
 AMQP Specification. Transport

1 Transport
AMQP defines a peer-to-peer protocol for transferring messages between nodes in the AMQP network. This 
portion of the specification is not concerned with the internal workings of any sort of node, and only deals 
with the mechanics of unambiguously transferring a message from one node to another. 

The AMQP peer-to-peer protocol operates over any underlying network protocol that provides an ordered 
stream of bytes. The specification defines a grammar used to parse the byte stream into distinct frames. 
These frames then carry the commands and controls exchanged by the two peers. 

The  AMQP Network  consists  of  Nodes  connected  via  Links.  Messages  can  originate,  terminate,  or  be 
relayed by nodes, and the Link protocol manages the transfer of responsibility as messages pass between two 
Nodes. Nodes exist within a container, and each container may hold many nodes. Examples of AMQP Nodes 
are  Producers,  Consumers,  and  Queues.  Producers  and  Consumers  are  the  elements  within  a  client 
Application that generate and process messages. Queues are entities within a broker that store and forward 
messages. Examples of containers are brokers and client applications. 

Nodes are expected to have well known names whose format and precise semantics are intentionally opaque 
to the transport. Care is given to permit the use of long names with no significant loss of efficiency, therefore 
it is reasonable for node names to be both human readable and globally unique. 

A Link transports Messages from one Node to another. Links may be established with an optional filter that 
controls which messages are permitted to pass through the Link. Where the two nodes are on different peers, 
the Link protocol is used to transfer the message. The Link protocol is defined as a set of Commands carried 
over a Session. Multiple Links may be established over a single Session. 

A Session is an ordered peer to peer Command transport that optionally retains conversational state when 
disconnected. AMQP peers interact via a Session. Sessions are expected to map to a single thread of control. 
Sessions provide a scope for transactional interactions, and a facility for demarcating transactional units of 
work. 

A Command is a discrete payload that is reliably transported by the Session. The local Application will pass 
a  Command  to  the  local  Session  endpoint.  This  Command  will  be  transmitted  to  the  remote  Session 
endpoint.  The  remote  endpoint  will  subsequently  dispatch  the  Command to  the  remote  Application  for 
execution. Once the Command is executed, the remote Application will either acknowledge the success of 
the  Command or  report  any  errors  to  the  remote  Session  endpoint.  The  two endpoints  then  exchange 
execution state as necessary. 

Controls carry information between the two communication endpoints. Unlike Commands, controls are not 
dispatched to the Application using the Session, but instead are handled by the Session endpoint directly. 
Controls are used to negotiate  Connection parameters,  authenticate  the Connection, and to establish the 
transient relationship between a Session and its Connection. 

Connections carry frames for multiple Sessions. A frame is an encoded Command or Control. A Connection 
endpoint may have zero or more associated Sessions. Both Connection endpoints assign each associated 
Session an outgoing channel number that serves as an alias for the Session in all outgoing frames sent by 
that endpoint. Each Connection endpoint maintains a map from incoming channel number to Session. This 
map is used to demux incoming frames and direct them to the correct Session. The mapping between the 
incoming  channel  number  and  Session  is  established  when  the  attach control  is  received  by  the 
Connection endpoint. The mapping between the outgoing channel number and the Session is chosen freely 

AMQP Transport v. 1-0 Page 1 of 83



 AMQP Specification. Transport

by the Connection endpoint. Note that because each Connection endpoint independently chooses its alias, 
incoming and outgoing frames for a given session may use different channel numbers. 

A key  difference  between a  Command transport  and a  datagram transport  is  that  unlike  data  delivery, 
Command execution can fail. The Session protocol is designed to handle this possibility. 

Command execution failure is handled as similarly as possible to network failure. This ensures there is only 
one recovery procedure for many distinct failure modes. When command execution fails, the Session is 
detached just as if a network failure had occurred. The key difference is that when a Command execution 
fails, an explicit detach Control is sent. The detach Control communicates precise information about which 
Command failed and why. The Sender of the Command can then choose to terminate the Session or recover 
from the last successfully executed Command as if from a network failure. 

• Messages  are  proxied  through  the  Session  via  the  transfer  Command.  Likewise  Message 
acknowledgements are proxied as acknowledgements to the transfer Command. 

• Each link can be configured with independent flow control of message transfers, or if desired the 
link flow control can be disabled. Links with flow control disabled are still subject to flow control 
of Commands by the Session. 

                                               
+------------+                                  
|    Link    |  Message Transport (Node to Node)
+------------+                                  
     /|\ 0..*                                   
      |                                         
      |                                         
      |                                         
     \|/ 0..1                                   
+------------+                                  
|  Session   |  Command Transport (Host to Host)
+------------+                                  
     /|\ 0..*                                   
      |                                         
      |                                         
      |                                         
     \|/ 0..1                                   
+------------+                                  
| Connection |  Frame Transport (Host to Host)  
+------------+                                  
                                                

 

AMQP Transport v. 1-0 Page 2 of 83



 AMQP Specification. Framing

2 Framing
2.1 Frame Layout

A frame encodes a control or a command. Each frame is divided into two distinct areas: a fixed width frame 
header,  and a variable width frame body containing,  when non-empty, an encoded command or  control 
operation. 

                            
+--------------+------------+
| frame header | frame body |
+--------------+------------+
    24 bytes     *variable*  
                             

 

frame header: The frame header is a fixed size (24 byte) structure that precedes each 
frame. The frame header includes information required to parse the 
rest of the frame, as well as key session state variables.

frame body: The frame body, when non-empty, contains a command or control 
operation encoded as a struct.

2.2 Frame Header

                                                      
        +0         +1         +2         +3            
   +-------------------------------------------+       
 0 |                   size                    |       
   +-------------------------------------------+       
 4 |  type  |   flags    |       channel       |       
   +-------------------------------------------+ -.    
 8 |               acknowledged                |  |    
   +-------------------------------------------+  |    
12 |                 executed                  |  |    
   +-------------------------------------------+  |    
16 |                 capacity                  |  |    
   +-------------------------------------------+  |---+
20 |                command-id                 |  |   |
   +-------------------------------------------+ -'   |
                                                      |
            type: 0x00 - control                      |
                  0x01 - command                      |
                                                      |
           flags: 0|0|0|0|0|0|0|0 - control           |
                  0|0|0|0|0|0|S|F - command           |
                                                      |
               S: sync flag                           |
               F: flush flag                          |
                                     -.               |
              reserved      - control |---------------+
              session state - command |                
                                     -'                
                                                       

 

size: Bytes 0-3 of the frame header contain the frame size. This is an 
unsigned 32-bit integer that MUST contain the total frame size 

AMQP Transport v. 1-0 Page 3 of 83



 AMQP Specification. Framing

including the frame header. The frame is malformed if the size is less 
than the the size of the header (24 bytes).

type: Byte 4 of the frame header is a type code. The type code indicates the 
format and purpose of the frame. A type code of 0x00 indicates that 
the frame is a control frame. A type code of 0x01 indicates that the 
frame is a command frame. The subsequent bytes in the frame header 
may be interpreted differently depending on the type of the frame.

flags: Byte 5 of the frame header is reserved for frame flags. For controls, all 
bits are reserved. For commands, bits 2-7 are reserved, bit 0 is defined 
as the flush flag, and bit 1 is defined as the sync flag. All bit numbers 
are start at 0 for the least significant bit, and increase to 7 for the most 
significant bit.

sync flag: The sync flag is a signal to the session endpoint to promptly send the 
newly updated session state after the framed command has been 
executed.

flush flag: The flush flag is a signal to the session endpoint to promptly send the 
current session state.

channel: Bytes 6 and 7 of the frame header contain the channel number. The 
channel number uniquely identifies one of the sessions associated with 
the connection. An implementation MAY service incoming frames on 
distinct channels in any desired order. Each peer SHOULD balance 
the traffic on all active channels in a fair fashion.

acknowledged: Bytes 8-11 of a command frame contain the acknowledged field. This 
field indicates which outgoing commands have been acknowledged. 
The acknowledged field is part of the session state as defined in the 
session section. For controls this field is unused and marked as 
reserved.

executed: Bytes 12-15 of a command frame contain the executed field. This field 
indicates which incoming commands have been executed. The 
executed field is part of the session state as defined in the session 
section. For controls this field is unused and marked as reserved.

capacity: Bytes 16-19 of a command frame contain the capacity field. This field 
indicates how many more incoming commands are permitted beyond 
those that have already been executed. This capacity field is part of the 
session state as defined in the session section. For controls this field is 
unused and marked as reserved.

command-id: Bytes 20-23 of a command frame contain the command-id field. This 
field contains the id of the next command to be sent. If the frame 
contains a command this is the id of the framed command. If the 
frame does not contain a command (the frame has no body), then this 
contains the id that will be assigned to the next command sent. See the 
session section for more details. For controls this field is unused and 
marked as reserved.

AMQP Transport v. 1-0 Page 4 of 83



 AMQP Specification. Framing

2.3 Frame Body

The frame body encodes a command or control operation. The operation is encoded as a struct that identifies 
both the command or control being sent, as well as the field values for the operation. The encoding of a 
struct is fully defined in the basic-types section. 

                                                         
             +-------------------------------------------+
          24 |                  op-size                  |
             +-------------------------------------------+
          28 |      op-code        | field-packing-flags |
             +-------------------------------------------+
          32 |                   fields                  |
             |                     :                     |
                                                          
             |                     :                     |
             +-------------------------------------------+
                                                          

 

2.4 Empty Frames

Empty control  frames are used to generate artificial  traffic as needed to satisfy the negotiated heartbeat 
interval. 

Empty  command  frames  are  used  to  exchange  session  state  variables  without  sending  an  additional 
command. The sync bit when set on an empty command frame is semantically equivalent to retroactively 
setting the sync flag on the preceeding command. 

AMQP Transport v. 1-0 Page 5 of 83



 AMQP Specification. Connection

3 Connection
3.1 Version Negotiation

Prior to sending any frames on a connection, each peer MUST start  by sending a protocol header  that 
indicates the protocol version used on the connection. The protocol header consists of the upper case ASCII 
letters "AMQP" followed by 1, 0, 0, and connection flags. This is an 8-octet sequence: 

                                                                     
  4 OCTETS   1 OCTET   1 OCTET   1 OCTET    1 OCTET                   
+----------+---------+---------+----------+---------+                 
|  "AMQP"  |  major  |  minor  | revision |  flags  |                 
+----------+---------+---------+----------+---------+                 
                                                                      
    flags: 0|0|0|0|0|0|R|S                                            
                                                                      
        R: tls-required  -- The peer requires all data following the  
                            connection header to be encrypted. If R is
                            set then S MUST also be set.              
                                                                      
        S: tls-supported -- Indicates that the peer supports TLS      
                            encryption. If either peer's connection   
                            header has the R flag set then all        
                            connection data following the connection  
                            header will be encrypted, otherwise       
                            connection data will be unencrypted.      
                                                                      
        Note: if one protocol header requires TLS, and the other does 
            not support it, then both peers MUST abort the connection.
                                                                      

 

An AMQP client and server agree on a protocol version as follows: 

• When the client opens a new socket connection to an AMQP server, it  MUST send a protocol 
header with the client's preferred protocol version. 

• If the requested protocol version is supported, the server MUST send its own protocol header with 
the requested version to the socket, and then implement the protocol accordingly. 

• If the requested protocol version is not supported, the server MUST send a protocol header with a 
supported protocol version and then close the socket. 

• When  choosing  a  protocol  version  to  respond  with,  the  server  SHOULD  choose  the  highest 
supported version that is less than or equal to the requested version. If no such version exists, the 
server SHOULD respond with the highest supported version. 

• If the server can't parse the protocol header, the server MUST send a valid protocol header with a 
supported protocol version and then close the socket. 

Based on this behavior a client can discover which protocol versions a server supports by attempting to 
connect with its highest supported version and reconnecting with a version less than or equal to the version 
received back from the server. 

AMQP Transport v. 1-0 Page 6 of 83



 AMQP Specification. Connection

Version Negotiation Examples

                                                         
TCP Client                               TCP Server       
======================================================    
AMQP%d1.0.0.0       ------------->                        
                    <-------------       AMQP%d1.0.0.0 (1)
                          ...            *proceed*        
                                                          
AMQP%d1.1.0.0       ------------->                        
                    <-------------       AMQP%d1.0.0.0 (2)
                                         *TCP CLOSE*      
                                                          
HTTP                ------------->                        
                    <-------------       AMQP%d1.0.0.0 (3)
                                         *TCP CLOSE*      
------------------------------------------------------    
  (1) Server accepts connection for: AMQP, major=1,       
      minor=0, revision=0, flags=0                        
                                                          
  (2) Server rejects connection for: AMQP, major=1,       
      minor=1, revision=0, flags=0. Server responds       
      that it supports: AMQP, major=1, minor=0,           
      revision=0, flags=0                                 
                                                          
  (3) Server rejects connection for: HTTP. Server         
      responds it supports: AMQP, major=1, minor=0,       
      revision=0, flags=0                                 
                                                          

 

Please note that the above examples use the literal notation defined in RFC 2234 for non alphanumeric 
values. 

Definition: PORT

Value: 5672  Description: the IANA assigned port number for AMQP

The standard AMQP port number that has been assigned by IANA for TCP, UDP, and SCTP. 

There is currently no UDP mapping defined for AMQP. The UDP port number is reserved for future 
transport mappings. 

Definition: MAJOR

Value: 1  Description: major protocol version

Definition: MINOR

Value: 0  Description: minor protocol version

AMQP Transport v. 1-0 Page 7 of 83



 AMQP Specification. Connection

Definition: REVISION

Value: 0  Description: protocol revision

3.2 Opening a Connection

Each  AMQP connection  begins  with  an  exchange  of  capabilities  and  limitations.  After  establishing  or 
accepting a TCP connection and sending the protocol header, each peer must send an open control before 
sending any other frames. The open control describes the capabilities and limits of that peer. After sending 
the  open control  each  peer  must  read  its  partner's  open control  and  must  operate  within  mutually 
acceptable limitations from this point forward. 

                                 
TCP Client              TCP Server
==================================
TCP-CONNECT             TCP-ACCEPT
PROTO-HDR               PROTO-HDR 
OPEN        ---+   +--- OPEN      
                \ /               
wait             x      wait      
                / \               
proceed     <--+   +--> proceed   
                                  
                ...               
                                  

 

3.3 Pipelined Open

For  applications  that  use  many short-lived  connections,  it  may be  desirable  to  pipeline  the  connection 
negotiation process.  A peer may do this by starting to send commands or controls before receiving the 
partner's  connection header or  open control.  This is permitted so long as the pipelined commands and 
controls are known a priori to conform to the capabilities and limitations of its partner. For example, this 
may be accomplished by keeping the use of the connection within the capabilities and limits expected of all 
AMQP implementations as defined by the specification of the open control. 

AMQP Transport v. 1-0 Page 8 of 83



 AMQP Specification. Connection

                                                
TCP Client                    TCP Server         
===============================================  
TCP-CONNECT                   TCP-ACCEPT         
PROTO-HDR                     PROTO-HDR          
OPEN              ---+   +--- OPEN               
                      \ /                        
pipelined cmd/ctl      x      pipelined cmd/ctl *
                      / \                        
proceed           <--+   +--> proceed            
                                                 
                      ...                        
-----------------------------------------------  
                                                 
  * Note that a peer's use of pipelined          
    commands and/or controls cannot be           
    observed by the partner so long as the       
    pipelined commands and controls conform      
    to the partner's capabilities and            
    limitations.                                 
                                                 

 

3.4 Closing a Connection

Prior to closing a connection, each peer must write a close control with a code indicating the reason for 
closing. This control must be the last thing ever written onto a connection. After writing this control the peer 
should continue to read from the connection until it receives the partner's close control. 

                            
TCP Client         TCP Server
=============================
            ...              
                             
CLOSE     ------->           
               +-- CLOSE     
              /    TCP-CLOSE 
TCP-CLOSE <--+               
                             

 

3.5 Simultaneous Close

Normally  one  peer  will  initiate  the  connection  close,  and  the  partner  will  send  its  close  in  response. 
However,  because  both  endpoints  may  simultaneously  choose  to  close  the  connection  for  independent 
reasons,  it  is  possible  for  a  simultaneous  close  to  occur.  In  this  case,  the  only  potentially  observable 
difference from the perspective of each endpoint is the code indicating the reason for the close. 

AMQP Transport v. 1-0 Page 9 of 83



 AMQP Specification. Connection

                               
TCP Client            TCP Server
================================
              ...               
                                
CLOSE     ---+   +--- CLOSE     
              \ /               
               x                
              / \               
TCP-CLOSE <--+   +--> TCP-CLOSE 
                                

 

3.6 Connection States

START: In this state a connection exists, but nothing has been sent or received. 
This is the state an implementation would be in immediately after 
performing a socket connect or socket accept.

HDR_RCVD: In this state the connection header has been received from our peer, 
but we have not yet sent anything.

HDR_SENT: In this state the connection header has been sent to our peer, but we 
have not yet received anything.

OPEN_PIPE: In this state we have sent both the connection header and the open 
control, but we have not yet received anything.

OC_PIPE: In this state we have sent the connection header, the open control, 
any pipelined connection traffic, and the close control, but we have 
not yet received anything.

OPEN_RCVD: In this state we have sent and received the connection header, and 
received an open control from our peer, but have not yet sent an 
open control.

OPEN_SENT: In this state we have sent and received the connection header, and sent 
an open control to our peer, but have not yet received an open 
control.

CLOSE_PIPE: In this state we have send and received the connection header, sent an 
open control, any pipelined connection traffic, and the close 
control, but we have not yet received an open control.

OPENED: In this state the the connection header and the open control have both 
been sent and received.

CLOSE_RCVD: In this state we have received a close control indicating that our 
partner has initiated a close. This means we will never have to read 
anything more from this connection, however we can continue to 
write commands/controls onto the connection. If desired, an 
implementation could do a TCP half-close at this point to shutdown 
the read side of the connection.

CLOSE_SENT: In this state we have sent a close control to our partner. It is illegal 
to write anything more onto the connection, however there may still 

AMQP Transport v. 1-0 Page 10 of 83



 AMQP Specification. Connection

be incoming controls and/or commands. If desired, an implementation 
could do a TCP half-close at this point to shutdown the write side of 
the connection.

END: In this state it is illegal for either endpoint to write anything more onto 
the connection. The connection may be safely closed and discarded.

3.7 Connection State Diagram

The graph below depicts a complete state diagram for each endpoint. The boxes represent states, and the 
arrows represent state transitions. Each arrow is labeled with the action that triggers that particular transition. 

AMQP Transport v. 1-0 Page 11 of 83



 AMQP Specification. Connection

                                                                       
             R:HDR @=======@ S:HDR             R:HDR[!=S:HDR]           
          +--------| START |-----+    +--------------------------------+
          |        @=======@     |    |                                |
         \|/                    \|/   |                                |
     @==========@             @==========@ S:OPEN                      |
+----| HDR_RCVD |             | HDR_SENT |------+                      |
|    @==========@             @==========@      |      R:HDR[!=S:HDR]  |
|   S:HDR |                      | R:HDR        |    +-----------------+
|         +--------+      +------+              |    |                 |
|                 \|/    \|/                   \|/   |                 |
|                @==========@               +-----------+ S:CLOSE      |
|                | HDR_EXCH |               | OPEN_PIPE |----+         |
|                @==========@               +-----------+    |         |
|           R:OPEN |      | S:OPEN              | R:HDR      |         |
|         +--------+      +------+      +-------+            |         |
|        \|/                    \|/    \|/                  \|/        |
|   @===========@             @===========@ S:CLOSE       +---------+  |
|   | OPEN_RCVD |             | OPEN_SENT |-----+         | OC_PIPE |--+
|   @===========@             @===========@     |         +---------+  |
|  S:OPEN |                      | R:OPEN      \|/           | R:HDR   |
|         |       @========@     |          +------------+   |         |
|         +------>| OPENED |<----+          | CLOSE_PIPE |<--+         |
|                 @========@                +------------+             |
|           R:CLOSE |    | S:CLOSE              | R:OPEN               |
|         +---------+    +-------+              |                      |
|        \|/                    \|/             |                      |
|   @============@            @============@    |                      |
|   | CLOSE_RCVD |            | CLOSE_SENT |<---+                      |
|   @============@            @============@                           |
| S:CLOSE |                      | R:CLOSE                             |
|         |         @=====@      |                                     |
|         +-------->| END |<-----+                                     |
|                   @=====@                                            |
|                     /|\                                              |
|    S:HDR[!=R:HDR]    |                R:HDR[!=S:HDR]                 |
+----------------------+-----------------------------------------------+
                                                                        
                     R:<CTRL> = Received <CTRL>                         
                     S:<CTRL> = Sent <CTRL>                             
                                                                        

 

                                                                      
State        Legal Sends     Legal Receives    Legal Connection Actions
=======================================================================
START        HDR             HDR                                       
HDR_RCVD     HDR             OPEN                                      
HDR_SENT     OPEN            HDR                                       
HDR_EXCH     OPEN            OPEN                                      
OPEN_RCVD    OPEN            *                                         
OPEN_SENT    **              OPEN                                      
OPEN_PIPE    **              HDR                                       
CLOSE_PIPE   -               OPEN              TCP Close for Write     
OC_PIPE      -               HDR               TCP Close for Write     
OPENED       *               *                                         
CLOSE_RCVD   *               -                 TCP Close for Read      
CLOSE_SENT   -               *                 TCP Close for Write     
END          -               -                 TCP Close               
                                                                       
*  = any command or control                                            
-  = no command or control                                             
** = any command or control known a priori to conform to the           
     peer's capabilities and limitations                               
                                                                       

 

3.8 Authentication

AMQP Transport v. 1-0 Page 12 of 83



 AMQP Specification. Connection

If authentication is required by a peer, it must announce supported authentication mechanisms using the sasl-
server-mechanisms field of the connection.open control. The partner must then choose one of the supported 
mechanisms and initiate a sasl exchange. 

SASL Exchange

                                 
SASL Client       SASL Server     
================================  
SASL-INIT     -->                 
              ...                 
              <-- SASL-CHALLENGE *
SASL-RESPONSE -->                 
              ...                 
              <-- SASL-OUTCOME    
--------------------------------  
  * Note that the SASL            
    challenge/response step may   
    occur zero or more times      
    depending on the details of   
    the SASL mechanism chosen.    
                                  

 

The peer playing the role of the SASL Client and the peer playing the role of the SASL server may or may 
not  correspond to  the  TCP client/server  or  the  AMQP client/server.  In  fact,  if  mutual  authentication  is 
required, each peer will play the role of both the SASL Client and the SASL Server. 

3.9 Connection Controls

AMQP Transport v. 1-0 Page 13 of 83



 AMQP Specification. Connection

3.9.1 Control: 0x0101 (negotiate connection parameters) 

Signature: open( options: map, container-id: str16, hostname: str16, max-frame-size: uint32, 
channel-max: uint16, heartbeat-interval: uint16, sasl-server-mechanisms: str16, 
outgoing-locales: str16, incoming-locales: str16, peer-properties: map )

The  open  control  MUST be  the  first  frame  sent  in  each  direction  on  the  connection.  (Note  that  the 
connection header which is sent first on the connection is *not* a frame.) The fields indicate the capabilities 
and limitations of the sending peer. 

Field Details: 

options: map options map (optional) 

container-id: str16 the id of the source container (required) 

hostname: str16 the name of the target host (optional) 

The dns name of the  host  (either  fully  qualified or  relative)  to which the sending peer  is 
connecting.  It  is  not  mandatory  to  provide  the  hostname.  If  no  hostname is  provided the 
receiving peer should select a default based on its own configuration. 

max-frame-size: uint32 proposed maximum frame size (optional) 

The largest frame size that the sending peer is able to accept on this connection. If this field is 
not set it means that the peer does not impose any specific limit. A peer MUST NOT send 
frames larger than its partner can handle. A peer that receives an oversized frame MUST close 
the connection with the framing-error close-code. 
Both peers MUST accept frames of up to 4096 octets large. 

channel-max: uint16 the maximum channel number that may be used on the 
connection (required) 

The channel-max value is the highest channel number that may be used on the connection. 
This value plus one is the maximum number of sessions that may be simultaneously attached. 
A peer MUST not use channel numbers outside the range that its partner can handle. A peer 
that receives a channel number outside the supported range MUST close the connection with 
the framing-error close-code. 

heartbeat-interval: uint16 proposed heartbeat interval (optional) 

The proposed interval, in seconds, of the connection heartbeat desired by the sender. A value 
of zero means heartbeats are not supported. If  the value is not set, the sender supports all 
heartbeat  intervals.  The heartbeat-interval established is the minimum of the two proposed 
heartbeat-intervals. If neither value is set, there is no heartbeat. 

sasl-server-mechanisms: str16 supported sasl mechanisms (multiple) 

A list of the sasl security mechanisms supported by the sending peer. If the sending peer does 
not require its partner to authenticate with it, this array may be empty or absent. The server 
mechanisms are ordered in decreasing level of preference. 

outgoing-locales: str16 locales available for outgoing text (multiple) 

A list  of  the  locales  that  the  peer  supports  for  sending  informational  text.  This  includes 
connection close text, reject text, and session exception text. The default is the en_US locale. A 
peer MUST support at least the en_US locale. Since this value is always supported, it need not 
be supplied in the outgoing-locales array. 

AMQP Transport v. 1-0 Page 14 of 83



 AMQP Specification. Connection

incoming-locales: str16 desired locales for incoming text in decreasing level of 
preference (multiple) 

A list of locales that the sending peer permits for incoming informational text. This list is 
ordered in decreasing level  of preference.  The receiving partner will  chose the first  (most 
preferred) incoming locale from those which it supports. If none of the requested locales are 
supported, en_US will be chosen. Note that en_US need not be supplied in this list as it is 
always the fallback. A peer may determine which of the permitted incoming locales is chosen 
by examining the partner's supported locales as specified in the outgoing-locales field. 

peer-properties: map peer properties (optional) 

The properties SHOULD contain at least these fields: "product", giving the name of the client 
product, "version", giving the name of the client version, "platform", giving the name of the 
operating  system,  "copyright",  if  appropriate,  and  "information",  giving  other  general 
information. 

Definition: MIN-MAX-FRAME-SIZE

Value: 4096  Description: the minimum size (in bytes) of the maximum frame size

During the initial connection negotiation, the two peers must agree upon a maximum frame size. This 
constant defines the minimum value to which the maximum frame size can be set. By defining this value, 
the peers can guarantee that they can send frames of up to this size until they have agreed a definitive 
maximum frame size for that connection. 

AMQP Transport v. 1-0 Page 15 of 83



 AMQP Specification. Connection

3.9.2 Control: 0x0102 (initiate sasl exchange) 

Signature: sasl-init( options: map, mechanism: str16, initial-response: vbin32 )

Selects the sasl mechanism and provides the initial response if needed.

Field Details: 

options: map options map (optional) 

mechanism: str16 selected security mechanism (required) 

The name of the SASL mechanism used for the SASL exchange. If the selected mechanism is 
not supported by the receiving peer, it MUST close the connection with the authentication-
failure close-code. Each peer MUST authenticate using the highest-level security profile it can 
handle from the list provided by the partner. 

initial-response: vbin32 security response data (optional) 

A block of opaque data passed to the security mechanism. The contents of this data are defined 
by the SASL security mechanism. 

AMQP Transport v. 1-0 Page 16 of 83



 AMQP Specification. Connection

3.9.3 Control: 0x0103 (security mechanism challenge) 

Signature: sasl-challenge( options: map, challenge: vbin32 )

Send the SASL challenge data as defined by the SASL specification.

Field Details: 

options: map options map (optional) 

challenge: vbin32 security challenge data (required) 

Challenge information, a block of opaque binary data passed to the security mechanism. 

AMQP Transport v. 1-0 Page 17 of 83



 AMQP Specification. Connection

3.9.4 Control: 0x0104 (security mechanism response) 

Signature: sasl-response( options: map, response: vbin32 )

Send the SASL response data as defined by the SASL specification.

Field Details: 

options: map options map (optional) 

response: vbin32 security response data (required) 

A block of opaque data passed to the security mechanism. The contents of this data are defined 
by the SASL security mechanism. 

AMQP Transport v. 1-0 Page 18 of 83



 AMQP Specification. Connection

3.9.5 Control: 0x0105 (indicates the outcome of the sasl dialog) 

Signature: sasl-outcome( options: map, code: sasl-code, additional-data: vbin32 )

This control indicates the outcome of the SASL dialog.

Field Details: 

options: map options map (optional) 

code: sasl-code indicates the outcome of the sasl dialog (optional) 

A reply-code indicating the outcome of the SASL dialog.

additional-data: vbin32 additional data as specified in RFC-4422 (optional) 

The  additional-data  field  carries  additional  data  on  successful  authentication  outcome  as 
specified by the SASL specification (RFC-4422).  If  the authentication is unsuccessful, this 
field is not set. 

3.9.6 sasl-code: uint8 (codes to indicate the outcome of the sasl dialog) 

Valid values: 

0 (ok) Connection authentication succeeded.

1 (auth) Connection authentication failed due to an unspecified problem 
with the supplied credentials. 

2 (sys) Connection authentication failed due to a system error.

3 (sys-perm) Connection authentication failed due to a system error that  is 
unlikely to be corrected without intervention. 

4 (sys-temp) Connection authentication failed due to a transient system error. 

AMQP Transport v. 1-0 Page 19 of 83



 AMQP Specification. Connection

3.9.7 Control: 0x0106 (signal a connection close) 

Signature: close( options: map, close-code: close-code, close-text: str16 )

Sending  a  close  signals  that  the  sender  will  not  be  sending  any  more  commands  or  controls  on  the 
connection. This control MUST be the last command or control written to a connection by the sender. 

Field Details: 

options: map options map (optional) 

close-code: close-code connection close code (required) 

A numeric code indicating the reason for the connection closure.

close-text: str16 connection close text (optional) 

This text supplies any supplementary details not indicated by the connection close-code. This 
text can be logged as an aid to resolving issues. 

3.9.8 close-code: uint16 (codes used to indicate the reason for closure) 

Valid values: 

200 (normal) The connection closed normally.

320 (connection-forced) An operator intervened to close the connection for some reason. 
The client may retry at some later date. 

401 (authentication-failure) The SASL authentication exchange failed.

402 (invalid-path) The client tried to work with an unknown virtual host.

501 (framing-error) A valid frame header cannot be formed from the incoming byte 
stream.

AMQP Transport v. 1-0 Page 20 of 83



 AMQP Specification. Session

4 Session
An AMQP Session is  a  named dialog between two AMQP peers.  Each participant  maintains a  Session 
Endpoint that stores the conversational state for that session. Session Endpoints are "attached" when they are 
associated with an open Connection. Session Endpoints may become detached deliberately, when a failure 
occurs  in  the  network,  or  when  a  failure  occurs  at  one  of  the  endpoints.  Session  Endpoints  may  be 
configured to retain their state either temporarily or permanently when they become detached. 

4.1 Naming a Session

Session names are supplied by the initiating peer, and MUST be globally unique among all open sessions. 
Once a session is cleanly closed, its may be reused. Session names are represented by opaque binary strings 
up to 65535 characters long. Example naming schemes include mechanically generated UUID-based names 
as well as stable, manually chosen URI based names. Session names are only exchanged during the attach 
and detach procedures, so there is no significant overhead to choosing large names. 

4.1.1 session-name: vbin16 (opaque session name) 

The session name uniquely identifies an interaction between two peers. It is globally unique among all open 
sessions. Once a session is cleanly closed, its name may be reused. 

4.2 Establishing a Session

Sessions are established by creating a Session Endpoint, assigning it  to an unused channel number, and 
sending  an  ATTACH  carrying  the  state  of  the  newly  created  Endpoint.  The  partner  responds  with  an 
ATTACH carrying the state of the corresponding Endpoint, creating and/or mapping the Endpoint to an 
unused channel number if necessary. To avoid accidentally resuming an existing session, the initiating peer 
may optionally wish to verify that the corresponding Endpoint is newly created. 

                                                            
Endpoint                               Endpoint              
=============================================================
ATTACH(name=...,       [CH3]--------->                       
       opening=1, ...)        +--[CH7] ATTACH(name=...,      
                             /                opening=1, ...)
                            /                                
(1)                    <---+                                 
                                                             
                           ...                               
                                                             
-------------------------------------------------------------
                                                             
  (1) The initiating peer can at this point verify that the  
      corresponding Endpoint is newly created.               
                                                             

 

4.3 Resuming a Session

Sessions are resumed by assigning the existing detached Session Endpoint to an unused channel number and 
sending an ATTACH carrying the state of the resuming Endpoint. The partner responds with an ATTACH 

AMQP Transport v. 1-0 Page 21 of 83



 AMQP Specification. Session

carrying the state of the corresponding Endpoint, creating and/or mapping the Endpoint to an unused channel 
number if necessary. The resuming peer may wish to verify that the corresponding Endpoint is not newly 
created. This may be used to detect whether conversational state has been lost. 

                                                            
Endpoint                               Endpoint              
=============================================================
ATTACH(name=...,       [CH3]--------->                       
       opening=0, ...)        +--[CH7] ATTACH(name=...,      
                             /                opening=0, ...)
                            /                                
(1)                    <---+                                 
                                                             
                             ...                             
                                                             
-------------------------------------------------------------
                                                             
  (1) The resuming peer can at this point verify that the    
      corresponding Endpoint is not newly created.           
                                                             

 

4.4 Detaching a Session

Sessions become detached automatically when the connection is interrupted or closed, or when an error is 
encountered while executing a command. A Session is explicitly detached by sending a DETACH control. 
Once the DETACH is sent,  no more commands or controls  may be sent  to the other Session Endpoint 
without first reattaching. The detaching peer must still process incoming commands and controls until the 
other Endpoint's DETACH is received. 

AMQP Transport v. 1-0 Page 22 of 83



 AMQP Specification. Session

                                                           
Endpoint A                             Endpoint B           
============================================================
                                                            
                             ...                            
                                                            
DETACH(name=...,       [CH3]-------->                       
       closing=0, ...)        +--[CH7] DETACH(name=...,     
(1)                          /               closing=0, ...)
                            /          (2)                  
(3)                    <---+                                
                                                            
                             ...                            
                                                            
------------------------------------------------------------
                                                            
  (1) At this point no more commands or controls may be     
      sent to Endpoint B without first reattaching to it,   
      but incoming commands and controls may still be       
      received.                                             
                                                            
  (2) At this point Endpoint B is fully detached from the   
      connection.                                           
                                                            
  (3) At this point Endpoint A is fully detached from the   
      connection.                                           
                                                            

 

4.5 Closing a Session

Sessions are closed by setting the closing bit  and detaching in the normal way. If  an Endpoint sets the 
closing bit, it indicates that after the detach is confirmed, the Endpoint will be destroyed. 

AMQP Transport v. 1-0 Page 23 of 83



 AMQP Specification. Session

                                                        
Endpoint A                             Endpoint B        
=========================================================
                                                         
                             ...                         
                                                         
DETACH(name=...,       [CH3]--------->                   
       closing=1, ...)        +--[CH7] DETACH(name=...,  
(1)                          /            closing=1, ...)
                            /          (2)               
(3)                    <---+                             
                                                         
                             ...                         
                                                         
---------------------------------------------------------
                                                         
  (1) At this point no more commands or controls may be  
      sent to Endpoint B without first reattaching to    
      it, but incoming commands and controls may still   
      be received.                                       
                                                         
  (2) At this point Endpoint B is fully detached from    
      the connection.                                    
                                                         
  (3) At this point Endpoint A is fully detached from    
      the connection and can be destroyed.               
                                                         

 

4.6 Simultaneous Detach/Close

Due to the potentially asynchronous nature of Sessions, it is possible that both peers may simultaneously 
decide to detach and/or close the Session. If this should happen, it will appear to each peer as though their 
partner's spontaneously initiated DETACH is actually an answer to the peers initial DETACH control. One 
observable consequence of this  occurrence  is  that  if  one Endpoint  is  closing and the other  Endpoint  is 
detaching, the values of the closing flag may not match. In this case, the closing Endpoint should reattach 
and verify that the detaching Endpoint was actually closed. 

AMQP Transport v. 1-0 Page 24 of 83



 AMQP Specification. Session

                                                              
Endpoint A                                Endpoint B           
===============================================================
                                                               
                              ...                              
                                                               
DETACH(name=..., ...) [CH3]--+   +--[CH7] DETACH(name=..., ...)
(1)                           \ /         (2)                  
                               x                               
                              / \                              
(3)                   <------+   +------> (4)                  
                                                               
                              ...                              
                                                               
---------------------------------------------------------------
                                                               
  (1) At this point no more commands or controls may be sent   
      by A.                                                    
                                                               
  (2) At this point no more commands or controls may be sent   
      by B.                                                    
                                                               
  (3) At this point Endpoint A is fully detached from the      
      connection.                                              
                                                               
  (4) At this point Endpoint B is fully detached from the      
      connection.                                              
                                                               

 

4.7 Session States

DETACHED: In the detached state, the session endpoint is not mapped to an open 
Connection. In this state an endpoint cannot send or receive 
commands and controls.

ATTACH_SENT: In the ATTACH_SENT state, the session endpoint is assigned an 
outgoing channel number, but there is no entry in the incoming 
channel map. In this state the endpoint may send commands and 
controls but cannot receive them.

ATTACH_RCVD: In the ATTACH_RCVD state, the session endpoint has an entry in the 
incoming channel map, but has not yet been assigned an outgoing 
channel number. The endpoint may receive commands and controls, 
but cannot send them.

ATTACHED: In the ATTACHED state, the session endpoint has both an outgoing 
channel number and an entry in the incoming channel map. The 
endpoint may send and receive commands and controls.

DETACH_SENT: In the DETACH_SENT state, the session endpoint has an entry in the 
incoming channel map, but is no longer assigned an outgoing channel 
number. The endpoint may receive commands and controls, but cannot 
send them.

DETACH_RCVD: In the DETACH_RCVD state, the session endpoint is assigned an 
outgoing channel number, but there is no entry in the incoming 
channel map. The endpoint may send commands and controls, but 
cannot receive them.

AMQP Transport v. 1-0 Page 25 of 83



 AMQP Specification. Session

State Transitions

                                       
              DETACHED<----------------+
                 |                     |
         +-------+-------+             |
         |               |             |
S:ATTACH |               | R:ATTACH    |
         |               |             |
        \|/             \|/            |
    ATTACH_SENT     ATTACH_RCVD        |
         |               |             |
         |               |             |
R:ATTACH |               | S:ATTACH    |
         +-------+-------+             |
                 |                     |
                \|/                    |
              ATTACHED                 |
                 |                     |
         +-------+-------+             |
         |               |             |
S:DETACH |               | R:DETACH    |
         |               |             |
        \|/             \|/            |
    DETACH_SENT     DETACH_RCVD        |
         |               |             |
         |               |             |
R:DETACH |               | S:DETACH    |
         +-------+-------+             |
                 |                     |
                 |                     |
                 +---------------------+
                                        

 

4.8 Command Transport

A Session may be used as both a synchronous and an asynchronous command transport. By waiting for each 
command to be acknowledged prior to sending the next command, a Session becomes a fully synchronous 
command transport,  and by permitting many unacknowledged commands a Session can become a fully 
asynchronous transport. 

The diagram below depicts a snapshot of a Sender and Receiver in the process of sending and executing 
commands. The snapshot assumes perfect knowledge of the Sender and Receiver states at a given instant, 
and serves as an essential  illustration of the different  possible  conditions that  may occur when sending 
commands. For simplicity, the diagram shows only the state for a single Sender and Receiver pair. 

AMQP Transport v. 1-0 Page 26 of 83



 AMQP Specification. Session

Snapshot of a Session

                                                                           
              Endpoint                                 Endpoint             
        +- - - - - - - - - +                      +- - - - - - - - +        
        |     Receiver     |   <- - - - - - - -   |     Sender     |        
        +- - - - - - - - - +                      +- - - - - - - - +        
        +------------------+                      +----------------+        
       /|      Sender      |\  --------------->  /|    Receiver    |\       
      / +------------------+ \                  / +----------------+ \      
     / /                    \ \                / /                  \ \     
    / /                      \ \              / /                    \ \    
   / /                        \ \            / /                      \ \   
  / /                          \ \          / /                        \ \  
 / /              replay buffer \ \        / /             input buffer \ \ 
+------------+---------------------+      +------------+-------------------+
| ... C2 C3  |  C4 C5 C6 C7 C8 C9  |      | ... C3 C4  |  C5 C6  |  __ __  |
+------------+---------------------+      +------------+-------------------+
 acknowledged           |     | |            executed  | received          |
                        +-----+ |                      +-------------------+
                           |    |                                |          
                           +    +                             capacity      
                          /      \                                          
                   in-flight*   blocked                                     
                                                                            
C1, C2, C3: executed by the receiver, and acknowledged at the sender        
        C4: executed by the receiver, but not acknowledged at the sender    
    C5, C6: received, but not yet executed by the receiver                  
    C7, C8: transmitted by the sender, but not yet received (in-flight)*    
        C9: held by the sender awaiting capacity at the receiver            
                                                                            
  * Note that should a network failure occur at this instant, the           
    in-flight commands will be lost. In practice, neither the               
    sender nor receiver knows explicitly which of the                       
    unacknowledged commands will be lost should a network failure           
    occur.                                                                  
                                                                            

 

4.9 Sender State

acknowledged: The id of the last command acknowledged. This marks the head of the 
replay buffer.

next-command: The id that will be assigned to the next command sent on the session. 
This marks the tail of the replay buffer. The id of any command in the 
replay buffer must fall between acknowledged and next-command: 
acknowledged < C.id < next-command for all C in the replay buffer

4.10 Receiver State

executed: The id of the last command executed. This marks the head of the input 
buffer.

received: The id of the last command received. This marks the end of the filled 
slots in the input buffer.

capacity: The capacity of the input buffer. The sum of executed and capacity is 
the id of the command that will fill the last slot in the input buffer.

Session endpoints periodically exchange "executed", "capacity", and "acknowledged". Each endpoint uses 
the  knowledge  of  its  partner's  executed state  to  shrink  the  replay  buffer  for  outgoing commands.  Each 

AMQP Transport v. 1-0 Page 27 of 83



 AMQP Specification. Session

endpoint uses the knowledge of its partners capacity to match its transmission rate to its partner's available 
receive capacity. Endpoints may use the knowledge of its partners acknowledged state to bound the set of 
incoming commands subject to replay at any given point. 

                                                          
Endpoint A                             Endpoint B          
===========================================================
ATTACH(...)         [CH3]------------>                     
                              +--[CH7] ATTACH(...)         
                             /                             
                            /                              
                    <------+                               
                                                           
                            ...                            
                                                           
STATE(acknowledged, [CH3]--+   +--[CH7] STATE(acknowledged,
      executed,             \ /               executed,    
      capacity)              x                capacity)    
                            / \                            
(1)                 <------+   +------> (1)                
                                                           
                            ...                            
                                                           
-----------------------------------------------------------
                                                           
  (1) Endpoints can shrink the replay buffer for           
      outgoing commands, transmit additional commands,     
      and bound the set of incoming commands subject to    
      replay.                                              
                                                           

 

When  Session  endpoints  (re)attach,  they  exchange  "next-command",  "received",  and  "capacity".  Each 
endpoint then computes where to begin replay (if necessary), the id of the next incoming command, and 
when to block outgoing commands. 

                                                          
Endpoint                              Endpoint             
===========================================================
ATTACH(next-command,  [CH3]---------> (1)                  
       received,             +--[CH7] ATTACH(next-command, 
       capacity, ...)       /                received,     
                           /                 capacity, ...)
(1)                   <---+                                
                                                           
                            ...                            
                                                           
-----------------------------------------------------------
                                                           
  (1) Endpoints can establish where to begin replay, the   
      expected id of the next incoming command, and the    
      last outgoing command that may be sent before        
      blocking.                                            
                                                           

 

4.11 Session Exceptions

Session  exceptions  occur  when an  error  is  encountered while  processing  a  command.  In  this  case  the 
receiving peer  MUST detach the  session by  issuing an outgoing detach control  acknowledging the  last 
successfully executed command and carrying information about the exceptional condition. Any "in-flight" 
commands received between the exceptional condition and the incoming detach MUST be thrown away. 

AMQP Transport v. 1-0 Page 28 of 83



 AMQP Specification. Session

Upon receiving any explicit detach, including those caused by exceptions, clients may choose to reattach and 
resume just as they would from an ordinary network failure. If the detach was caused by an exception, the 
client  may  choose,  upon  resume,  to  alter  or  omit  any  unexecuted  commands,  i.e.  those  following  the 
exceptional condition. A client SHOULD examine the cause of failure and determine if it is likely to resolve 
itself before replaying unmodified commands. 

                                                     
Endpoint                      Endpoint                
======================================================
COMMAND_1         ---------->                         
COMMAND_2         ---------->                         
COMMAND_3         ---+   +--- DETACH(executed=1,      
                      \ /             exception="...")
                       x                              
                      / \                             
                  <--+   +--> *discarded*             
DETACH            ---------->                         
                      ...                             
ATTACH            ---------->                         
                  <---------- ATTACH(executed=1, ...) 
COMMAND_2'        ---------->                         
COMMAND_3         ---------->                         
                      ...                             
======================================================
                                                      

 

4.12 Session Controls

AMQP Transport v. 1-0 Page 29 of 83



 AMQP Specification. Session

4.12.1 Control: 0x0201 (attach to the named session) 

Signature: attach( options: map, name: session-name, opening: bit, next-command: sequence-no, 
acknowledged: sequence-no, received: sequence-no, capacity: uint32, timeout: 
uint32, txn-mode: txn-level, txn-support: txn-level )

Indicate that a session endpoint has been attached to a connection. A session MUST NOT be mapped to 
more than one connection at a time. 

Field Details: 

options: map options map (optional) 

name: session-name the session name (required) 

The name of the session whose endpoint has been attached to the connection.

opening: bit true iff the session endpoint has never been attached 
(optional) 

This  field,  if  set,  indicates  that  the session endpoint  is  newly created and has  never been 
attached to another endpoint. 

next-command: sequence-no (optional) 

The id that will be assigned to the next outgoing command passed to the endpoint. For an 
opening endpoint this will be the id of the next command sent from the endpoint. 

acknowledged: sequence-no (optional) 

The id of the last acknowledged command. This marks the head of the replay buffer. If the 
endpoint is newly created, this will be null. 

received: sequence-no the id of the last command received (optional) 

The id of the last received command. This field MUST be set if and only if the session has 
received commands. This field indicates where replay will begin when resuming a session. 

capacity: uint32 (optional) 

This value should be given relative to received if the opening bit is false.

timeout: uint32 the session timeout (optional) 

The session timeout indicates how long the endpoint will be kept when detached. If not set, the 
endpoint will be kept indefinitely. 

txn-mode: txn-level the desired txn-level (optional) 

txn-support: txn-level the maximum supported txn-level (optional) 

AMQP Transport v. 1-0 Page 30 of 83



 AMQP Specification. Session

4.12.2 Control: 0x0202 (detach from the named session) 

Signature: detach( options: map, name: session-name, closing: bit, acknowledged: sequence-no, 
executed: sequence-no, exception: exception )

Indicates that the endpoint is being detached from the connection.

Field Details: 

options: map options map (optional) 

name: session-name the session name (required) 

Identifies the detaching session.

closing: bit (optional) 

This field, if set, indicates that the session endpoint will be destroyed when fully detached. 

acknowledged: sequence-no (optional) 

The id of the last acknowledged command. This marks the head of the replay buffer.

executed: sequence-no (optional) 

The id of the last executed command. This marks the head of the input buffer.

exception: exception (optional) 

If set, this field indicates that the session is being detached due to an exceptional condition. 
The value of the field should contain details on the cause of the exception. 

4.12.3 exception struct (details of a session error) 

This struct carries information on an exception which has occurred on the session. The command-id, when 
given, correlates the error to a specific command. 

Field Details: 

error-code: error-code error code indicating the type of error (required) 

command-id: sequence-no exceptional command (optional) 

The command-id of the command which caused the exception. If the exception was not caused 
by a specific command, this value is not set. 

command-code: uint8 the class code of the command whose execution gave rise to 
the error (if appropriate) (optional) 

field-index: uint8 index of the exceptional field (optional) 

The  zero  based  index  of  the  exceptional  field  within  the  arguments  to  the  exceptional 
command. If the exception was not caused by a specific field, this value is not set. 

description: str16 descriptive text on the exception (optional) 

The description provided is implementation defined, but MUST be in the language appropriate 

AMQP Transport v. 1-0 Page 31 of 83



 AMQP Specification. Session

for the selected locale. The intention is that this description is suitable for logging or alerting 
output. 

error-info: map map to carry additional information about the error (optional) 

AMQP Transport v. 1-0 Page 32 of 83



 AMQP Specification. Session

4.12.4 error-code: uint16 (error code used to identify the nature of an exception) 

Valid values: 

4003 (unauthorized-access) The client attempted to work with a server entity to which it has 
no access due to security settings. 

4004 (not-found) The client attempted to work with a server entity that does not 
exist.

4005 (resource-locked) The client attempted to work with a server entity to which it has 
no access because another client is working with it. 

4006 (precondition-failed) The client requested a command that was not allowed because 
some precondition failed. 

4008 (resource-deleted) A server entity the client is working with has been deleted.

4009 (illegal-state) The peer sent a command that is not permitted in the current 
state of the session. 

4010 (transfer-limit-exceeded) The peer sent more message transfers than currently allowed on 
the link.

5003 (command-invalid) The command segments could not be decoded.

5006 (resource-limit-exceeded) The client exceeded its resource allocation.

5030 (not-allowed) The peer tried to use a command a manner that is inconsistent 
with the semantics defined in the specification. 

5031 (illegal-argument) The command argument is malformed, i.e. it does not fall within 
the  specified  domain.  The  illegal-argument  exception  can  be 
raised on execution of any command which has domain valued 
fields. 

5040 (not-implemented) The peer tried to use functionality that is not implemented in its 
partner.

5041 (internal-error) The  peer  could  not  complete  the  command  because  of  an 
internal error. The peer may require intervention by an operator 
in order to resume normal operations. 

5042 (invalid-argument) An  invalid  argument  was  passed  to  a  command,  and  the 
operation could not proceed. An invalid argument is not illegal 
(see  illegal-argument),  i.e.  it  matches  the  domain  definition; 
however the particular value is invalid in this context. 

6001 (xa-rbrollback) The rollback was caused for an unspecified reason.

6002 (xa-rbtimeout) A transaction branch took too long.

6003 (xa-heurhaz) The transaction branch may have been heuristically completed.

6004 (xa-heurcom) The transaction branch has been heuristically committed.

6005 (xa-heurrb) The transaction branch has been heuristically rolled back.

6006 (xa-heurmix) The transaction  branch  has  been  heuristically  committed  and 
rolled back.

6007 (xa-rdonly) The transaction branch was read-only and has been committed.

AMQP Transport v. 1-0 Page 33 of 83



 AMQP Specification. Session

4.12.5 Command: 0x0203 (a command that does nothing) 

Signature: noop( options: map )

A command that does nothing.

Field Details: 

options: map options map (optional) 

AMQP Transport v. 1-0 Page 34 of 83



 AMQP Specification. Session

4.12.6 Command: 0x0204 (executes an extended command) 

Signature: execute( options: map, spec: str8, name: str8, arguments: map )

Executes a command from an extended specification.

Field Details: 

options: map options map (optional) 

spec: str8 an extended specification (optional) 

Identifies the specification that defines the behavior for the command. This is typically a URI 
identifying  a  document  that  contains  the  formal  definition  for  all  the  commands  in  the 
extended specification. 

name: str8 the command name (optional) 

Identifies the name of the command within the given specification.

arguments: map the command arguments (optional) 

Carries the command arguments as defined by the identified specification.

4.13 Transactional Sessions

A Transactional  Session  is  one  in  which  one  of  the  two  Applications  using  the  Session  behaves  as  a 
Transactional Resource, and the other behaves as a Transaction Controller. A Transactional Session must be 
in one of two modes: "local" or "distributed". In both modes, the Transaction Controller defines transactional 
units of work, and indicates whether each unit of work is a success or failure. On a Session with a txn-mode 
of "local", each successful unit of work is immediately committed as a complete transaction, and failed units 
of work are immediately rolled back. On a Session with a txn-mode of "distributed", each unit of work is 
given an xid and becomes part of a distributed transaction that is externally coordinated. 

Applications  capable  of  behaving  as  a  Transactional  Resource  may  advertise  this  when  establishing  a 
Session by setting the txn-support field of the attach control to "local" or "distributed". Applications that 
wish to behave as a Transaction Controller may indicate this and choose the mode for the Transactional 
Session by setting the txn-mode field of the attach control when establishing a Session. Only one end of a 
Session can be the Transaction Controller. It is an error for both Session endpoints to set the txn-mode field 
when when establishing a Session. 

The  transactional  implications  of  each Command are  determined by  the  semantics  of  the  Transactional 
Resource. Some Commands sent from the Transaction Controller to the Transactional Resource may modify 
transactional  state,  while  others  may  not.  Likewise,  some  Commands  sent  from  the  Resource  to  the 
Controller may carry information about the transactional state of the Resource, while others may not. The 
state of the Command Transport itself is not transactional. A Commit or Rollback may negate or confirm the 
effects of a Command carried by the Transport, but it has no effect on the command-ids, replay-buffers, or 
other Transport related state that falls within the scope of the transaction. 

AMQP Transport v. 1-0 Page 35 of 83



 AMQP Specification. Session

4.13.1 txn-level: uint8 (transaction level) 

Valid values: 

1 (local)

2 (distributed)

AMQP Transport v. 1-0 Page 36 of 83



 AMQP Specification. Session

4.13.2 Command: 0x0205 (associate the current transactional work with a distributed 
transaction) 

Signature: enlist( options: map, xid: xid, join: bit, resume: bit )

Associates the current transactional unit of work with the distributed transaction identified by the supplied 
xid. 

Field Details: 

options: map options map (optional) 

xid: xid Transaction xid (required) 

Specifies the xid of the transaction branch in which to enlist.

join: bit Join with existing xid flag (optional) 

Indicate whether this is joining an already associated xid. Indicate that the enlist applies to 
joining a transaction previously seen. 

resume: bit Resume flag (optional) 

Indicate that the enlist applies to resuming a suspended transaction branch. 

Exceptions: 

illegal-state illegal-state (4009) 

If  the command is invoked in an improper context  then the  server  MUST send a session 
exception. 

already-known not-allowed (5030) 

If neither join nor resume is specified is specified and the transaction branch specified by xid 
has previously been seen then the server MUST raise an exception. 

join-and-resume not-allowed (5030) 

If join and resume are specified then the server MUST raise an exception.

xa-rbrollback xa-rbrollback (6001) 

The broker marked the transaction branch rollback-only for an unspecified reason.

xa-rbtimeout xa-rbtimeout (6002) 

The work represented by this transaction branch took too long.

unknown-xid not-allowed (5030) 

If xid is already known by the broker then the server MUST raise an exception.

unsupported not-implemented (5040) 

If the broker does not support join the server MUST raise an exception.

AMQP Transport v. 1-0 Page 37 of 83



 AMQP Specification. Session

4.13.3 xid record (dtx branch identifier) 

An xid uniquely identifies a transaction branch.

Field Details: 

format: uint32 implementation specific format code (required) 

global-id: vbin8 global transaction id (required) 

branch-id: vbin8 branch qualifier (required) 

AMQP Transport v. 1-0 Page 38 of 83



 AMQP Specification. Session

4.13.4 Command: 0x0206 (mark transaction boundaries) 

Signature: txn( options: map, fail: bit, suspend: bit )

This  command  is  called  when  the  work  done  on  behalf  a  transaction  branch  finishes  or  needs  to  be 
suspended. If neither fail nor suspend are specified then the portion of work has completed successfully. 
When a session is closed then the currently associated transaction branches MUST be marked rollback-only. 

Field Details: 

options: map options map (optional) 

fail: bit Failure flag (optional) 

If  set,  indicates  that  this  portion  of  work  has  failed;  otherwise  this  portion  of  work  has 
completed successfully. An implementation MAY elect to roll a transaction back if this failure 
notification is received. Should an implementation elect to implement this behavior, and this 
bit is set, then then the transaction branch SHOULD be marked as rollback-only and the end 
result SHOULD have the xa-rbrollback status set. 

suspend: bit Temporary suspension flag (optional) 

Indicates  that  the transaction branch is  temporarily  suspended in an incomplete state.  The 
transaction context is in a suspended state and must be resumed via the enlist command with 
resume specified. 

Exceptions: 

illegal-state illegal-state (4009) 

If the command is invoked in an improper context (see class grammar) then the server MUST 
raise an exception. 

suspend-and-fail not-allowed (5030) 

If both suspend and fail are specified then the server MUST raise an exception.

xa-rbrollback xa-rbrollback (6001) 

The  broker  marked  the  transaction  branch  rollback-only  for  an  unspecified  reason.  If  an 
implementation chooses to implement rollback-on-failure behavior, then this value should be 
selected if the dtx.end.fail bit was set. 

xa-rbtimeout xa-rbtimeout (6002) 

The work represented by this transaction branch took too long.

AMQP Transport v. 1-0 Page 39 of 83



 AMQP Specification. Link

5 Link
An AMQP network consists of message endpoints and intermediaries. Message endpoints are applications 
that  produce or consume messages.  Message intermediaries store and distribute messages as they travel 
between endpoints on the AMQP network. 

                                                          
  +---------+                 +---------+                  
 /    MI1    \               /    MI2    \                 
+-------------+             +-------------+                
|             | <---------> |             | <---------> ...
+-------------+             +-------------+                
 /|\  /|\  /|\               /|\  /|\  /|\                 
  |    |    |                 |    |    |                  
  |    |    |                 |    |    |                  
  |    |    |                 |    |    |                  
 \|/  \|/  \|/               \|/  \|/  \|/                 
 ME1  ...  ME2               ME3  ...  ME4                 
                                                           
                                                           
      MI<n>: Message Intermediary <n>                      
      ME<n>: Message Endpoint <n>                          
                                                           

 

Messages may be sent to and/or from an AMQP Node. A producer sends messages to a node; a consumer 
requests that some or all  messages be sent from a node. Message intermediaries then determine how to 
distribute messages by matching producer messages to consumer interest. 

                                                                            
                 +---------+                    +---------------------------+
                /    MI1    \ - - - - - - - - - | ME3 wants messages from A |
      M(to=A)  +-------------+  M(to=B)         |                           |
ME2 ---------> |             | <--------- ME1   | ME4 wants messages from A |
               +-------------+                  | matching criteria C       |
      M(to=A)    |    |    |                    |                           |
ME3 <------------+    |    |                    | MI2 wants messages from B |
                      |    |                    | and A                     |
      M(to=A) ? if C  |    |                    +---------------------------+
ME4 <-----------------+    |                                                 
                           |                                                 
    +----------------------+                                                 
    |                        +---------+        +---------------------------+
    |                       /    MI2    \ - - - | ME5 wants messages from B |
    | M(to=A), M(to=B)     +-------------+      |                           |
    +--------------------> |             |      | ME6 wants messages from A |
                           +-------------+      | and B                     |
      M(to=B)                |    |             +---------------------------+
ME5 <------------------------+    |                                          
                                  |                                          
      M(to=A), M(to=B)            |                                          
ME6 <-----------------------------+                                          
                                                                             
                  MI<n>: Message Intermediary <n>                            
                  ME<n>: Message Endpoint <n>                                
                                                                             

 

5.1 Links

Links establish which messages flow over a session, and control the rate of messages traveling to or from a 
given node. Each message transferred on a session must travel on an open link. Each link is established 

AMQP Transport v. 1-0 Page 40 of 83



 AMQP Specification. Link

between two nodes -- a local node and a remote node. The link holds dynamic state associated with the 
transfer of messages between the two nodes. (Note that if a container establishes a session with itself, the 
local and remote nodes will actually be in the same container. A container may wish to provide a way to 
directly configure "internal" links in order to avoid creating a loopback session.) 

Each link end is assigned a numeric handle used by the peer to refer to the link in all outgoing FLOW, 
DRAIN, and TRANSFER commands. In addition, each link has properties of directionality, durability, and 
distribution-mode. The directionality of a link is controlled by the direction field. Links may permit only 
incoming messages, only outgoing messages, or neither when closed. The durability of a link controls what 
happens to open links when a session is closed. The state of a durable link must be retained until that link is 
reopened.  The  state  of  a  transient  link  is  discarded.  The  distribution-mode  of  a  link  determines  how 
messages from a node are distributed among its associated links. Messages from a node will be distributed to 
all associated links with a NON-DESTRUCTIVE distribution-mode, but to at most one associated link with 
a DESTRUCTIVE distribution mode. 

                                                                        
+--------------------+                             +--------------------+
|      name: Link_1  |                             |      name: Link_1  |
|   durable: false   |                             |   durable: false   |
|    handle: i       |                             |    handle: j       |
|--------------------|                             |--------------------|
|     local: NODE_A  |                             |     local: NODE_B  |
|    remote: NODE_B  |<---+                   +--->|    remote: NODE_A  |
| direction: IN      |    |                   |    | direction: OUT     |
| dist-mode: -       |    |                   |    | dist-mode: -       |
+--------------------+    |                   |    +--------------------+
                          |                   |                          
                          |    +---------+    |                          
          ...         <---+--->| Session |<---+--->          ...         
                          |    +---------+    |                          
                          |                   |                          
+--------------------+    |                   |    +--------------------+
|      name: Link_N  |    |                   |    |      name: Link_N  |
|   durable: true    |    |                   |    |   durable: true    |
|    handle: k       |    |                   |    |    handle: l       |
|--------------------|    |                   |    |--------------------|
|     local: -       |<---+                   +--->|     local: NODE_C  |
|    remote: NODE_C  |                             |    remote: -       |
| direction: OUT     |                             | direction: IN      |
| dist-mode: DEST    |                             | dist-mode: DEST    |
+--------------------+                             +--------------------+
                                                                         

 

5.2 Managing Links

The LINK, RELINK, and UNLINK commands are used to open, update, and close a link. An AMQP peer 
sends its partner the LINK command when a link end is created, and the UNLINK command when a link 
end is destroyed. The LINK command informs the partner of the state of the link end and maps it  to a 
handle. The partner creates, the corresponding link end to match the peer, and responds with its own LINK 
command. 

AMQP Transport v. 1-0 Page 41 of 83



 AMQP Specification. Link

                                                                   
Peer                                     Partner                    
====================================================================
*create link end*                                                   
LINK(name=N, handle=1,       ----------> *create matching link end* 
     direction=OUT, local=A        +---- LINK(name=N, handle=2,     
     remote=B, ...)               /           direction=IN, local=B,
                             <---+            remote=A, ...)        
                                                                    
                                 ...                                
                                                                    
RELINK(handle=1,             ---------->                            
       filter="...")         <---------- ACK(RELINK)                
                                                                    
                                 ...                                
                                                                    
                                         *destroy link end*         
*destroy link end*           <---------- UNLINK(handle=2)           
UNLINK(handle=1)             ---------->                            
--------------------------------------------------------------------
                                                                    

 

5.3 Flow Control

Once established, the outgoing end of a link is subject to credit-based flow control of message transfers. The 
outgoing end of the link maintains a count of the total number of transfers it has sent since the link was 
opened, as well as a total transfer limit. If the sent count is the same or greater than the limit, it is illegal to 
send more transfer commands until the limit is increased. The incoming end of the link updates the transfer 
limit by sending FLOW commands. Flow control may be disabled entirely if the incoming end sends a 
FLOW command with an empty value for the limit. Although not required in all cases, it is often convenient 
for the incoming end of the link to maintain a received transfer count for use in determining an appropriate 
value for the updated transfer limit when sending a FLOW command. The sent transfer count, the received 
transfer count, and the transfer limit are all absolute values that must wraparound and compare according to 
RFC-1982 serial number arithmetic. 

AMQP Transport v. 1-0 Page 42 of 83



 AMQP Specification. Link

                                                                    
+----------------+                                 +----------------+
|     Link_1     |                                 |     Link_1     |
|----------------|                                 |----------------|
| direction=OUT  |<----+                     +---->| direction=IN   |
| transfers-sent |     |                     |     | transfers-rcvd |
| transfer-limit |     |                     |     |                |
+----------------+     |                     |     +----------------+
                       |                     |                       
                       |     +---------+     |                       
       ...        <----+---->| Session |<----+---->       ...        
                       |     +---------+     |                       
                       |                     |                       
+----------------+     |                     |     +----------------+
|     Link_N     |     |                     |     |     Link_N     |
|----------------|     |                     |     |----------------|
| direction=IN   |<----+                     +---->| direction=OUT  |
| transfers-rcvd |                                 | transfers-sent |
|                |                                 | transfer-limit |
+----------------+                                 +----------------+
                                                                     

 

5.4 Controlling Outgoing Transfers

Each message transfer sent on a session increments the sent transfer count for the link on which it is sent. 
AMQP peers must not send transfers in excess of the current transfer limit of a link. If the transfer limit is 
reduced by the receiving peer when transfers are in-flight, the receiving peer may either handle the excess 
transfers normally or detach the session with a transfer-limit-exceeded error code. In the latter case if a 
session resume is attempted, the receiving peer should delay the session resume handshake until sufficient 
resources are available to handle the previously attempted in-flight transfers. 

                                                     
      +--------+                                      
M1 -->| Link 1 |----+                                 
      +--------+    |                                 
                    |                 +---------+     
           ...  ----+---- M1, M2 ---->| Session |---->
                    |                 +---------+     
      +--------+    |                                 
M2 -->| Link N |----+                                 
      +--------+                                      
          |                                           
          |                                           
          |                                           
 if transfers-sent >= transfer-limit then block       
                                                      
              M<n>: Message Transfer<n>               
                                                      

 

5.5 Controlling Incoming Transfers

The FLOW and DRAIN commands control incoming transfers for a specific link. The FLOW command 
updates the transfer limit for the specified link. The DRAIN command tells the peer to send any immediately 
available transfers, and then set the transfer limit equal to the sent transfer count, thus stopping the link. 
Once the DRAIN command is complete, the link will be stopped, and any immediately available transfers 
will have been sent if permitted by the transfer limit prior to receiving the DRAIN. These commands may be 
used to provide a variety of different behaviors for receiving messages. 

AMQP Transport v. 1-0 Page 43 of 83



 AMQP Specification. Link

                                                                  
            +--------+                                             
      M1 <--| Link 1 |<----+                                       
            +--------+     |                                       
                           |                      +---------+      
                 ...   ----+----- FLOW/DRAIN ---->| Session |<---->
                           |                      +---------+      
            +--------+     |                                       
      M2 <--| Link N |<----+                                       
            +--------+                                             
                |                                                  
                |                                                  
                |                                                  
    sync-get: FLOW(link=N, limit=rcvd+1)     ---->                 
   timed-get: FLOW(link=N, limit=rcvd+1),                          
              *wait*,                                              
              DRAIN(link=N)                  ---->                 
async-notify: FLOW(link=N, limit=rcvd+delta) ---->                 
              - or -                                               
              FLOW(link=N, limit=null)       ---->                 
        stop: FLOW(link=N, limit=rcvd)       ---->                 
                                                                   
                        M<n>: Message Transfer<n>                  
                                                                   

 

5.6 Synchronous Get

A synchronous get of a message from a link is accomplished by incrementing the limit, sending a FLOW, 
and waiting indefinitely for a message to arrive. 

                                                             
Peer                                  Partner                 
==============================================================
                              ...                             
FLOW(handle=1,            ---------->                         
     limit=xfrs-rcvd+1)         +---- TRANSFER(handle=2, ...) 
*block until xfr arrives*      /                              
                          <---+                               
                              ...                             
--------------------------------------------------------------
                                                              

 

Synchronous get with a timeout is accomplished by incrementing the limit, waiting for the desired timeout, 
and then sending the DRAIN command. If the message does not arrive by the time execution of the DRAIN 
command is acknowledged, then the get times out. 

AMQP Transport v. 1-0 Page 44 of 83



 AMQP Specification. Link

                                                                 
    Peer                                  Partner                 
    ==============================================================
                                  ...                             
    FLOW(handle=1,            ---------->                         
         limit=xfrs-rcvd+1)                                       
    *wait for timeout*                                            
    DRAIN(handle=1)           ---+   +--> TRANSFER(handle=2, ...) 
                                  \ /                             
                                   x                              
                                  / \                             
(1)                           <--+   +-->                         
(2)                           <---------- ACK(DRAIN)              
                                  ...                             
    --------------------------------------------------------------
      (1) If a message is available within the timeout, it will   
          arrive at this point.                                   
      (2) If a message is not available within the timeout, the   
          DRAIN command will ensure that the partner resets the   
          transfer limit to the sent transfer count. Once         
          peer gets acknowledgment of the execution of the DRAIN  
          command, it can stop waiting for the message.           
                                                                  

 

5.7 Asynchronous Notification

Asynchronous notification can be accomplished in two ways. If rate limiting of the messages from a given 
link is required, the receiver maintains a target delta between the transfer limit and the number of transfers 
received for  that  link.  As messages  arrive  on the  link,  the  actual  delta  decreases as the  received count 
increases. When the actual delta falls below a threshold, a FLOW command is issued to increase the delta 
back to the desired target. 

                                                               
Peer                                    Partner                 
================================================================
                                ...                             
                            <---------- TRANSFER(handle=2, ...) 
                            <---------- TRANSFER(handle=2, ...) 
FLOW(handle=1,              ---+   +--- TRANSFER(handle=2, ...) 
     limit=xfrs-rcvd+delta)     \ /                             
                                 x                              
                                / \                             
                            <--+   +-->                         
                            <---------- TRANSFER(handle=2, ...) 
                            <---------- TRANSFER(handle=2, ...) 
FLOW(handle=1,              ---+   +--- TRANSFER(handle=2, ...) 
     limit=xfrs-rcvd+delta)     \ /                             
                                 x                              
                                / \                             
                            <--+   +-->                         
                                ...                             
----------------------------------------------------------------
  The incoming transfer rate for the link is limited by the     
  rate at which the peer updates the transfer limit.            
                                                                

 

Alternatively, if there is no need to control the rate of incoming messages for the link, the receiver can send a 
FLOW command with an empty value for the limit field. 

AMQP Transport v. 1-0 Page 45 of 83



 AMQP Specification. Link

                                                                 
Peer                                    Partner                   
===============================================================   
                                ...                               
FLOW(handle=1,              ---------->                        (1)
     limit=*empty*)               +---- TRANSFER(handle=2, ...)   
                                 /                                
                            <---+                                 
                            <---------- TRANSFER(handle=2, ...)   
                            <---------- TRANSFER(handle=2, ...)   
                                ...                               
---------------------------------------------------------------   
  (1) Once the limit is disabled, the partner will transfer       
      messages at whatever rate they become available.            
                                                                  

 

5.8 Stopping a Link

Stopping the messages from a given link is accomplished by sending a FLOW command with the limit set to 
the received transfer count for that link. This guarantees that the limit will be less than or equal to the sent 
count at the other end of the link. Some transfers may be in-flight at the time the FLOW command is sent, so 
incoming transfers may still arrive on that link until execution of the FLOW command is acknowledged. 

                                                                   
    Peer                                    Partner                 
    ================================================================
                                    ...                             
                                <---------- TRANSFER(handle=2, ...) 
    FLOW(handle=1,              ---+   +--- TRANSFER(handle=2, ...) 
         limit=xfrs-rcvd)           \ /                             
                                     x                              
                                    / \                             
(1)                             <--+   +-->                         
(2)                             <---------- ACK(FLOW)               
                                    ...                             
    ----------------------------------------------------------------
      (1) In-flight transfers may still arrive until execution of   
          the FLOW command is acknowledged.                         
      (2) At this point no further transfers will arrive.           
                                                                    

 

5.9 Example: Outgoing Link

A message endpoint establishes an outgoing link by sending a LINK command with the link name, handle, 
remote node name, and the direction set  to OUTGOING. The intermediary then creates or restores the 
corresponding link end and responds with its own LINK command followed by periodic FLOW commands 
to update the transfer limit for the link as capacity becomes available. 

AMQP Transport v. 1-0 Page 46 of 83



 AMQP Specification. Link

                                                                 
    Endpoint                              Intermediary            
    ==============================================================
    LINK(name=N, handle=1,    ---------->                         
         remote=A,                  +---- LINK(name=N, handle=2,  
         direction=OUT)            /           local=A,           
                              <---+            direction=IN)      
(1)                           <---------- FLOW(handle=2, limit=5) 
    TRANSFER(handle=1, ...)   ---------->                         
    TRANSFER(handle=1, ...)   ---------->                         
    TRANSFER(handle=1, ...)   ---------->                         
    TRANSFER(handle=1, ...)   ---------->                         
(2) TRANSFER(handle=1, ...)   ---+   +--- FLOW(handle=2, limit=10)
                                  \ /                             
                                   x                              
                                  / \                             
(3)                           <--+   +-->                         
    TRANSFER(handle=1, ...)   ---------->                         
                                  ...                             
    --------------------------------------------------------------
      (1) The endpoint may now send up to 5 message transfers on  
          the link.                                               
      (2) The endpoint must block until further credit for the    
          link is received.                                       
      (3) The endpoint may now send an additional 5 message       
          transfers on the link.                                  
                                                                  

 

5.10 Example: Incoming Link

A message endpoint establishes an incoming link by sending a LINK command with the link name, handle, 
remote node name, and the direction set to INCOMING. The message intermediary creates or restores the 
corresponding  link  end,  and sends  its  own LINK command.  The  message  endpoint  then  sends  FLOW 
commands to start and continue the flow of incoming message transfers for the link. 

AMQP Transport v. 1-0 Page 47 of 83



 AMQP Specification. Link

                                                                    
    Endpoint                              Intermediary               
    ==============================================================   
    LINK(name=N, handle=1,    ---------->                            
         remote=A,                  +---- LINK(name=N, handle=2,     
         direction=IN)             /           local=A,              
                              <---+            direction=OUT)        
(1) FLOW(handle=1, limit=5)   ---------->                            
                              <---------- TRANSFER(handle=2, ...)    
                              <---------- TRANSFER(handle=2, ...)    
                              <---------- TRANSFER(handle=2, ...)    
                              <---------- TRANSFER(handle=2, ...)    
(3) FLOW(handle=1, limit=10)  ---+   +--- TRANSFER(handle=2, ...) (2)
                                  \ /                                
                                   x                                 
                                  / \                                
                              <--+   +-->                         (4)
                              <---------- TRANSFER(handle=2, ...)    
                                  ...                                
    --------------------------------------------------------------   
      (1) The endpoint may receive up to 5 message transfers on      
          the link.                                                  
      (2) The intermediary may not send more message transfers       
          until further credit for the link is received from the     
          endpoint.                                                  
      (3) The endpoint must now be prepared to receive an            
          additional 5 message transfers on the link.                
      (4) The intermediary may now send up to 5 additional           
          message transfers.                                         
                                                                     

 

5.11 Example: Closing a Link

A link is closed by sending the UNLINK command with the link handle for the specified link. The peer will 
destroy the corresponding link end, and reply with its own UNLINK command. 

                                                              
    Endpoint                            Intermediary           
    ===========================================================
                                ...                            
(1) FLOW(handle=1, ...)     <---------> FLOW(handle=2, ...)    
    TRANSFER(handle=1, ...) <---------> TRANSFER(handle=2, ...)
                                ...                            
    UNLINK(handle=1)        ---------->                        
(2)                         <---------- UNLINK(handle=2)       
    -----------------------------------------------------------
      (1) At this point the link is open. Depending on the     
          directionality of the link, FLOW and TRANSFER        
          commands may be sent freely in one or both           
          directions.                                          
                                                               
      (2) At this point the link is now fully closed and no    
          more FLOW or TRANSFER commands may be sent in        
          either direction.                                    
                                                               

 

5.12 Link Commands

AMQP Transport v. 1-0 Page 48 of 83



 AMQP Specification. Link

5.12.1 Command: 0x0301 (carries the local state and desired remote state of a link) 

Signature: link( options: map, name: str16, durable: bit, handle: handle, create: bit, local: node-name, 
remote: node-name, direction: direction, distribution-mode: distribution-mode, filter: 
vbin32, filter-type: str8 )

The link command is used to establish a link. An AMQP peer sends its partner the link command when a link 
end is created. The link command informs the partner of the new state of the link end. The partner creates, 
the corresponding link end to match the peer, and responds with its own link command confirming the state 
update. 

Field Details: 

options: map options map (optional) 

name: str16 the name of the link (required) 

Link  names are  scoped to  the  client-id  if  durable,  and scoped to  the  session-name if  not 
durable. Link commands with the same name but differing durability refer to distinct links. 
If the name refers to an existing link within the defined scope (either durable or non durable), 
and the local and remote node names are either not present or match the local and remote node 
names of the existing link, then the link end is updated to match the desired state specified in 
the link command. If the local and remote node names do not match the local and remote node 
names of the existing link, then the old link end is destroyed and a new link end is created in 
accordance with the link command. 

durable: bit indicates the scope and lifespan of the link (optional) 

Durable links are scoped to the client-id and will last until explicitly closed. Non durable links 
are scoped to the session and may be closed explicitly, but will close automatically when the 
session terminates. 

handle: handle the link handle (required) 

This field establishes the handle this endpoint will use to refer to the link in all subsequent 
outgoing commands. 

create: bit request creation of a remote node (optional) 

The create flag, if set, indicates that the local peer would like the remote peer to generate a 
uniquely named remote node. The remote peer will supply the name of the generated node in 
the local field of the corresponding link command. If the create flag is set, the remote node 
name MUST be null. The generated node will exist until the link is destroyed. 
The algorithm used to produce the node name from the link name, must produce repeatable 
results. If the link is durable, generating a node name from a given link name within a given 
client-id MUST always produce the same result. If the link is not durable, generating a node 
name from a given link name within a given session MUST always produce the same result. 
The generated node name SHOULD include the link name and session-name or client-id in 
some recognizable form for ease of traceability. 

local: node-name the name of the local node (optional) 

remote: node-name the name of the remote node (optional) 

direction: direction direction of the link (optional) 

distribution-mode: distribution-mode the distribution mode of the link (optional) 

AMQP Transport v. 1-0 Page 49 of 83



 AMQP Specification. Link

If set, the distribution-mode field indicates the distribution mode used for outgoing messages. 

filter: vbin32 a predicate to filter the messages admitted onto the link 
(optional) 

filter-type: str8 the type of the filter (default: SQL-EXPRESSION) 

AMQP Transport v. 1-0 Page 50 of 83



 AMQP Specification. Link

5.12.2 Command: 0x0302 (re-establish link parameters) 

Signature: relink( options: map, handle: handle, filter: vbin32, filter-type: str8 )

Re-establish link with new parameters. 

Field Details: 

options: map options map (optional) 

handle: handle identifies the link (optional) 

filter: vbin32 a predicate to filter the messages admitted onto the link 
(optional) 

filter-type: str8 the type of the filter (default: SQL-EXPRESSION) 

AMQP Transport v. 1-0 Page 51 of 83



 AMQP Specification. Link

5.12.3 Command: 0x0303 (close the link) 

Signature: unlink( options: map, handle: handle )

Close the link and un-map the handle. 

Field Details: 

options: map options map (optional) 

handle: handle identifies the link (optional) 

5.12.4 node-name: vbin16 (name of the source or destination for a message) 

Specifies the name for a source or destination node to which messages are to be transferred to or from. Node 
names are expected to be human readable, but are intentionally considered opaque. The format of a node 
name is not defined by this specification. 

5.12.5 handle: uint32 (the handle of a link) 

An alias established by the link command and subsequently used by endpoints as a shorthand to refer to the 
link in all outgoing commands. The two endpoints may potentially use different handles to refer to the same 
link. Link handles may be reused once a link is closed for both send and receive. 

5.12.6 direction: uint8 (link direction) 

Valid values: 

0 (incoming)

1 (outgoing)

5.12.7 distribution-mode: uint32 (link distribution policy) 

Policies for distributing messages when multiple links are connected to the same node. 

Valid values: 

1 (destructive) once successfully transferred over the link, the message will no 
longer be available to other links from the same node 

2 (non-destructive) once successfully transferred over the link, the message is still 
available for other links from the same node 

AMQP Transport v. 1-0 Page 52 of 83



 AMQP Specification. Link

5.12.8 Command: 0x0304 (update the transfer limit for a link) 

Signature: flow( options: map, handle: handle, limit: sequence-no )

This command updates the transfer-limit for the specified link.

Field Details: 

options: map options map (optional) 

handle: handle the link handle (required) 

Identifies the link whose transfer limit is to be updated.

limit: sequence-no the link transfer limit (optional) 

The updated value for the transfer-limit. This is the limit beyond which the sent transfer count 
for the link may not exceed. This is an absolute number and must wraparound and compare 
according  to  RFC-1982 serial  number  arithmetic.  If  this  is  not  set,  there  is  no  limit  and 
transfers may be sent until a limit is imposed. 

AMQP Transport v. 1-0 Page 53 of 83



 AMQP Specification. Link

5.12.9 Command: 0x0305 (drain the link of immediately available transfers and stop it) 

Signature: drain( options: map, handle: handle )

This command causes any immediately available message transfers to be sent up to the pre-existing transfer 
limit.  If  the  number of immediately available message transfers  is  insufficient  to  reach the  pre-existing 
transfer limit, the transfer limit is reset to the sent transfer count. When this command completes, the transfer 
limit will always equal the sent transfer count. 

Field Details: 

options: map options map (optional) 

handle: handle the link handle (required) 

Identifies the link to be drained.

5.13 Transfer States

START: The message has yet to be sent to the recipient.

TRANSFERRING: The message has been partially sent to the recipient, but is not yet 
acquired.

ACQUIRED: The message has been sent to and acquired by the recipient.

PARKED: The message is held by the outgoing end of the link until unparked.

END: The transfer is complete.

AMQP Transport v. 1-0 Page 54 of 83



 AMQP Specification. Link

State Transitions

                                                                    
                            XFR(M=1,A=0)                             
                     START---------------+                           
                       |                 |                           
                       |                 |                           
                       |                 |      +------+             
                       |                 |      |      |             
                       |                \|/    \|/     | XFR(M=1,A=0)
          XFR(M=0,A=0) |               TRANSFERRING----+             
                       |                 |      |                    
                       |    XFR(M=0,A=0) |      | XFR(M=0,A=1)       
                       |   +-------------+      |                    
                       |   |                    |                    
                      \|/ \|/       PARK        |                    
                     ACQUIRED------------+      |                    
                       |                 |      |                    
                       |                 |      |                    
                       |                 |      |                    
                       |                 |      |                    
                       |                \|/     |                    
ACK / REJECT / RELEASE |               PARKED   |                    
                       |                 |      |                    
                       |                 |      |                    
                       |                 |      |                    
                       |                 |      |                    
                      \|/                |      |                    
                      END<---------------+      |                    
                      /|\         UNPARK        |                    
                       |                        |                    
                       +------------------------+                    
                                                                     
                                                                     
      Key: XFR(M=?,A=?) --> TRANSFER(more=?, aborted=?)              
                                                                     

 

5.14 Transfer Commands

AMQP Transport v. 1-0 Page 55 of 83



 AMQP Specification. Link

5.14.1 Command: 0x0306 (transfer a message) 

Signature: transfer( options: map, handle: handle, more: bit, aborted: bit, redelivered: bit, fragment-
offset: uint64, transmit-time: timestamp, ttl: uint64, header: header, payload: vbin32, 
footer: footer )

The transfer command is used to send messages across a link. Messages may be carried by a single transfer 
command up to the maximum negotiated frame size for the connection. Larger messages may be split across 
several consecutive transfer commands. 

Field Details: 

options: map options map (optional) 

handle: handle (required) 

Specifies the link on which the message is transferred.

more: bit indicates that the message has more content (optional) 

aborted: bit indicates that the message is aborted (optional) 

Aborted messages should be discarded by the recipient.

redelivered: bit indicates possible duplication (optional) 

This flag indicates that the message may be a duplicate. When delivered on an exclusive link 
the redelivered flag is set to true if: 

the message when originally sent to the node had the redelivered flag set to true 

the message has previously been sent from this node over an exclusive link to a session 
which closed without the message being acknowledged 

the message has previously been sent from this node over an exclusive link and was 
subsequently released with the mark-redelivered field set to true 

When  delivered  on  a  shared  link  the  redelivered  flag  is  set  to  true  if  any  of  the  above 
conditions are met, or: 

the  message  has  previously been sent  over  the  same shared link  and subsequently 
released with the mark redelivered flag set to true 

the shared link is durable, and the message was previously sent over this link on a 
session which was closed before the message was acknowledged 

fragment-offset: uint64 the payload offset within the message (optional) 

transmit-time: timestamp the time of message transmit (optional) 

The point in time at which the sender considers the message to be transmitted. The ttl field, if 
set by the sender, is relative to this point in time. 

ttl: uint64 time to live in ms (optional) 

Duration in milliseconds for which the message should be considered "live". If this is set then 
a  message  expiration  time  will  be  computed  based  on  the  transmit-time  plus  this  value. 
Messages that live longer than their expiration time will be discarded (or dead lettered). If the 
transmit-time is not set, then the expiration is computed relative to the message arrival time. 

AMQP Transport v. 1-0 Page 56 of 83



 AMQP Specification. Link

header: header message header (optional) 

payload: vbin32 message payload (optional) 

footer: footer message footer (optional) 

5.14.2 header struct (transport headers for a message) 

The header struct carries information about the transfer of a message over a specific link. 

Field Details: 

durable: bit specify durability requirements (optional) 

Durable messages MUST NOT be lost even if an intermediary is unexpectedly terminated and 
restarted. 

priority: uint8 relative message priority (optional) 

This  field  contains  the  relative  message  priority.  Higher  numbers  indicate  higher  priority 
messages.  Messages  with  higher  priorities  MAY  be  delivered  before  those  with  lower 
priorities. 
An AMQP intermediary implementing distinct priority levels MUST do so in the following 
manner: 
If n distinct priorities are implemented and n is less than 10 -- priorities 0 to (5 - ceiling(n/2)) 
MUST be treated equivalently and MUST be the lowest effective priority. The priorities (4 + 
floor(n/2))  and  above  MUST be  treated  equivalently  and  MUST be  the  highest  effective 
priority.  The  priorities  (5  -  ceiling(n/2))  to  (4  + floor(n/2))  inclusive  MUST be  treated as 
distinct priorities. 
If n distinct priorities are implemented and n is 10 or greater -- priorities 0 to (n - 1) MUST be 
distinct, and priorities n and above MUST be equivalent to priority (n - 1). 
Thus, for example, if 2 distinct priorities are implemented, then levels 0 to 4 are equivalent, 
and levels 5 to 9 are equivalent and levels 4 and 5 are distinct.  If  3 distinct  priorities are 
implements the 0 to 3 are equivalent, 5 to 9 are equivalent and 3, 4 and 5 are distinct. 
This  scheme  ensures  that  if  two  priorities  are  distinct  for  a  server  which  implements  m 
separate priority levels they are also distinct for a server which implements n different priority 
levels where n > m. 

format-code: uint32 indicates the format of the message (optional) 

5.14.3 footer struct (transport footers for a message) 

TODO: import definitions from security SIG

AMQP Transport v. 1-0 Page 57 of 83



 AMQP Specification. Link

5.14.4 Command: 0x0309 (reject message transfers) 

Signature: reject( options: map, first: sequence-no, last: sequence-no, reject-properties: map )

The reject command is used to indicate that incoming messages are invalid and therefore unprocessable. Any 
message whose first incoming transfer falls within the specified incoming command range is considered 
rejected. Continuation transfers within the rejection range are ignored. For this command to have any effect, 
it MUST be sent before the identified transfers are acknowledged. If an attempt to transfer a message results 
in a reject from the recipient, the sender should add the supplied reject-properties to the message header, and 
make the message available at an alternative node (e.g. a dead letter queue). 

Field Details: 

options: map options map (optional) 

first: sequence-no (required) 

The start of the incoming command range.

last: sequence-no (optional) 

The end of the incoming command range. If not set then this is taken to be the same as first. 

reject-properties: map (optional) 

The map supplied in this field will be placed in any rejected message headers under the key 
"reject-properties". 

AMQP Transport v. 1-0 Page 58 of 83



 AMQP Specification. Link

5.14.5 Command: 0x030a (release messages) 

Signature: release( options: map, first: sequence-no, last: sequence-no, mark-redelivered: bit )

The  release  command is  used to  indicate  that  the  specified  range  of  incoming transfers  will  never  be 
processed. Any continuation transfers within the specified range are ignored. For this command to have any 
effect,  it  MUST be  sent  before  the identified transfers  are  acknowledged.  The  messages  carried by  the 
released transfer commands become available to the sender for future transfer to this or other sessions. 
Messages that have been released MAY subsequently be delivered out of order. Implementations SHOULD 
ensure that released messages keep their position with respect to undelivered messages of the same priority. 

Field Details: 

options: map options map (optional) 

first: sequence-no (required) 

The start of the incoming command range.

last: sequence-no (optional) 

The end of the incoming command range. If not set then this is taken to be the same as first. 

mark-redelivered: bit mark the released messages as redelivered (optional) 

If the mark-redelivered flag is set, any messages released by this command MUST have the 
redelivered flag set according to the semantics specified in the delivery-properties definition. 

AMQP Transport v. 1-0 Page 59 of 83



 AMQP Specification. Link

5.14.6 Command: 0x030b (park messages) 

Signature: park( options: map, first: sequence-no, last: sequence-no )

The park command is used to indicate that the specified range of incoming transfers cannot be processed at 
this time, but that other (future) transfers will continue to be processed, and therefore the indicated messages 
should be held on the link until unparked. Once a message has been parked it can no longer be released or 
rejected. Any continuation transfers within the specified range are ignored. For this command to have any 
effect, it MUST be sent before the identified transfers are acknowledged. 

Field Details: 

options: map options map (optional) 

first: sequence-no (required) 

The start of the incoming command range.

last: sequence-no (optional) 

The end of the incoming command range. If not set then this is taken to be the same as first. 

AMQP Transport v. 1-0 Page 60 of 83



 AMQP Specification. Link

5.14.7 Command: 0x030c (unpark messages) 

Signature: unpark( options: map, mode: unpark-mode, first: sequence-no, last: sequence-no )

The unpark command is used to indicate that the specified range of incoming transfers should no longer be 
held on the link. The unpark-mode defines what should be done with the held messages.  They may be 
acknowledged, released back to the queue, rejected, or resent on the same link. Any continuation transfers 
within the specified range are ignored. 

Field Details: 

options: map options map (optional) 

mode: unpark-mode (required) 

One of acknowledge, reject, release, resend. If resend is chosen for a message whose link has 
subsequently been deleted, the message will be released instead of resent. 

first: sequence-no (required) 

The start of the incoming command range.

last: sequence-no (optional) 

The end of the incoming command range. If not set then this is taken to be the same as first. 

5.14.8 unpark-mode: uint8 (unpark behaviors) 

Valid values: 

0 (acknowledge)

1 (reject)

2 (release)

3 (resend)

5.15 Message Format

5.15.1 message-properties struct (immutable properties of the message) 

Message properties carry information about the message.

Field Details: 

message-id: vbin16 application message identifier (optional) 

AMQP Transport v. 1-0 Page 61 of 83



 AMQP Specification. Link

Message-id is an optional property which uniquely identifies a message within the message 
system. The message producer is usually responsible for setting the message-id in such a way 
that it is assured to be globally unique. The server MAY discard a message as a duplicate if the 
value of the message-id matches that of a previously received message sent to the same node. 

user-id: vbin16 creating user id (optional) 

The identity of the user responsible for producing the message. The client sets this value, and it 
MAY be authenticated by intermediaries. 

to: node-name the name of the node the message is destined for (optional) 

The to field identifies the node that is the intended destination of the message. On any given 
transfer this may not be the node at the receiving end of the link. 

reply-to: node-name the node to send replies to (optional) 

The name of the node to send replies to.

correlation-id: vbin16 application correlation identifier (optional) 

This is a client-specific id that may be used to mark or identify messages between clients. The 
server ignores this field. 

content-length: uint64 length of the combined payload in bytes (optional) 

The  total  size  in  octets  of  the  combined  payload  of  all  message.transfer  commands  that 
together make the message. 

content-type: str8 MIME content type (optional) 

The RFC-2046 MIME type for the message content (such as "text/plain"). This is set by the 
originating  client.  As  per  RFC-2046  this  may  contain  a  charset  parameter  defining  the 
character encoding used: e.g. 'text/plain; charset="utf-8"'. 

properties: map application defined message properties (optional) 

AMQP Transport v. 1-0 Page 62 of 83



 AMQP Specification. Basic-types

6 Basic-types
Each AMQP type defines a format for encoding a particular kind of data. Additionally, most AMQP types are 
assigned a unique code that functions as a discriminator when more than one type may be encoded in a given 
position. 

AMQP types  broadly  fall  into  two categories:  fixed-width  and variable-width.  Variable-width types  are 
always prefixed by a byte count of the encoded size, excluding the bytes required for the byte count itself. 
Unless otherwise specified, AMQP uses network byte order for all numeric values. 

A type code is a single octet which may hold 256 distinct values. Ranges of types are mapped to specific 
sizes of data so that an implementation can easily skip over any data types not natively supported. 

                                                                             
Code         Category        Format                                           
==============================================================================
0x00 - 0x0F  Fixed Width     One octet of data.                               
0x10 - 0x1F  Fixed Width     Two octets of data.                              
0x20 - 0x2F  Fixed Width     Four octets of data.                             
0x30 - 0x3F  Fixed Width     Eight octets of data.                            
0x40 - 0x4F  Fixed Width     Sixteen octets of data.                          
0x50 - 0x5F  Fixed Width     Thirty-two octets of data.                       
0x60 - 0x6F  Fixed Width     Sixty-four octets of data.                       
0x70 - 0x7F  Fixed Width     One hundred twenty-eight octets of data.         
0x80 - 0x8F  Variable Width  One octet of size, 0-255 octets of data.         
0x90 - 0x9F  Variable Width  Two octets of size, 0-65535 octets of data.      
0xA0 - 0xAF  Variable Width  Four octets of size, 0-4294967295 octets of data.
0xB1 - 0xBF  Reserved                                                         
0xC0 - 0xCF  Fixed Width     Five octets of data.                             
0xD0 - 0xDF  Fixed Width     Nine octets of data.                             
0xE0 - 0xEF  Reserved                                                         
0xF0 - 0xFF  Fixed Width     Zero octets of data.                             

 

The particular type code ranges were chosen with the following rationale in mind:

AMQP Transport v. 1-0 Page 63 of 83



 AMQP Specification. Basic-types

                                                                         
      Bit:  7    6    5    4    3    2    1    0                          
      ------------------------------------------                          
            0  |   fix-exp    |     subtype                               
            1    0  | var-exp |     subtype                               
            1    1  | fix-odd |     subtype                               
      ------------------------------------------                          
                                                                          
fix-exp = log2(size of fixed width type)                                  
var-exp = log2(size of size of variable width type) (Note: 11 is reserved)
fix-odd = 00, for 5-byte fixed width                                      
          01, for 9-byte fixed width                                      
          10, reserved                                                    
          11, for 0-byte fixed width                                      
                                                                          

 

6.1.1 Fixed width types:

AMQP Transport v. 1-0 Page 64 of 83



 AMQP Specification. Basic-types

Name Code Width in Octets Description

bin8 0x00 1 octet of unspecified encoding

int8 0x01 1 8-bit signed integral value (-128 - 127)

uint8 0x02 1 8-bit unsigned integral value (0 - 255)

char 0x04 1 an iso-8859-15 character

boolean 0x08 1 boolean  value  (zero  represents  false,  nonzero  represents 
true)

bin16 0x10 2 two octets of unspecified binary encoding

int16 0x11 2 16-bit signed integral value

uint16 0x12 2 16-bit unsigned integer

bin32 0x20 4 four octets of unspecified binary encoding

int32 0x21 4 32-bit signed integral value

uint32 0x22 4 32-bit unsigned integral value

float 0x23 4 single precision IEEE 754 32-bit floating point

char-utf32 0x27 4 single unicode character in UTF-32 encoding

sequence-no 0x28 4 serial number defined in RFC-1982

bin64 0x30 8 eight octets of unspecified binary encoding

int64 0x31 8 64-bit signed integral value

uint64 0x32 8 64-bit unsigned integral value

double 0x33 8 double precision IEEE 754 floating point

timestamp 0x38 8 timestamp in 64 bit POSIX time_t format

bin128 0x40 16 sixteen octets of unspecified binary encoding

uuid 0x48 16 UUID (RFC-4122 section 4.1.2) - 16 octets

bin256 0x50 32 thirty two octets of unspecified binary encoding

bin512 0x60 64 sixty four octets of unspecified binary encoding

bin1024 0x70 128 one hundred and twenty eight  octets of  unspecified binary 
encoding

bin40 0xc0 5 five octets of unspecified binary encoding

dec32 0xc8 5 32-bit decimal value (e.g. for use in financial values)

bin72 0xd0 9 nine octets of unspecified binary encoding

dec64 0xd8 9 64-bit decimal value (e.g. for use in financial values)

void 0xf0 0 the void type

bit 0xf1 0 presence indicator

6.1.2 Variable width types

Variable width types consist of a number of octets which represent an unsgigned integral size; followed by 
the given number of octets. The size field should be read as if it were a uint8, if there is one size octet, as a  
uint16 if there are two size octets, a unit32 if there are four size octets, and so on. 

AMQP Transport v. 1-0 Page 65 of 83



 AMQP Specification. Basic-types

Name Code Size Octets Description

vbin8 0x80 1 up to 255 octets of opaque binary data

str8-latin 0x84 1 up to 255 iso-8859-15 characters

str8 0x85 1 up to 255 octets worth of UTF-8 unicode

str8-utf16 0x86 1 up to 255 octets worth of UTF-16 unicode

vbin16 0x90 2 up to 65535 octets of opaque binary data

str16-latin 0x94 2 up to 65535 iso-8859-15 characters

str16 0x95 2 up to 65535 octets worth of UTF-8 unicode

str16-utf16 0x96 2 up to 65535 octets worth of UTF-16 unicode

vbin32 0xa0 4 up to 4294967295 octets of opaque binary data

map 0xa8 4 a mapping of keys to typed values

list 0xa9 4 a series of consecutive type-value pairs

array 0xaa 4 a defined length collection of values of a single type

struct 0xab 4 any struct

6.2 Fixed Width (1 octet)

6.2.1 Type: bin8

The bin8 type consists of exactly one octet of opaque binary data.

Wire Format

           
   1 OCTET  
+----------+
|   bin8   |
+----------+

 

6.2.2 Type: int8

The int8 type is a signed integral value encoded using an 8-bit two's complement representation. 

Wire Format

           
   1 OCTET  
+----------+
|   int8   |
+----------+

 

6.2.3 Type: uint8

The uint8 type is an 8-bit unsigned integral value.

AMQP Transport v. 1-0 Page 66 of 83



 AMQP Specification. Basic-types

Wire Format

          
  1 OCTET  
+---------+
|  uint8  |
+---------+

 

6.2.4 Type: char

The char type encodes a single character from the iso-8859-15 character set.

Wire Format

           
   1 OCTET  
+----------+
|   char   |
+----------+

 

6.2.5 Type: boolean

The boolean type is a single octet that encodes a true or false value. If the octet is zero, then the boolean is 
false. Any other value represents true. 

Wire Format

          
  1 OCTET  
+---------+
| boolean |
+---------+

 

6.3 Fixed Width (2 octets)

6.3.1 Type: bin16

The bin16 type consists of two consecutive octets of opaque binary data.

AMQP Transport v. 1-0 Page 67 of 83



 AMQP Specification. Basic-types

Wire Format

                        
   1 OCTET     1 OCTET   
+-----------+-----------+
| octet-one | octet-two |
+-----------+-----------+

 

6.3.2 Type: int16

The int16 type is a signed integral value encoded using a 16-bit two's complement representation in network 
byte order. 

Wire Format

                       
   1 OCTET    1 OCTET   
+-----------+----------+
| high-byte | low-byte |
+-----------+----------+

 

6.3.3 Type: uint16

The uint16 type is a 16-bit unsigned integral value encoded in network byte order.

Wire Format

                       
   1 OCTET    1 OCTET   
+-----------+----------+
| high-byte | low-byte |
+-----------+----------+

 

6.4 Fixed Width (4 octets)

6.4.1 Type: bin32

The bin32 type consists of 4 consecutive octets of opaque binary data.

AMQP Transport v. 1-0 Page 68 of 83



 AMQP Specification. Basic-types

Wire Format

                                                   
   1 OCTET     1 OCTET      1 OCTET      1 OCTET    
+-----------+-----------+-------------+------------+
| octet-one | octet-two | octet-three | octet-four |
+-----------+-----------+-------------+------------+

 

6.4.2 Type: int32

The int32 type is a signed integral value encoded using a 32-bit two's complement representation in network 
byte order. 

Wire Format

                                               
   1 OCTET     1 OCTET     1 OCTET    1 OCTET   
+-----------+------------+----------+----------+
| byte-four | byte-three | byte-two | byte-one |
+-----------+------------+----------+----------+
    MSB                                 LSB     

 

6.4.3 Type: uint32

The uint32 type is a 32-bit unsigned integral value encoded in network byte order.

Wire Format

                                               
   1 OCTET     1 OCTET     1 OCTET    1 OCTET   
+-----------+------------+----------+----------+
| byte-four | byte-three | byte-two | byte-one |
+-----------+------------+----------+----------+
    MSB                                 LSB     

 

6.4.4 Type: float

The float type encodes a single precision 32-bit floating point number. The format and operations are defined 
by the IEEE 754 standard for 32-bit floating point numbers. 

AMQP Transport v. 1-0 Page 69 of 83



 AMQP Specification. Basic-types

Wire Format

                        
        4 OCTETs         
+-----------------------+
|         float         |
+-----------------------+
  IEEE 754 32-bit float  

 

6.4.5 Type: char-utf32

The char-utf32 type consists of a single unicode character in the UTF-32 encoding.

Wire Format

                   
      4 OCTETs      
+------------------+
|    char-utf32    |
+------------------+
  UTF-32 character  

 

6.4.6 Type: sequence-no

The  sequence-no  type  encodes,  in  network  byte  order,  a  serial  number  as  defined  in  RFC-1982.  The 
arithmetic, operators, and ranges for numbers of this type are defined by RFC-1982. 

Wire Format

                         
         4 OCTETs         
+------------------------+
|      sequence-no       |
+------------------------+
  RFC-1982 serial number  

 

6.5 Fixed Width (8 octets)

6.5.1 Type: bin64

The bin64 type consists of eight consecutive octets of opaque binary data.

AMQP Transport v. 1-0 Page 70 of 83



 AMQP Specification. Basic-types

Wire Format

                                                          
   1 OCTET     1 OCTET            1 OCTET       1 OCTET    
+-----------+-----------+-----+-------------+-------------+
| octet-one | octet-two | ... | octet-seven | octet-eight |
+-----------+-----------+-----+-------------+-------------+

 

6.5.2 Type: int64

The int64 type is a signed integral value encoded using a 64-bit two's complement representation in network 
byte order. 

Wire Format

                                                      
   1 OCTET      1 OCTET           1 OCTET    1 OCTET   
+------------+------------+-----+----------+----------+
| byte-eight | byte-seven | ... | byte-two | byte-one |
+------------+------------+-----+----------+----------+
    MSB                                        LSB     

 

6.5.3 Type: uint64

The uint64 type is a 64-bit unsigned integral value encoded in network byte order.

Wire Format

                                                      
   1 OCTET      1 OCTET           1 OCTET    1 OCTET   
+------------+------------+-----+----------+----------+
| byte-eight | byte-seven | ... | byte-two | byte-one |
+------------+------------+-----+----------+----------+
    MSB                                        LSB     

 

6.5.4 Type: double

The double type encodes a double precision 64-bit floating point number. The format and operations are 
defined by the IEEE 754 standard for 64-bit double precision floating point numbers. 

AMQP Transport v. 1-0 Page 71 of 83



 AMQP Specification. Basic-types

Wire Format

                        
        8 OCTETs         
+-----------------------+
|        double         |
+-----------------------+
  IEEE 754 64-bit float  

 

6.5.5 Type: timestamp

The timestamp type encodes a point in time using the 64 bit POSIX time_t format. This is a signed 64 bit 
number representing milliseconds since the epoch. 

Wire Format

                      
       8 OCTETs        
+---------------------+
|      timestamp      |
+---------------------+
  posix time_t format  

 

6.6 Fixed Width (16 octets)

6.6.1 Type: bin128

The bin128 type consists of 16 consecutive octets of opaque binary data.

Wire Format

                                                              
   1 OCTET     1 OCTET             1 OCTET         1 OCTET     
+-----------+-----------+-----+---------------+---------------+
| octet-one | octet-two | ... | octet-fifteen | octet-sixteen |
+-----------+-----------+-----+---------------+---------------+

 

6.6.2 Type: uuid

The uuid type encodes a universally unique id as defined by RFC-4122. The format and operations for this 
type can be found in section 4.1.2 of RFC-4122. 

AMQP Transport v. 1-0 Page 72 of 83



 AMQP Specification. Basic-types

Wire Format

                
    16 OCTETs    
+---------------+
|     uuid      |
+---------------+
  RFC-4122 UUID  

 

6.7 Fixed Width (32 octets)

6.7.1 Type: bin256

The bin256 type consists of thirty two consecutive octets of opaque binary data.

Wire Format

                                                                    
   1 OCTET     1 OCTET              1 OCTET            1 OCTET       
+-----------+-----------+-----+------------------+------------------+
| octet-one | octet-two | ... | octet-thirty-one | octet-thirty-two |
+-----------+-----------+-----+------------------+------------------+

 

6.8 Fixed Width (64 octets)

6.8.1 Type: bin512

The bin512 type consists of sixty four consecutive octets of opaque binary data.

Wire Format

                                                                     
   1 OCTET     1 OCTET               1 OCTET            1 OCTET       
+-----------+-----------+-----+-------------------+------------------+
| octet-one | octet-two | ... | octet-sixty-three | octet-sixty-four |
+-----------+-----------+-----+-------------------+------------------+

 

6.9 Fixed Width (128 octets)

6.9.1 Type: bin1024

The bin1024 type consists of one hundred and twenty eight octets of opaque binary data. 

AMQP Transport v. 1-0 Page 73 of 83



 AMQP Specification. Basic-types

Wire Format

                                                                                
   1 OCTET     1 OCTET                 1 OCTET                  1 OCTET          
+-----------+-----------+-----+------------------------+------------------------+
| octet-one | octet-two | ... | octet-one-twenty-seven | octet-one-twenty-eight |
+-----------+-----------+-----+------------------------+------------------------+

 

6.10 Variable Width (1 octet size)

6.10.1 Type: vbin8

The vbin8 type encodes up to 255 octets of opaque binary data. The number of octets is first encoded as an 
8-bit unsigned integral value. This is followed by the actual data. 

Wire Format

                        
  1 OCTET   size OCTETs  
+---------+-------------+
|  size   |   octets    |
+---------+-------------+
   uint8                 

 

6.10.2 Type: str8-latin

The str8-latin type encodes up to 255 octets of iso-8859-15 characters. The number of octets is first encoded 
as an 8-bit unsigned integral value. This is followed by the actual characters. 

Wire Format

                                   
  1 OCTET        size OCTETs        
+---------+------------------------+
|  size   |       characters       |
+---------+------------------------+
   uint8    iso-8859-15 characters  

 

6.10.3 Type: str8

The str8 type encodes up to 255 octets worth of UTF-8 unicode. The number of octets of unicode is first 
encoded as an 8-bit unsigned integral value. This is followed by the actual UTF-8 unicode. Note that the 
encoded size refers to the number of octets of unicode, not necessarily the number of characters since the 
UTF-8 unicode may include multi-byte character sequences. 

AMQP Transport v. 1-0 Page 74 of 83



 AMQP Specification. Basic-types

Wire Format

                         
  1 OCTET   size OCTETs   
+---------+--------------+
|  size   | utf8-unicode |
+---------+--------------+
   uint8                  

 

6.10.4 Type: str8-utf16

The str8-utf16 type encodes up to 255 octets worth of UTF-16 unicode. The number of octets of unicode is 
first encoded as an 8-bit unsigned integral value. This is followed by the actual UTF-16 unicode. Note that 
the encoded size refers to the number of octets of unicode, not the number of characters since the UTF-16 
unicode will include at least two octets per unicode character. 

Wire Format

                          
  1 OCTET    size OCTETs   
+---------+---------------+
|  size   | utf16-unicode |
+---------+---------------+
   uint8                   

 

6.11 Variable Width (2 octet size)

6.11.1 Type: vbin16

The vbin16 type encodes up to 65535 octets of opaque binary data. The number of octets is first encoded as 
a 16-bit unsigned integral value in network byte order. This is followed by the actual data. 

Wire Format

                         
  2 OCTETs   size OCTETs  
+----------+-------------+
|   size   |   octets    |
+----------+-------------+
   uint16                 

 

6.11.2 Type: str16-latin

The str16-latin type encodes up to 65535 octets of iso-8859-15 characters. The number of octets is first 
encoded as a 16-bit unsigned integral value in network byte order. This is followed by the actual characters. 

AMQP Transport v. 1-0 Page 75 of 83



 AMQP Specification. Basic-types

Wire Format

                                    
  2 OCTETs        size OCTETs        
+----------+------------------------+
|   size   |       characters       |
+----------+------------------------+
   uint16    iso-8859-15 characters  

 

6.11.3 Type: str16

The str16 type encodes up to 65535 octets worth of UTF-8 unicode. The number of octets is first encoded as 
a 16-bit unsigned integral value in network byte order. This is followed by the actual UTF-8 unicode. Note 
that  the encoded size refers to the number of octets of unicode,  not  necessarily  the number of unicode 
characters since the UTF-8 unicode may include multi-byte character sequences. 

Wire Format

                          
  2 OCTETs   size OCTETs   
+----------+--------------+
|   size   | utf8-unicode |
+----------+--------------+
   uint16                  

 

6.11.4 Type: str16-utf16

The str16-utf16 type encodes up to 65535 octets worth of UTF-16 unicode. The number of octets is first 
encoded as a 16-bit unsigned integral value in network byte order. This is followed by the actual UTF-16 
unicode. Note that the encoded size refers to the number of octets of unicode, not the number of unicode 
characters since the UTF-16 unicode will include at least two octets per unicode character. 

Wire Format

                           
  2 OCTETs    size OCTETs   
+----------+---------------+
|   size   | utf16-unicode |
+----------+---------------+
   uint16                   

 

6.12 Variable Width (4 octet size)

6.12.1 Type: vbin32

The vbin32 type encodes up to 4294967295 octets of opaque binary data. The number of octets is first 
encoded as a 32-bit unsigned integral value in network byte order. This is followed by the actual data. 

AMQP Transport v. 1-0 Page 76 of 83



 AMQP Specification. Basic-types

Wire Format

                         
  4 OCTETs   size OCTETs  
+----------+-------------+
|   size   |   octets    |
+----------+-------------+
   uint32                 

 

6.12.2 Type: map

A map is a set of distinct keys where each key has an associated (type,value) pair. The triple of the key, type, 
and value, form an entry within a map. Each entry within a given map MUST have a distinct key. A map is 
encoded as a size in octets, a count of the number of entries, followed by the encoded entries themselves. 

An encoded map may contain up to (4294967295 - 4) octets worth of encoded entries. The size is encoded as 
a 32-bit unsigned integral value in network byte order equal to the number of octets worth of encoded entries 
plus 4. (The extra 4 octets is added for the entry count.) The size is then followed by the number of entries 
encoded  as  a  32-bit  unsigned  integral  value  in  network  byte  order.  Finally  the  entries  are  encoded 
sequentially. 

An entry is encoded as the key, followed by the type, and then the value. The key is always a string encoded 
as a str8. The type is a single octet that may contain any valid AMQP type code. The value is encoded 
according to the rules defined by the type code for that entry. 

Wire Format

                                                     
           +------------= size OCTETs =-----------+   
           |                                      |   
  4 OCTETs | 4 OCTETs                             |   
+----------+----------+-----+---------------+-----+   
|   size   |  count   | .../|     entry     |\... |   
+----------+----------+---/ +---------------+ \---+   
   uint32     uint32     / /                 \ \      
                        / /                   \ \     
                       / /                     \ \    
                      / /                       \ \   
                     / /                         \ \  
                    / k OCTETs   1 OCTET   n OCTETs \ 
                   +-----------+---------+-----------+
                   |    key    |  type   |   value   |
                   +-----------+---------+-----------+
                       str8                 *type*    

 

6.12.3 Type: list

A list is an ordered sequence of (type, value) pairs. The (type, value) pair forms an item within the list. The 
list may contain items of many distinct types. A list is encoded as a size in octets, followed by a count of the 
number of items, followed by the items themselves encoded in their defined order. 

An encoded list may contain up to (4294967295 - 4) octets worth of encoded items. The size is encoded as a 
32-bit unsigned integral value in network byte order equal to the number of octets worth of encoded items 
plus 4. (The extra 4 octets is added for the item count.) The size is then followed by the number of items 

AMQP Transport v. 1-0 Page 77 of 83



 AMQP Specification. Basic-types

encoded as a 32-bit unsigned integral value in network byte order. Finally the items are encoded sequentially 
in their defined order. 

An item is encoded as the type followed by the value. The type is a single octet that may contain any valid 
AMQP type code. The value is encoded according to the rules defined by the type code for that item. 

Wire Format

                                             
           +---------= size OCTETs =---------+
           |                                 |
  4 OCTETs | 4 OCTETs                        |
+----------+----------+-----+----------+-----+
|   size   |  count   | .../|   item   |\... |
+----------+----------+---/ +----------+ \---+
   uint32     uint32     / /            \ \   
                        / /              \ \  
                       / 1 OCTET   n OCTETs \ 
                      +----------+-----------+
                      |   type   |   value   |
                      +----------+-----------+
                                    *type*    

 

6.12.4 Type: array

An array is an ordered sequence of values of the same type. The array is encoded in as a size in octets, 
followed by a type code, then a count of the number values in the array, and finally the values encoded in 
their defined order. 

An encoded array may contain up to (4294967295 - 5) octets worth of encoded values. The size is encoded 
as a 32-bit unsigned integral value in network byte order equal to the number of octets worth of encoded 
values plus 5. (The extra 5 octets consist of 4 octets for the count of the number of values, and one octet to 
hold the type code for the items in the array.) The size is then followed by a single octet that may contain any 
valid AMQP type code.  The  type  code  is  then followed by  the  number  of  values  encoded as  a  32-bit 
unsigned integral value in network byte order. Finally the values are encoded sequentially in their defined 
order according to the rules defined by the type code for the array. 

Wire Format

                                                          
  4 OCTETs   4 OCTETs   1 OCTET       (size - 5) OCTETs    
+----------+----------+---------+-------------------------+
|   size   |  count   |  type   |         values          |
+----------+----------+---------+-------------------------+
   uint32     uint32              *count* encoded *type*s  

 

6.12.5 Type: struct

The struct type provides a polymorphic encoding of any struct with a defined struct code. A struct is encoded 
as a size in octets followed by the struct code, followed by the encoded struct data. The struct code uniquely 
identifies the struct definition that determines the encoding of the struct data. The size is encoded as a 32-bit 
unsigned integral value in network byte order that is equal to the size of the encoded struct data plus the 2 
OCTET struct code. See derived-types for a complete definition of encoded struct data. 

AMQP Transport v. 1-0 Page 78 of 83



 AMQP Specification. Basic-types

Wire Format

                                             
  4 OCTETs   2 OCTETs         n OCTETs        
+----------+----------+----------------------+
|   size   |   code   |  encoded-struct-data |
+----------+----------+----------------------+
   uint32                                     
                                              
                   n = (size - 2)             

 

6.13 Fixed Width (5 octets)

6.13.1 Type: bin40

The bin40 type consists of five consecutive octets of opaque binary data.

Wire Format

                                                                
   1 OCTET     1 OCTET      1 OCTET      1 OCTET      1 OCTET    
+-----------+-----------+-------------+------------+------------+
| octet-one | octet-two | octet-three | octet-four | octet-five |
+-----------+-----------+-------------+------------+------------+

 

6.13.2 Type: dec32

The dec32 type is decimal value with a variable number of digits following the decimal point. It is encoded 
as an 8-bit unsigned integral value representing the number of decimal places. This is followed by the signed 
integral value encoded using a 32-bit two's complement representation in network byte order. 

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal 
value is given by: mantissa / 10^exponent. 

Wire Format

                      
  1 OCTET    4 OCTETs  
+----------+----------+
| exponent | mantissa |
+----------+----------+
   uint8      int32    

 

6.14 Fixed Width (9 octets)

6.14.1 Type: bin72

The bin72 type consists of nine consecutive octets of opaque binary data.

AMQP Transport v. 1-0 Page 79 of 83



 AMQP Specification. Basic-types

Wire Format

                                                         
   1 OCTET     1 OCTET            1 OCTET      1 OCTET    
+-----------+-----------+-----+-------------+------------+
| octet-one | octet-two | ... | octet-eight | octet-nine |
+-----------+-----------+-----+-------------+------------+

 

6.14.2 Type: dec64

The dec64 type is decimal value with a variable number of digits following the decimal point. It is encoded 
as an 8-bit unsigned integral value representing the number of decimal places. This is followed by the signed 
integral value encoded using a 64-bit two's complement representation in network byte order. 

The former value is referred to as the exponent of the divisor. The latter value is the mantissa. The decimal 
value is given by: mantissa / 10^exponent. 

Wire Format

                      
  1 OCTET    8 OCTETs  
+----------+----------+
| exponent | mantissa |
+----------+----------+
   uint8      int64    

 

6.15 Zero Width

6.15.1 Type: void

The void type is used within tagged data structures such as maps and lists to indicate an empty value. The 
void type has no value and is encoded as an empty sequence of octets. 

6.15.2 Type: bit

The bit type is used to indicate that a packing flag within a packed struct is being used to represent a boolean 
value based on the presence of an empty value. The bit  type has no value and is encoded as an empty 
sequence of octets. 

6.15.3 Type: any

The any type provides a polymorphic encoding of any coded value. It consists of a type code followed by the 
encoded value. The any type does not have a type code. 

AMQP Transport v. 1-0 Page 80 of 83



 AMQP Specification. Basic-types

Wire Format

                  
  1 OCTET          
+---------+-------+
|  code   | value |
+---------+-------+
   uint8           

 

AMQP Transport v. 1-0 Page 81 of 83



 AMQP Specification. Derived-types

7 Derived-types
7.1 Domains

An AMQP domain defines a new type with a format identical to another type, but with a restricted range of 
values. In some cases a closed set of permitted values is formally restricted to a predetermined set of values, 
and in other cases an open set of restricted values is specified. 

7.2 Structs

An AMQP struct defines a compound type. That is a type whose format is defined entirely in terms of other 
types. Each struct definition includes an ordered sequence of well known fields, each with a specified name, 
type, and multiplicity. A struct is encoded as a set of packing flags that indicate which fields are present, 
followed by the encoded field data for those fields that are present. Where fields are defined to permit 
multiple values, the encoded data for that field starts with a 4 OCTET count indicating how many values are 
present. 

The  first  and  second octet  of  packing  flags  contain  presence  indicators  for  fields  1-8  and  fields  9-16 
respectively. Within each octet the fields map in order from the least significant bit to the most significant 
bit. If a packing flag is set the corresponding field MUST be included in the encoded data. If a packing flag 
is  not set the corresponding field MUST NOT be included in the encoded data. If  the struct  has fewer 
properties than packing flags the extra packing flags are reserved for future extension of the struct and 
MUST be set to zero. 

Structs are specifically defined by the command, control, and struct definitions within this document. Each 
definition includes a unique struct code for use with the struct primitive type as well as the order, name, 
type, and multiplicity of the struct fields. 

AMQP Transport v. 1-0 Page 82 of 83



 AMQP Specification. Derived-types

Example

                                                      
     only included if corresponding flags are set      
                           |                           
                 +---------+---------+                 
                 |         |         |                 
   2 octets     \|/       \|/       \|/                
 +----------+---------+---------+---------+------      
 |  flags  /| field-1 |\field-2 |\field-3 |\ ...       
 +--------/-+---------+-\-------+-\-------+-\----      
         / /           \ \       \ \       \ \         
        / /             \ \       \ \       \ \        
       / /               \ \       \ \       \ \       
      / /                 \ \       \ \       \ \      
     / /                   \ \       \ \       \ \     
    / /                     \ \       \ \       \ \    
   / /     multiple=true     \ \       \ \       \ \   
  / /                         \ \       \ \       \ \  
 / /n                          \ \       \ \       \ \ 
+-------+---------+-----+---------+       \ +---------+
| count | value-1 | ... | value-n |        \|  value  |
+-------+---------+-----+---------+         +---------+
 4 OCTET                                               
                                                       

 

7.3 Records

An AMQP record defines a compound type similar to a struct. Unlike structs, records are encoded without 
packing flags, and each field must always be present on the wire. 

Example

                                                      
                    always present                     
                           |                           
                 +---------+---------+                 
                 |         |         |                 
                \|/       \|/       \|/                
            +---------+---------+---------+------      
           /| field-1 |\field-2 |\field-3 |\ ...       
          / +---------+-\-------+-\-------+-\----      
         / /           \ \       \ \       \ \         
        / /             \ \       \ \       \ \        
       / /               \ \       \ \       \ \       
      / /                 \ \       \ \       \ \      
     / /                   \ \       \ \       \ \     
    / /                     \ \       \ \       \ \    
   / /     multiple=true     \ \       \ \       \ \   
  / /                         \ \       \ \       \ \  
 / /n                          \ \       \ \       \ \ 
+-------+---------+-----+---------+       \ +---------+
| count | value-1 | ... | value-n |        \|  value  |
+-------+---------+-----+---------+         +---------+
 4 OCTET                                               
                                                       

 

AMQP Transport v. 1-0 Page 83 of 83


	AMQP Specification Transport
	4 Mar 2009 AMQP Organization
	1  Transport
	2  Framing
	2.1  Frame Layout
	2.2  Frame Header
	2.3  Frame Body
	2.4  Empty Frames

	3  Connection
	3.1  Version Negotiation
	3.2  Opening a Connection
	3.3  Pipelined Open
	3.4  Closing a Connection
	3.5  Simultaneous Close
	3.6  Connection States
	3.7  Connection State Diagram
	3.8  Authentication
	3.9  Connection Controls
	3.9.1  Control: 0x0101 (negotiate connection parameters) 
	3.9.2  Control: 0x0102 (initiate sasl exchange) 
	3.9.3  Control: 0x0103 (security mechanism challenge) 
	3.9.4  Control: 0x0104 (security mechanism response) 
	3.9.5  Control: 0x0105 (indicates the outcome of the sasl dialog) 
	3.9.6  sasl-code: uint8 (codes to indicate the outcome of the sasl dialog) 
	3.9.7  Control: 0x0106 (signal a connection close) 
	3.9.8  close-code: uint16 (codes used to indicate the reason for closure) 


	4  Session
	4.1  Naming a Session
	4.1.1  session-name: vbin16 (opaque session name) 

	4.2  Establishing a Session
	4.3  Resuming a Session
	4.4  Detaching a Session
	4.5  Closing a Session
	4.6  Simultaneous Detach/Close
	4.7  Session States
	4.8  Command Transport
	4.9  Sender State
	4.10  Receiver State
	4.11  Session Exceptions
	4.12  Session Controls
	4.12.1  Control: 0x0201 (attach to the named session) 
	4.12.2  Control: 0x0202 (detach from the named session) 
	4.12.3  exception struct (details of a session error) 
	4.12.4  error-code: uint16 (error code used to identify the nature of an exception) 
	4.12.5  Command: 0x0203 (a command that does nothing) 
	4.12.6  Command: 0x0204 (executes an extended command) 

	4.13  Transactional Sessions
	4.13.1  txn-level: uint8 (transaction level) 
	4.13.2  Command: 0x0205 (associate the current transactional work with a distributed transaction) 
	4.13.3  xid record (dtx branch identifier) 
	4.13.4  Command: 0x0206 (mark transaction boundaries) 


	5  Link
	5.1  Links
	5.2  Managing Links
	5.3  Flow Control
	5.4  Controlling Outgoing Transfers
	5.5  Controlling Incoming Transfers
	5.6  Synchronous Get
	5.7  Asynchronous Notification
	5.8  Stopping a Link
	5.9  Example: Outgoing Link
	5.10  Example: Incoming Link
	5.11  Example: Closing a Link
	5.12  Link Commands
	5.12.1  Command: 0x0301 (carries the local state and desired remote state of a link) 
	5.12.2  Command: 0x0302 (re-establish link parameters) 
	5.12.3  Command: 0x0303 (close the link) 
	5.12.4  node-name: vbin16 (name of the source or destination for a message) 
	5.12.5  handle: uint32 (the handle of a link) 
	5.12.6  direction: uint8 (link direction) 
	5.12.7  distribution-mode: uint32 (link distribution policy) 
	5.12.8  Command: 0x0304 (update the transfer limit for a link) 
	5.12.9  Command: 0x0305 (drain the link of immediately available transfers and stop it) 

	5.13  Transfer States
	5.14  Transfer Commands
	5.14.1  Command: 0x0306 (transfer a message) 
	5.14.2  header struct (transport headers for a message) 
	5.14.3  footer struct (transport footers for a message) 
	5.14.4  Command: 0x0309 (reject message transfers) 
	5.14.5  Command: 0x030a (release messages) 
	5.14.6  Command: 0x030b (park messages) 
	5.14.7  Command: 0x030c (unpark messages) 
	5.14.8  unpark-mode: uint8 (unpark behaviors) 

	5.15  Message Format
	5.15.1  message-properties struct (immutable properties of the message) 


	6  Basic-types
	6.1.1  Fixed width types:
	6.1.2  Variable width types
	6.2  Fixed Width (1 octet)
	6.2.1  Type: bin8
	6.2.2  Type: int8
	6.2.3  Type: uint8
	6.2.4  Type: char
	6.2.5  Type: boolean

	6.3  Fixed Width (2 octets)
	6.3.1  Type: bin16
	6.3.2  Type: int16
	6.3.3  Type: uint16

	6.4  Fixed Width (4 octets)
	6.4.1  Type: bin32
	6.4.2  Type: int32
	6.4.3  Type: uint32
	6.4.4  Type: float
	6.4.5  Type: char-utf32
	6.4.6  Type: sequence-no

	6.5  Fixed Width (8 octets)
	6.5.1  Type: bin64
	6.5.2  Type: int64
	6.5.3  Type: uint64
	6.5.4  Type: double
	6.5.5  Type: timestamp

	6.6  Fixed Width (16 octets)
	6.6.1  Type: bin128
	6.6.2  Type: uuid

	6.7  Fixed Width (32 octets)
	6.7.1  Type: bin256

	6.8  Fixed Width (64 octets)
	6.8.1  Type: bin512

	6.9  Fixed Width (128 octets)
	6.9.1  Type: bin1024

	6.10  Variable Width (1 octet size)
	6.10.1  Type: vbin8
	6.10.2  Type: str8-latin
	6.10.3  Type: str8
	6.10.4  Type: str8-utf16

	6.11  Variable Width (2 octet size)
	6.11.1  Type: vbin16
	6.11.2  Type: str16-latin
	6.11.3  Type: str16
	6.11.4  Type: str16-utf16

	6.12  Variable Width (4 octet size)
	6.12.1  Type: vbin32
	6.12.2  Type: map
	6.12.3  Type: list
	6.12.4  Type: array
	6.12.5  Type: struct

	6.13  Fixed Width (5 octets)
	6.13.1  Type: bin40
	6.13.2  Type: dec32

	6.14  Fixed Width (9 octets)
	6.14.1  Type: bin72
	6.14.2  Type: dec64

	6.15  Zero Width
	6.15.1  Type: void
	6.15.2  Type: bit
	6.15.3  Type: any


	7  Derived-types
	7.1  Domains
	7.2  Structs
	7.3  Records


	 
	AMQP Title Page

