Timer for Application Servers

International Business Machines Corp. and BEA Systems, Inc.
Version 1.0
November 2003

Authors

John Beatty, BEA Systems, Inc.

Chris D Johnson, IBM Corporation
Billy Newport, IBM Corporation
Stephan Zachwigja, BEA Systems, Inc.

Copyright Notice
© Copyright BEA Systems, Inc. and International Business Machines Corp 2003. All rights reserved.

License

The Timer for Application Servers Specification is being provided by the copyright holders under the following
license. By using and/or copying this work, you agree that you have read, understood and will comply with the
following terms and conditions:

Perm ssion to copy and display the Tiner for Application Servers Specification and/or
portions thereof, w thout nodification, in any mediumw thout fee or royalty is hereby
granted, provided that you include the follow ng on ALL copies of the Tiner for
Application Servers Specification, or portions thereof, that you nake:

1. Alink or URL to the Tinmer for Application Servers Specification at this |ocation:
http://dev2dev. bea. con t echnol ogi es/ conmobnj /i ndex. j sp

or at this location:

http://ww. i bm conl devel operworks/library/j-commonj - sdownt /

2. The full text of this copyright notice as shown in the Timer for Application Servers
Speci fi cati on.

| BM and BEA (collectively, the “Authors”) agree to grant you a royalty-free license,
under reasonable, non-discrimnatory ternms and conditions to patents that they deem
necessary to inplenent the Timer for Application Servers Specification.

THE Timer for Application Servers SPECI FI CATION | S PROVIDED "AS | S," AND THE AUTHORS MAKE
NO REPRESENTATI ONS OR WARRANTI ES, EXPRESS OR | MPLI ED, REGARDI NG THI S SPECI FI CATI ON AND
THE | MPLEMENTATI ON OF | TS CONTENTS, | NCLUDI NG BUT NOT LIM TED TO WARRANTI ES COF
MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE, NON-I NFRI NGEMENT OR TI TLE.

THE AUTHORS W LL NOT BE LI ABLE FOR ANY DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL OR
CONSEQUENTI AL DAMAGES ARI SI NG QUT OF OR RELATI NG TO ANY USE OR DI STRI BUTI ON OF THE Ti ner
for Application Servers SPECI FI CATI ON.

The nanme and tradenmarks of the Authors may NOT be used in any nmanner, including
advertising or publicity pertaining to the Timer for Application Servers Specification or
its contents without specific, witten prior permission. Title to copyright in the Timer
for Application Servers Specification will at all tines remain with the Authors.

No other rights are granted by inplication, estoppel or otherwi se.

Status of this Document

This specification may change before final rel ease and you are cautioned agai nst relying
on the content of this specification. |BMand BEA are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback and
(optionally) for inplenentation.

1
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

| ntroduction

The Timer for Application Servers specification provides atimer service API for use
within managed environments on the Java™ platform, such as Servlets, EJBs, and JCA
Resource Adapters. The Timer API enables applications to schedule future timer
notifications and receive timer notification callbacks to an application-specified listener.

When inside these managed environments, this API is a much better alternative to
java.util.Tinmer:java.util.Timer should never be used within managed
environments, asit creates threads outside the purview of the container. Further, thereis
no clean way of subclassingj ava. uti | . Ti mer to avoid thread creation, asall
constructors create and start athread. This API is also a better choice than using the IMX
Timer Service because the IMX Timer Service API istightly coupled with the IMX
framework and thus does not provide a sufficiently user-friendly or independent API.

The Timer for Application Servers specification thus provides a clean, ssmple, and
independent API that is appropriate for use within any J2EE container.

This specification is organized as follows:
» Architecture describes the design of the Timer API
* Deployment discusses how Timers are configured by deployment descriptors
* Examples provides a series of examples showing common usages of the Timer
AP
* TheJavaAPI isprovided as Javadocsin a separate file

Architecture

The Timer for Application Servers specification is comprised of three primary interfaces:
Ti mer Manager, Ti mer,and Ti mer Li st ener . Extensionsto Ti ner Li st ener
with extra capabilities are also provided; these are discussed below. A Ti mer Manager
allows timers to be scheduled and manages the set of scheduled timers, each represented
by aTi mer instance. When atimer expires, thet i mer Expi r ed() method on the
provided Ti mer Li st ener instanceis executed. This execution is always in the same
JVM as the thread that scheduled the timer with the Ti mer Manager . Ti mer Manager
providesaset of schedul e() andschedul eAt Fi xedRat e() methods which take
aTi mer Li st ener instance along with other parameters (including absolute first
execution time, relative delays before first execution, and execution periods) and returns
aTi mer instance.

It isimportant to note the difference between fixed-delay execution, provided by the
series of schedul e() methodsthat take aper i od parameter, and fixed-rate
execution, provided by the seriesof schedul eAt Fi xedRat e() methods. Fixed-
delay meansthat the per i od parameter specifies the time between actual execution time
of thelastt i mer Expi red() method call. If theti mer Expi red() cal was
delayed for any reason (e.g., garbage collection or other background activity), thisis

2
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

taken into account. Thisis contrasted by fixed-rate execution, which tries to keep

ti mer Expi red() “caught up” and on schedule. Thus, under fixed-rate execution, the
actualy timeinterval betweent i mer Expi r ed() executions may be much smaller
than the specified period.

TheTi mer instance returned by the Ti mer Manager can be used to manipulate the
timer (e.g., cancel, determine time to next execution, €tc.).

A managed environment can support an arbitrary number of independent

Ti mer Manager instances. The common method for obtaining a Ti mer Manager
instance is through a INDI lookup to the local Java environment (i.e.,

j ava: conp/ env/tinmer/[timernane]). Thus, Timer Managers are configured at
deployment time through deployment descriptors, and may be further configured through
implementation-specific management features. Each JNDI | ookup() for a

Ti mer Manager returnsanew logical instance of Ti mer Manager . Thus, applications
need to cache copies of Ti mer Manager if they intend to reuse the same instance.

Ti mer Manager isthread-safe.

This specification places no requirements on persistence of timers: if the managed
environment is shut down or fails, the timers will beirrevocably lost unless the
implementation supports a higher quality of service.

Ti mer Manager may aso be suspended and resumed viathe suspend() and
resume() methods. When a TimerManager is suspended, none of the timers will
expire.

Ti mer Manger can aso be destroyed viathest op() method. After st op() has been
called, the Ti mer Manager instance will never expire another timer.

Timer Interface
TheTi mer interface, instances of which are returned when timers are scheduled with the
Ti mer Manager , provides several capabilities:

* cancel () : Cancelsthetimer that is currently pending. If the listener associated
with this timer implements the Cancel Ti mer Li st ener interface, the listener
will be notified viathet i mer Cancel () callback.

» get Period(): Thisreturnsthe period that is used to compute the next time the
timer will expire.

* schedul edExecuti onTi me() : Thisreturns the absolute time that the timer
will next expire.

o getTimerLi stener(): ReturnstheTi ner Li st ener associated with the
timer.

Timer Listener Interfaces

Thebase Ti mer Li st ener interface providesthet i mer Expi r ed() callback. Itis
anticipated that thisis sufficient for many applications. However, additional callbacks for
timers being cancelled and TimerManagers being stopped are sometimes necessary.

3
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

Listener classes can implement Cancel Ti mer Li st ener if they want the

ti mer Cancel () callback inthe case that the application cancelsaTi mer . Listener
classes can implement the St opTi ner Li st ener if they want thet i mer St op()
callback in the case that the Ti mer Manager on which the Ti mer was scheduled is
stopped. Listener classes can also implement both Cancel Ti ner Li st ener and
St opTi mer Li st ener if desired.

Deployment

Applications signal their need for atimer manager through including ar esour ce- r ef
in the appropriate deployment descriptor (e.g., web.xml, gb-jar.xml, raxml, etc.). The
absolute name for the INDI namespace for Ti mer Manager objectsis

j ava: conp/ env/ ti mer, and thus the relative name for use within the resource-ref is
simplyti nmer.

The following provides an example resource-ref fragment configuring a
Ti mer Manager named My Ti ner :

<resource-ref>
<res-ref-name>timer/ WTi mer</res-ref-nanme>
<res-type>commonj.tiner. Ti mer Manager </ res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>

Examples

The following example shows aTi mer Manager being looked up in INDI and used to
schedule atimer that fires in 60 seconds.

Initial Context ctx = new Initial Context();
Ti mer Manager ngr = (Ti mer Manager)
ctx. | ookup("j ava: conp/ env/tinmer/ MyTinmer");
Ti mer Li stener |istener =
new St ockQuot eTi ner Li stener ("QQQ', "johndoe@xanpl e. com');

/1l schedule timer to expire 60 seconds from now
ngr. schedul e(li stener, 1000*60);

The above coderelieson the St ockQuot eTi nmer Li st ener class, which could be
defined as follows:

i mport commonj .tiners. Tiner;
i nport commonj.tiners. TinerlListener;

public class StockQuoteTi nerListener inplenents TinerListener {
private String ticker;
private String email;

public StockQuoteTimerListener(String ticker, String email) {
this.ticker = ticker;
this.email = emil;

4
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

public void tinmerExpired(Timer timer) {
/'l retrieve stock quote for ticker and
/1 email quote to recipient
Systemout.println("sent stock quote for " +
ticker + " to " + emil);

Systemout.printin("timer will fire again: " +
tinmer. schedul edExecutionTime());

}
The TimerManager alows other fixed-delay schedule methods, as shown below:

/1l schedule tiner to expire 60 seconds from now
nmgr . schedul e(li stener, 1000*60);

/'l schedule tiner to expire 60 seconds from now
/1 and repeat every 30 seconds
nmgr . schedul e(li stener, 1000*60, 1000*30);

/'l schedule tiner to expire at noon today
Cal endar cal = Cal endar. getlnstance();

cal . set (Cal endar. HOUR, 12);

nmgr. schedul e(listener, cal.getTime());

/'l schedule tiner to expire at noon today

/1 and repeat every hour thereafter

cal = Cal endar. getlnstance();

cal . set (Cal endar. HOUR, 12);

nmgr . schedul e(li stener, cal.getTime(), 1000*60*60);

Theschedul eAt Fi xedRat e() method can also be used:
/1l schedule tiner to expire 60 seconds from now

/1 and repeat every 30 seconds

ngr . schedul eAt Fi xedRat e(li stener, 1000*60, 1000*30);

/'l schedule tiner to expire at noon today

/1 and repeat every hour thereafter

cal = Cal endar. getlnstance();

cal . set (Cal endar. HOUR, 12);

ngr . schedul eAt Fi xedRate(listener, cal.getTinme(), 1000*60*60);

The following shows an example listener class similar to the previous listener class, but it
implements both St opTi nmer Li st ener and Cancel Ti nmer Li st ener:

i mport commonj .tiners. Cancel Ti mer Li st ener;
i nport commonj.tiners. StopTi nerListener
i mport commonj .tiners. Tiner;

public class StockQuoteTi nerlListener2
i npl enents St opTi ner Li stener, Cancel Ti merLi stener {

private String ticker
private String email;

public StockQuoteTimerListener2(String ticker, String email) {
this.ticker = ticker;
this.emuil = emil

5
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

public void tinerStop(Timer timer) {

Systemout.printIn("Tinmer stopped: " + tiner);
}
public void tinmerCancel (Timer tiner) {
Systemout.printIn("Tinmer cancelled: " + tiner);
}

public void tinmerExpired(Timer timer) {
/'l retrieve stock quote for ticker and
/1 email quote to recipient
Systemout.println("sent stock quote for " +
ticker + " to " + email)

Systemout.printin("tinmer will fire again: " +
timer.schedul edExecutionTine());

}

Here is an example deployment descriptor that configuresthe Ti mer Manager used
above:

<?xm version="1.0" encodi ng="1S0O 8859-1"7>
<web-app ..»
<di spl ay- name>A Si npl e Applicati on</di spl ay- nane>
<servl et >
<servl et - nane>Cr der Tr acki ng</ ser vl et - nane>
<servl et-class>com mycor p. O der Tr acki ng</ servl et -cl ass>
</servl et>
<resource-ref>
<res-ref-name>timer/ WTi mer</res-ref-nanme>
<res-type>commonj . ti mer. Ti ner Manager </ res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>
</ web- app>

Trademarks
IBM isaregistered trademark of International Business Machines Corporation.

BEA isaregistered trademark of BEA Systems, Inc.

Javaand all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

6
From www-106.ibm.com/devel operworks/javallibrary/j-commonj-sdowmt/ 3 December 2003

	Timer for Application Servers
	Nov 2003 John Beatty et al, IBM Corporation
	Authors
	Introduction
	Architecture
	Timer Interface
	Timer Listener Interfaces

	Deployment
	Examples

	
	IBM Corporation Title Page

