
 1
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Work Manager for Application Servers
International Business Machines Corp. and BEA Systems, Inc.
Version 1.0
November 2003

Authors
John Beatty, BEA Systems, Inc.
Chris D Johnson, IBM Corporation
Revanuru Naresh, BEA Systems, Inc.
Billy Newport, IBM Corporation
Andy Piper, BEA Systems, Inc.

Copyright Notice
© Copyright BEA Systems, Inc. and International Business Machines Corp 2003. All rights reserved.

License
The Work Manager for Application Servers Specification is being provided by the copyright holders under the
following license. By using and/or copying this work, you agree that you have read, understood and will comply with
the following terms and conditions:

Permission to copy and display the Work Manager for Application Servers Specification
and/or portions thereof, without modification, in any medium without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the Work Manager
for Application Servers Specification, or portions thereof, that you make:

1. A link or URL to the Work Manager for Application Servers Specification at this
location:
http://dev2dev.bea.com/technologies/commonj/index.jsp
or at this location:
http://www.ibm.com/developerworks/library/j-commonj-sdowmt/

2. The full text of this copyright notice as shown in the Work Manager for Application
Servers Specification.

IBM and BEA (collectively, the “Authors”) agree to grant you a royalty-free license,
under reasonable, non-discriminatory terms and conditions to patents that they deem
necessary to implement the Work Manager for Application Servers Specification.

THE Work Manager for Application Servers SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR
TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE Work
Manager for Application Servers SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Work Manager for Application Servers
Specification or its contents without specific, written prior permission. Title to
copyright in the Work Manager for Application Servers Specification will at all times
remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

 2
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Status of this Document

This specification may change before final release and you are cautioned against relying
on the content of this specification. IBM and BEA are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback and
(optionally) for implementation.

Introduction
The Work Manager for Application Servers specification provides a work service for use
within managed environments on the JavaTM platform, such as Servlets and EJBs. The
work service provides a high-level programming model that enables applications to
logically execute multiple work items concurrently under the control of the container. In
essence, the work manager provides a container-managed alternative to using the
java.lang.Thread, which is inappropriate for use within applications hosted in
managed environments.

The Work Manager for Application Servers specification enables a number of common
use cases:

• A Servlet or JSP needs to aggregate data from various sources and render an
HTML page after all the data has been retrieved. In this case, the Work Manager
API could be used to retrieve the data in parallel and allow execution to continue
once all the data is ready.

• An EJB needs a result from any one of several network services in order to
complete its task. The EJB can use the Work Manager API to initiate concurrent
requests to the network services and continue execution once one of the services
has completed.

When inside managed environments, this Work Manager API is a much better alternative
to java.lang.Thread, as Thread should never be used by application-level code
within managed environments as the container needs full visibility and control over all
executing threads. Also, this Work Manager API is a better alternative than the J2EE
Connector Architecture 1.5 [1] Work Service, as the JCA Work Service is tightly coupled
with the JCA framework and thus does not provide a sufficiently independent API for use
outside JCA. In particular, the JCA javax.resource.spi.work.WorkManager
interface exposes methods taking
javax.resource.spi.work.ExecutionContext, which is not generally the
context mechanism that should be used by J2EE applications.

This Work Service API thus provides a clean, simple, and independent API that is
appropriate for use within any J2EE container.

This specification is organized as follows:

• Architecture describes the design of the Work Manager API
• Deployment discusses how Work Managers are configured by deployment

descriptors
• Examples provides a series of examples showing common usages of the Work

Manager API

 3
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

• The Java API is provided as Javadocs in a separate file

Architecture
The Work Manager for Application Servers specification is comprised of six primary
interfaces: WorkManager, Work, WorkItem, RemoteWorkItem,
WorkListener, and WorkEvent. The WorkManager interface provides a set of
schedule() methods whereby Work can be scheduled for execution. The
WorkManager then returns a WorkItem, which can be used to get the status of the in-
flight work. The WorkManager executes the scheduled work using an implementation-
specific strategy. Most implementations will use thread pools. Configuration of
WorkManager thread pools or other resources is vendor-dependent.

A managed environment can support an arbitrary number of independent
WorkManager instances. The primary method for obtaining a WorkManager instance
is through a JNDI lookup to the local Java environment (i.e.,
java:comp/env/wm/[work manager name]). Thus, Work Managers are
configured at deployment time through deployment descriptors as resource-refs
(see Deployment below). Each JNDI lookup() of a specific WorkManager (e.g.
wm/MyWorkManager) returns a shared instance of that WorkManager.
WorkManager is a thread-safe.

This specification places no requirements on persistence of in-flight Work: if the
managed environment is shut down or fails, the work will be irrevocably lost unless the
particular implementation in use supports a higher quality of service.

Remote Execution of Work
The Work Manager API supports, but by no means mandates, implementation strategies
whereby Work can be executed in a JVM that is remote with respect to the JVM on
which the WorkManager is executing. Implementations may choose to farm out Work
to remote JVMs when the underyling platform is a parallel architecture and supports
high-speed communication between JVMs, for example.

If a Work instance that is scheduled on a WorkManager implements
java.io.Serializable, this indicates to the WorkManager that remote
execution (in a separate JVM) of that Work is possible. In this case, the WorkManager
returns a RemoteWorkItem, and thus the client can reliably downcast from
WorkItem to RemoteWorkItem. Note that many implementations of WorkManager
will execute the Work locally even if the Work instance implements
java.io.Serializable.

If the client’s Work instance implements java.io.Serializable, the client must
not rely on the Work instance submitted to the WorkManager to be fresh. Rather, the
client should use the getResult() method on the RemoteWorkItem. This returns
the Work instance after it has been deserialized from remote execution. Note that in some

 4
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

implementations, the Work instance submitted to the WorkManager may be fresh, but
this is not guaranteed behavior.

Work Listener
A WorkListener can be specified when work is being scheduled. The
WorkManager will call back on WorkListener for various work events (e.g.
accepted, rejected, started, completed).

WorkListener instances are always executed in the same JVM as the thread that
scheduled the Work with the WorkManager.

Waiting for Completion of Work
WorkManager also provides simple APIs for common join tasks. WorkManager
provides two semantics:

• waitForAll(): blocks until all specified WorkItems complete, or until the
specified timeout. Returns true if all items completed within the specified
timeout value, and false otherwise.

• waitForAny(): blocks until any of the specified WorkItems complete until
the specified timeout and returns the Collection of completed WorkItems. If no
WorkItems completed within the specified timeout, null is returned.

Two special timeout values are defined:

• WorkManager.INDEFINITE: Waits idefinitely for all/any of the work to
complete.

• WorkManager.IMMEDIATE: Indicates a peek operation. i.e., the
WorkManager returns immediately.

Deployment
Applications signal their need for a work manager through including a resource-ref in the
appropriate deployment descriptor (e.g., web.xml, ejb-jar.xml, ra.xml, etc.). The absolute
name for the JNDI namespace for WorkManager objects is java:comp/env/wm,
and thus the relative name for use within the resource-ref is simply wm.

The following provides an example resource-ref fragment configuring a WorkManager
named MyWorkManager:

<resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

 5
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Examples
The following example shows a WorkManager being looked up in JNDI and used to
schedule work:

import commonj.work.*;

…
RetrieveDataWork work1 =

new RetrieveDataWork(new URI("http://www.example.com/1"));
RetrieveDataWork work2 =

new RetrieveDataWork(new URI("http://www.example.com/2"));
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager)

ctx.lookup("java:comp/env/wm/MyWorkManager");
WorkItem wi1 = mgr.schedule(work1);
WorkItem wi2 = mgr.schedule(work2);

This example uses a RetrieveDataWork class, which is a fictitious worker classes
that retrieves data from a resource specified by a URI:

public class RetrieveDataWork implements Work {
 private URI uri;
 private String data;

 public RetrieveDataWork(URI uri) {
 this.uri = uri;
 }

 public void release() {
 // release my resources
 }

 public boolean isDaemon() {
 return false;
 }

 public void run() {
 // do the actual work here
 data = "Hello, World";
 }

 public String getData() {
 return data;
 }

 public String toString() {
 return "RetrieveDataWork(" + uri + ")";
 }
}

The following example shows an example deployment descriptor for a Servlet that
configures the WorkManager used above.

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app …>
 <display-name>A Simple Application</display-name>
 <servlet>
 <servlet-name>OrderTracking</servlet-name>
 <servlet-class>com.mycorp.OrderTracking</servlet-class>

 6
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

 </servlet>
 <resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

The following example, building on the prior example, shows how the application can
block waiting for these work items to complete:

// block until all items are done
Collection coll = new ArrayList();
coll.add(wi1);
coll.add(wi2);
mgr.waitForAll(coll, WorkManager.INDEFINITE);

Once the application knows that work is completed, the data can be retrieved from the
Work object:

System.out.println("work1 data: " + work1.getData());
System.out.println("work2 data: " + work2.getData());

The next example is a slight variation on the example above: the application blocks
waiting for any of the items to complete. waitForAny() returns the WorkItem(s)
that completed, at which point we can extract the result and continue:

String result = null;
Collection coll = new ArrayList();
coll.add(work1);
coll.add(work2);
Collection finished = mgr.waitForAny(coll, WorkManager.INDEFINITE);
if(finished != null) {

Iterator i = finished.iterator();
if(i.hasNext()) {

 WorkItem wi = (WorkItem) i.next();
 if(wi.equals(wi1)) {
 result = work1.getData();
 } else if(wi.equals(wi2)){
 result = work2.getData();
 }

}
}

If the concrete class that implemented the Work interface also implements
Serializable, then the following code above can be simplied because
RemoteWorkItem supports the getResult() method, which returns the Work
instance, which typically holds the result state. This alleviates the application code from
correlating WorkItem instances back to the original Work instances.

// block until any of the items are done
String result = null;
Collection coll = new ArrayList();
coll.add(work1);
coll.add(work2);

 7
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Collection finished = mgr.waitForAny(coll, WorkManager.INDEFINITE);
Iterator i = finished.iterator();
if(i.hasNext()) {
 RemoteWorkItem wi = (RemoteWorkItem) i.next();
 RetrieveDataWork work = (RetrieveDataWork) wi.getResult();
 result = work.getData();
}

The application can also check the status of the WorkItem instances at any time:

if(wi1.getStatus() == WorkEvent.WORK_COMPLETED) {
 System.out.println(“wi1 completed”);
}

When scheduling work with a WorkManager, a WorkListener can be used. To use
a WorkListener, a concrete class first needs to be defined that implements the
WorkListener interface:

import commonj.work.WorkEvent;
import commonj.work.WorkListener;

public class ExampleListener implements WorkListener {

 public void workAccepted(WorkEvent we) {
 System.out.println("Work Accepted: " + we.getWork());
 }

 public void workRejected(WorkEvent we) {
 System.out.println("Work Rejected: " + we.getWork());
 }

 public void workStarted(WorkEvent we) {
 System.out.println("Work Started: " + we.getWork());
 }

 public void workCompleted(WorkEvent we) {
 System.out.println("Work Completed: " + we.getWork());
 }
}

Once the listener class is defined, it can be used in conjunction with the WorkManager:

RetrieveDataWork work1 =

new RetrieveDataWork(new URI("http://www.example.com/1"));
RetrieveDataWork work2 =

new RetrieveDataWork(new URI("http://www.example.com/2"));
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager)
 ctx.lookup("java:comp/env/wm/MyWorkManager");
WorkListener listener = new ExampleListener();
WorkItem wi1 =
 mgr.schedule(work1, listener);
WorkItem wi2 =
 mgr.schedule(work2,listener);

 8
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

References
[1] JSR 112, J2EE Connector Architecture 1.5. http://www.jcp.org/en/jsr/detail?id=112

Trademarks

IBM is a registered trademark of International Business Machines Corporation.

BEA is a registered trademark of BEA Systems, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

	Work Manager for Application Servers
	Nov 2003 John Beatty et al, IBM Corporation
	Authors
	Introduction
	Architecture
	Remote Execution of Work
	Work Listener
	Waiting for Completion of Work

	Deployment
	Examples
	References

	
	IBM Corporation Title Page

