
 Performance and configuration guide for the Microsoft
Learning Gateway Solution on HP ProLiant servers

Overview.. 2
Audience .. 2
Solution architecture... 3

Logical architecture .. 3
Physical architecture ... 4
Server components ... 6
Portals architecture ... 7
Custom Web Parts ... 8
Assignments workflow .. 9

Deployment and installation .. 11
Deployment ... 11
Installation... 11

Provisioning .. 12
Administration tasks ... 12
Automated provisioning .. 22

Performance.. 31
Test methodology ... 31
Workload scenarios ... 32
Results .. 33
Analysis .. 34

Sizing solutions ... 35
Sizing methodology ... 35
Sizing examples .. 37

Summary .. 39
For more information.. 40

Overview

The Microsoft® Learning Gateway (MLG) solution comprises a set of Microsoft server
products that deliver a web-based portal solution that is highly scalable, but also supports
deployment in smaller school scenarios.

The solution is based on the Microsoft SharePoint Portal Server 2003 (SPS2003) and
Windows® SharePoint Services (WSS) platform, and delivers relevant information and
services via user roles and school membership. As part of the MLG solution, Microsoft has
created a set of Web Parts and customizations that provide education-specific functionality
on top of the standard SharePoint features.

Microsoft Class Server V4 is integrated within the portal to deliver an online Learning
Management System (LMS) enabling teachers to create lesson plans, manage Classes and
perform curriculum assessment online and offline. Students can participate in lessons and
complete assignments offline via the portal, both from home or at school. Administrators can
perform tasks such as defining the school infrastructure, adding Classes/students/teachers,
managing student and teacher accounts, etc.

Additional optional functionality can be added. Microsoft Exchange 2003 can provide
email, calendaring, etc. supported via a web browser through Outlook Web Access. Real-
time collaboration using Instant Messaging can be provided through Microsoft Live
Communication Server. With Microsoft Office 2003, Instant Messaging is an integrated
component of the portal to provide user presence information.

This document is focused on the SPS2003, WSS and Class Server components of the MLG.
It is intended to provide an overview of product functionality, deployment, operation and
performance. Key topics include:

• Solution architecture
• Web Parts and workflow discussion
• Deployment and installation guidelines and recommendations
• Provisioning and the use of automated procedures
• Performance characterization results and analysis
• Examples of sizing typical scenarios

HP recommends that the information presented herein be used in conjunction with the
Microsoft product and solution documentation, along with other information contained in
white papers authored by HP and Microsoft. These documents are detailed in the section
titled For More Information.

Audience

This paper is intended for people who will be proposing MLG solutions, providing
installation services or consulting, and who may be assisting educational professionals and
administrators in deploying the MLG educational solution on HP ProLiant systems. The
document assumes that the reader has an understanding of SharePoint Portal Server 2003
(SPS2003), Windows SharePoint Services (WSS) and Microsoft SQL Server 2000; and is
familiar with typical SPS/WSS administration and deployment tasks.

2

Solution architecture

The MLG solution utilizes the basic SPS/WSS portal functionality and services, and also
provides a superset of capabilities. SPS/WSS technology is used to provide the portal
framework and team collaboration web sites throughout the solution. The extra functionality
provided by the MLG customizations and by the Class Server product provides a specific set
of role-focused functions that support a formalized portal-based education process.

The MLG solution also capitalizes on the SPS/WSS highly-scalable and highly-available
architecture. The SPS/WSS prescriptive configurations developed by Microsoft and HP,
employing technologies such as load-balanced (WLBS) front-end servers and clustered SQL
Servers, are equally appropriate for MLG. Therefore the HP ProLiant and HP BladeSystem 2P
and 4P servers that HP recommends for SharePoint portal deployments are also ideal
platforms for the MLG solution scale-out architecture. Example platform configurations are
discussed in the later section titled Sizing Solutions.

The next few sections describe the logical architecture (total solution component layout), the
physical architecture (specific MLG and Class Server components and purposes); and the
typical server components that would comprise a solution.

Logical architecture
Customers can either implement MLG as an entirely new solution, or can leverage their
existing Microsoft infrastructure to provide components of the solution (such as Active
Directory, Microsoft Internet Security and Acceleration (ISA) Server, etc.). The Class Server
V4 component can also be added to an exiting SPS/WSS portal deployment to provide
(add) the education solution-specific functionality. The following diagram (Figure 1) illustrates
the components of the full solution.

Figure 1. Learning Gateway logical architecture

As noted earlier, this document assumes the user has knowledge of deploying SPS2003,
WSS and SQL Server 2000; and will focus on the addition of the Class Server components

3

and the required configuring, deployment and provisioning of the MLG solution. Other white
papers discussing SPS2003, WSS, SQL Server, etc. are noted in the section For More
Information.

Physical architecture
Figure 2, below, depicts the key physical components of the solution. The intent is to show
how the technology provides specific capabilities to the different users – administrators,
teachers, students and parents.

Figure 2. Class Server architecture

In general, users interact with the portal sites via both WSS and customized Web Parts on
the portal (school) site pages hosted by the web services on Class Server/WSS front-end
servers. Additional storage of information specific to the solution is also provided via a file
store to contain Learning Resources, and the school databases on SQL Server. Note that
Class Server must be installed on every front-end server that is running SPS/WSS. The
following summarizes some key solution components, and a later section will further explore
the overall portal and sites architecture.

Class Server and Custom Web Parts

The MLG contains a significant number of custom SharePoint and Class Server Web Parts
that were developed specifically for this solution. The list below highlights some of the
capabilities these provide.

• Sign-In – the Sign-In Web Part solicits user credentials when the user first accesses a school
page. It is also present, but hidden, on other pages and can thus provide these credentials
and the user role to other Web Parts that may display role-based information. For most

4

real-world deployments, an ISA server will be used to provide user authentication
forwarding features. As this method of forwarding credentials on behalf of the client works
only for Basic authentication, all users will have to sign in to the portal; rather than use the
AD authentication Class Server option.

• Assignments – these Web Parts form a significant part of the solution. Multiple related
Web Parts provide assignment lists, views, properties, editing, student progress
summaries, etc.

• Search – this is a superset of the WSS Search Web Part, allowing search by an education-
related hierarchy (e.g. district, school, Class, etc.).

• “My…” information – this is a set of Web Parts that provide role-based information to the
specific user. Examples are My Classes, My Assignments, My Communities and My News.

• Other Web Parts provide further user-specific information, such as lists of WSS team
(Class) sites that a user has access to.

Class Server Assignment pages

These pages allow the teacher to create, view, modify and assign lesson curriculum material
to students.

Class Server Learning Resource Material (LRM)

Curriculum materials will typically comprise so-called Learning Resources. These are files of a
specific format (having an LRM file extension) and, once imported, are listed in a customized
Document Library Web Part called the Curriculum Library. This library is created at the portal
root level by Class Server when a school is first created via the Administration applet. These
Learning Resource files represent tasks (lessons, homework, tests, etc.) that can be assigned
to Class students. They are typically self-contained learning material and may include
multiple-choice quizzes to test the student’s grasp of the material. They can also therefore be
graded (automatically, or by the teacher). Several 3rd party suppliers exist for these
resources. A set of about 200 such LRMs was used during the performance testing of this
solution, which were example LRMs provided by BroadEducation.com.

Administration

A dedicated administration applet and other related web pages allow administration of the
solution. These are accessible by administrators, and by teachers who have been granted an
administrator role. An administrator will normally perform tasks such as the initial school
infrastructure definition, adding users (teachers, students, and parents) and defining the
Classes. A teacher could be granted administration rights so they could access and modify
Class members (students) and other Class-related tasks. A walk-through of typical
administration tasks, and the use of automated provisioning, is presented in a later section.

Class Server SQL databases

In addition to the databases created and required by SPS/WSS, Class Server also creates
and maintains one database per school. In a North American deployment to support a
specific school district, a modest configuration with a single active SQL Server may be
adequate to handle the required number of school databases. However, in other
geographies (such as EMEA) where large numbers of schools are all related to a country’s
Ministry of Education, it will be more appropriate to deploy the solution across a number of
“satellite” sites – each supporting “local” schools. Example platform deployments are
discussed in the later section titled Sizing Solutions.

5

The next section describes how the solution components would be deployed on an example
hardware configuration.

Server components
The illustration below, Figure 3, shows an example server configuration to support the MLG
(SPS/WSS/Class Server) functionality. SharePoint Portal Server will typically be configured
as a Web Farm to provide scalability, performance and high availability. As the number of
concurrent users increases, additional servers can be added to the farm. This scale-out
approach does not impact the site hierarchy (see Figure 4 – Site Hierarchy), as each front-
end server in a farm will contain identically-configured virtual webs extended into WSS/SPS.
As with traditional SPS and WSS portal deployments, the notion of “role-based servers” is
employed.

Figure 3. Solution server components

Web farm

This comprises a number (minimum of two for high-availability) of front-end servers running
WSS and Class Server (and optionally SPS). These are typically 2P servers (e.g. HP ProLiant
BL20p or HP ProLiant DL380) and provide the web services (solution functionality) to the
clients. The number of servers in the farm is predicated by the required total throughput
(performance), discussed in more detail in the Performance section.

Search and Index servers

If SharePoint Portal Server (SPS) is included in the solution to provide search/indexing,
personal web sites (My Site), content aggregation, etc. for a school district, then the search

6

and indexing roles should be hosted by separate servers for best performance. These are
typically 2P servers (e.g. HP ProLiant BL20p or HP ProLiant DL380).

SQL Database servers

The MLG solution creates and utilizes a number of SQL Server databases – comprised of
those to maintain the context of the various portal and team sites, the Class Server school
databases, and the WSS site content databases. Thus, in a large solution deployment, it
may require more than one active SQL Server to ensure required performance. Depending
upon the specific situation and geography, either an “N+1” active/passive SQL cluster
(centralized deployment), or a “hub and spoke” (distributed) model may be appropriate. For
example, in a large country-wide scenario a central admin site with multiple school area
satellites would likely be used, each site having their own SQL Servers. These can be 2P
servers (e.g. HP ProLiant BL20p or HP ProLiant DL380), or 4P servers (e.g. HP ProLiant
BL45p or HP ProLiant DL580).

ISA Server

ISA Server provides functions such as namespace integration, pass-through authentication
caching, firewall, intrusion detection, etc. As this server is exposed to the external network, it
is strongly recommended not to add any additional services to this server. The MLG solution
supports Basic Authentication over SSL with limited support for Windows Integrated
authentication (Kerberos/NTLM). To provide the “single sign-on” facility to access all areas
of the portal, ISA Server is used to consolidate all services within a single namespace while
enabling Pass-Through Authentication. Multiple ISA servers may be required to ensure high
availability. These are typically 2P servers (e.g. HP ProLiant BL20p or HP ProLiant DL380).

Portals architecture
Figure 4, below, illustrates the portal site hierarchy for the MLG solution, and how the school
site collections and related web sites fit within the WSS and SPS portal architecture.

7

Figure 4. SharePoint site hierarchy

The home page for users within the portal is the role-based WSS site for the particular school
that the user belongs to. For example, a teacher’s home site will be the “Teachers” WSS site
for their school (see above illustration). By using WSS as the primary home page for users,
the portal is able to provide a unique user experience across the schools. The architecture
also enables a large number of school portals to be hosted on a server farm.

In the solution shown above, SPS provides shared services to the WSS school sites in the
form of search, personal “MySite” and centralized document lists.

Custom Web Parts
As discussed above, many Web Parts display information based on the specific user
credentials. This relates to both the user as an individual, and the user’s role in the education
system (e.g. teacher vs. student). These are generally referred to as interstatial Web Parts,
and while the visual results they display on a page may appear similar to the more simple
WSS Web Parts, there is often significant logic (Web Part code) behind their operation.
They can therefore be somewhat more resource consumptive than the simpler WSS Web
Parts. The following describes two such examples.

8

My Classes

At first glance, this appears to display a simple list of hyperlinks relating to Class sites.
Mousing-over a link will show the team site (Class) URL on the browser status line, similar to
the way a simple “My Links” WSS Web Part will do. However, there is additional logic
behind the scenes to cover two specific needs.

• When a teacher clicks on a Class “link” in this list for the first time they are presented with
a screen facilitating creating the team site for that Class. Once this site creation is
complete (taking typically less than 20 seconds) all users related to that Class can access it
(i.e. the Web Part now knows the site exists and can direct users to it). Note that these
Class team sites can also be created automatically using the solution’s SyncTeamSites
feature. SyncTeamSites can be scheduled for each school, thus obviating the need for
manual creation of Class sites. This method would be especially useful in larger schools
with many Classes.

• Any user (teacher, student, parent) will only see Class links in this list that relate to them
(Classes a teacher is responsible for, or that a student is a member of). The Web Part
therefore needs to know the user information and display appropriate results. The links are
also provided as virtual references, rather than full path references. This Web Part
therefore displays a dynamic list of sites relevant to the specific user at that time. As
students progress through the school system and are added to or change Classes, the list
will always reflect their current situation with respect to specific Class membership.

The functionality is therefore more complex than a simple hyperlink list.

My Assignments and Summaries

These appear as a multi-column object list or summary/count list respectively. However, their
content is also dependent on the specific user and their role. The lists are most typically
sorted based on the “state” of an assignment as it relates to the user. For example:

• A teacher’s My Assignments list will show assignments grouped by states of “assigned to
Class”, “ready to grade” and “returned”. These reflect the states from the teacher’s
viewpoint of (respectively) creating and issuing the Class assignment, the student(s) having
completed it and returned it for grading, and the teacher grading it and returning it to the
students.

• Conversely, a student’s My Assignments list will show grouping based on states of “to do”
(assigned to Class members and due for completion), “submitted” (performed by student
and returned for grading), and “complete” (graded by teacher and returned to student).

The summary Web Part shows each “state” and the number of assignments in that state. It
also allows the user to quickly select an assignment list in a certain state (e.g. show the “To
Do” list, sorted by due date). The functionality is therefore much more complex than a simple
WSS object list Web Part and can consume commensurately higher resources (mainly CPU).

Assignments workflow
The lifespan of an assignment (assign, perform, grade, etc.) can best be thought of as a
workflow. The various Web Parts that facilitate assignments are therefore potentially
complex and consume more server resources (notably CPU) than simple WSS Web Parts.
However, the incidence (frequency) of these Web Parts being used is likely to be much less

9

than other common functions such as browsing/reading material, discussions, reading news,
etc. The performance and solution configuration/sizing implications are discussed in detail
in the Performance section.

The following describes the typical “workflow” of assignments, so as to explain some of the
more complex functions that the related MLG Web Parts perform.

Create Assignment

A teacher will typically browse the Curriculum Library to select a relevant Learning Resource
(LR) to assign to a Class, this LR relating to the Class and subject. It may be set as a learning
exercise (read), a quiz or homework assignment, etc. The teacher will then click “Assign”
and be presented with a list of Classes they are responsible for. Having chosen a Class, they
will now see a list of Class students. The default would be to assign the LR to all Class
students. This action will change the state to “assigned” and the assignment will appear as
“Due” in each Class student’s “To Do” sub-list in their “My Assignments” list. It will also
appear in the teacher’s “My Assignments” list as “assigned” as discussed earlier.

It is important to note that this assignment is now tracked through the system via an
“Assignment ID” (AID) as initiated by the teacher; and also by a related “Paper ID” (PID) for
each student’s individual instance of the assignment. So in a Class of 30 students, the
teacher initiating a single assignment results in 30 instances of that assignment (one per
Class student) being created. A teacher can also monitor assignment progress by individual
students by drilling-down into their “assigned” list. The implication is that there are now 30
more items in the system that the various Web Parts need to track and display appropriately
in a number of ways. Multiply that example 30 students by the number of assignments per
Class per day, Classes per school, etc. and the number of such workflow-related items to
manage and display across the whole system quickly grows to a large number and can be
resource consumptive. Note that there is an option in Class Server to restrict the size of the
assignment returned from the student (default is 10MB). Reducing this value will lower
resource and network bandwidth consumption to some degree.

Perform Assignment

Each Class student would now pick the “Due” assignment from their To Do list and perform
the related Learning Resource (LR). This is accomplished by another custom Web Part that
enables viewing and interacting with the LR (e.g. answering imbedded multiple-choice
questions). Once complete, the students each click to return the completed assignment. It
again changes state (completed) for each instance (specific student’s copy, tracked by
AID/PID) of the assignment, and each is now ready for grading by the teacher.

Grade each student Assignment

Each student’s completed assignment will now be listed in the teacher’s “ready to grade” list,
sorted by Assignment and then by Student. The teacher can dispose of these in a number of
ways. If the assignment (LR) is auto-graded, the teacher may choose to simply “return all”
(implicit auto-grade and return all) in the list. They may also choose to open/read any
individual student’s assignment and enter comments. In either case, the state of each
student’s instance of the assignment will once again change state (returned). The grade
awarded will also be applied to each student’s school/Class record.

10

Review Assignment

Each student can now review their graded assignment, displayed in their returned list. The
workflow is now complete.

As can be seen, the solution Web Parts that handle the workflow and display assignment
lists have significant work to do. Each such Web Part must take into account the user
identity, user role, and state of any given instance of an assignment; and also sort them
appropriately into the relevant display lists dynamically. As these Web Parts are more
resource consumptive (CPU) it is important to develop as accurate a workload description as
possible when sizing a solution. This is described further in a later section covering
performance and sizing.

Deployment and installation

The MLG solution will usually be deployed onto a web farm comprising a number of front-
end servers. These will already have WSS (and optionally SPS) installed if a SharePoint
portal installation already exists, and the customer wishes to add the MLG functionality. In
the case of deploying the MLG solution from scratch, WSS (and SPS if required) must be
installed prior to installing Class Server. The process for this is extensively documented in the
Microsoft Solution for Intranets documentation set, authored by HP, and available from the
Microsoft web site as noted in the For More Information section at the end of this document.
The deployment and installation recommendations presented herein assume that the
WSS/SPS installation and configuration has already been successfully accomplished and
tested.

Deployment
The MLG solution will typically be deployed onto a set of servers that resembles a WSS/SPS
“medium” or “large” prescriptive configuration, designed for high availability. This will
comprise a number (minimum of two) of front-end servers acting in a cluster via WLBS.
Databases will be on SQL Server active/passive or “N+1” clusters. Separate Index and
Search servers may also be deployed, as well as an optional file store server to contain LRM
and other reference material. Example platform deployments are discussed in the later
section titled Sizing Solutions.

When following the guidelines below, note that Class Server must be installed on all web
front-end servers that have WSS/SPS installed. The Class Server product installation is a
simple, quick process. A later section describing Provisioning will document an automated
process that ensures consistency of content and configuration across all such front-end
servers.

Installation
Before installing Class Server on each web front-end server, there are a number of
prerequisites:

• WSS (and optionally SPS if required) must be installed and configured on each front-end
server.

• As the MLG solution runs from the Default web site, this default virtual web must exist
within IIS on each front-end server. If, for whatever reason, the default web site has been
deleted it is possible to create a new site and edit the site metadata such that it appears as

11

the default web site (site identifier = 1 in the IIS meta-base). Microsoft has published an
article describing this process.

• ASAPI extensions must be enabled on each front-end server. Within the IIS Services
Manager Console, click on the folder “Web Service Extensions” in the left pane, and then
click to enable ASAPI Extensions in the right pane.

• HP recommends using the WSS Central Administration Console to extend the Default web
site into WSS prior to installing Class Server. This ensures that the Class Server product
installation and subsequent configuration can be completed without interruption. The
configuration phase (and creation of schools) utilizes WSS functionality and needs to add
required web pages and Web Parts to the Default web site virtual web folder structure.
The Default web site must have already been extended into the WSS portal before this can
successfully occur.

To install Class Server V4, execute the following steps:

• Insert the Class Server CD in the drive. In the Welcome screen, click Next.
• On the Select a Setup option page, click Install Class Server, click Next.
• Follow on-screen instructions until you get to the Install and configure Class Server page.
• On this page, click Install Class Server.
• Follow the on-screen instructions, and then click Finish.

You can continue to install Class Server on each front-end server, but do not execute the
“Configure Class Server” operations on any of these subsequent servers. Initial school
configuration on the first front-end must be performed via the “Configure Class Server”
option, however configuring the remaining servers is best accomplished using an automated
provisioning methodology. This will ensure an error-free and consistent configuration across
all front-end servers.

The configuration/provisioning process, and the use of automated procedure, are discussed
in the following sections.

Provisioning

Once Class Server is installed, there are a number of administration and provisioning tasks
to perform. These involve defining a first school, its Classes, students, teachers, etc. and then
adding further schools as needed. Learning Resource materials can also be imported to the
Curriculum Library.

Administration tasks
The first step is to define the first school on one of the front-end servers, and then to add the
users and Classes for that school. Complete all the steps below up to “Adding Learning
Resource material” on one of the front-end servers. You will then use automated procedures
to clone the relevant server and school configuration information to the remaining front-end
servers.

12

Creating Schools

To create the first school by using the Class Server Configuration option within the
installation/configuration procedure, continue from the installation procedures described
above. At this point you should be on the Install and Configure Class Server page.

Click Configure Class Server. (Note – If on completion you exited the installation procedure
above, you can also start Class Server configuration by double-clicking the Class Server
Configuration icon on the desktop). You should now see a prompt screen as shown in Figure
5, below.

Figure 5. Configure Class Server - Schools

Click on Create… to define a new school. The example above shows that a school (School2)
has already been created. To make modifications to a highlighted school, you would click
on Configure…

If prompted to create a new school database, click Yes. You will only need to create a
school database once, as when configuring other front-end servers the correct database
name will be supplied via the automation procedures detailed later. Note that each school
must have a unique database name. You will now see the school configuration screen as
shown in Figure 6, below.

On the School Information tab, type the name of the school (e.g. Nashua High School) in
the School title box.

Select your geographic region (e.g. United States) from the Region list.

Select SharePoint site as the Web site option from the School Web Site list.

Enter a short school name (e.g. Nashua) as the site name in the SharePoint site box. The
Schoolname field will be automatically filled-in.

Check the Create this site automatically and Install default Class Server Web Part Pages
boxes.

13

Take note of the School GUID as shown on this screen, and the school it refers to. You will
need that GUID string when setting up the automated provisioning procedures. Once the
school has been created, the school GUID may also be obtained from the Windows Registry
from the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Class Server\Server\Schools\School_GUID

Figure 6. School configuration – School Information

Now click on the Data Storage tab to enter database and storage information. These will
likely be the same for all schools served by the web farm, except for the unique school
database name.

Enter the name of the Database Server. This may be a SQL Server name, or the cluster alias
name of a SQL Server cluster.

Enter a unique Database name for the school. Each school has its own database.

Check the Use Windows authentication button, unless your IT practices dictate otherwise.
This will use Basic authentication over (optional) SSL.

Enter the name of a network share to use as the Server File Storage. This is of the form
\\<Server>\<Sharename>.

14

Refer to the example in Figure 7, below, and enter the required data.

Figure 7. School configuration – Data Storage

Next, click on the Users tab to enter authentication choices and the Administrator password.

Click on a radio button to pick your desired User Authentication methods. There are three
choices, providing selection of either using Class Server sign-in authentication, using Active
Directory, or using a mix of those two methods.

Enter a username and password for the Class Server Administrator account. The default
username is CSAdmin.

Refer to the example in Figure 8, below, and enter the required data.

15

Figure 8. School configuration – Users

Click the Settings tab and enter any changes needed. It is likely that the default settings will
be acceptable.

Using the default SharePoint document library for the Curriculum Library location is
recommended, as this will place the library at the web farm root level and it will be
accessible in the same manner from all schools (common material is shared).

Refer to the example in Figure 9, below, and make any required modifications.

16

Figure 9. School configuration – Settings

Finally, click the Save & Configure button, then enter any requested passwords. The school
database will be created and specified configuration parameters will be stored. The
process typically takes less then 30 seconds.

When configuration is complete, the Microsoft Class Server URL Listing dialog box appears.
Make a note of the URLs in this list, as you will need them later.

You can now continue with the remaining administration operations using the Class Server
Administrator web page. To start this, enter the following address in your browser:

http(s)://<servername>/<school>.cs/Admin

where <servername> is the system name of the first front-end server you are configuring, and
<school> is the short school name you entered to define the school web site. This is also the
Administrator URL shown in the Microsoft Class Server URL Listing box, cited above. Note
that later, when you have configured all front-end servers, the <servername> can be the web
farm cluster alias name (e.g. District).

Note that if you need to utilize SSL (Secure Sockets Layer) on Class Server, this requires that
you have the server NetBIOS name on the certificate – or else you will not be able to

17

configure the school. This method is not compatible with ISA server which requires the
FQDN name of the website that will be published through the ISA server. One way to solve
this dilemma is to use one NetBIOS certificate-name to be used when configuring schools in
Class Server, then change it to an FQDN certificate-name once configured and when
publishing it through ISA.

Adding users and classes

Perform the following steps to enter example users and a Class so you can test the school
configuration. You can add the real users and Classes later using an automated provisioning
methodology, described in detail in a later section of this paper.

When the Class Server Administrator web site opens, sign in with the username and
password you specified during Class Server installation. The default username is CSAdmin.

Figure 10. Class Server Administrator – Sign In

Once login is complete, click on Teacher Information and then add a test teacher, e.g.
Teacher1. Figure 11, below, illustrates the Teacher Information Administration page. In the
example screen shown, a number of teachers have already been added, as well as Classes
for which they are responsible. When first used, this screen would only list the Administrator.
Click New Teacher and enter required information.

18

Figure 11. Class Server Administrator – Teachers

Now click on the Students tab and then add a test student, e.g. Student1. Figure 12, below,
illustrates the Student Information Administration page. In the example screen shown, a
number of students have already been added, as well as their current active Classes. When
first used, this screen would not contain any information. Click New Student and enter
required information.

19

Figure 12. Class Server Administrator – Students

Click on the Classes tab to add a test Class, e.g. Class 1. Figure 13, below, shows a listing
of current Classes (used for HP lab tests), with the students and teacher(s) being listed for the
highlighted Class. When first used, this screen would not contain any information. Click
New Class to add a test Class and assign the test teacher and test student to that test Class.

20

Figure 13. Class Server Administrator – Classes

Modify the teacher and student entries, if required, to make sure the teacher has access to
the Class, and the student is enrolled in the Class.

Click Sign Out to leave Class Server – Administrator.

Testing the school configuration

Having entered a Class, teacher and student you can now test the school that you have
created and configured. Proceed as follows:

• In your browser, enter http://<servername>/<school>, e.g. http://CSServer1/Nashua.
This will bring up the school web site. Note that this is the School Web Site URL from the
Microsoft Class Server URL Listing dialog box, shown earlier.

• Sign in as Teacher1, and then click My Assignments

• Create an assignment for Class1, and assign it to Student1

• Now sign in as Student1, and complete the assignment.
• Sign in again as Teacher1, and grade the returned assignment.
• The above should validate that all is working correctly. You can also experiment with other

workflows and Class Server Web Parts.

21

Adding Learning Resource Material

Adding Learning Resource Materials (LRMs) to the Curriculum Library can be accomplished
in several ways. You can perform this step once a single front-end server has been fully
configured (and a school created), or later when all front-end servers are configured, and
also at later times when new material needs to be imported.

Class Server includes a Learning Resource Upload Tool. This is both a command-line tool
that you can use to import multiple LRMs to a SharePoint document library, and a Web Page
tool that teachers can use to import individual LRMs to the Curriculum Library. Refer to the
Class Server Administrator Guide (PDF or HTML version) for full details.

You can also browse to the Curriculum Library (default URL is http://<servername>/CurrLib)
and click on Upload Document, or Upload multiple files. When uploading multiple files, it is
best to do this in modest groups of files, depending on the total file size. Once imported to
the Curriculum Library, the LRs are available for use and can be viewed, edited and assign
to Classes. Figure 14, below, shown the Curriculum Library web page.

Figure 14. Curriculum Library Web Page

Automated provisioning
At this point you have fully configured one front-end server, defined a school, entered test
Classes and users, and validated correct operation. You can now both configure remaining
front-end servers, and also enter “real” Class and user data. This is best accomplished via
an automated process provided by Class Server using the automated provisioning tool

22

CSProvision.exe. Microsoft supplies a Class Server Provisioning Guide (in HTML format),
which is somewhat detailed and may take some study to gain full understanding and
familiarity with all that is possible. The following sections present practical examples of how
to use this facility to define servers, schools, Classes and users in an automated, repeatable
manner.

There are multiple benefits to using this method. It ensures ease of managing and
maintaining school, Class and user definitions in one place. It ensures all front-end servers
are configured identically. It avoids errors due to transposition or typos. It can optionally
create a log file that can help quickly spot and fix errors.

The process uses the CSProvision.exe file (installed by Class Server), operating on an XML
data file which includes appropriate commands and definitions. In general, you will want to
use it to define five specific groups of items:

• Server configuration (front-end servers)
• School(s) definition
• Class definitions
• Students and parents
• Teachers

The following describes the process and presents parts of a practical XML file showing how
to define each of the above items. This example file was used in the HP performance labs to
configure the test systems. The full test file was 1600 lines of XML data (1 school, 20
teachers, 40 Classes, 800+ students), however only representative file fragments will be
shown to illustrate syntax and operation.

Rather than a single overly large XML file, such as the test file noted above, you may wish to
split it into multiple files.

• You can use a single XML file to contain the server and school(s) definitions. This must be
applied to all front-end servers, as when invoked it creates data that is in part stored in the
server Windows Registry. This file thus ensures all servers are configured identically and
each has knowledge of all schools (school GUIDs, database names and access
information) that could be accessed from the web farm servers.

• You could then use a single XML file to define the Classes and users for each school, thus
keeping files to a reasonable size. Each such file would contain an appropriate “SignIn”
command to the related school, described in detail below, or require a /SignIn switch and
appropriate credentials on the CSProvision command line. These school Class/user
definition XML files can be invoked from any front-end server, as the relevant data is stored
in the school’s SQL Server database.

Required data

You will need various data definitions and values, most already used during product
installation and configuration, as these must be entered into the XML data file. Prior to
creating the XML file(s), make a note of the following:

• School GUID (see above for how to obtain this from the registry)
• Database server name and school database name

• School Region

23

• File store location

• Authentication method

A full list of the parameter values needed is shown in the Defining the School section, below.
These values relate to the data you specified when originally defining the school via the
Administration applet.

Running CSProvision.exe

Open a command line window and navigate to the folder containing CSProvision.exe. By
default this is in the following location:

C:\Program Files\Microsoft Class Server\Server\Configure\Tools\CSProvision.exe

You will also need to decide on a folder location for the XML definition file and for the log
file produced by the operation. Having navigated to the folder above, invoke CSProvision
using the command:

CSProvision /log <folder>logfile.txt <XML folder>\<provision-filename>.XML

The provisioning program will run and execute the instructions in the XML file. A scrolling on-
screen log will show progress. Should an error occur, refer to the created log file for details.
This will indicate the exact error and the “cell reference” (e.g. “B3” – the XML spreadsheet
column/row) of the command or data definition causing the error. Our experience during
testing was the most likely cause of error was incorrectly entering data field names – either a
simple typo or not exactly following the required ‘case’. Most entries are case-sensitive. Use
the spelling/case exactly as showing in the provisioning guide.

Some required parameters, such as passwords, are security sensitive. These can be defined
using macro replacement in the XML file (e.g. “%AdminPwd%”) and then passing the name
and value as part of the command line string (e.g. CSProvision /AdminPwd=manager). Pass-
through authentication is also possible. Refer to the provisioning guide for more details.

The CSProvision executable and related XML file support a wide range of definition and
modification commands, enabling a structured approach to maintaining all these data. You
are encouraged to refer to the Class Server Provisioning Guide (CSPG) (HTML file) to
discover the full extent of this provisioning tool’s capabilities. The guide is written as more of
a reference document than a “how-to” guide, but does contain example syntax.

XML file creation

The following sections are offered as practical, tested examples of how to use the
provisioning functions and required data definitions to create and populate a school.
Fragments of the definition XML file used during HP performance lab testing are included to
illustrate relevant commands and data name/value content. Users who are less-familiar with
XML-format files may find it easier to create, view and edit the XML file using Microsoft Excel
and saving the file as an XML spreadsheet (XMLSS). The Microsoft CSPG document also
recommends using this format. The examples below are shown as XMLSS files viewed via
Microsoft Excel, rather than showing the usual hierarchical indented XML format.

The example XML file was written in discrete sections that define each portion of the solution
(server, school, users, and Classes). Commands to skip sections (!Skip and !EndSkip) can be
inserted around parts that do not need to be executed. For example, if you have made
changes or additions only to the Classes definition section, then other sections need not be
executed. This “section skip” will be seen throughput the examples presented below.

24

NOTES

The XML file shown was created to provision the HP performance lab systems, but the examples it
presents are broadly applicable to real-world needs.

The XML file examples below use a number of MS Excel cell formatting features to improve
readability. These are purely cosmetic, but follow similar conventions to those shown in the Class
Server Provisioning Guide document.

• The !Skip and !EndSkip command cells have a green background to make them stand out (e.g.
!Skip and !EndSkip).

• The top-level commands are shown bolded (e.g. !ConfigureServer). Such commands all begin with
an exclamation point.

• Objects relating to the top-level command all begin with a period character, and are shown
underlined (e.g. .Server or .Schools).

• Name/value pairs relating to the object are defined in column/row format. Thus all relevant
definition names are across columns in a single row, with related definition values across the
columns in subsequent rows. Data names are shown in blue text (e.g. SchoolName and
WssHomePageUrl) for clarity. Note that data names contain no spaces and are case-sensitive. They
must be entered exactly as described (spelling and case) in the CSPG documentation.

• Comments can be included, each preceded by a semicolon character (e.g. ;comment). These can
appear on any line, or at the end (final column) of name/value definitions as shown in the
examples.

Defining the Server

The purpose of defining the server parameters is to ensure all front-end servers are
configured identically and can thus operate in the WLBS front-end cluster in a predictable
and consistent manner. Figure 15, below, is the top portion of the example XML file that
shows some initial comments (explaining the overall purpose of the file), and the server
definition commands. The CSPG lists all available commands and definitions for the server,
and the default values for each parameter. If the default is acceptable, it need not be present
in the XML file.

In the XML fragment shown in Figure 15, below, rows 23 through 29 define the Server and
a School. The Skip/EndSkip commands in rows 22 and 30 should be removed to execute
this section. It should only be executed once on each server. If you need to add more
schools, then each must first be added by the CSAdmin web page and the school GUID
(and other relevant parameters) for each school should be noted for inclusion in the XML file.
Then re-execute the edited XML file via CSProvision.exe.

25

Figure 15. XML file – Server and School definitions

Refer to rows 23 through 26 in Figure 15, above. These commands and name/value pairs
define parameters for the Server. The block begins with the command “!ConfigureServer”,
then the object “.Server”, then a single name/value pair to define the server Cache timeout
(CacheLifetime) with a value of 360.

Defining the School

The above is followed in row 27 by the schools object “.Schools” and a list of parameter
names in row 28. The values for a school (School2 in this example) are in row 29.
Subsequent school definitions would be immediately below this (e.g. you would insert rows
after row 29 and add further school definitions). The figure was cropped for clarity and
does not show all rows in the example school definition. The full set of example parameters
are listed below as “name=value” pairs for completeness. See the CSPG document for a list
of all possible parameter values and meanings (e.g. USA region is a Region parameter
value of 1).

• ID = <GUID> (this is the school GUID string you obtained from the Registry for this specific
school). Enter the GUID string exactly as obtained from the Registry.

• Schoolname = School2.cs
• DatabaseServerName = LFSQLVS1 (this was the SQL Server cluster alias name in the HP

lab)
• DatabaseName = CSSchoolDB2 (default name was assigned by CSAdmin when school

was created)
• Title = School2
• Region = 1 (USA region)

26

• WssHomePageUrl = /School2
• InstallWssSchoolPages = TRUE (install WSS pages and Web Parts when school is defined

on the server)
• OverWriteWssSchoolPages = FALSE
• AdminPassword = managers (the password can be passed as a “%parameter%” – see the

CSPG document)
• HomePageEnabled = TRUE
• LRPath = \\class1\csdata (network location of a share to hold the Learning Resource data)
• DefaultBackupDir = \\class1\csdata
• ADmode = 0 (all users validated via sign-in, can be changed to use sign-in, AD, or both as

detailed in the CSPG document. Must be 0 if ISA server used – see earlier discussion
regarding ISA)

The above server and school definitions must be applied to all front-end servers, and may
thus best be contained in a single XML file for this purpose.

Sign-into a school

The following sections show how to add teachers, students/parents and Classes to a school.
As discussed earlier, these could be in a single XML file, or in separate XML files for each
school. The examples below are from a single file. As these data are specific to a school,
you must first “sign in” to the school as shown in rows 35-37 in Figure 16, below. The
!SignIn command is followed by a set of name/value parameters for the school, defining the
school specifier (via its GUID), CS Administrator username and password. Note that the
school specifier is the school GUID proceeded by a hash sign (e.g. #<GUID>). This is also
equivalent to the School ID formed from the School specifier [Sch:<school-name>]. The
comment in column D of the example notes that this GUID referred to School2. Again, the
Administrator sign-in password can be passed via a parameter for security.

Defining Teachers

The syntax for adding teachers is shown in Figure 16, below, beginning at row 41. The
!Skip at row 40 (and corresponding !EndSkip) should be removed to execute this section.

27

Figure 16. XML file – Sign-In and Teacher definitions

The !UpdateTeachers command and related data is followed by the .TeacherInfo object.
Actual teacher name/value data begins on row 45. The illustrated Username, Password,
LastName and FirstName were used for test scripting simplicity in the HP labs; and real
names and passwords would appear here. The Username, however, can be any unique
string. Note that the ID specifier is formed from this Username (i.e. [P:<username>]) and
must be defined in this manner, as it is a Class Server ID specifier. ID specifiers are required
anywhere an ID is needed (PersonID, ClsID, etc.) but not where data objects are needed
(Person, Cls, etc.) Again, comments can be added as shown in column F. As with defining
each section of data, you can subsequently re-execute a section is you have made
modifications or additions.

Defining Students and Parents

Defining students and parents is performed in a similar way to teachers, except with some
additional parameters. Figure 17, below, is a fragment of the example XML file showing the
conclusion of defining teachers (up to row 65) followed by the beginning of student and
parent definitions beginning on row 69. Again, the Username, Password, ExternalID and
ParentPassword fields shown were used for test purposes. The same rules for Username and
ID apply, as was explained above regarding teachers.

28

Figure 17. XML file – Students and Parents

If a parent password is specified, then a student’s parent can access the school site by
singing-in with a username of “!<username>” (i.e. precede the student’s user name with a
“!” character), and using the defined parent (not student) password.

Defining Classes

A Class definition (beginning with !UpdateCls) comprises data relating to the Class (ID and
Title), which is then followed by the teacher(s) responsible for that Class and a list of students
who are members of the Class. The example XML file fragment in Figure 18, below,
illustrates the conclusion of defining all the school’s students (up to row 894) followed by the
first Class definition starting on row 898. The Class titles shown were again for test
purposes, however note that the Class ID is formed from the Class ID specifier using the
Class Title (i.e. [C:<Title>]) and must be specified in that manner. Teacher definition is as
shown in rows 901-903, with student definitions as shown in rows 904-915. Row 917
onward shows a second Class definition.

29

Figure 18. XML file – Defining Classes

The above sections illustrate how schools and their related Classes and users can be easily
defined in centrally-managed XML files, and be applied to the MLG solution front-end servers
as needed. Note that only the Server and School definitions need be applied to every front-
end server, as these actions result in various data being stored in the server’s Windows
Registry.

Adding or modifying school Classes or school users can be performed on any front-end
server, as these actions result in data being written to the school SQL database.

The CSProvision.exe program, along with XML file commands and data, can perform a
range of other administration functions. Refer to the CSPG document for further details.

30

Performance

The intent of the HP lab tests of the MLG solution was to determine and test best-practice
deployment methodology, to determine performance, and to devise recommended solution
sizing and configuration information utilizing HP ProLiant and BladeSystem servers. While it
was not possible to test to very large user populations (e.g. millions of students), the results
obtained demonstrated the expected throughput capacity of front-end servers, and of typical
scalable web farm deployments.

In a USA School District scenario, it appears that a single web farm deployment will support
most typical user populations. Up to 10 front-end servers were successfully lab tested in a
large web farm and displayed excellent scalability and performance. As many as 15-20
such front-end servers could be supported by a single active SQL server, depending on the
workload mix.

In an EMEA scenario, it would be typical to see a higher user population spread across a
larger geographic area (country). Such scenarios could be supported by a single central
administration configuration and multiple remote “satellite” configurations (hub and spoke
model). Each such satellite would be sized to support the area’s local schools and
student/parent/teacher population.

Test results clearly showed that the MLG solution capitalizes on the WSS/SPS scalable
architecture, and that the well-understood rules and guidelines for deploying WSS/SPS are
applicable to MLG. However, given the higher resource consumption of some of the MLG
custom Web Parts care must be taken to determine the intended workload as accurately as
possible, so as to size the solution accurately. The later section covering Sizing and
Configuration speaks to this topic further.

The following sections describe the HP performance lab testing, the performance results
obtained and some analysis discussion.

Test methodology
HP has a significant historical investment in the performance characterization of SharePoint
based solutions and has leveraged that to develop test scenarios for the MLG solution. HP
ProLiant and BladeSystem servers are installed and configured normally, and are deployed
in different configurations to determine performance and best practices. Emulated user
scenarios are developed to test function performance and to investigate prototypical real
world business and role-based user activities.

The workload user scenarios are created and applied using high-end workload emulation
software (Segue SilkPerformer), which is an ideal tool suite to evaluate web-based solutions.
The workload ‘scripts’ are based on recordings of actual user activity, and are then
enhanced to provide such features as list item selection, randomization, logical flow, etc.
The result is an emulated role-based user scenario that mimics real user activity. The scripts
are applied using dedicated emulation servers. These act like client desktops, in that they
interact with the front-end servers as in real life by transmitting the appropriate HTTP/HTML
traffic and responding to the received content.

Accurate throughput rates (e.g. web pages per second) and per-function response times are
also obtained. Additionally, a monitoring server is used to capture, collate and analyze the
operating system monitor data for all servers in the tested solution. This allows correlation of

31

user load, response times, throughput, and per-server resource utilization. These data are
also used to create sizing models and tools.

The next section describes the workload scenarios employed for the emulated teachers,
students and parents using the MLG solution.

Workload scenarios
It is un-necessary, and impractical, to create a workload scenario that employs every
possible function that a user might perform. To create a reasonably representative workload
scenario script, you should focus on solution functions that meet the following three criteria:

• They are important to the “business”

• They are performed reasonably frequently

• They are known, or believed, to have an impact on the servers

Functions meeting the above criteria will likely have an impact on the solution server(s)
performance and thus on sizing. Some of the MLG functions are basic WSS or SPS functions
(e.g. browse/open documents, discussions, etc.). The characteristics and performance of
these are already well understood from prior performance characterization work. The
workloads used, therefore, tended to focus on the new, customized functions (Web Parts)
that provide the unique MLG functionality to support an Education-related portal. The
following describes the role-based user scenarios and functions employed in the test
workloads.

All users

All user roles (teachers, students and parents) performed some percentage of common (more
simple) functions as part of their workload scenario, these being:

• Accessing a Class web site via the “My Classes” Web Part. This MLG custom Web Part
lists Class sites of which the specific user is a member.

• Class site activity (browsing, reading, etc.) as per a typical WSS team site

• Participating in one or more threaded discussions (read and/or contribute)

The above functions are mostly benign and not overly resource consumptive although, as
discussed in detail earlier, the My Classes Web Part is more complex and consumes more
CPU than a simple Hyperlink List Web Part.

Teachers

In addition to the above, teacher activity also included functions related to Class
assignments:

• Browse Curriculum Library and open/read learning resources (LRs), representing lesson
preparation.

• Assign an LR to a Class (all students in Class). This involves selecting an LR from the
Curriculum Library and then navigating multiple screens and making appropriate
selections to invoke the assignment.

• Grade completed student assignments. While it is possible for a teacher to simply “return
all” student assignments (auto grading), the workload instead emulated the teacher
viewing/grading individual students’ papers. While possibly more resource-intensive, it

32

was felt that in real life a teacher would gain more information as to the Class students’
grasp of material and also spot common errors in test answers using this procedure. The
typical logical flow used was:

1. Pick the first assignment from the “to be graded” list
2. Randomly choose a number of students’ papers to grade (nominally 5-10)
3. Loop around, grading and returning each student’s paper

This therefore emulated a “grading session” lasting a period of time.

Students

In addition to the common (all users) functions, students also performed assignment-related
functions:

• Perform an assignment. This involved picking the first item from the “Due” list, opening it
(invoking the LRM viewer), reading though the LRM material, and finally clicking to submit
the completed assignment for grading.

• Viewing graded assignments. This comprised picking a random assignment from the
“Graded” list, and opening it (via LRM viewer) to emulate viewing the grade and teacher’s
comments.

Parents

In addition to the common functions, parents also performed one assignment-related activity
– this emulating them taking an interest in the child’s progress.

• Pick a random assignment from the entire list (Due, Submitted or Graded) and open/read
it via the LRM viewer.

The above workload scenarios were felt to be reasonably typical of user activity, and
employed the key functions with respect to the solution goals and determining likely solution
performance.

Results
The results measured, shown in Table 1 below, relate to an HP ProLiant BL20p 2-CPU
BladeSystem server using 3.2GHz CPUs, running at a nominal average %CPU busy of 80%.
While it is possible to load the server above this level, experience has shown that an
average of 80% busy provides optimal response times and consistent performance while
being cost-effective. Specific server role configurations (CPU, memory, disks, etc.) are
discussed in detail in the HP authored SharePoint Portal Server Performance white paper
noted in the section For More Information. The configurations HP recommends in that paper
are also applicable to servers used in this MLG solution.

Simple functions yielded average response times that were generally sub-second, as has
previously been measured for typical WSS/SPS functions. The simpler MLG functions took
only a few seconds on average. Some of the more complex MLG functions (e.g. large sorted
lists or assignment functions) took up to 5 seconds or so, depending on the quantity and type
of the data presented, and the Web Part complexity (resource usage).

One of the key sizing metrics is to determine the throughput rate possible (at 80% average
CPU busy) for each key workload scenario function. Table 1, below, presents summarized

33

findings for the achievable per-function throughput rates in terms of web pages/second; and
the related SQL Server %CPU busy and network traffic rates.

Table 1. Per-function performance data

User and Function Throughput

(pages/sec)

Weighting

Factor

SQL Server

%CPU

Client Net

KB/sec

Server Net

KB/sec

All – visit Class site 12 8.33 4.00 400 1000

All – Class site functions 100 1.00 13.00 200 400

All – View/add discussions 60 1.67 5.00 2300 1300

Teacher – Create assignment 6 16.67 3.50 350 2400

Teacher – Browse CurrLib 15 6.67 9.50 1600 3050

Teacher – Grade assignments 6 6.67 6.00 250 1500

Student – Perform assignment 10 10.00 3.00 300 650

Student – View returned assignment 5 20.00 3.50 150 800

Parent – View assignments 6 16.67 3.50 200 800

Analysis
The “Weighting Factor” column shown in Table 1 (above) represents the relative “intensity”
of a function compared to the least intense (highest throughput) function. Thus, for example,
the resource (CPU) cost of a student performing an assignment is about 10 times that of a
typical simple WSS web site function (e.g. browse document list).

The SQL Server %CPU column represents the average %CPU busy for the SQL Server when
supporting one (1) front-end server running at 80% CPU busy. Depending on the actual
workload mix, a single active SQL Server can therefore support maybe 10-15 front-end
servers. This is a higher number than has been measured for typical WSS team site
deployments (nominally 6 front-end servers per SQL Server). The MLG front-end servers are
more CPU-intense compared to basic WSS team site front-end servers; thus the related SQL
Server CPU consumption per unit of work (transaction throughput) is lower.

The Client Net and Server Net columns show the client-to-front-end and front-end-to-SQL
network traffic rates respectively, in Kilobytes per second (KB/sec). While some MLG Web
Parts return a lot of data to the clients (e.g. assignment lists, CurrLib content), the function
elapsed times are largely predicted on CPU consumption. Thus the network traffic per unit
time is not as high as might be expected as the overall function takes longer.

As was discussed in an earlier section, the assignment workflow functions are quite resource
(CPU) intense compared to other functions. However, the incidence (and thus total
frequency) of these occurring per unit time is likely quite low. For example, each teacher
may only create a few Class assignments per day.

34

Sizing solutions

Knowing the achievable per-function throughput per server, the maximum throughput
(highest throughput function capacity) and the relative weighting, we can combine mixes of
desired function rates arithmetically to determine expected server loading; and the number
of such servers required to support a specific workload. The following presents a simple
methodology to perform these calculations and arrive at an expected configuration solution.

Sizing methodology
We must first define the expected solution workload in terms of the number of users of each
type. We can define users by absolute number, or derive the number of each user type by
understanding expected ratios. Such ratios might typically include:

• User-to-desktop ratio (determines active user population)
• Student-to-teacher ratio (implies typical Class size)
• Student-to-parent ratio (typical family size)

We also need to know the expected frequency (how many per day) that user-related
functions will be performed. Finally, we will need to know other parameters, possibly country
or geography related, such as hours in a school day. From the above discussion, we also
know (empirically) the weighting factor (relative intensity) of the user functions, so we can
normalize to a common function and calculate “equivalent load”.

Sizing data input

Figure 19, below, shows a screenshot of a prototype (Microsoft Excel) sizing sheet that is
being used to develop and validate MLG sizing algorithms and guidelines.

35

Figure 19. Sizing example – workload input

The screen illustrates fields soliciting the required sizing input. The values shown were part of
sizing a 2,500,000 user solution for an EMEA country Ministry of Education, including
1,200,000 students.

Such a tool also allows performing “what if” analyses. For example, varying the number of
assignment-related functions per day will show the impact on the total number of servers
required. Similarly, changing (increasing) the number of users can show how a solution will
need to grow over time.

Sizing calculation

Figure 20, below, shows the calculation worksheet. Its operation is as follows:

• The Per-user Goal column simply repeats the desired throughput (operations/day) for each
user function, obtained from the input worksheet.

• The All-user goal column multiplies the above by the number of active users of each type.
• The Goal X Ratio column multiplies the above by the relevant function weighing value, thus

normalizing the desired throughput to the least-intense function.
• The Goal Ops/sec column converts the goal in operations per school day into operations

per second.

36

• The Client Net, Server Net and SQL CPU columns are calculated relative to the desired
goal, based on known value relationships from the above results table.

Figure 20. Sizing example – required throughput calculation

The summed value at the bottom of the Goal Ops/sec column thus reflects the total
throughput required, in normalized terms of the least intense function. From empirical results,
we can accomplish 100 such function operations/sec per front-end server. Thus, in this
example, approximately 16 (1615.741/100) front-end servers are required to support the
teacher/student/parent workload for this large country-wide solution. The SQL CPU column
summation shows the expected %CPU busy for SQL Server. While this indicates in the above
example that a single SQL Server might suffice, a practical deployment of this size will likely
be different. This is discussed in the following Examples section.

The above Microsoft Excel sizing worksheet is being used to validate algorithms, guidelines
and deployment best practices. HP intends to produce an executable MLG solution sizing
tool, very similar to the SharePoint 2003 sizing tool currently available from HP
ActiveAnswers.

Sizing examples
The MLG solution is designed with high scalability, thus it can be deployed to countries
having different educational infrastructures.

School Districts

In the USA, schools are grouped into School Districts within each State. Such Districts tend
therefore to be more modest in size, although a few large Districts do exist (e.g. New York
State and Miami-Dade). Solutions for these modest sized Districts can therefore be supported
by a single deployment comprising sufficient front-end servers to meet the workload needs.
As an example, a specific School District in the San Francisco area has the following
characteristics:

• ~ 16,000 students, 800 teachers, 600 administrators
• 22 school sites

37

• ~ 2,500 active students (~ 6:1 active ratio), ~ 1,200 active staff (~ 2:1 ratio)
• ~ 400 Class and other team sites

For these characteristics, a deployment including at least two front-end servers and an
active/passive SQL cluster (both for HA needs) will be adequate for WSS and Class Server
functionality. Additional servers could be deployed to support SPS sites and optionally SPS
Search and Indexing needs. Growth is accomplished simply by adding extra front-end
servers.

Country deployments

In contrast, in EMEA a solution will usually be deployed for a country’s entire school system
under the Ministry of Education. This involves a much higher number of schools and users,
but will be spread geographically. An example of this was shown in the Sizing example
above, the requirements for the total country school system including:

• ~ 2,500,000 users in total, including 800,000 centralized administrators
• 1,500 school sites in 8 geographic areas (1,200,000 students, 500,000 parents)
• ~ 10:1 user:desktop ratio

A proposed solution for these needs was a hub-and-spoke model, comprising a central
system deployment to support the administration functions and 8 satellite deployments for
each geographical area. The total to support all required functions and locations was over
50 servers.

38

39

Summary

The MLG solution capitalizes well on the highly scalable SharePoint foundation, and
provides a robust Learning Management feature set by leveraging Class Server v4
functionality and WSS custom Web Parts. Optionally, SharePoint can enhance the overall
solution by providing District-level portal sites and shared services – including content
aggregation, search, notification and team collaboration. Installation is quick and simple,
and provisioning of schools, Classes and users can be performed via automated procedures.

Some assignment workflow related functions will consume higher levels of server resources
than the more simple WSS Web Parts. However, the incidence of use of these functions will
likely be markedly less than the common portal and web site functions. Prescriptive
configurations for SharePoint are also applicable for the MLG solution, as are the
deployment guidelines and best practices detailed in related documents. Performance
characterization again confirmed that SharePoint-base solutions such as the MLG that
employ a scale-out server architecture are ideally suited to HP ProLiant or BladeSystem
servers, providing excellent price/performance and high availability.

For more information

HP recommends the following as sources for more detailed information regarding the MLG
solution and SharePoint technologies.

Related HP documents and information sources:

• SharePoint Portal Server 2003 Performance white paper:
http://h71019.www7.hp.com/ActiveAnswers/cache/70672-0-0-0-121.html

• SharePoint Portal Server 2003 on HP BladeSystem servers white paper:
http://h71019.www7.hp.com/ActiveAnswers/cache/106558-0-0-0-121.html

• SharePoint Portal Server 2003 sizing and configuration tool:
http://h71019.www7.hp.com/ActiveAnswers/cache/79168-0-0-0-121.html

• HP ActiveAnswers for SharePoint Products & Technologies:
http://www.hp.com/solutions/activeanswers/sharepoint

• HP Solutions for SharePoint Products & Technologies:
http://www.hp.com/solutions/microsoft/sharepoint

• HP Solutions for Microsoft Office System:
http://www.hp.com/solutions/microsoft/officesystem

Related Microsoft documents and information sources:

• The Microsoft Learning Gateway solution:
http://www.microsoft.com/education/learninggateway.mspx

• Microsoft Class Server: http://www.microsoft.com/education/classserver.mspx
• The Solution Accelerator for Intranets:

http://www.microsoft.com/downloads/details.aspx?FamilyID=7cdc1f2d-f550-49e0-
9b74-318da11ba1b4&DisplayLang=en

• The SharePoint Portal Server online documentation:
http://www.microsoft.com/sharepoint/server/techinfo/productdoc/default.asp

• The SharePoint Portal Server product overview:
http://office.microsoft.com/en-us/FX010909721033.aspx

• The SharePoint Portal Server resource kit:
http://www.microsoft.com/sharepoint/server/techinfo/reskit/default.asp

© 2006 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

2/2006 -1

http://h71019.www7.hp.com/ActiveAnswers/cache/70672-0-0-0-121.html
http://h71019.www7.hp.com/ActiveAnswers/cache/106558-0-0-0-121.html
http://h71019.www7.hp.com/ActiveAnswers/cache/79168-0-0-0-121.html
http://www.hp.com/solutions/activeanswers/sharepoint
http://www.hp.com/solutions/microsoft/sharepoint
http://www.hp.com/solutions/microsoft/officesystem
http://www.microsoft.com/education/learninggateway.mspx
http://www.microsoft.com/education/classserver.mspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=7cdc1f2d-f550-49e0-9b74-318da11ba1b4&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=7cdc1f2d-f550-49e0-9b74-318da11ba1b4&DisplayLang=en
http://www.microsoft.com/sharepoint/server/techinfo/productdoc/default.asp
http://office.microsoft.com/en-us/FX010909721033.aspx
http://www.microsoft.com/sharepoint/server/techinfo/reskit/default.asp

	Performance and configuration guide for the Microsoft Learning Gateway Solution on HP ProLiant servers
	16 Feb 2006 Hewlett-Packard Development Company L.P.
	Overview
	Audience
	Solution architecture
	Logical architecture
	Physical architecture
	Class Server and Custom Web Parts
	Class Server Assignment pages
	Class Server Learning Resource Material (LRM)
	Administration
	Class Server SQL databases

	Server components
	Web farm
	Search and Index servers
	SQL Database servers
	ISA Server

	Portals architecture
	Custom Web Parts
	Assignments workflow
	Create Assignment
	Perform Assignment
	Grade each student Assignment
	Review Assignment

	Deployment and installation
	Deployment
	Installation

	Provisioning
	Administration tasks
	Creating Schools
	Adding users and classes
	Testing the school configuration
	Adding Learning Resource Material

	Automated provisioning
	Required data
	Running CSProvision.exe
	XML file creation
	Defining the Server
	Defining the School
	Sign-into a school
	Defining Teachers
	Defining Students and Parents
	Defining Classes

	 Performance
	Test methodology
	Workload scenarios
	All users
	Teachers
	Students
	Parents

	Results
	Analysis

	Sizing solutions
	Sizing methodology
	Sizing data input
	Sizing calculation

	Sizing examples
	School Districts
	Country deployments

	 Summary
	For more information

	
	Hewlett-Packard Title Page

