
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2005 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15454:2005 E

CEN

WORKSHOP

AGREEMENT

CWA 15454

November 2005

ICS 03.180; 35.240.99

English version

A Simple Query Interface Specification for Learning Repositories

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,
Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 15454:2005 (E)

2

Contents

Foreword ..3
Revision History ...5
1 Requirements and Design Principles ...10

1.1 Query Language and Results Format ..10
1.2 Synchronous and Asynchronous Query Mode ...10
1.3 Session Management...12
1.4 Stateful and Stateless Communication...13
1.5 Command-Query Separation Principle ...13
1.6 Simple Command Set and Extensibility..13

2 API Specification ..14
2.1 Overview...14
2.2 Query Parameter Configuration..15

2.2.1 Set Query Language...15
2.2.2 Set Maximum Number of Query Results ..16
2.2.3 Set Maximum Duration ...17
2.2.4 Set Results Format ...17

2.3 Synchronous Query Methods ...18
2.3.1 Set Results Set Size ...18
2.3.2 Synchronous Query ..19
2.3.3 Get Total Results Count ...21

2.4 Asynchronous Query Methods ...22
2.4.1 Set Source Location ...22
2.4.2 Asynchronous Query ..22
2.4.3 Query Results Listener ...24

2.5 Fault Mechanism ..25
3 SQI Implementation Issues ..27

3.1 Stateful versus Stateless Implementations...27
3.2 Bindings..27
3.3 SQI Application Profiles..27

CWA 15454:2005 (E)

3

Foreword

This CWA presents an Application Programmer Interface (API) for querying learning object
repositories. The core is an abstract API; bindings to web services, Java and PHP have also
been developed. Since one major design objective is to keep the specification simple and
easy to implement, the interface is labelled Simple Query Interface (SQI).

In the context of this CWA, learning object repositories are defined as collections of
educational material, courses, and learning objects with associated descriptions (referred to
as “metadata”). Examples of repositories for learning are educational brokers, knowledge
pools, streaming video servers, etc.

The decision for this work item was taken by the Learning Technologies Workshop at the 14th
meeting on March 24/25, 2003. Work on the CWA actually started at the 17th meeting in April
2003.

The document has been developed through the collaboration of a number of contributing
partners, representing a wide mix of interests, from universities to commercial companies.
The names of the individuals and their affiliations that have expressed support for this CWA
is available at the CEN/ISSS Secretariat. A list of contributors is at the end of this Foreword.

The work relates closely to the Memorandum of Understanding on "Multimedia Access to
Education and Training in Europe".

The final review/endorsement round for this CWA was started on 2005-06-16/17 and closed
on 2005-07-15.

The final text of this CWA was submitted to CEN for publication on 2005-09-06.

The CWA is technically the same as the Version 1.0 Beta (2005-04-13) that is on
http://www.prolearn-project.org/lori

The CWA is part of three SQI related documents (see http://www.prolearn-project.org/lori):

i. “Learning Object Repository Interoperability Framework”: this
document provides the “big picture” and should probably be read first if
you want to understand the context of this work;

ii. [this CWA] “Simple Query Interface Specification”: this is the core of
the specification for querying learning object repositories in an
interoperable way;

iii. “Authentication and Session Management”: this document focuses on
specific issues related to authentication and session management.

Contributions from the following initiatives are acknowledged: Ariadne, Educanext,
Celebrate, Edutella, Elena, EduSource, ProLearn, Universal, Zing.

This CEN Workshop Agreement is publicly available as a reference document from the
National Members of CEN: AENOR, AFNOR, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN,
IPQ, IST, LVS, LST, MSA, MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV,
SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome
and should be addressed to the CEN Management Centre.

CWA 15454:2005 (E)

4

List of Contributors and Editors

Bernd Simon, Vienna University of Economics and Business Administration
 & EducaNext (Editor)
Christian Werner, Learning Lab Lower Saxony
Erik Duval, Katholieke Universiteit Leuven & Ariadne (Editor)
Daniel Olmedilla, Learning Lab Lower Saxony
Dan Rehak, Carnegie Mellon University
David Massart, European Schoolnet (Editor)
Frans Van Assche, European Schoolnet (Editor)
Griff Richards, Simon Fraser University
Gerhard Müller, IMC
Julien Tane, Universität Karlsruhe
Marek Hatala, Simon Fraser University
Matthew J. Dovey, Oxford University
Michel Arnaud, Université de Paris X Nanterre
Nikos Papazis, NCSR
Peter Dolog, Learning Lab Lower Saxony
Sascha Markus, IMC
Stefaan Ternier, Katholieke Universiteit Leuven (Editor)
Stefano Ceri, Politecnico Milano
Stefan Brantner, BearingPoint Infonova
Simos Retalis, University of Piraeus
Theo van Veen, Koninklijke Bibliotheek
Zoltán Miklós, Vienna University of Economics and Business Administration

CWA 15454:2005 (E)

5

Revision History

Version Changes

1.0
[this CWA]

This version introduces the following changes:

• In order to allow, both, a stateful and a stateless implementation of SQI in
synchronous mode, the methods synchronousQuery and
getadditionalResults have been merged into one method. The
implementation section has been extended by a subsection on that issue.

• The method ‘get Resource Description’ and the associated fault
‘NO_SUCH_RESOURCE’ have been removed.

• The java-like notation of the methods was replaced by a language-neutral
description.

• The term ‘exception’ was replaced by the more general concept of ‘fault’.

• A new fault named SQIFault was introduced. It replaces all the exceptions
previously used in order to improve the simplicity and the extendibility of the
API. A new sub-section was added to describe the fault mechanism.

• A section on SQI Application Profiles has been introduced.

• The triggers for the INVALID_START_RESULT fault have been specified.

• Two new faults called METHOD_NOT_SUPPORTED and
NO_MORE_RESULTS were introduced.

• Section 1.1: Query Language and Results Format was rewritten.

• Figures 1 and 2 have been updated.

• Addition of a class diagram of the specification.

• Minor textual improvements.

• Changed parameter specifications from ‘can be upper case, lower case, or
capitalized‘ to parameter is case-insensitive.

• The specification mentions now explicitly that the source location parameter
of the Asynchronous Query method must be a URL.

• Updated ‘Open Work Items List’ (partly based on ELENA Interoperability
Case Study)

• Added a section on SQI bindings.

CWA 15454:2005 (E)

6

0.8 This document focuses now solely on the Query API. As a consequence the
Related Work Section, the Session and Authentication Management, as well as the
section describing the VSQI Profile were removed.

Additionally the following changes were made:

• Per default, time-out management is delegated to the target (i.e., default
value for maximum query duration is 0, previously it was set to unrealistic
500 milliseconds).

• The InvalidLocationException was removed since it is unlikely to be called in
case of an invalid location error.

• All “NoValid...Exceptions” were changed to “Invalid… Exceptions”.

• For setSourceLocation and asynchronousQuery the name of the exception
that is thrown in case the asynchronous query is not supported has been
changed from WrongQueryModeException to
QueryModeNotSupportedException.

• Textual improvements of API description and introductory section.

CWA 15454:2005 (E)

7

0.7 At the European Schoolnet side David Massart replaces Frans Van Assche as
editor of this document.

The following changes were introduced based on a meeting held between Daniel
Olmedilla (who served as co-editor of this version), Stefaan Ternier, and Bernd
Simon. Additionally, a ProLearn Workshop was held at Karlsruhe University at
13/2/2004, which helped to put this initiative better into context. Further input came
from Frans Van Assche and Stefan Brantner.

• The methods setMaxResults and setMaxDuration are supported by both
query methods (synchronousQuery and asynchronousQuery).
setMaxResults has been split into two methods: setMaxQueryResults and
setResultsSetSize. The first controls the maximum number of results
produced by a query. The later determines the default value for the number
of results returned by a query with a single results set and is only valid in the
synchronous query mode.

• The method setQueryMode has been removed. Instead the query mode
specific methods return an exception in case the query mode is not
supported.

• The requirement for a sourceSessionID in the asynchronous query mode
has been removed. A queryID, issued by the source, has been introduced
instead.

• WrongQueryModeException has been introduced for all query mode specific
methods besides the results listener. All exceptions are now labelled with
“Exception” at the end.

• New methods have been added: setQueryLanguage, setQuerySchema,
setSourceLocation and setResultsFormat. As a result the query methods
have now fewer parameters. The parameters have been moved to the set
methods. This approach gives easies backwards compatibility.

• getSupportedQueryModes needs to become part of an SQI Profiling
initiative. Therefore it has been removed from the current version of the
specification.

• In order to comply with the design principle “name follows function” the
method “getQueryResults” is now called “getAdditionalQueryResults”.

• Default values for the methods setMaxQueryResults (100),
setResultsSetSize (25), and setMaxDuration (500) were defined. These
values apply in case the set methods are not called before the first query
execution.

• At the SQI profile “Very Simple Query Interface” the requirement for the
session management method was removed.

• Some copy-paste errors at the method return values (String instead of Void)
were corrected.

• Introduction, requirements section and functionality description have been
considerably extended. It has become more explicit that in asynchronous
mode multiple queries can be active within a session while there can only
one active query per session in synchronous mode.

CWA 15454:2005 (E)

8

0.6 From this version on, the specification is jointly edited by Bernd Simon, Erik Duval,
and Frans Van Assche.

The following changes were introduced:

• The SQI distinguishes now between an asynchronous query method
(asynchronousQuery) and a synchronous query method
(synchronousQuery), the latter directly returns query results. → Revision
triggered by Zoltán Miklos

• The return format for the query results has become more explicit in both, the
query method and getQueryResults method. Hereby, the target for mappings
can be specified. → Revision triggered by Bernd Simon

• Rational behind session management is now explained in more detail. Within
a session only one active query may exist. Hence, there is no need anymore
for a query ID, which makes the interface even simpler. A distinction
between targetSessionID and a sourceSessionID has been introduced. →
Revision triggered by David Massart and Daniel Ollmedia.

• KEYWORD (search) was introduced as permissible value for “query
language”. → Revision triggered by Erik Duval, Stefaan Ternier, and Frans
Van Assche.

• Query parameter SchemaReference: “UNKNOWN” is now also a valid
argument. The references linking to local files have been replaced by a link
to the LOM XML schema. → Revision triggered by Daniel Ollmedia.

• The methods getSupportedQueryLanguages and getSupportedSchemas
were removed from the specification, since it remains unclear how the
system responses to the information gathered by these methods can look
like. Future versions of this specification shall rather opt for some semantic
descriptions of the interface (SQI repository profiles) rather than using
multiple functions to find out more about the capabilities of the interface. →
Revision triggered through various discussions.

• Major text editing: Introduction was completely revised. Requirements and
Scenarios Section as well as Limitations Section have been restructured and
expanded. The Functionality Overview Section has been extended with a
table. Restructuring of Syntax Section in order to better separate
asynchronous and synchronous query interface commands and to clearly
communicate, which commands are relevant in which query mode. Appendix
B (Very Simple Query interface) has been completely revised and integrated
into the document as Section 1.7 (A Very Simple Profile of SQI).

0.52 An application profile for a very simple query interface has been designed in
Appendix B. → Thanks to the initiative of Erik Duval.

0.51 The presentation of the specification has been updated. Related work on
EduSource added; XPATH included as a permissible value of the
getSupportedQueryLanguages (→ based on input from Marek Hatala). Thanks to
Peter Dolog the functionality overview also includes a UML activity diagram.

CWA 15454:2005 (E)

9

0.5 The following changes were introduced:

• Besides the source-initiated (synchronous) query (mode) also a target-
initiated (asynchronous) query (mode) was introduced (methods:
queryResultsListener, setMaxDuration). → Thanks to a discussion with
David Massart and Frans Van Assche.

• Parameter SchemaReferences was introduced in the Query method
providing a hook for data model mappings. Additionally, Method
getSupportedSchemas was added. → Input from Zoltán Miklos.

• Design assumptions and limitations were refined. → Input from Daniel
Olmedilla and Stefano Ceri.

• WrongCredentialsException replaced wrongUserID and
wrongPasswordException in the Session Management Section. →
Contribution from David Massart

• “Source” and “Target” in Figure 1 were exchanged (aligned with ZING SRW).

• * Related Work Section expanded by references to Edutella, CeLeBraTe and
ZING SRW. → Input from Peter Dolog, David Massart, Matthew J. Dovey,
Theo van Veen.

0.4 The interface definition focuses now on metadata search. Free text search as “query
language” is not further supported, because it requires a different type of interface
(e.g. a return schema needs to be specified) and the advantages of metadata
annotation are not seized by a free text search. Related work has been expanded,
primitive means for session management introduced. The paper now includes a
section on requirements and one on the limitations of the status quo.

CWA 15454:2005 (E)

10

1 Requirements and Design Principles

This paper presents an Application Program Interface (API) for querying learning objects
repositories. Since one major design objective is to keep the specification simple and easy to
implement, the interface is labelled Simple Query Interface (SQI). The collaborative effort of
combining highly heterogeneous repositories has led to the following requirements:

¾ SQI is neutral in terms of results format and query languages: The repositories
connecting via SQI can be of highly heterogeneous nature: therefore, SQI makes no
assumptions about the query language or results format.

¾ SQI supports Synchronous and Asynchronous Queries in order to allow application of
the SQI specification in heterogeneous use cases.

¾ SQI supports, both, a stateful and a stateless implementation.

¾ SQI is based on a session management concept in order to separate authentication
issues from query management.

The design of the API itself is based on following design principles:

¾ Command-Query Separation Principle,

¾ Simple Command Set and Extensibility.

The following sub-sections will describe each of the above mentioned items in more detail.

1.1 Query Language and Results Format

In order to make use of SQI to implement full query functionality, SQI needs to be
complemented with agreements about:

• the set of attributes and vocabularies that can be used in the query,

• the query language and its representation,

• the representation of list of learning objects that satisfy the query, and

• the representation of individual metadata instances on learning objects.

SQI is agnostic on these issues: Any agreement between two or more repositories is valid for
SQI. Such agreements can, for example, be expressed by XML schemas or RDF schemas.

Although SQI does not directly contribute to overcome the differences of the various
paradigms in metadata management (Z39.50, XML-based approaches, RDF community), it
aims to become an independent specification for all open educational repositories.

1.2 Synchronous and Asynchronous Query Mode

SQI can be deployed in two different scenarios.

CWA 15454:2005 (E)

11

1. In the synchronous scenario (Figure 1), the target returns the query results to the
source. Results retrieval is therefore initiated by the source through the submission of
the query and through other methods allowing the source to access the query results.

2. In the asynchronous scenario (Figure 2), results retrieval is target-initiated. Whenever
a significant amount of matching results is found, these results are forwarded to the
source by the target. To support this communication the source must implement a
results listener. The source must be able to uniquely identify a query sent to a
particular target (even if the same query is sent to multiple targets). Otherwise the
source is not able to distinguish the search results retrieved from various targets
and/or queries previously submitted to a target.

Please note that the asynchronous query mode does not require an asynchronous handling
on the messaging layer. It can also be implemented by two synchronous functions at the
source and the target, respectively.

Source
SQI

Target
SQI

2: synchronousQuery(String,String):String

1: createAnonymousSession():String

Figure 1: Synchronous Query Mode used for querying a single Repository

CWA 15454:2005 (E)

12

Source
SQI

Target Front-End
SQI

Fed. Member 1 Fed. Member 2

3.2.1:

3.1.1:

3.2.1.1: queryResultsListener(String,String):void

3.1.1.1: queryResultsListener(String,String):void

3.2: query forwarding 2

3.1: query forwarding 1
3: asynchronousQuery(String,String,String):void

2: setSourceLocation(String,String):void

1: createSession(String,String):String

Figure 2: Asynchronous Query Mode used for performing a Federated Search

A query interface operated in synchronous mode can perform multiple queries per session
(even simultaneously). In case of an asynchronously operated query interface, the source
provides a query ID that allows it to link incoming results to a submitted query (the source
might query many targets and each target might answer to a query by returning more than
one result to the source). Multiple queries can also be active within a session in
asynchronous query mode.

1.3 Session Management

The interfaces introduced herein are based on a simple session management concept. It is
assumed that a session has to be established before any further communication can take
place. This specification separates query management and processing from authentication
(and query policy management).

In case of a synchronously operated query interface, the source establishes a session at the
target and uses the Session ID, which it obtained from the target, to identify itself during
communication. Authentication does not need to be based on passwords, since also
anonymous sessions can be created. Further details can be obtained from a separate
document on the Session Management. The Session ID is also referred to as
targetSessionID, since it is issued by the target to identify the source.

See the “Authentication and Session Management” document for details about the
authentication and session management mechanism associated with SQI.

CWA 15454:2005 (E)

13

1.4 Stateful and Stateless Communication

Stateful and stateless are attributes that describe whether repositories are designed to keep
track of one or more preceding events in a given sequence of interactions. Stateful means
that the target repository keeps track of the state of interaction, for example, by storing the
results of a previously submitted query in a cache. Stateless means that there is no record of
previous interactions and that each interaction request can only be handled on the basis of
the information that comes with it. The SQI specification allows implementers to opt for a
stateful or a stateless approach.

1.5 Command-Query Separation Principle

SQI design is based on the "Command-Query Separation Principle". This principle states
that every method should either be a command that performs an action, or a query that
returns data to the caller, but not both. More formally, methods should return a value only if
they are referentially transparent and hence cause no side-effects. This leads to a style of
design that produces clearer and more understandable interfaces.

The Command-Query Separation (CQS) is a principle of object-oriented computer
programming. It was devised by Bertrand Meyer a part of his pioneering work on the Eiffel
programming language (Source: http://www.wordiq.com/definition/Command-Query_Separation).

1.6 Simple Command Set and Extensibility

In order to make the interface easily extensible an approach, minimizing the number of
parameters of the various methods rather than the number of methods is adopted. Variations
of the interface (e.g., a separation between common query schema and common results
format), can easily be introduced by adding a new function (e.g.,
setSupportedQuerySchema) while no change in the already implemented methods is
needed. Hereby, backwards compatibility can be more easily maintained.

As a result, additional methods for setting query parameters like maximum duration and
maximum number of returned search results were introduced. This design choice leads to
simpler methods, but the number of interdependent methods is higher. However, default
values can be used for many of these query parameter configuration methods.

CWA 15454:2005 (E)

14

2 API Specification

2.1 Overview

First, the source needs to create a connection with the target. Once a session has been
established (see Section 2), the query interface at the target awaits the submission of a
search request.

A number of methods allow for the configuration of the interface at the target. Query
parameters such as

• the query language (setQueryLanguage),

• the number of results returned within one results set (setResultsSetSize),

• the maximum number of query results1 (setMaxQueryResults),

• the maximum duration of query execution (setMaxDuration),

• and the results format (setResultsFormat)

can be set with the respective methods. The parameters set via these methods remain valid
throughout the whole session or until they are set otherwise. If none of the methods are used
before the first query is submitted, defaults are assumed.

Table 1: Overview of Simple Query Interface Methods
 Implemented at the target

and called by the source
Implemented at the source

and called by the target
Query Parameter Configuration
setQueryLanguage X
setResultsFormat X
setMaxQueryResults X
setMaxDuration X
Synchronous Query Interface
setResultsSetSize X
synchronousQuery X
getTotalResultsCount X
Asynchronous Query Interface
asynchronousQuery X
setSourceLocation X
queryResultsListener X

Then, the source submits a query, using either the asynchronousQuery or the
synchronousQuery method. The query is then processed by the target and produces a set of
records, referred to as results set. The query is expressed in a query language identified

1 While the size of results set determines the maximum number of results return by calling either
synchronousQuery or getAdditionalQueryResults, the maximum number of results defines the total maximum
number of results a query will return. Hence, it does not make sense to set the result set size bigger than the
maximum number of results.

CWA 15454:2005 (E)

15

through a query parameter. In the query, reference to a common schema might be made. In
synchronous mode the query results are directly returned by the synchronousQuery method.
The getTotalResultsCount method returns the total number for matching metadata records
found by the target operating. In case of an asynchronously operated query interface the
queryResultsListener method is called by the target to forward the query results to the
source.

Table 1 provides an overview of the various methods and indicates whether they are
implemented at the source or at the target.

In order to report abnormal situations (e.g., erroneous parameters or inability to carry out an
operation), an SQIFault is provided, which can be thrown by all the SQI methods. A system
of fault codes permits to document those abnormal situations.

2.2 Query Parameter Configuration

2.2.1 Set Query Language

This method allows the source to control the syntax used in the query statement by
identifying the query language. Values for the parameter queryLanguageID are case-
insensitive.

Method name setQueryLanguage

Return type Void

Parameters Name

Type

targetSessionID

String

queryLanguageID

String

Fault NO_SUCH_SESSION

QUERY_LANGUAGE_NOT_SUPPORTED

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given TargetSessionID is invalid;

CWA 15454:2005 (E)

16

• “QUERY_LANGUAGE_NOT_SUPPORTED” if the query language used in the request is
not supported by the target; and

• “METHOD_FAILURE” if the operation fails for another reason.

2.2.2 Set Maximum Number of Query Results

This method defines the maximum number of results, which a query will produce. The
maximum number of query results is set to 100 by default, but can be controlled via this
method. maxQueryResults must be 0 (zero) or greater. If the maximum number of query
results is set to 0 (zero), the source does not want to limit the number of maximum query
results produced.

Method name setMaxQueryResults

Return type Void

Parameters Name

Type

targetSessionID

String

maxQueryResults

Integer

Fault NO_SUCH_SESSION

INVALID_MAX_QUERY_RESULTS

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given TargetSessionID is invalid;

• “INVALID_MAX_QUERY_RESULTS” if an invalid number is provided for
maxQueryResults; and

• “METHOD_FAILURE” if the operation fails for another reason.

CWA 15454:2005 (E)

17

2.2.3 Set Maximum Duration

This method enables the source to set a time-out for the query in case of an asynchronously
operated query interface. The values of maxDuration must be 0 (zero) or greater. A source
delegates the time out management of the query to the target by setting maxDuration to 0
(zero). The parameter maxDuration is interpreted in milliseconds. The default value is zero
(i.e., time out management is delegated to the target).

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “INVALID_MAX_DURATION” if an invalid number is provided for maxDuration; and

• “METHOD_FAILURE” if the operation fails for another reason.

Method name setMaxDuration

Return type Void

Parameters Name

Type

targetSessionID

String

maxDuration

Integer

Fault NO_SUCH_SESSION

INVALID_MAX_DURATION

METHOD_FAILURE

2.2.4 Set Results Format

This method allows the source to control the format of the results returned by the target. The
format according to which the results shall be formatted is specified in the resultsFormat
parameter. The parameter is provided via a URI (e.g., the LOM XML Schema definitions files
are available at http://standards.ieee.org/reading/ieee/downloads/LOM/lomv1.0/) or via pre-
defined values that are case-insensitive.

CWA 15454:2005 (E)

18

Method name setResultsFormat

Return type Void

Parameters Name

Type

targetSessionID

String

resultsFormat

String

Fault NO_SUCH_SESSION

RESULTS_FORMAT_NOT_SUPPORTED

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “RESULTS_FORMAT_NOT_SUPPORTED” when the format provided via the
resultsFormat parameter is not supported by the target; and

• “METHOD_FAILURE” if the operation fails for another reason.

2.3 Synchronous Query Methods

2.3.1 Set Results Set Size

This method defines the maximum number of results, which will be returned by a single
results set. The size of the results set is set to 25 records by default, but can be controlled
via this method. resultsSetSize must be 0 (zero) or greater. A source asks for all results
when the maximum number of results is set to 0 (zero).

CWA 15454:2005 (E)

19

Method name setResultsSetSize

Return type Void

Parameters Name

Type

targetSessionID

String

resultsSetSize

Integer

Fault NO_SUCH_SESSION

INVALID_RESULTS_SET_SIZE

QUERY_MODE_NOT_SUPPORTED

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “INVALID_RESULTS_SET_SIZE” if an invalid number is provided for resultsSetSize;

• “QUERY_MODE_NOT_SUPPORTED” in case the target does not support synchronous
queries; and

• “METHOD_FAILURE” if the operation fails for another reason.

2.3.2 Synchronous Query

This method places a query at the target. The query statement is provided via the
queryStatement parameter. Within a session identified via targetSessionID multiple queries
can be submitted simultaneously. The method returns a set of metadata records matching
the query. The startResult parameter identifies the start record of the results set. The index
of the result set size starts with 1. The number of results returned is controlled by
setResultsSetSize and its default value. A valid number for startResult can range from 1 to
the total number of results. The total number of results produced is limited by
setMaxQueryResults and its default value.

CWA 15454:2005 (E)

20

Method name synchronousQuery

Return type String

Parameters Name

Type

targetSessionID

String

queryStatement

String

startResult

Integer

Fault NO_SUCH_SESSION

INVALID_ QUERY_STATEMENT

QUERY_MODE_NOT_SUPPORTED

METHOD_FAILURE

INVALID_START_RESULT

NO_MORE_RESULTS

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “QUERY_MODE_NOT_SUPPORTED” in case the target does not support synchronous
queries;

• “INVALID_QUERY_STATEMENT” if the query statement does not comply with the syntax
of the query language; and

• “INVALID_START_RESULT” if an invalid number is provided for startResult;

CWA 15454:2005 (E)

21

• “NO_MORE_RESULTS” if startResult is set to zero and no more results are available and

• “METHOD_FAILURE” if the operation fails for another reason.

2.3.3 Get Total Results Count

This method returns the total number of available results of a query. The targetSessionID
identifies the session. The query is provided via the queryStatement parameter (see Section
3.1 on Stateful versus Stateless Implementation).

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “QUERY_MODE_NOT_SUPPORTED” in case the target does not support synchronous
queries;

• “INVALID_QUERY_STATEMENT” if the query statement does not comply with the syntax
of the query language; and

• “METHOD_FAILURE” if the operation fails for another reason.

Method name getTotalResultsCount

Return type Integer

Parameters Name

Type

targetSessionID

String

queryStatement

String

Fault NO_SUCH_SESSION

QUERY_MODE_NOT_SUPPORTED

INVALID_QUERY_STATEMENT

METHOD_FAILURE

CWA 15454:2005 (E)

22

2.4 Asynchronous Query Methods

2.4.1 Set Source Location

This method is required to be called before a query is submitted in asynchronous mode. The
parameter sourceLocation specifies the location of the source’s results listener in order for
the target to be able to send the results. The sourceLocation must be an URL.

Method name setSourceLocation

Return type Void

Parameters Name

Type

targetSessionID

String

sourceLocation

String

Fault NO_SUCH_SESSION

QUERY_MODE_NOT_SUPPORTED

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “QUERY_MODE_NOT_SUPPORTED” if the target does not support asynchronous
queries; and

• “METHOD_FAILURE” if the operation fails for another reason.

2.4.2 Asynchronous Query

This method allows the source to submit a query to the target, while the results are returned
in an asynchronous method. The query statement is provided via the queryStatement
parameter. A query ID issued by the source is required in order to link the query results with

CWA 15454:2005 (E)

23

the query, when they are later returned using the results listener. By using unique query IDs
it is possible to submit an arbitrary number of queries per active session. The location of the
source’s results listener is needed and must be provided using setSourceLocation method.

Due to the asynchronous nature of this method, query results could still arrive from previous
queries. The query is processed and results are forwarded within the timeframe specified in
the setMaxDuration method.

Method name asynchronousQuery

Return type Void

Parameters Name

Type

targetSessionID

String

queryStatement

String

queryID

String

Fault NO_SUCH_SESSION

QUERY_MODE_NOT_SUPPORTED

NO_SOURCE_LOCATION

INVALID_QUERY_STATEMENT

METHOD_FAILURE

The following faults can occur:

• “NO_SUCH_SESSION” in case the given targetSessionID is invalid;

• “QUERY_MODE_NOT_SUPPORTED” if the target does not support asynchronous queries;

• “NO_SOURCE_LOCATION” in case no source location has been specified before
submitting the query (via the method setSourceLocation);

CWA 15454:2005 (E)

24

• “INVALID_QUERY_STATEMENT” if the query statement does not comply with the syntax
of the query language; and

• “METHOD_FAILURE” if the operation fails for another reason.

2.4.3 Query Results Listener

This target-initiated method forwards the results sets to the source. The queryID parameter is
used for linking the query results to previously submitted query, when they are later return
using the results listener.

The queryResults holds a results set consisting of a list of metadata records, which is
formatted according to the schema specified in the query.

Method name queryResultsListener

Return type Void

Parameters Name

Type

queryID

String

queryResults

String

Fault INVALID_QUERY_RESULTS

NO_SUCH_QUERY

METHOD_FAILURE

The following faults can occur:

• “INVALID_QUERY_RESULTS” in case the results set cannot be interpreted by the
source;

• “NO_SUCH_QUERY” in case the given queryID is invalid; and

• “METHOD_FAILURE” if the operation fails for another reason.

CWA 15454:2005 (E)

25

2.5 Fault Mechanism

SQI's primary objective being to provide a viable interoperability mechanism, its goal is not
richness, but rather simplicity in order to offer the greatest opportunity for consumption by a
variety of applications. To this end, the SQI fault mechanism is intentionally unsophisticated.

Exception
Serializable

SQIFault

+SQIFault

 message:String
 errorCode:String

interface
SQI

+createSession:String
+createAnonymousSession:String
+destroySession:void
+setQueryLanguage:void
+setMaxQueryResults:void
+setMaxDuration:void
+setResultsFormat:void
+setResultsSetSize:void
+synchronousQuery:String
+getAdditionalQueryResults:String
+getTotalResultsCount:Integer
+setSourceLocation:void
+asynchronousQuery:void
+queryResultsListener:void

Figure 3: UML Class Diagram of the Simple Query Interface.

CWA 15454:2005 (E)

26

Fault Name Fault Code Description

UNDEFINED SQI-00000 An undefined fault occurred. All the
methods can throw an SQIFault with
this code.

METHOD_FAILURE SQI-00001 The method failed although it was
correctly called, i.e., it is a problem at
the callee side. The latter was not able
to carry out the requested action. All
the methods can throw a fault with this
code.

NO_SOURCE_LOCATION SQI-00002 No source location has been specified
before submitting an asynchronous
query.

INVALID_START_RESULT SQI-00003 An invalid number was provided for
the start Result.

INVALID_QUERY_STATEMENT SQI-00004 The query statement does not comply
with the syntax of the query language.

INVALID_RESULTS_SET_SIZE SQI-00005 An invalid results set size was
provided.

INVALID_MAX_DURATION SQI-00006 An invalid duration was provided.
INVALID_MAX_QUERY_RESULTS SQI-00007 An invalid maximum for the number of

query results was provided.
INVALID_QUERY_RESULTS SQI-00008 The results set cannot be interpreted

by the source.
QUERY_MODE_NOT_SUPPORTED SQI-00009 The target does not support the query

mode required by the method.
RESULTS_FORMAT_NOT_SUPPORT
ED

SQI-00010 The results format provided is not
supported by the target.

QUERY_LANGUAGE_NOT_SUPPORT
ED

SQI-00011 The query language used in a request
is not supported by the target.

METHOD_NOT_SUPPORTED SQI-00012 The method is not supported by the
callee side.

NO_SUCH_SESSION SQI-00013 The given session id is invalid.
NO_SUCH_QUERY SQI-00014 The given query id is invalid.
WRONG_CREDENTIALS SQI-00015 An invalid user id and/or password

was provided.
NO_MORE_RESULTS SQI-00016 Additional results are requested, but

all results have already been provided.

Table 2: Overview of Simple Query Interface Faults

SQI provides only one fault named SQIFault (Figure 3), which is thrown by all methods. The
SQIFault includes two properties:

• message: a free text describing the reason why the fault occurred, and
• faultCode: a fault code identifying the problem. The possible fault codes are part of

the SQI specification. Faults SQI-00002 to SQI-0016 correspond to possible
violations of preconditions of SQI methods whereas fault SQI-00001 corresponds to a
failure of a method correctly called and fault SQI-00000 permits to report possible
faults that are not yet supported by the specification. The complete list of SQI fault
codes is presented in Table 2.

CWA 15454:2005 (E)

27

3 SQI Implementation Issues

3.1 Stateful versus Stateless Implementations

SQI in synchronous mode can be implemented, both, as a stateful as well as a stateless
service. A stateless SQI service discards the query results as soon as they are transferred to
the source. Whenever additional results are requested the query is resubmitted and
reprocessed again by the target and the additional results are delivered.

A stateful SQI service keeps the state information of previous interactions. For example by
caching the results, a reprocessing of a query is not needed in case additional results are
requested. A stateful SQI service can use the query (or the hash of the query) to identify
previously submitted queries.

For example, the method getAdditionalResultsCount would resubmit the query in a stateless
implementation while only counting of the cached results could be done in a stateful
implementation.

3.2 Bindings

An obvious way to implement SQI consists in using web-services. In order to ensure the
interoperability between the different SQI implementations, a common WSDL binding for SQI
is currently developed as a Sourceforge project (http://sqi-wsdl.sourceforge.net/).

A network consisting of object-oriented systems can implement the specific faults listed in
Table 2 as sub-exceptions of the above described general SQIFault.

3.3 SQI Application Profiles

Application scenarios of this specification can be assumed, where only a sub-set of the
methods proposed are used. In this case the methods that are not supported will throw an
SQI fault (fault code: METHOD_NOT_SUPPORTED). For example a two-node SQI ‘network’
agrees on using only synchronous query methods and refrains from taking advantage of the
query parameter configuration methods, since query parameters will be hard-coded.

An SQI Application Profile may also reference the query languages and results formats used
by the systems.

	A Simple Query Interface Specification for Learning Repositories
	2 Nov 2005 CEN/WS LTS - DIN, Comité Européen de Normalisation (EU),
	Contents
	Foreword
	Revision History
	1 Requirements and Design Principles
	2 API Specification
	3 SQI Implementation Issues

	
	CEN Title Page

