
 1
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Timer for Application Servers
International Business Machines Corp. and BEA Systems, Inc.
Version 1.0
November 2003

Authors
John Beatty, BEA Systems, Inc.
Chris D Johnson, IBM Corporation
Billy Newport, IBM Corporation
Stephan Zachwieja, BEA Systems, Inc.

Copyright Notice
© Copyright BEA Systems, Inc. and International Business Machines Corp 2003. All rights reserved.

License
The Timer for Application Servers Specification is being provided by the copyright holders under the following
license. By using and/or copying this work, you agree that you have read, understood and will comply with the
following terms and conditions:

Permission to copy and display the Timer for Application Servers Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby
granted, provided that you include the following on ALL copies of the Timer for
Application Servers Specification, or portions thereof, that you make:

1. A link or URL to the Timer for Application Servers Specification at this location:
http://dev2dev.bea.com/technologies/commonj/index.jsp
or at this location:
http://www.ibm.com/developerworks/library/j-commonj-sdowmt/

2. The full text of this copyright notice as shown in the Timer for Application Servers
Specification.

IBM and BEA (collectively, the “Authors”) agree to grant you a royalty-free license,
under reasonable, non-discriminatory terms and conditions to patents that they deem
necessary to implement the Timer for Application Servers Specification.

THE Timer for Application Servers SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SPECIFICATION AND
THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE Timer
for Application Servers SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Timer for Application Servers Specification or
its contents without specific, written prior permission. Title to copyright in the Timer
for Application Servers Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Status of this Document

This specification may change before final release and you are cautioned against relying
on the content of this specification. IBM and BEA are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback and
(optionally) for implementation.

 2
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Introduction
The Timer for Application Servers specification provides a timer service API for use
within managed environments on the JavaTM platform, such as Servlets, EJBs, and JCA
Resource Adapters. The Timer API enables applications to schedule future timer
notifications and receive timer notification callbacks to an application-specified listener.

When inside these managed environments, this API is a much better alternative to
java.util.Timer: java.util.Timer should never be used within managed
environments, as it creates threads outside the purview of the container. Further, there is
no clean way of subclassing java.util.Timer to avoid thread creation, as all
constructors create and start a thread. This API is also a better choice than using the JMX
Timer Service because the JMX Timer Service API is tightly coupled with the JMX
framework and thus does not provide a sufficiently user-friendly or independent API.

The Timer for Application Servers specification thus provides a clean, simple, and
independent API that is appropriate for use within any J2EE container.

This specification is organized as follows:

• Architecture describes the design of the Timer API
• Deployment discusses how Timers are configured by deployment descriptors
• Examples provides a series of examples showing common usages of the Timer

API
• The Java API is provided as Javadocs in a separate file

Architecture
The Timer for Application Servers specification is comprised of three primary interfaces:
TimerManager, Timer, and TimerListener. Extensions to TimerListener
with extra capabilities are also provided; these are discussed below. A TimerManager
allows timers to be scheduled and manages the set of scheduled timers, each represented
by a Timer instance. When a timer expires, the timerExpired() method on the
provided TimerListener instance is executed. This execution is always in the same
JVM as the thread that scheduled the timer with the TimerManager. TimerManager
provides a set of schedule() and scheduleAtFixedRate() methods which take
a TimerListener instance along with other parameters (including absolute first
execution time, relative delays before first execution, and execution periods) and returns
a Timer instance.

It is important to note the difference between fixed-delay execution, provided by the
series of schedule() methods that take a period parameter, and fixed-rate
execution, provided by the series of scheduleAtFixedRate() methods. Fixed-
delay means that the period parameter specifies the time between actual execution time
of the last timerExpired() method call. If the timerExpired() call was
delayed for any reason (e.g., garbage collection or other background activity), this is

 3
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

taken into account. This is contrasted by fixed-rate execution, which tries to keep
timerExpired() “caught up” and on schedule. Thus, under fixed-rate execution, the
actually time interval between timerExpired() executions may be much smaller
than the specified period.

The Timer instance returned by the TimerManager can be used to manipulate the
timer (e.g., cancel, determine time to next execution, etc.).

A managed environment can support an arbitrary number of independent
TimerManager instances. The common method for obtaining a TimerManager
instance is through a JNDI lookup to the local Java environment (i.e.,
java:comp/env/timer/[timername]). Thus, Timer Managers are configured at
deployment time through deployment descriptors, and may be further configured through
implementation-specific management features. Each JNDI lookup() for a
TimerManager returns a new logical instance of TimerManager. Thus, applications
need to cache copies of TimerManager if they intend to reuse the same instance.
TimerManager is thread-safe.

This specification places no requirements on persistence of timers: if the managed
environment is shut down or fails, the timers will be irrevocably lost unless the
implementation supports a higher quality of service.

TimerManager may also be suspended and resumed via the suspend() and
resume() methods. When a TimerManager is suspended, none of the timers will
expire.

TimerManger can also be destroyed via the stop() method. After stop() has been
called, the TimerManager instance will never expire another timer.

Timer Interface
The Timer interface, instances of which are returned when timers are scheduled with the
TimerManager, provides several capabilities:

• cancel(): Cancels the timer that is currently pending. If the listener associated
with this timer implements the CancelTimerListener interface, the listener
will be notified via the timerCancel() callback.

• getPeriod(): This returns the period that is used to compute the next time the
timer will expire.

• scheduledExecutionTime(): This returns the absolute time that the timer
will next expire.

• getTimerListener(): Returns the TimerListener associated with the
timer.

Timer Listener Interfaces
The base TimerListener interface provides the timerExpired() callback. It is
anticipated that this is sufficient for many applications. However, additional callbacks for
timers being cancelled and TimerManagers being stopped are sometimes necessary.

 4
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

Listener classes can implement CancelTimerListener if they want the
timerCancel() callback in the case that the application cancels a Timer. Listener
classes can implement the StopTimerListener if they want the timerStop()
callback in the case that the TimerManager on which the Timer was scheduled is
stopped. Listener classes can also implement both CancelTimerListener and
StopTimerListener if desired.

Deployment
Applications signal their need for a timer manager through including a resource-ref
in the appropriate deployment descriptor (e.g., web.xml, ejb-jar.xml, ra.xml, etc.). The
absolute name for the JNDI namespace for TimerManager objects is
java:comp/env/timer, and thus the relative name for use within the resource-ref is
simply timer.

The following provides an example resource-ref fragment configuring a
TimerManager named MyTimer:

<resource-ref>
 <res-ref-name>timer/MyTimer</res-ref-name>
 <res-type>commonj.timer.TimerManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Examples
The following example shows a TimerManager being looked up in JNDI and used to
schedule a timer that fires in 60 seconds.

InitialContext ctx = new InitialContext();
TimerManager mgr = (TimerManager)
 ctx.lookup("java:comp/env/timer/MyTimer");
TimerListener listener =
 new StockQuoteTimerListener("QQQ", "johndoe@example.com");

// schedule timer to expire 60 seconds from now
mgr.schedule(listener, 1000*60);

The above code relies on the StockQuoteTimerListener class, which could be
defined as follows:

import commonj.timers.Timer;
import commonj.timers.TimerListener;

public class StockQuoteTimerListener implements TimerListener {
 private String ticker;
 private String email;

 public StockQuoteTimerListener(String ticker, String email) {
 this.ticker = ticker;
 this.email = email;
 }

 5
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

 public void timerExpired(Timer timer) {
 // retrieve stock quote for ticker and
 // email quote to recipient
 System.out.println("sent stock quote for " +
 ticker + " to " + email);

 System.out.println("timer will fire again: " +
 timer.scheduledExecutionTime());
 }
}

The TimerManager allows other fixed-delay schedule methods, as shown below:

// schedule timer to expire 60 seconds from now
mgr.schedule(listener, 1000*60);

// schedule timer to expire 60 seconds from now
// and repeat every 30 seconds
mgr.schedule(listener, 1000*60, 1000*30);

// schedule timer to expire at noon today
Calendar cal = Calendar.getInstance();
cal.set(Calendar.HOUR, 12);
mgr.schedule(listener, cal.getTime());

// schedule timer to expire at noon today
// and repeat every hour thereafter
cal = Calendar.getInstance();
cal.set(Calendar.HOUR, 12);
mgr.schedule(listener, cal.getTime(), 1000*60*60);

The scheduleAtFixedRate() method can also be used:
// schedule timer to expire 60 seconds from now
// and repeat every 30 seconds
mgr.scheduleAtFixedRate(listener, 1000*60, 1000*30);

// schedule timer to expire at noon today
// and repeat every hour thereafter
cal = Calendar.getInstance();
cal.set(Calendar.HOUR, 12);
mgr.scheduleAtFixedRate(listener, cal.getTime(), 1000*60*60);

The following shows an example listener class similar to the previous listener class, but it
implements both StopTimerListener and CancelTimerListener:

import commonj.timers.CancelTimerListener;
import commonj.timers.StopTimerListener;
import commonj.timers.Timer;

public class StockQuoteTimerListener2
 implements StopTimerListener, CancelTimerListener {

 private String ticker;
 private String email;

 public StockQuoteTimerListener2(String ticker, String email) {
 this.ticker = ticker;
 this.email = email;
 }

 6
From www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/ 3 December 2003

 public void timerStop(Timer timer) {
 System.out.println("Timer stopped: " + timer);
 }

 public void timerCancel(Timer timer) {
 System.out.println("Timer cancelled: " + timer);
 }

 public void timerExpired(Timer timer) {
 // retrieve stock quote for ticker and
 // email quote to recipient
 System.out.println("sent stock quote for " +
 ticker + " to " + email);

 System.out.println("timer will fire again: " +
 timer.scheduledExecutionTime());
 }

}

Here is an example deployment descriptor that configures the TimerManager used
above:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app …>
 <display-name>A Simple Application</display-name>
 <servlet>
 <servlet-name>OrderTracking</servlet-name>
 <servlet-class>com.mycorp.OrderTracking</servlet-class>
 </servlet>
 <resource-ref>
 <res-ref-name>timer/MyTimer</res-ref-name>
 <res-type>commonj.timer.TimerManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

Trademarks

IBM is a registered trademark of International Business Machines Corporation.

BEA is a registered trademark of BEA Systems, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

	Timer for Application Servers
	Nov 2003 John Beatty et al, IBM Corporation
	Authors
	Introduction
	Architecture
	Timer Interface
	Timer Listener Interfaces

	Deployment
	Examples

	
	IBM Corporation Title Page

