and distribute this file for any purpose is hereby

** granted without fee, provided that the above copyright notices and
** this notice appears in all source code copies, and that none of
** the nanes of Open Software Foundation, Inc., Hew ett-Packard

** Conpany, or Digital Equi prment Corporation be used in advertising
** or publicity pertaining to distribution of the software w thout
** gspecific, witten prior pernission. Neither Open Software

** Foundation, Inc., Hew ett-Packard Conmpany, M crosoft, nor Digital
Equi pnent

** Corporation nakes any representati ons about the suitability of

** this software for any purpose.

*/

uui d. h

Leach, Salz expires Aug 1998 [Page 17]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

#i ncl ude "copyrt.h"
#undef uuid_t
typedef struct _uuid_t {

unsi gned32 time_|ow,
unsi gned16 time_md;
unsi gned16 tinme_hi _and _version
unsi gned8 cl ock_seq_hi _and reserved;
unsi gned8 cl ock_seq_I ow,
byt e node[6] ;
} uuid_t;
/* uuid_create -- generate a UUI D */

int uuid create(uuid_t * uuid);

/* uuid_create_fromname -- create a UUI D using a "nane
froma "nane space" */
voi d uui d_create_from nane(
uuid_t * uuid, /* resulting UU D */
uuid t nsid, /* UUIDto serve as context, so identica

nanes fromdi fferent nane spaces generate
different UU Ds */

void * nane, /* the nanme fromwhich to generate a UUI D */
i nt namel en /* the length of the name */
)
/* uuid_conpare -- Conpare two UUID s "lexically" and return
-1 ul is lexically before u2
0 ul is equal to u2
1 ul is lexically after u2
Not e: | exi cal ordering is not tenporal ordering!
*
/

int uuid _conmpare(uuid_t *ul, uuid_t *u2);
uuid.c

#i ncl ude "copyrt.h"
#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

#i ncl ude "sysdep. h"
#i ncl ude "uuid. h"

/* various forward declarations */

static int read_state(unsignedl6 *cl ockseq, uuid_tine_t *tinestanp,
uuid_node_t * node);

static void wite_state(unsignedl6 cl ockseq, uuid_time_t tinestanp,
uui d_node_t node);

static void format_uuid vl(uuid t * uuid, unsignedl6 cl ockseq,
uuid_tine_t timestanp, uuid_node_t node);

static void format_uuid_v3(uuid_t * uuid, unsigned char hash[16]);
static void get _current _tinme(uuid time_ t * tinmestam);

static unsignedl6 true_randon(void);

Leach, Salz expires Aug 1998 [Page 18]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

/* uuid create -- generator a UU D */
int uuid create(uuid_t * uuid) {
uuid_tine_t timestanp, last_tine;
unsi gned16 cl ockseq;
uui d_node_t node;
uui d_node_t | ast_node;
int f;

/* acquire systemw de |ock so we're alone */
LOCK;

/* get current time */
get _current _tine(&inestanp);

/* get node ID */
get i eee_node_identifier(&node);

/* get saved state from NV storage */
f = read_state(&cl ockseq, & ast _tinme, & ast_node);
/* if no NV state, or if clock went backwards, or node |ID changed
(e.g., net card swap) change cl ockseq */
('f || nencnp(&node, & ast_node, sizeof (uuid_node_t)))
cl ockseq = true_random();
else if (timestanp < last_tine)
cl ockseq++;

i f

[* stuff fields into the UU D */
format _uui d_v1(uuid, clockseq, tinestanp, node);

/* save the state for next time */
wite_state(clockseq, tinestanp, node);

UNLOCK;
return(l);

}s

/* format _uuid vl -- nake a UU D fromthe timestanp, clockseq,
and node ID */

void format_uuid _vi(uuid_t * uuid, unsignedl6 clock seq, uuid time_t
ti mestanp, uuid_node_t node) {

/* Construct a version 1 uuid with the informtion we've gat hered

* plus a few constants. */

uuid->time_|l ow = (unsigned |ong)(tinmestanp & OxFFFFFFFF);
uuid->tinme_md = (unsigned short) ((timestanp >> 32) & OxFFFF);
uui d->time_hi _and_version = (unsigned short) ((tinmestanp >> 48) &
OxOFFF) ;

uui d->ti ne_hi _and_version |= (1 << 12);

uui d->cl ock_seq_|l ow = clock_seq & OxFF

uui d- >cl ock_seq_hi _and_reserved = (clock_seq & O0x3F00) >> 8;

uui d- >cl ock_seq_hi _and_reserved | = 0x80;

menctpy(&ui d- >node, &node, sizeof uuid->node);

Leach, Salz expires Aug 1998 [Page 19]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98
/* data type for UUI D generator persistent state */
typedef struct {
uuid tine t ts; /* saved tinestanp */
uui d_node_t node; /* saved node ID */
unsi gned16 cs; /* saved cl ock sequence */
} uuid_state;
static uuid state st;
/* read_state -- read UUI D generator state fromnon-volatile store */
int read_state(unsignedl6 *clockseq, uuid_tine_t *tinestanp,
uui d_node_t *node) {
FILE * fd;
static int inited = 0;
/* only need to read state once per boot */
if (!'inited)
fd = fopen("state", "rb");
if (!'fd)
return (0);
fread(&st, sizeof(uuid_state), 1, fd);
fclose(fd);
inited = 1;
*élockseq = st.cs;
*timestanp = st.ts;
*node = st. node;
return(l);
1
/* wite state -- save UU D generator state back to non-volatile

storage */
void wite_state(unsignedl6 clockseq, uuid_tine_t tinestanp,
uui d_node_t node) {

FILE * fd;

static int inited = 0;

static uuid_tine_t next_save;

if (!inited) {
next save = tinestanp;
inited = 1;

/* always save state to volatile shared state */
st.cs = cl ockseq;
st.ts = tinestanp;
st.node = node;
if (timestanp >= next_save) {
fd = fopen("state", "wbh");
fwite(&st, sizeof(uuid state), 1, fd);
fclose(fd);
/* schedul e next save for 10 seconds from now */
next _save = tinmestanp + (10 * 10 * 1000 * 1000);
1
1

Leach, Salz expires Aug 1998

[Page 20]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

/* get-current_time -- get tine as 60 bit 100ns ticks since whenever.
Conmpensate for the fact that real clock resolution is
| ess than 100ns. */
void get_current_tine(uuid_time_t * tinmestanp) {
uuid tinme_t ti me_now,
static uuid tinme_t tine_last;
static unsignedl6 uuids_this tick;

static int inited = 0;
if (linited) {
get _systemtime(& inme_now);
uuids_this ck = UUI DS_P RTICK
inited = 1;
I
while (1) {
get _systemtime(& inme_now);
/* if clock reading changed since last UU D generated... */
if (time_last !'=time_now) {

/* reset count of uuids gen'd with this clock reading */
uuids this tick = 0;
br eak;

if (uuids_this_tick < UUI DS _PER Tl CK) {
uuids_this tick++
br eak;
1

/* going too fast for our clock; spin */

/* add the count of uuids to |ow order bits of the clock readi ng */
*timestanp = time_now + uuids_this_tick;

s

/* true_random -- generate a crypto-quality random nunber.
This sanple doesn't do that. */
static unsignedl6
true_random voi d)
{
static int inited = O;
uuid tine_t tinme_now,

if (linited) {
get _systemtime(& inme_now);
time_now = tinme_now UU DS _PER TI CK;
srand((unsigned int)(((time_now >> 32) ~ tine_now) &Oxffffffff));
inited = 1;
b

return (rand());

Leach, Salz expires Aug 1998 [Page 21]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

/* uuid create fromnanme -- create a UUID using a "nane" froma "nane
space" */
voi d uui d_create_from nane(

uuid t * uuid, /* resulting UUD */

uuid t nsid, /* UUDto serve as context, so identica

nanes fromdi fferent nane spaces generate
different UUIDs */

void * nane, /* the name fromwhich to generate a UUI D */
i nt namel en /* the length of the name */
) |
MD5_CTX c;
unsi gned char hash[16];
uuid_ t net_nsid; /* context UUID in network byte order */

/* put name space IDin network byte order so it hashes the sane
no matter what endi an machine we're on */

net _nsid = nsid,;

htonl (net_nsid.tinme_| ow);

htons(net_nsid.tinme_md);

ht ons(net _nsid. ti me_hi and _version);

MD5I ni t (&c);

MD5Updat e(&, &net _nsid, sizeof(uuid_t));
MD5Updat e(&, nane, nanel en);
MD5FI nal (hash, &c);

/* the hash is in network byte order at this point */
format _uui d_v3(uuid, hash);

s

/* format _uuid v3 -- nake a UU D froma (pseudo)random 128 bit nunber
*/
void format _uuid_v3(uuid_t * uuid, unsigned char hash[16]) {
/* Construct a version 3 uuid with the (pseudo-)random nunber
* plus a few constants. */

mencpy(uui d, hash, sizeof(uuid t));

/* convert UUIDto |ocal byte order */
nt ohl (uui d->ti ne Iow),

nt ohs(uui d->ti me_m d);

nt ohs(uui d->time_hi _and_version);

/* put in the variant and version bits */
uui d->time_hi _and_versi on &= OxOFFF

uuid->time_hi _and version | = (3 << 12);
uui d- >cl ock_seq_hi _and_reserved &= O0x3F
uui d- >cl ock_seq_hi _and_reserved | = 0x80;
1
/* uuid_conpare -- Conpare two UUID s "lexically" and return

-1 ul is lexically before u2
0 ul is equal to u2
1 ul is lexically after u2

Leach, Salz expires Aug 1998 [Page 22]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

Not e: | exi cal ordering is not tenporal ordering!
*/
int uuid _conmpare(uuid_t *ul, uuid_t *u2)
{
int i;

#define CHECK(f1, f2) if (f1!=f2) returnfl <f2? -1: 1

CHECK(ul->time_low, u2->tinme_|ow);
CHECK(ul->time_md, u2->tinme_md);
CHECK(ul->tine_hi _and version, u2->time_hi_and_version);
CHECK(ul->cl ock_seq_hi _and_reserved, u2->clock_seq_hi_and_reserved);
CHECK(ul->cl ock_seq_| ow, u2->cl ock_seq_I| ow)
for (i =0; i < 6; i++)

if (ul->node[i] < u2->node[i])

return -1;
if (ul->node[i] > u2->node[i])
return 1,

return O;

1
sysdep. h

#i ncl ude "copyrt.h"
/* renove the following define if you aren't running WN32 */
#define WNINC 0

#i fdef W N NC

#i ncl ude <wi ndows. h>

#el se

#i ncl ude <sys/types. h>
#i ncl ude <sys/tine. h>

#i ncl ude <sys/sysinfo. h>
#endi f

/* change to point to where MD5 .h's live */

/* get MD5 sanple inplenentation fromRFC 1321 */
#i ncl ude "gl obal . h"

#i ncl ude "md5. h"

/* set the following to the nunmber of 100ns ticks of the actua
resol uti on of

your system s clock */

#define UUI DS_PER Tl CK 1024

/* Set the following to a call to acquire a systemw de gl obal | ock
*/

#defi ne LOCK

#defi ne UNLOCK

t ypedef unsigned | ong unsi gned32;
t ypedef unsigned short unsignedl6;
t ypedef unsi gned char unsi gneds;
t ypedef unsi gned char byt e;

Leach, Salz expires Aug 1998 [Page 23]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

/* Set this to what your conpiler uses for 64 bit data type */
#i fdef W NI NC

#defi ne unsi gned64_t unsigned __int64

#define 164(C) C

#el se

#def i ne unsi gned64_t unsigned | ong | ong

#define 164(C) C##LL

#endi f

typedef unsigned64 t uuid_time_t;
typedef struct {

char nodel OO 6] ;
} uui d_node_t;

voi d get_ieee_node_identifier(uuid_node_t *node);
void get_systemtime(uuid time_t *uuid_tine);
voi d get _random.i nfo(char seed[16]);

sysdep. c

#i ncl ude "copyrt.h"
#i ncl ude <stdi o. h>
#i ncl ude "sysdep. h"

/* system dependent call to get |EEE node ID
This sanple inplenentati on generates a random node | D
*/
voi d get _ieee _node_identifier(uuid node t *node) {
char seed[16];
FILE * fd;
static inited = 0;
static uuid _node_t saved_node;

if (!inited) {
fd = fopen("nodeid", "rb");
if (fd) {
fread(&saved_node, sizeof (uuid node t), 1, fd);
fclose(fd);

el se {
get _random i nf o(seed);
seed[0] | = 0x80;
mencpy(&saved_node, seed, sizeof(uuid node t));
fd = fopen("nodei d', "wbh");

if (fd) {
fwrite(&saved _node, sizeof(uuid node t), 1, fd);
fclose(fd);
1
iy
inited = 1

Leach, Salz expires Aug 1998 [Page 24]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

*node = saved_node;

/* system dependent call to get the current systemtine.
Ret urned as 100ns ticks since Cct 15, 1582, but resolution may be
| ess than 100ns.

*/

#i fdef W NDOW5_

void get_systemtinme(uuid tinme t *uuid tinme) {
ULARGE | NTEGER ti ne;

Get Syst enili meAsFi | eTi me((FI LETI ME *) &t i ne) ;

/* NT keeps time in FILETIME format which is 100ns ticks since
Jan 1, 1601. UUI Ds use time in 100ns ticks since Cct 15, 1582.
The difference is 17 Days in Oct + 30 (Nov) + 31 (Dec)

+ 18 years and 5 | eap days.

*/
time. QuadPart +=
(unsigned __int64) (1000*1000*10) /'l seconds
* (unsigned __int64) (60 * 60 * 24) /1 days
* (unsigned __int64) (17+30+31+365*18+5); // # of days
*uuid time = tinme. QuadPart ;
H
voi d get _random.i nfo(char seed[16]) {

MD5_CTX c;
typedef struct {
MEMORYSTATUS m
SYSTEM | NFO s;
FI LETI ME t;
LARCE_| NTEGER pc;
DWORD t c;
DWORD | ;
char host name[MAX_COVPUTERNAME_LENGTH + 1];
} randommess;
randommess r;

MD5I ni t (&c);

/* menory usage stats */

A obal MenorySt at us(& . m ;

/* random system stats */

Get System nfo(& . s);

/* 100ns resolution (nomnally) tine of day */
Get Syst entli meAsFil eTi me(& .t);

/* high resolution performance counter */
Quer yPer f or manceCount er (& . pc) ;

/* mlliseconds since |ast boot */

r.tc = GetTickCount();

r.1 = MAX_COVWPUTERNAME_LENGTH + 1;

Leach, Salz expires Aug 1998 [Page 25]

I nternet-Draft UUI Ds and GUI Ds (DRAFT)

Get Conput er Nane(r. hostname, & .1);
MD5Updat e(&, &r, si zeof (randomess));
MD5Fi nal (seed, &c);

1

#el se
void get _systemtinme(uuid tinme_t *uuid_ tine)

struct tineval tp;

getti meof day(&t p, (struct tinmezone *)0);

02/ 04/ 98

/* Offset between UUID formatted times and Unix fornmatted tines.

UUI D UTC base tinme is Cctober 15, 1582.

Uni x base tine is January 1, 1970.
*/

*uuid_time = (tp.tv_sec * 10000000) + (tp.tv_usec * 10) +

| 64(0x01B21DD213814000) ;

voi d get _random.i nfo(char seed[16]) {
MD5_CTX c;
typedef struct {
struct sysinfo s;
struct tinmeval t;
char host nane[257] ;
} randommess;
randomess r;

MD5I ni t (&c);
sysinfo(&.s);
getti meofday(& .t, (struct timezone *)O0);
get host nane(r. host nane, 256);
MD5Updat e(&, &r, si zeof (randommess));
MD5Fi nal (seed, &c);

I

#endi f

utest.c

#i ncl ude "copyrt.h"

#i ncl ude "sysdep. h"

#i ncl ude <stdi o. h>
#i ncl ude "uui d. h"

uui d_t NameSpace DNS = { /* 6ba7b810-9dad- 11d1- 80b4- 00c04f d430c8 */

0Ox6ba7b810,
Ox9dad,
Ox11d1,

};

Leach, Salz expires Aug 1998

0x80, Oxb4, 0x00, OxcO, Ox4f, 0Oxd4, 0x30, O0xc8

[Page 26]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

/* puid -- print a UUD */
void puid(uuid_t u);

/* Sinple driver for UU D generator */
void mai n(int argc, char **argv) {
uuid t u;
int f;

uui d_create(&u);
printf("uuid create() ->"); puid(u);

f = uuid_conpare(&u, &u);

printf("uuid _conpare(u,u): %\n", f); /* should be 0 */

f = uui d_conpare(&u, &NaneSpace_ DNS);

printf("uuid_conpare(u, NaneSpace DNS): %l\n", f); /* s.b. 1 */
f = uui d_conpar e(&aneSpace_DNS, &u);
printf("uuid_conpare(NaneSpace DNS, u): %l\n", f); /* s.b. -1 */

uuid_create_fromnane(&u, NaneSpace DNS, "www. wi dgets.coni, 15);
printf("uuid_create_fromnanme() ->"); puid(u);

}s

void puid(uuid_t u) {
int i;

printf("98.8x-%l. 4x- %. 4x- YR2. 2x9YR2. 2x-", u.tinme_low, u.time_md,
u.time_hi_and_version, u.clock seq_hi_and_reserved,
u.cl ock_seq_| ow);

for (i =0; i < 6; i++)
printf("9%.2x", u.node[i]);

printf("\n");

Appendi x B _ Sanpl e out put of utest

uui d_create() -> 7d444840-9dc0- 11d1- b245- 5f f dce74f ad2
uui d_conpare(u,u): 0

uui d_conpare(u, NaneSpace DNS): 1

uui d_conpar e(NaneSpace_DNS, u): -1

uuid_create_from nane() -> e902893a- 9d22- 3c7e- a7h8- d6e313b71d9f

Appendi x C _ Some nane space | Ds

This appendix lists the name space IDs for sone potentially
i nteresting name spaces, as initialized C structures and in the
string representation defined in section 3.5

uui d_t NameSpace DNS = { /* 6ba7b810-9dad- 11d1- 80b4- 00c04f d430c8 */
Ox6ba7b810,
0x9dad,
0x11d1,
0x80, Oxb4, 0x00, 0OxcO, Ox4f, 0Oxd4, 0x30, 0xc8

Leach, Salz expires Aug 1998 [Page 27]

I nternet-Draft UUI Ds and GUI Ds (DRAFT) 02/ 04/ 98

uuid t NameSpace URL = { /* 6ba7b811-9dad- 11d1- 80b4-00c04f d430c8 */
Ox6ba7b811,

0x9dad,

0Ox11d1,

0x80, Oxb4, 0x00, OxcO, Ox4f, Oxd4, 0x30, O0xc8

b

uuid_t NameSpace_ O D = { /* 6ba7b812-9dad-11d1- 80b4- 00c04f d430c8 */
0Ox6ba7b812,

0x9dad,

0x11d1,

0x80, Oxb4, 0x00, 0OxcO, Ox4f, 0Oxd4, 0x30, 0xc8

};

uui d_t NameSpace_ X500 = { /* 6ba7b814-9dad- 11d1- 80b4- 00c04f d430c8 */
Ox6ba7b814,

0x9dad,

0x11d1,

0x80, Oxb4, 0x00, 0OxcO, Ox4f, 0Oxd4, 0x30, 0xc8

b

Leach, Salz expires Aug 1998 [Page 28]

	UUIDs and GUIDs
	Feb 4, 1998, Internet Draft (expired)
	Status of This Memo
	Table of Contents
	1. Introduction
	2. Motivation
	3. Specification
	3.1 Format
	3.1.1 Variant
	3.1.2 UUID layout
	3.1.3 Version
	3.1.4 Timestamp
	3.1.5 Clock sequence
	3.1.6 Node
	3.1.7 Nil UUID

	3.2 Algorithms for creating a time-based UUID
	3.2.1 Basic algorithm
	3.2.2 Reading stable storage
	3.2.3 System clock resolution
	3.2.4 Writing stable storage
	3.2.5 Sharing state across processes
	3.2.6 UUID Generation details

	3.3 Algorithm for creating a name-based UUID
	3.4 Algorithms for creating a UUID from truly random or pseudo-random numbers
	3.5 String Representation of UUIDs
	3.6 Comparing UUIDs for equality
	3.7 Comparing UUIDs for relative order
	3.8 Byte order of UUIDs

	4. Node IDs when no IEEE 802 network card is available
	5. Obtaining IEEE 802 addresses
	6. Security Considerations
	7. Acknowledgements
	8. References
	9. Authors' addresses
	10. Notice
	11. Full Copyright Statement
	A _ UUID Sample Implementation

	
	IETF Title Page

