WSRP Architecture

The OASIS WSRP standard defines pluggable, user-facing, interactive web services with a
common, well-defined interface and protocol for processing user interactions and providing
presentation fragments suitably for aggregation by portals. WSRP standardizes web services
at the presentation layer on top of the existing web services stack, builds on the existing web
services standards and will leverage additional web services standards efforts, such as
security efforts now underway, as they become available. The WSRP interfaces are defined
in the Web Services Description Language (WSDL). In addition, WSRP defines metadata for
self-description for publishing and finding WSRP services in registries. All WSRP services
are required to implement a SOAP binding and optionally may support additional bindings.

In the definition of the WSRP standard and the JSR 168, the OASIS Technical Committee
and the JSR 168 Expert group have closely collaborated to make sure that that both fit
together well in portal architectures. JSR 168 compliant portlets can be exposed as WSRP
compliant web services and conversely, WSRP services can be integrated through generic
portlet proxies written to the Portlet API (see Figure below).

Portal Overview

The WSRPAJ project provides the WSRP4J Producer, which allows implementing such
WSRP compliant services based on afree, open source software stack consisting of Tomcat,
Axis and WSRP4J which in turn includes Pluto, the JSR 168 reference implementation. In
addition, the WSRPA4J project provides a generic proxy portlet written to the Portlet API, the
WSRPA4J Consumer (see Figure below).

WSRP4J Components

Page 1


http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.jcp.org/en/jsr/detail?id=168

WSRP Consumer Architecture

The Producer and Consumer are provided with a very modular architecture enabling an easy
exchange of module implementations. All modules excel by interfaces based on the WSRP
object model hiding the portal's object model and thus gaining independence of changes in
the portal implementation or design.

Consumer Architecture
1. Protocol Handler

The Protocol Handler is a standaone Swing based application that implements the
consuming portal and the browser functionality. It aggregates the integrated WSRP portlets
and forwards all invocations together with relevant context and request information to the
remote WSRP service. The Swing consumer thereby uses the ConsumerEnvironment to
collect all datarequired for aWSRP call.

2. WSRP Object Model

Most of the WSRP object model is being generated from the WSRP specification's WSDL
types.

3. PortletDriver

The PortletDriver is the task oriented abstraction of the generated WSRP stubs for markup
and action invocation.

The PortletDriver is the task oriented abstraction of the generated WSRP stubs for markup
and action invocation.

4. WSRP service (stubs) ()

The stubs generated by the axis SOAP implementation. The stubs are also implementing the
cookie handling - for more details see SessionHandler below.

5. Producer Registry

The ProducerRegistry stores and manages details about producer portals from which portlets
were integrated or shall be integrated.

Page 1



WSRP Consumer Architecture

6. SessionHandler

The WSRP consumer implementation session handling is based on the SOAP stack’s session
handling. The generated SOAP stubs are doing the cookie handling and are caching the
cookies in instance variables. This means that one stub object instance is equivalent to one
HTTP session which we map to one WSRP session (initCookie wise). When a WSRP session
did time out an InvalidCookie exception is being thrown and a new session must be
established.

7. URLHandler

The URLHandler is responsible for the URL rewriting of the WSRP URLs embedded in the
markup received from the remote portlet.

8. PortletRegistry

The PortletRegistry stores and provides access to WSRP specific data and descriptions of a
remote Portlet.

9. UserRegistry

The UserRegistry isin the Swing consumer case very simplistic. As the browser is integrated
there is always only one "dummy" user being managed.

Page 2



WSRP Producer Architecture

Producer and consumer are provided with a very modular architecture enabling an easy
exchange of module implementations. All modules excel by interfaces based on the WSRP
object model hiding the runtime environment's (portal's) object model and thus gaining
independence of changes in the environment's implementation or design.

WSRP Producer Architecture

1. WSRPEnNgine

The WSRPENgine is the WSRP implementation endpoint. This class must be deployed in the
app server (Tomcat) as a web service. The WSRPENgine implements the WSRP protocol
specific ports (=interfaces) and does the corresponding protocol handling. There are four
WSRP ports:

Markup

deals with Portlet invocation and Session handling
PortletManagement

covers lifecycle and properties of portlets

Registration

enables a consumer to register at the producer

ServiceDescription

enables a consumer to discover the services that a producer provides

To be able to reuse Portal functionality regarding session and request handling when invoking a portlet the WSRPENgine must
be able to access the HttpServletRequest.

2. Consumer Registry

This component manages and provides access to the registered Consumers.

3. HandleGenerator

This component is responsible for generating IDs / handles required for the WSRP protocol
handling.

Page 1



WSRP Producer Architecture

4. WSRP Object Model
The WSRP object model is being generated from the WSRP specification's WSDL types.

5. Provider

The Provider is the access point for the WSRPENgine to the Provider components which hide
the provider (portal) implementation's components required to handle and invoke portlets.
All Subcomponents wrap corresponding provider components and map the WSRP object
model to the provider object model.

6. Portlet Invoker

The Portletinvoker wraps the Provider's invocation mechanisms and provides the Provider
with the required environment.

7. Description Handler

The DescriptionHandler manages and provides the description of the provider regarding
configuration properties like registration or session handling policy, etc. It moreover provides
the descriptions of the provided portlets depending on the registration.

8. PortletPool

The PortletPool manages the portlet instances and is responsible for the portlets' lifecycle
management (clone, destroy).

9. Portlet State Manager

The PortletStateMananger enables a Producer to access a portlet's state as a blob that than
can be delegate to the consumer to be stored on consumer side.

10. Session Handler

No additional session handling implementation for the Pluto provider is required as the
session handling concept is completely HTTP (cookie) based and relies on consumer' cookie
handling.

11. URL Composer

The URLComposer must be used for WSRP triggered portlet invocation to create WSRP

Page 2



WSRP Producer Architecture

URLs instead of the portal's URL handling implementation. Therefore the URLComposer is
being used by WSRP's version of the DynamiclnformationProvider which is being used by
the Portlet APl implementation to generate portlet URLSs. There are two ways how URLSs can
be composed in a WSRP environment:

1. Viatemplatesthat represent URLs that are valid on Consumer side and contain
placeholders for al portlet specific URL components.

2. ViaURL rewriting. In that case WSRP specific URLs are being composed that will have
to be rewritten by the Consumer.

Page 3



	WSRP Architecture, Consumer, and Producer
	17 Apr 2004 Apache Software Foundation
	WSRP Architecture
	WSRP Consumer Architecture
	1 Protocol Handler
	2 WSRP Object Model 
	3 PortletDriver 
	4 WSRP service (stubs) () 
	5 ProducerRegistry 
	6 SessionHandler 
	7 URLHandler 
	8 PortletRegistry 
	9 UserRegistry 

	WSRP Producer Architecture
	1 WSRPEngine
	2 ConsumerRegistry
	3 HandleGenerator
	4 WSRP Object Model
	5 Provider
	6 Portlet Invoker
	7 Description Handler
	8 PortletPool
	9 Portlet State Manager
	10 Session Handler
	11 URL Composer


	 
	Apache Title Page

