
From jakarta.apache.org/pluto/arch.html 1 7 October 2003

The Apache Software Foundation, Inc.
Jakarta/Pluto

Architecture Overview

rchitecture Overview

Let's begin by examining Pluto's architecture and underlying concepts. First, we briefly
explain the portal that runs the RI, and see where to find a portlet container inside a portal
architecture. Next, we investigate Pluto's architecture in detail. Last, we look at how it
solves one challenging item of the portlet container: portlet deployment.

The portal

Pluto normally serves to show how the Portlet API works and offers developers a
working example platform from which they can test their portlets. However, it's
cumbersome to execute and test the portlet container without a driver, in this case, the
portal. Pluto's simple portal component is built only on the portlet container's and the JSR
168's requirements. (In contrast, the more sophisticated, open source Apache Jetspeed
project concentrates on the portal itself rather than the portlet container, and considers
requirements from other groups.)
Figure 1 depicts the portal's basic architecture. The portal Web application processes the
client request, retrieves the portlets on the user's current page, and then calls the portlet
container to retrieve each portlet's content. The portal accesses the portlet container with
the Portlet Container Invoker API, representing the portlet container's main interface
supporting request-based methods to call portlets from a portal's viewpoint. The
container's user must implement the portlet container's Container Provider SPI (Service
Provider Interface) callback interface to get portal-related information. Finally, the portlet
container calls all portlets via the Portlet API.

The portlet container

The portlet container, the portlets' runtime environment and a core component of each
portal, requires knowledge about the portal itself and must reuse common code from it.
Consequently, the portlet container remains completely separated from every other portal
component. That said, you can embed the standalone portlet container in any portal by
complying with the portlet container's requirements, such as implementing all SPIs.
The Portlet Container Invoker API, also called an entrance point, acts as the portlet
container's main calling interface. The API combines a portlet container's lifecycle (init,
destroy) with request-based calling methods (initPage(), performTitle(), portletService(),
and so on). Because the portlet container calls a portlet in the end, the method signature
resembles the Portlet API's main portlet interface, except that a portlet identifier must be
passed. With this additional portlet identifier, the container can determine the portlet and
call it accordingly.

From jakarta.apache.org/pluto/arch.html 2 7 October 2003

Figure 1. The simple portal included with Pluto.

Besides using the APIs to access the portlet container, the portal must implement SPIs
defined for the portlet container. Therefore, the RI introduces container services:
pluggable components that can be registered at the container to either extend or provide
basic functionality. The RI includes the following built-in container services (the first
four must be implemented to run the portlet container, while the fifth is optional):

• Information provider: Gives the portlet container information about the portal and
its framework. Only known information or information that should be stored
within the portal is present through this interface. Such information includes URL
generation with navigational state, portlet context, portlet mode, and window-state
handling

• Factory manager: Defines how to get an implementation through a factory. (A
normal portal should already own such an implementation.)

• Log service: Defines a logging facility. (A normal portal should already own such
an implementation.)

• Config service: Defines how to get configuration values. (A normal portal should
already own such an implementation.)

• Property manager (optional): A property manager interface implementation lets a
portal handle properties as defined in the JSR 168 specification

From jakarta.apache.org/pluto/arch.html 3 7 October 2003

Strictly speaking, the Portlet Object Model also acts as an SPI, but has an exceptional
position among the SPIs. Therefore, don't consider it part of the container services as it
deals with all portlet objects and comprises a collection of interwoven interfaces.

Figure 2. The portlet container's architecture.

Portlet deployment

The portlet container can leverage the servlet container's functionality, upon which the
portlet container is built. To accomplish that, the portlet container must inject servlet
artifacts into each portlet-application war file, as Figure 3 shows. The portlet component,
Deployment, takes the original war file, then injects a new or modified web.xml and a
servlet to wrap each portlet and uses it as a calling point. Then the portlet deployment
passes the modified war file to the application server deployment, which deploys it into
the application server's system. During the portlet's invocation, the portlet container calls
the injected servlet as an entrance point into the deployed portlet war file.

Pluto and the WSRP standard

The JSR 168 aligns closely with the Web Services for Remote Portlets (WSRP) standard.
Both standards, which emerged at the same time, released open source implementations
capable of all necessary functions described in the respective specifications. As a mutual
goal, both standards strive to work well together. As a result, the portlet container can run
WSRP portlets as a consumer as well as a producer.

From jakarta.apache.org/pluto/arch.html 4 7 October 2003

Pluto must be able to run multiple portlet containers in one portal. Consequently, Pluto's
portlet container can be instantiated multiple times and, more importantly, it can be
instrumented in different ways. Each portlet container, therefore, can use different
implementations for SPIs.

Figure 3. Portlet deployment in the RI.

Copyright © 2003, Apache Software Foundation

	[Pluto] Architecture Overview
	7 Oct 2003 Apache Software Foundation, Inc.
	Architecture Overview
	The portal
	The portlet container
	Portlet deployment
	Pluto and the WSRP standard

	
	Apache Software Foundation Title Page

