Work Manager for Application Servers

International Business Machines Corp. and BEA Systems, Inc.
Version 1.0
November 2003

Authors

John Beatty, BEA Systems, Inc.
Chris D Johnson, IBM Corporation
Revanuru Naresh, BEA Systems, Inc.
Billy Newport, IBM Corporation
Andy Piper, BEA Systems, Inc.

Copyright Notice
© Copyright BEA Systems, Inc. and International Business Machines Corp 2003. All rights reserved.

License

The Work Manager for Application Servers Specification is being provided by the copyright holders under the
following license. By using and/or copying this work, you agree that you have read, understood and will comply with
the following terms and conditions:

Perm ssion to copy and display the Woirk Manager for Application Servers Specification
and/or portions thereof, w thout nodification, in any nediumw thout fee or royalty is
hereby granted, provided that you include the follow ng on ALL copies of the Wrk Manager
for Application Servers Specification, or portions thereof, that you nake:

1. Alink or URL to the Wrk Manager for Application Servers Specification at this
| ocati on:

http://dev2dev. bea. con t echnol ogi es/ conmobnj /i ndex. j sp

or at this location:

http://ww. i bm conl devel operworks/library/j-commonj - sdownt /

2. The full text of this copyright notice as shown in the Work Manager for Application
Servers Specification.

| BM and BEA (collectively, the “Authors”) agree to grant you a royalty-free |license,
under reasonabl e, non-discrimnatory terns and conditions to patents that they deem
necessary to i nplenment the Work Manager for Application Servers Specification.

THE Work Manager for Application Servers SPECI FICATION IS PROVIDED "AS | S," AND THE
AUTHORS MAKE NO REPRESENTATI ONS OR WARRANTI ES, EXPRESS OR | MPLI ED, REGARDI NG THI S
SPECI FI CATI ON AND THE | MPLEMENTATI ON OF | TS CONTENTS, | NCLUDI NG, BUT NOT LI M TED TO,
WARRANTI ES OF MERCHANTABI LI TY, FITNESS FOR A PARTI CULAR PURPOSE, NON- I NFRI NGEMENT OR
TI TLE.

THE AUTHORS W LL NOT BE LI ABLE FOR ANY DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL OR
CONSEQUENTI AL DAMAGES ARI SI NG QUT OF OR RELATING TO ANY USE OR DI STRI BUTI ON OF THE Wor k
Manager for Application Servers SPECI FI CATI ON.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Wrk Manager for Application Servers
Specification or its contents w thout specific, witten prior permssion. Title to
copyright in the Work Manager for Application Servers Specification will at all tinmes
remain with the Authors.

No other rights are granted by inplication, estoppel or otherw se.

1
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

Status of this Document

This specification may change before final release and you are cauti oned agai nst relying
on the content of this specification. IBMand BEA are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback and
(optionally) for inplenmentation.

| ntroduction

The Work Manager for Application Servers specification provides awork service for use
within managed environments on the Java™ platform, such as Servlets and EJBs. The
work service provides a high-level programming model that enables applications to
logically execute multiple work items concurrently under the control of the container. In
essence, the work manager provides a container-managed aternative to using the

j ava. | ang. Thr ead, which isinappropriate for use within applications hosted in
managed environments.

The Work Manager for Application Servers specification enables a number of common
uSe Cases:

* A Servlet or JSP needs to aggregate data from various sources and render an
HTML page after al the data has been retrieved. In this case, the Work Manager
API could be used to retrieve the datain parallel and allow execution to continue
once al the data is ready.

* AnEJB needs aresult from any one of several network servicesin order to
completeitstask. The EJB can use the Work Manager API to initiate concurrent
requests to the network services and continue execution once one of the services
has compl eted.

When inside managed environments, this Work Manager APl is amuch better alternative
toj ava. | ang. Thr ead, as Thr ead should never be used by application-level code
within managed environments as the container needs full visibility and control over all
executing threads. Also, this Work Manager APl is abetter alternative than the J2EE
Connector Architecture 1.5 [1] Work Service, as the JCA Work Serviceistightly coupled
with the JCA framework and thus does not provide a sufficiently independent API for use
outside JCA. In particular, the JCA j avax. r esour ce. spi . wor k. Wor kManager
interface exposes methods taking

j avax. resour ce. spi . wor k. Execut i onCont ext , which isnot generally the
context mechanism that should be used by J2EE applications.

ThisWork Service API thus provides a clean, smple, and independent API that is
appropriate for use within any J2EE container.

This specification is organized as follows:
» Architecture describes the design of the Work Manager API
* Deployment discusses how Work Managers are configured by deployment
descriptors
» Examples provides a series of examples showing common usages of the Work
Manager API

2
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

* TheJavaAPI isprovided as Javadocsin a separate file

Architecture

The Work Manager for Application Servers specification is comprised of six primary
interfaces: Wor kManager , Wor k, Wor k1 t em Renot eWor kl t em

Wor kLi st ener, and Wor kEvent . The Wor kManager interface provides a set of
schedul e() methods whereby Wor k can be scheduled for execution. The

Wor kManager then returnsaWor kil t em which can be used to get the status of thein-
flight work. The Wor kManager executes the scheduled work using an implementation-
specific strategy. Most implementations will use thread pools. Configuration of

Wor kiManager thread pools or other resources is vendor-dependent.

A managed environment can support an arbitrary number of independent

Wor kManager instances. The primary method for obtaining aWbr kManager instance
isthrough a JNDI lookup to the local Java environment (i.e.,

j ava: conp/ env/ wni [wor k rmanager nane]). Thus, Work Managers are
configured at deployment time through deployment descriptorsasr esour ce-ref s
(see Deployment below). Each JNDI | ookup() of aspecific Wor kManager (e.g.
wm MyWor kManager) returns a shared instance of that Wor kManager .

Wor kManager isathread-safe.

This specification places no requirements on persistence of in-flight Wor k: if the
managed environment is shut down or fails, the work will be irrevocably lost unless the
particular implementation in use supports a higher quality of service.

Remote Execution of Work

The Work Manager API supports, but by no means mandates, implementation strategies
whereby Wor k can be executed in aJVM that is remote with respect to the VM on
which the Wor kManager is executing. Implementations may choose to farm out Wor k
to remote JVMs when the underyling platform is a parallel architecture and supports
high-speed communi cation between JVMs, for example.

If aWbr k instance that is scheduled on aWbr kManager implements

java.io. Seri al i zabl e, thisindicatesto the Wr kManager that remote
execution (in a separate VM) of that Wor k ispossible. In this case, the Wbr k Manager
returns aRenot eWbr kI t em and thus the client can reliably downcast from

Wor kI t emto Renot eWor kI t em Note that many implementations of Wor kManager
will execute the Wor k locally even if the Wor k instance implements

java.io. Serializable.

If the client’ sWor k instance implementsj ava. i 0. Seri al i zabl e, the client must
not rely on the Wor k instance submitted to the Wor kManager to be fresh. Rather, the
client should use the get Resul t () method on the Renot eWor ki t em This returns
the Wor k instance after it has been deserialized from remote execution. Note that in some

3
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

implementations, the Wor k instance submitted to the Wor kManager may be fresh, but
thisis not guaranteed behavior.

Work Listener

A Wor kLi st ener can be specified when work is being scheduled. The

Wor kianager will call back on Wor kLi st ener for various work events (e.g.
accepted, rejected, started, completed).

Wor kLi st ener instances are always executed in the same JVM as the thread that
scheduled the Wor k with the Wbor kManager .

Waiting for Completion of Work
Wor kiManager also provides smple APIs for common join tasks. Wor kManager
provides two semantics:
 waitForAll ():blocksuntil al specified Wor kI t ens complete, or until the
specified timeout. Returnst r ue if all items completed within the specified
timeout value, and f al se otherwise.
* wai t For Any() : blocks until any of the specified Wbr k1 t ens complete until
the specified timeout and returns the Collection of completed Wor k1 t ens. If no
Wor ki t errs completed within the specified timeout, nul | isreturned.

Two specia timeout values are defined:
 Wor kManager . | NDEFI NI TE: Waitsidefinitely for all/any of the work to
complete.
« WorkManager . | MMEDI ATE: Indicates a peek operation. i.e., the
WorkManager returns immediately.

Deployment

Applications signal their need for awork manager through including aresource-ref in the
appropriate deployment descriptor (e.g., web.xml, g/b-jar.xml, raxml, etc.). The absolute
name for the INDI namespace for Wor Kk Manager objectsisj ava: conp/ env/ wm
and thus the relative name for use within the resource-ref is simply wm

The following provides an example resource-ref fragment configuring a WorkM anager
named MyWorkManager:

<resource-ref>
<res-ref - name>wni MyWor kManager </ r es-r ef - nane>
<res-type>commonj . wor k. Wor KkManager </ r es-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>

4
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

Examples

The following example shows aWor kManager being looked up in INDI and used to
schedule work:

i mport commonj . work. *;

Retri eveDat aWwrk workl =

new Retri eveDat aWwor k(new URI ("http://ww. exanpl e.coni 1"));
Retri eveDat aWwr k work2 =

new Retri eveDat aWwor k(new URI ("http://ww. exanpl e. coni 2"));
Initial Context ctx = new Initial Context();
Wor kManager ngr = (Wor kManager)

ct x. | ookup("j ava: conp/ env/ wni MyWor kManager ") ;
Wrkltemw 1 = ngr.schedul e(workl);
Workltem wi 2 nmgr . schedul e(wor k2) ;

ThisexampleusesaRet r i eveDat aWbr k class, which is afictitious worker classes
that retrieves data from aresource specified by a URI:

public class RetrieveDataWrk inplenents Wrk {
private URl uri;
private String data;

public RetrieveDataWrk(URI uri) {
this.uri = uri;
}

public void release() {
/'l release ny resources
}

public bool ean i sDaermon() {
return fal se;
}

public void run() {
// do the actual work here
data = "Hell o, World";

}

public String getData() {
return data;
}

public String toString() {
return "RetrieveDataWrk(" + uri + ")";
}

}

The following example shows an example deployment descriptor for a Servlet that
configures the Wor kManager used above.

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>
<web-app ..»
<di spl ay- name>A Si nmpl e Applicati on</di spl ay- nane>
<servl et>
<servl et - name>0r der Tr acki ng</ ser vl et - nane>
<servl et -class>com mycor p. O der Tr acki ng</ servl et - cl ass>

5
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

</servlet>
<resource-ref>
<res-ref - name>wn1 MyWor kManager </ r es-r ef - name>
<res-type>commonj . wor k. Wor kManager </ res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>
</ web- app>

The following example, building on the prior example, shows how the application can
block waiting for these work items to compl ete:

/1 block until all itens are done
Collection coll = new ArrayList();
coll.add(wi 1);

coll.add(wi 2);

nmgr.waitFor Al l (col |, WrkManager . | NDEFI NI TE)

Once the application knows that work is completed, the data can be retrieved from the
Wor k object:

Systemout.println("workl data: " + workl.getData());
Systemout.println("wrk2 data: " + work2.getData());

The next example isa dight variation on the example above: the application blocks
waiting for any of theitemsto complete. wai t For Any () returnsthe \Wor ki t em(s)
that completed, at which point we can extract the result and continue:

String result = null
Collection coll = new ArrayList();
col I . add(workl);
col I . add(wor k2);
Col I ection finished = ngr.waitForAny(coll, WrkManager. | NDEFI NI TE)
if(finished !'= null) {
Iterator i = finished.iterator();
if(i.hasNext()) {
Wrkltemw = (Wrklten) i.next();
if(w.equals(wl)) {
result = workl.getData();
} else if(w.equals(w 2)){
result = work2.getData();
}

}

If the concrete class that implemented the Wor k interface also implements

Seri al i zabl e, then the following code above can be simplied because

Renot eWor k1 t emsupportstheget Resul t () method, which returns the Wor k
instance, which typically holds the result state. This alleviates the application code from
correlating Wor k1 t eminstances back to the original Wor k instances.

/1 block until any of the itens are done
String result = null

Collection coll = new ArrayList();

col I . add(workl);

col I . add(wor k2);

6
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

Coll ection finished = ngr.waitForAny(coll, WrkManager. | NDEFI NI TE) ;
Iterator i = finished.iterator();
i f(i.hasNext()) {
Rermot eWrkltemw = (RenoteWrkltem i.next();
Retri eveDat aWwrk work = (RetrieveDataWrk) w .getResult();
result = work.getData();

The application can also check the status of the Wor kI t eminstances at any time:

if(w 1.getStatus() == WorkEvent. WORK_COVPLETED) {
Systemout.printin(“wi 1 conpleted”);
}

When scheduling work with aVWor kManager , aWor kLi st ener can be used. To use
aWbr kLi st ener , aconcrete class first needs to be defined that implements the
Wor kLi st ener interface:

i nport commonj . wor k. Wor kEvent ;
i nport commonj . wor k. Wor kLi st ener;

public class Exanpl eLi stener inplenents WorkLi stener {

public void workAccept ed(Wr kEvent we) {
Systemout.println("Wrk Accepted: " + we.getWork());
}

public void workRej ect ed(WrkEvent we) {
Systemout.println("Wrk Rejected: " + we.getWrk());
}

public void workStarted(WrkEvent we) {
Systemout.println("Wrk Started: " + we.getWrk());
}

public void workConpl et ed(Wor kEvent we) {
Systemout.println("Wrk Conpleted: " + we.getWrk());
}

Once the listener classis defined, it can be used in conjunction with the Wor k Manager :

Retri eveDat awrk workl =
new Retri eveDat aWr k(new URI ("http://ww. exanpl e. conl 1"));
Retri eveDat awrk work2 =
new Retri eveDat aWr k(new URI ("http://ww. exanpl e. conl 2"));
Initial Context ctx = new Initial Context();
Wor kManager mgr = (Wor kManager)
ct x. | ookup("j ava: conp/ env/ wni MyWor kManager ") ;
Wor kLi stener |istener = new Exanpl eLi stener();
Wrkltemw 1 =
nmgr . schedul e(wor k1, |istener);
Wrkltemw 2 =
nmgr . schedul e(wor k2, i st ener);

7
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

References

[1] JSR 112, J2EE Connector Architecture 1.5. http://www.jcp.org/en/jsr/detail ?id=112

Trademarks
IBM isaregistered trademark of International Business Machines Corporation.
BEA isaregistered trademark of BEA Systems, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

8
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

	Work Manager for Application Servers
	Nov 2003 John Beatty et al, IBM Corporation
	Authors
	Introduction
	Architecture
	Remote Execution of Work
	Work Listener
	Waiting for Completion of Work

	Deployment
	Examples
	References

	
	IBM Corporation Title Page

