
 .

AMQP 1.0 DRAFT
for discussion
Revision 200

JO/RS/RG

UNPUBLISHED CONFIDENTIAL MATERIAL OF

THE AMQP WORKING GROUP

DISTRIBUTION TO MEMBERS AND REVIEWERS ONLY

AMQP v. 1-0 Page 1 of 38

 .

AMQP v. 1-0 Page 2 of 38

 .

Table of Contents

1 Introduction (TODO)...5

1.1 Overview...5

2 Logical Model..6

2.1 Nodes and Links..6

2.2 Messages...7

2.3 Credit...8

2.4 Containers..9

2.5 Sessions...10

2.6 Commands...10

2.7 Transactions...12
2.7.1 Local Transactional Mode (TODO)..12
2.7.2 Distributed Transactional Mode (TODO)...12

2.8 Requirements for a Transport (TODO)...12

3 Data Types..14

3.1 Primitive Types..14
3.1.1 Integral types:...14
3.1.2 Floating point and decimals..14
3.1.3 Other Primitive Types...14
3.1.4 Compound Types..15

3.2 Programming Language Mappings...15

4 Links...16

4.1 Link Properties..16

4.2 Transferring Messages...17

4.3 Message Receipt..17

4.4 Link Modes...18
4.4.1 Destructive Link...18
4.4.2 Non-Destructive Link...18
4.4.3 Link Mode Uses..19

5 Messages..21

5.1 Description..21

5.1 Message Properties..21

5.2 Message Identity..22

5.3 Property Names...22

5.4 Standard Properties...22

5.5 Standard Message Encoding...23

6 AMQP Message Brokers..24

AMQP v. 1-0 Page 3 of 38

 .

6.1 Overview...24

6.2 Queues...24
6.2.1 Purpose..24
6.2.2 Description..24
6.2.3 Queue Properties...25
6.2.4 Common Queue Configurations...26

6.3 Services...28
6.3.1 Broker Management (amqp$admin)...28

6.3.1.1 Command Encoding (TODO)..29

6.3.1.2 Responses Results (TODO)...29

6.3.1.3 Error Handling (TODO)...29

6.3.2 Inter-Broker Transfer (amqp$transfer)...30

6.3.2.1 Addressing..30

6.3.2.2 Aliasing of Transfer Service...30

6.3.3 Distributed Transactions (amqp$dtxCoordinator) (TODO)...32

7 Using AMQP..33

7.1 Single Broker Topologies..33
7.1.1 Point-to-Point: Single Producer/Consumer..33
7.1.2 Point-to-Point: Shared Work Queue...33
7.1.3 Point-to-Point: Shared Work Queue Using Filters..34
7.1.4 Publish/Subscribe: Transient Pub/Sub..35
7.1.5 Publish/Subscribe: Durable Pub/Sub (TODO)...36

7.2 Multiple Broker Topologies..36

8 Glossary...37

8.1 Message (TODO)..37

8.2 Container...37

8.3 Node..37

8.4 Address..37

8.5 Link...37

8.6 Session (TODO)..38

8.7 Queue (TODO)..38

8.8 Broker..38

8.9 Client...38

8.10 Transaction (TODO)..38

AMQP v. 1-0 Page 4 of 38

 . Introduction (TODO)

1 Introduction (TODO)
1.1 Overview

AMQP is a standard for building a message based networks. AMQP is defined in layers which build upon
each other. At the lowest layer it defines an efficient binary peer-to-peer message transfer wire protocol.
On top of the wire protocol sits a powerful logical model of nodes and links, used to establish a global
routing and addressing network. Using the logical model we define a concrete set of queuing semantics
which must be respected by a compliant AMQP Message Broker.

AMQP defines a standardized wire-level protocol, a common model for broker semantics across point to
point and publish/subscribe messaging, and a global addressing scheme to support the sending of messages
between organisations.

The standard provides definitions in three areas: the overall architecture of an AMQP Network, the
architecture of a Broker serving as a store and forward node within an AMQP Network, and the peer to peer
protocol used between AMQP Nodes.

AMQP defines a standard for Message Brokers. It is in the Application Layer of the 4 layer TCP/IP stack.
AMQP provides a stateful communications facility above the stateless peer-to-peer networking capabilities
of TCP/IP.

AMQP specifies discrete system components which together form a Message Broker (Broker). The Broker
provides secure, asynchronous, interoperable store-and-forward message queuing, publish/subscribe
messaging and delivery services for Client applications.

AMQP Client applications arrange to pass data among themselves using a Broker as a trusted intermediary
and Queues as named rendezvous therein. By doing so the Client applications can communicate even
though they may execute at different times and in different places and within different administrative
domains.

AMQP implements an overlay network on top of the Internet. The AMQP overlay network is a graph where
the nodes are reliable (often persistent) message stores and the edges are secure links which move messages
between the stores. A store can be a queue, a broker or a client. Links can connect clients to brokers,
connect queues to other queues, or connect brokers to brokers across the Internet.

AMQP v. 1-0 Page 5 of 38

 . Logical Model

2 Logical Model
2.1 Nodes and Links

An AMQP Network consists of Nodes and Links.

A Node is a named source and/or sink of Messages. A Message is created at a (Producer) Node, and may
travel along links, via other nodes until it reaches a terminating (Consumer) Node.

A Link is a unidirectional route between nodes along which messages may travel. Links may have entry
criteria (Filters) which restrict which messages may travel along them. The link lifetime is tied to the
lifetime of the source and destination nodes. If the node at either end of the link is deleted, so is the link
itself.

Links may be “destructive”, or “non-destructive”. When a message is sent along a destructive link then after
the transfer to the destination node has completed, the message is no longer present at the source node. For a
non-destructive link the transfer is closer to a “copy” since on completion of the transfer the message the
original still exists in the source node.

In the Non-Destructive Link example the message m1 is now simultaneously present at more than one node.
In AMQP a message can be in many places at once. More correctly one can think of the single message
being referenced from many different places. Logically the AMQP network could consist of a routing
network which transfers only the message identity, and a single globally accessible repository from which
the message properties and bodies can be retrieved using the message identity as the key.

AMQP v. 1-0 Page 6 of 38

m1

Link
m1

Link

Node 1 Node 2 Node 1 Node 2

m1

Link

Node 1 Node 2

m1

m1

Link Link

Node 1 Node 2 Node 1 Node 2

m1

Link

Node 1 Node 2

m1m1 m1 m1m1m1

Link

Destructive Link

Non-Destructive Link

Link

Node 1 Node 2

time

 . Logical Model

A message is either present at a given node, or it is not. Messages may not be present multiple times. That
is, if a message M arrives at a node N where M is already present, then there is no change to the set of
messages at N. More generally nodes should treat as a duplicate the arrival of any message M' which has the
same identity as a message a M which has previously arrived at the node. Duplicate deliveries should be
discarded.

2.2 Messages

A message is a uniquely identified unit of application data consisting of readable “properties” and opaque
“body”. By using filters on the outgoing links from a node, messages may be distributed based on the value
of message properties.

AMQP v. 1-0 Page 7 of 38

Link
{color = red}

Node 1

Node 2

Node 3

Link
 {color = green}

 . Logical Model

2.3 Credit

A message may only pass along a given link if the destination node has issued credit to the link. A link with
no credit is essentially inactive. One unit of credit allows one message to be passed along the link. In order
for a second message to be transferred, a second unit of credit needs to be issued. Destination nodes can add
or remove credit at any time.

One can think of AMQP as a network of messages travelling in one direction, and an equal (or greater)
amount of credit flowing in the opposite direction. Credit is used to ensure that nodes to not receive more
messages than they can physically store. If we think of each node having a fixed capacity then we can see
that such a node can distribute an amount of credit equal to the free-space at that node amongst its incoming
links.

AMQP v. 1-0 Page 8 of 38

Credi t x3

Credi t x2

Credi t x2

Credi t x1

Credi t x2

time

 . Logical Model

2.4 Containers

Nodes within the AMQP network exist within Containers. A container is a physical or logical process to
which network connections can be established. Node names are unambiguous within a container (that is no
two nodes will simultaneously have the same name within the container, though a node may simultaneously
more than one name). Containers have a globally unique identifier. The combination of container identifier
and node name is thus a globally unambiguous identifier for any node. While container identifiers are
unique they are not user-friendly. More commonly a container will be referenced by its network address or
(where appropriate) DNS name and port. AMQP defines the behaviour of a specific type of container: the
AMQP Message Broker.

AMQP v. 1-0 Page 9 of 38

P
1

Q
2

Q
3

Q
4

Q
5

P
2

C
1

C
2

C
3

Cl ient 1

Cl ient 2

Broker 1

Cl ient 3

Cl ient 4

 . Logical Model

2.5 Sessions

A link may be between two nodes within the same container, or between nodes in different containers, the
former being just a special case of the latter. Links between different containers must be created on a
Session. A session is a named interaction between two containers providing for a pair of reliable ordered
stream of commands (one in each direction). Establishing a session requires (mutual) authentication. There
may be more than one session established between any two containers at any one time. Each session may
contain multiple links.

Containers and Sessions form an underlay network, nodes and links an overlay network atop them.

2.6 Commands

Sessions are a transport for commands. Commands are the atomic units of work of the AMQP transport
protocol. Commands are used to create links between nodes in the source and destination containers, to
transfer message data, and to issue and revoke credit. In general an AMQP session will be carried over some
form of network layer, thus commands sent on a session are asynchronous. In order to be sure that a

AMQP v. 1-0 Page 10 of 38

P
1 Q

2

Q
3

Q
4

Q
5

P
2

C
1

C
2

C
3

Cl ient 1

Cl ient 2

Broker 1

Cl ient 3

Cl ient 4

Session

outgoing cmds

outgoing cmdsincoming cmds

incoming cmds

Container 1 Container 2

session

 . Logical Model

particular action has been executed by the receiving container, the sending container must wait for
confirmation of completion. AMQP does not allow for (observable) out-of-order execution.

In order to maximize throughput any number of new commands may be sent before confirmation of
completion of the previous command. Should a command fail for some reason, then the sender of the
command will be notified as to the last successfully executed command. No command after the failed
command will be executed.

AMQP v. 1-0 Page 11 of 38

 . Logical Model

2.7 Transactions

Applications may require that message groups of related message transfers be actioned together in a single
atomic transaction. AMQP provides three transactional models:

1. Non transactional mode

2. Local transactional mode

3. Distributed transactional mode

In non-transaction mode each message transfer forms an atomic action. For Local and Distributed
transactional modes the units of work (transactions) have to be demarcated in the command stream.

The transaction mode is controlled at the session level, is set at the time of session creation and cannot
thereafter be modified. Two sessions between the same two containers do not need to have the same
transactional mode. Session level transactions allows for the common case of wanting to combine into a
transaction the actions of a message arriving via one link, work being performed, and a response being sent
over a second link.

In modes other than non-transactional on container takes the role of the Transaction Controller, the other as
the Transactional Resource. These roles are fixed at the time of session creation. The container acting as the
Transaction Controller demarcates the transactions in the command stream.

Only state changes related to message transfers are affected by transactions, other state changes (such as the
creation or deletion of links, the issuance of credit, etc) are not.

2.7.1 Local Transactional Mode (TODO)

In local transactional mode, when the container acting as the Transaction Controller for the session marks
the end of the current transaction it informs the Transaction Resource as to the last command in the incoming
stream. That lets the resource know exactly which commands (in both directions) are considered to be part
of the transaction.

In local transactional mode, messages transfered from the controller to target nodes on the resource are not
made visible to outgoing links from the target node until the transaction is committed. Messages transferred
from source nodes on the resource to target nodes on the controller are not archived as a result of successful
acceptance until the transaction they are part of is committed.

When a local transaction is rolled back, uncommitted transfers from sources on the controller to targets on
the resource are removed; and uncommitted acceptance of transfers from the resource to the controller are
discarded.

2.7.2 Distributed Transactional Mode (TODO)

2.8 Requirements for a Transport (TODO)

A Transport for AMQP must provide the necessary session interface to a container. That is it must be able to

AMQP v. 1-0 Page 12 of 38

 . Logical Model

• Establish links between a local and a remote nodes in each direction

• Transfer a message (or arbitrary size) along such a link along with support header and footer data

• Issue and revoke credit along incoming links

• Accept, release or reject transferred messages

• (Optionally) request a transferred message to be parked

• (Optionally) request a parked message to be accepted, rejected or released

• Demarcate transactional boundaries

AMQP v. 1-0 Page 13 of 38

 . Data Types

3 Data Types
AMQP specifies a logical type system. Encoding of the types is specified in the AMQP Message Format and
AMQP Transport.

3.1 Primitive Types

3.1.1 Integral types:

Type Minimum Value Maximum Value Description

byte -128 127

short -32768 32767

int -2147483648 2147483647

long -9223372036854775808 9223372036854775807

unsignedByte 0 255

unsignedShort 0 65535

unsignedInt 0 4294967295

unsignedLong 0 18446744073709551615

3.1.2 Floating point and decimals

Type Description

float 32-bit floating point type (IEEE float)

double 64-bit floating point type (IEEE double)

decimal Decimal numbers with up to 16 digits (IEEE decimal64)

longDecimal Decimal numbers with up to 34 digits (IEEE decimal128)

3.1.3 Other Primitive Types

Type Description

character Single unicode character

string Text string of unicode characters (up to 228 - 1 unicode characters long).

dateTime Specific instant of time, with granularity up to milliseconds (RFC3339).

binary A sequence of binary octet data of up to 232 - 1 octets in length.

boolean A Boolean true or false value.

AMQP v. 1-0 Page 14 of 38

 . Data Types

3.1.4 Compound Types

Type Description

map

array<type>

3.2 Programming Language Mappings

Normative Representations

 |AMQP | SQL92 XDM C99 Java .NET
 |--
 |boolean | boolean xs:boolean bool boolean boolean
 |byte | ? xs:byte char byte byte
 |short | short xs:short short short short
 |int | int xs:int int int int
 |long | long xs:long long long long
 |float | float xs:float float float float
 |double | double xs:double double double double
 |string | String xs:string char[](*) String String

AMQP v. 1-0 Page 15 of 38

 . Links

4 Links
4.1 Link Properties

Links have properties which control their behaviour. The following Link properties are specified by AMQP
but an implementation may have additional configuration options.

name: string

Each link named. The name is unique with respect to the container in which the link resides.
For links whose lifetime is scoped to that of the session which created them the link name
must begin with the session identifier. For non-session scoped links which bridge between
containers the name must begin with the container-id of the remote container.

temporary: boolean

A temporary link has a lifetime which is tied to the session on which it was created. Such a
link will automatically be destroyed when the session which created it is destroyed. A non-
temporary link should be treated as durable – it should survive as long as other durable data
held by the container survives. A non-temporary link will be removed only when either the
source, or destination node is destroyed, or when the link itself is explicitly destroyed. Once
created a link may not change from temporary to non-temporary or vice versa.

mode: destructive | non-destructive

The link mode, see Section 4.4 Link Modes below. The link mode may not be altered after
the creation of the link.

filter-type: string

Where a filter has been supplied for the link, the filter-type defines how the query language
used for the filtering. AMQP Message Brokers (see Chapter 6) must support the “SQL-92”
filter-type. If no filter is used on the link then this field may be left empty.

filter: string

The filter to be applied as an entry criteria for messages attempting to pass along this link. The
interpretation of this field depends on the fitler-type specified. If this field is left empty then
no filter will be applied.

first-message-date: dateTime

The first-message-date property may be set on creation of the link, but may not be altered
thereafter. If set then on creation of the link only message which arrived at the source not at or
after the specified dateTime will be sent along the link.

If the dateTime specified is in the future it will be adjusted to the current time. Thus if the link
creator wishes only for messages which arrive at the source node to be sent to the target, and
not historical messages, then setting the first-message-date to the maximal value for dateTime
will provide the desired behaviour. This may be the desired outcome if the node link is acting
as a topic-subscription.

Setting the first-message-date to the minimal value for dateTime ensures that all available
historic messages will be considered for sending along the newly established link. This may
be the desired outcome if the link is acting as a consumer on a queue.

AMQP v. 1-0 Page 16 of 38

 . Links

4.2 Transferring Messages

When a message is transferred along a link it is accompanied by supporting data about the message. Some
data associated with a message changes over time, or relates to and is altered by the passage of the message
through the AMQP Network. Such data cannot be part of the message proper as AMQP guarantees not to
alter the message through its journey. Furthermore the message may be in many places at once in the
network, and this supporting data may not be the same in all places.

This supporting data takes the form of “headers” and “footers” transferred alongside the message across the
link between nodes.

Defined headers are

priority: byte

The relative message priority (where 0 is the lowest priority).

durable: boolean

Durable messages must not be lost even if an intermediary container is unexpectedly
terminated and restarted. The implication is that durable messages must be stored on some
reliable media.

non-transacted: boolean

Non-transacted messages do not participate in transactions. A non-transacted message sent to
a queue on the transaction resource will be enqueued whether an explicit transaction-commit is
issued or not.

expiration: dateTime

The time at which the message may be considered “expired”. Expired messages can go
straight to the “archived” state from the “available” state on a node.

TODO: Security headers

TODO: Security footers (signatures)

TODO: Audit Trail Footers

4.3 Message Receipt

On receipt of a message, the target node may take one of the following actions

• accept the message indicating a successful transfer of responsibility

• release the message indicating that the target node did not want to accept the message at this time,
but may do so if the message is resent in the future

• reject the message indicating the nature of the failure conditions

• park the message keeping the message available to the link for acceptance (or release) at a later
time.

AMQP v. 1-0 Page 17 of 38

 . Links

Each message must be processed in order, although “parking” a message allows the receiver to defer the
final disposition. Parking is the optional ability for a node to defer acceptance of a message until a time of
its choosing, even from within a transaction. Messages which are parked are still associated with the Link
which was used to Park them. When a link closed, any parked messages on that link are released back to the
source node. Parking is scoped to the link and not to a transaction. If a message is parked on a transaction-
enabled session, rolling back the transaction does not release the message – it remains parked.

4.4 Link Modes

4.4.1 Destructive Link

A destructive link moves messages from its source node to its target node. A message sent along a
destructive link is not available to be sent along any other link unless and until the destructive link releases
the message.

Destructive links update the state of the message at the node (as opposed to non-destructive links, which do
not – see below). Before a message is transferred along a destructive link the message is first “acquired” by
the link. Acquiring the link makes it unavailable to other links. A message in the “acquired” state at the
node can either become “archived” if the target node accepts or rejects the message, or the message may be
released back to the source node to become “available” once more.

Messages in the “acquired” state at the node need to track which link has acquired them. Within the
acquired state there is further state regarding the message which is held at the link end (rather than at the
node). The link end holds a record of all messages which the link currently has acquired, and whether each
of those messages is currently “parked” on the link or not.

4.4.2 Non-Destructive Link

A non-destructive link copies messages from the source node to the destination node leaving the original
reference at the source node unchanged.

Non-destructive links track the state of messages transferred along them. At the source end of the link a
record needs to be kept of which messages have been confirmed transferred (either accepted or rejected),
which are currently parked, and which have been transferred but for which no confirmation has yet been
received. Only messages which are in the “available” state (see above) on the node are eligible to be offered
to a non-destructive link. Between the time that the message is transferred on the non-destructive link and

AMQP v. 1-0 Page 18 of 38

Available

Acquired<link>

Archived

message transfer

accept/reject

message
released

expiry

 . Links

the time it is confirmed by the target node the message may change state due to the actions of destructive
links.

To avoid repeatedly delivering the same message again and again, the link will check each node it is offered
by the source node against the records of messages it has in the “not yet confirmed”, “parked” and
“confirmed” states. Thus we get a state diagram as follows:

Note that this state is tracked by the (non-destructive) link and, and not by the node. The same message may
be in many different states on the same node but on different non destructive links. While the message may
return to the “available” state on the link it may no longer be available on the node due to the actions of
destructive links. In this case the message cannot be re-offered to the non-destructive link unless it becomes
available again.

Once the target node of the link has irrevocably confirmed the successful receipt of a message transferred
over a non-destructive link, the source node is made aware that the message need no longer be offered to the
given link.

4.4.3 Link Mode Uses

Destructive links are in general used when building point-to-point messaging systems and “work sharing”
queues. Destructive links ensure that each message is only delivered (successfully) once from each node. It
is expected that nodes with multiple destructive links distribute available messages with an approximation to
fairness amongst the outgoing links capable of handling them.

AMQP v. 1-0 Page 19 of 38

a

c

e

h

i k

m

n r

s

v

y

w a

v
e

h

s
io

m
o

w

Source Node
Link State

f : Message with id “f”

o w

m

a

v

e

h

Target Node

Messages in transit
N ot yet conf irmed

Parked

Transfer conf irmed

Available

Not yet confirmed

Confirmed

message transfer

accept/reject

release

Parked park

accept/reject

release

 . Links

Non-Destructive links can be used in conjunction with Destructive links on the same node. N this case non-
destructive links provide a “browsing” function, allowing the target of the link to view available messages at
the source node without removing them.

Where permits only non-destructive outgoing links it can be used to provide publish/subscribe topic-like
behaviour. Each link sees a copy of the messages which come in (filtering out those which it is not
interested in). The links can be created with options such that at the time of joining the source node it will
only receive messages which arrive after the link has been established. Where a node is acting in this
manner it must implement some policy to move the state of messages at the node from “available” to
“archived”. Two possible policies are to use time based expiry, or to archive messages when all connected
links have examined the message.

AMQP v. 1-0 Page 20 of 38

 . Messages

5 Messages
5.1 Description

An AMQP Message is a sequence of octets that is guaranteed to be transported unaltered through the AMQP
network. Messages are uniquely identified by the originator using a “message-id”. Clients transfer
Messages to Queues with the intent that other Clients retrieve them at some later time (which may vary
between microseconds to days depending on the Client application). A single message may transfer through
many queues and be delivered to many consumers.

Logically, an AMQP message consists of two parts

● Body - The Body is the main content of the Message. The Broker is not required to interpret the
contents of Message Body (though vendor extensions may do so).

● Properties - Contain additional information relating to the Message which is visible to the Broker;
the Broker may interpret the Properties and apply filtering and selection predicates to the Message
based on the Properties. AMQP defines standard Properties which affect broker and client
behaviour on processing the message. Other Properties may be defined by applications.

AMQP places no restrictions on the maximum size of messages. AMQP defines both a logical and a
physical message format. The logical format defines how Properties may be addressed from within a
broker, or client. By separating the logical interface from the physical encoding we allow for AMQP to
transport messages in legacy formats. For example, for compatibility reasons separate physical formats are
used to allow the transportation of messages generated in pre 1-0 versions of AMQP.

5.1 Message Properties

Message Properties are named type-value pairs which can be retrieved by processing the message. Since
Properties are part of the message, once the message has entered the AMQP network, the values associated
with the Properties cannot change as this would invalidate the immutability contract of AMQP. Logically
the Properties can be thought of as a map of Name to Typed-Value.

There are two types of Property:

● Standard Properties defined in the AMQP specification and the values of which may change the
behaviour of brokers or clients processing the message.

● Application Properties which are set by the sending Client..

Both types of Properties may be addressed in Filters,

It is possible for a Client to encode their application data using the Properties alone. Property information is
intended to be smaller than Body information.

Normatively, the Client gains access to Properties using its Name to access its Value of its specified Type.
Access must be by Name in order to support the application of SQL-92 predicate logic to properties during
Message routing and delivery.

AMQP v. 1-0 Page 21 of 38

 . Messages

5.2 Message Identity

A Message is a uniquely identified unit of data in the Message Queue Model.

The Message is identified universally by its amqp.message-id property, which is a Standard Property.
This identity is intended to be globally unique, and is set by the originator of the message.

If a Node sees two Messages which share the same amqp.message-id then it considers Messages to be
identical regardless of other content and may discard the later Message.

5.3 Property Names

Properties names are namespaced within separate domains to prevent collisions between standard AMQP
Properties, vendor extensions, and application specific Properties.

Standard Property names all are within the “amqp” namespace and may be addressed as amqp.<property
name> - e.g. amqp.message-id . All Properties within the amqp namespace are reserved for use by the
AMQP speicifcation. It is an error to attempt to set a Property in the amqp namespace if the Property is not
defined within the specification.

Vendors of AMQP intermediaries wishing to add extensions to the standard Properties should use the domain

amqpx.<subdomain>

Where subdomain is an unambiguous vendor name, product, name or open-source project name or similar.

Application specific Properties must be placed in the application domain, for instance
application.color would be a valid Property name.

When referencing Property names from filters, the domain may be ommitted. In this case the container in
which the filter is being applied with infer a domain: if a standard Property exists with the supplied name it
will infer that is the Property desired, else if a Property with the supplied name exists amongst the supported
vendor extensions then that will be used, else it will assume an application Property is meant. Care should
be taken when omitting domain names, as future versions of the AMQP specification may contain new
Properties which lead to collisions and thus the semantics of existing link filters changing.

5.4 Standard Properties

The following standard Properties are defined by AMQP

message-id: binary application message identifier

Message-id uniquely identifies a message within the message system. The message producer is
usually responsible for setting the message-id in such a way that it is assured to be globally
unique. The server MAY discard a message as a duplicate if the value of the message-id
matches that of a previously received message sent to the same node.

user-id: binary creating user id (optional)

The identity of the user responsible for producing the message. The client sets this value, and it
MAY be authenticated by intermediaries.

to: string the name of the node the message is destined for (optional)

AMQP v. 1-0 Page 22 of 38

 . Messages

This property identifies the node that is the intended destination of the message, it is in the
form of an AMQP Address.

reply-to: string the node to send replies to (optional)

The AMQP Address of the node to send replies to.

correlation-id: binary application correlation identifier (optional)

This is a client-specific id that may be used to mark or identify messages between clients. The
server ignores this field.

content-length: unsignedLong length of the combined payload in bytes (optional)

The total size in octets of the opaque message body.

content-type: string MIME content type (optional)

The RFC-2046 MIME type for the message content (such as "text/plain"). This is set by the
originating client. As per RFC-2046 this may contain a charset parameter defining the
character encoding used: e.g. 'text/plain; charset="utf-8"'.

5.5 Standard Message Encoding

The AMQP Transport allows for alternative encoding of messages as long as a mapping to the logical model
can be performed. The Standard Encoding is to be used except where the AMQP network is being used to
transport messages of legacy protocols (in particular pre 1-0 versions of AMQP).

AMQP v. 1-0 Page 23 of 38

 . AMQP Message Brokers

6 AMQP Message Brokers
6.1 Overview

An AMQP Message Broker (a Broker) is a Container with well defined semantics. Brokers are containers
for nodes known as Advanced Message Queues (Queues). Brokers also provide nodes which correspond to
well defined services: in particular a service exists for managing the broker as well as the nodes and links
contained within it, and a service exists for managing the distribution of messages into a network of Brokers
using a well defined global addressing scheme.

6.2 Queues

6.2.1 Purpose

An Advanced Message Queue (Queue) is a node that holds Messages for eventual distribution through
outgoing links. Queues provide (within certain restrictions outlined below) ordering guarantees on messages
passing through them. Queues also allow for the provision of reliability guarantees on message delivery.

6.2.2 Description

The following illustration shows the simplest Queue:

 NEWEST OLDEST
 ENTRY Link Pointer ENTRY
 | | |
 ---V-----------------------------------V--------------------V--
 []Mt Ms Mr Mq Mp Mo Mm Mn Ml Mk Mj Mi Mh Mg Mf Me Md Mc Mb Ma
 -^--X--X--X--X--X--X--X--
 TAIL

The Head of the Queue is the Entry which would be removed by the next dequeue operation. The Tail of the
Queue is the Entry most recently enqueued.

A Queue may have more than one Head – each Head being represented and managed by a Link which has
the Queue as its Source.

Queues provide a limited FIFO guarantee. For Entries of equal Priority on the Queue, delivery along a given
Link will always be attempted in the order the Entries were placed on the Queue. If Entries have different
Priorities, then higher Priority items may be submitted to the Link first.

The first attempt to transfer a Queue Entry (of a given Priority) to a Link will be made in order of arrival into
the Queue. If the first attempt fails due to explicit or implicit release of acquired entries or transaction
rollback, then subsequent attempts may result in messages being transfered out of order on a given link. For
example, if Sessions A and B both have Links to Queue Q, and Message M is delivered to Session A from
Queue Q, but then subsequently releases that Message, then Message M may then be delivered to Session B
even though Session B has already been sent Messages which are more recent than M – thus to Session B
the Message M is delivered out of order.

AMQP v. 1-0 Page 24 of 38

 . AMQP Message Brokers

Clients can freely create, share, use, and destroy Queues and Links, within the limits of their authority.
Alternatively Queues and Links may be externally configured by a Broker administrator, which is common
practice.

Queues hold their messages in memory, on disk, or some combination of these. All compliant
implementations MUST honour the durability guarantees asserted herein.

Queues maintain the invariant that at any given point no two entries will ever refer to two messages with the
same message-id.

6.2.3 Queue Properties

Queues have properties which control their behaviour. The following Queue properties are specified by
AMQP but an implementation may have additional configuration options.

name: string

The Queue Name is the (the node name) is, as previously defined, unique within the container.
Generally, when applications communicate via a Queue they agree on a Queue Name
beforehand. A Queue name must not be the empty string, nor must the name be so long that it
cannot be represented in less than 2Gb of unicode (in practice transports will provide a much
lower limit on the maximum usable queue name length). The FIRST character must be limited
to letters a-z or A-Z, digits 0-9, or the underscore character ('_'); all other characters can be any
be legal unicode character. Names beginning amqp$ are reserved for amqp services.

temporary: boolean (Default: false)

A temporary queue has a lifetime which is tied to the link for which it was created. Such a
queue will automatically be destroyed when the link which created it is destroyed (and if that
link is itself temporary this will be no later than when the session on which it was created is
destroyed). A non-temporary queue should be treated as durable – it should survive as long as
other durable data held by the container survives. A non-temporary queue will be removed
only when the queue is explicitly destroyed. Once created a queue may not change from
temporary to non-temporary or vice versa.

capacity: int

The maximum number of messages the queue may hold. Message at the queue in the
“available” or “acquired” states are considered to be held by the queue. Messages that are
archived do not count towards the capacity restriction.

The capacity of the queue may be used by the broker to determine the amount fo credit to be
distributed to incoming links.

message-durability-mode: message | force-durable | force-transient (Default: message)

Determines the treatment of durable/non-durable messages if they are enqueued on the queue.
Durability of messages is generally a property of the message, however it makes no sense to
store durably data which is only referenced by queues which are not themselves durably
stored. Further, some queues may wish to always store data related to messages enqueued on
them regardless of the request of the originator of the message.
Setting this property to message simply means that the queue will respect the durability

AMQP v. 1-0 Page 25 of 38

 . AMQP Message Brokers

property of the message. Setting this property to force-durable ensures that for as long as the
message is enqueued on the queue it will be durably stored by the Broker. Setting this
property to force-transient means that on restarting the broker all entries that were present in
the queue will no longer be found in the queue (the same message may, however, be stored
durably by other queues).
A temporary queue which was created by a temporary link should always use force-transient.

non-transactional-support: all | unsupported | only (Default: all)

Defines whether the queue supports “non-transactional” messages (as defined by the non-
transacted” message header). A setting of all indicates the queue supports normal and “non-
transacted” messages. If set to unsupported then non-transactional messages are not
supported and messages with non-transacted set to true will be rejected. A queue with non-
transactional-support set to only will only accept non-transactional messages. This setting is
normally only used for system services where the use of transactions may cause deadlocks.

maximum-destructive-links: int

The maximal number of destructive links that can be actively using this queue as their source
node. If not set, the number of links is unbounded (or more correctly limited only by system
resources and policies). If set to 0 then only non-destructive links are allowed.

excess-destructive-link-policy: fail | wait (Default: fail)

Where the maximum-destructive-links property is set to a non-zero value, the queue requires a
policy for dealing with requests to create a destructive link which push the number of active
links above the specified limit.

If set to fail then the attempt to create the new link will return an error to the requester. If set
to wait then the attempt will appear to succeed, however the link will not receive any
messages until some other currently attached destructive link is removed. At that point a
waiting link will be chosen to take the place of the link which has been destroyed.

archive-expired: boolean (Default: true)

If set then messages on the queue are checked to make sure that they have not passed their
defined “expiration” (as defined by the transfer headers). Where this property is set and the
message is set, then the message is transitioned into the archived state.

archive-currently-unreachable: boolean (Default: false)

If set then the queue will move a message into the “archived” state if all currently attached
links have already seen the message and either irrevocably accepted or rejected it, or have
declined interest in it (either due to it failing to meet filter criteria, or because the message is
too old). Note that if there are no links currently attached and this property is set, then all
messages at the node will be archived. This setting is used to provide publish/subscribe topic
like behaviour.

6.2.4 Common Queue Configurations

There are some common Queue lifecycles:

1. Durable Message Queues which are Queues shared by Links from many Sessions. Such Queues
have an independent existence and continue to collect messages whether or not there are outgoing
Links to receive them. Such Queues will usually hold Persistent Entries, but may hold a mixture of
Persistent and Non-Persistent Entries. Durable Message Queues are commonly pre-configured by

AMQP v. 1-0 Page 26 of 38

 . AMQP Message Brokers

the Broker administrator. If the Queue is a critical application resource it will often be set to
Persistent to ensure safe storage off all the Messages in it..

2. Temporary Message Queues are scoped to the creating Link. Where the Link is not durable, the
lifetime is thus tied to the lifetime of the Session that created the Link. Such Queues will usually
hold only Non-Persistent Entries and are most commonly found as reply queues in the
Request/Response use case.

3. Durable Topic Subscription Queues; which are Durable Queues with multiple (durable) Links
administratively associated with them because they require a well-known name to be of use to the
Client application. Such queues provide an efficient way to process the Publish/Subscribe use case
where Persistent Entries are required.

AMQP v. 1-0 Page 27 of 38

 . AMQP Message Brokers

6.3 Services

Services are applications within the broker that operate by reading messages sent to special named nodes
within the broker.

6.3.1 Broker Management (amqp$admin)

Manipulation of the model entities (Queues and Links) can be carried out using the in-built AMQP Broker
Management service.

The Broker Management Service uses the node amqp$admin as the input to its command processor.
Management commands are sent as messages to this node. The command processor processes the
commands and replies with a results message.

Management commands are sent as a batch of one or more commands within a single AMQP message. The
batch of commands is executed atomically, either all commands within the batch complete, or none do. To
prevent deadlocks, the amqp$admin service will only accept messages with the non-transacted header set.

Management commands can be queries, assertions, creations, deletions or modifications.

The following commands are supported

• create [or assert] queue <queue name> [with <queue-options>]

• delete queue <queue name>

• assert queue <queue name> [with <queue-options>]

• update queue <queue name> with <queue-options>

• rename queue <queue name> <new queue name>

• query queue [<queue-name>] [with <queue-options>]

• create [or assert] link <link name> <source node> <destination node> [with <link-options>]

• delete link <link name>

• assert link <link-name> [with <link-options>]

• update link <link-name> with <link-options>

• rename link <link-name> <new link-name>

• query link [<link-name>] [with <link-options>]

TODO: define commands for moving/copying messages from queue to queue

AMQP v. 1-0 Page 28 of 38

 . AMQP Message Brokers

6.3.1.1 Command Encoding (TODO)

6.3.1.2 Responses Results (TODO)

The result of executing a management command are returned as a message sent from the amqp$admin
service to the reply-to address specified in the properties of the message carrying the original command.
The correlation-id property of the response message is set to the message-id of the command message.

TODO: Define response format, error codes

6.3.1.3 Error Handling (TODO)

TODO: Failure of a management command does not cause session failure

AMQP v. 1-0 Page 29 of 38

 . AMQP Message Brokers

6.3.2 Inter-Broker Transfer (amqp$transfer)

An AMQP Message Broker provides a standard service for transferring messages between itself and any
other complaint AMQP Broker.

Any message may be sent to the amqp$transfer node. The transfer service inspects message sent to this
address, and performs routing based on the contents of the “to” message property. The service parses this
property as an AMQP address – that is of the form

<node-name>@<broker name>

If no broker name is provided in the address, or if the provided broker name is a known alias for the current
broker, then the service forwards the message to the local node with the name <node-name>. Otherwise the
transfer services uses externally provided configuration to determine the container (or network address
thereof) to which is should forward the message for the next stage of it's routing. Logically it then sends the
message along a link to the amqp$transfer service at that remote broker (in practice intermediate
reliable transfer queues may well be used).

6.3.2.1 Addressing

AMQP defines a familiar addressing scheme for communicating between organisations.

For Intranet usage we have:

name@host_name

Where host name is the Fully Qualified Domain Name of the host where the Broker which contains the
Queue (or knows how to find it) resides.

For Internet scale deployment we have the familiar:

name@example.com

This has important implications. Internet mail works because DNS contains “MX” (mail exchanger) records
that indicate that the mail gateway for “example.com” can really be found at “mail.example.com”, for
example.

To achieve this effect, AMQP uses a standard DNS SRV (service location) record.

In the example above there would be an DNS SRV record pointing to, amqp.example.com:5672 (it includes
the port number) where an AMQP Client (or Broker) can learn how to talk to this server.

This also integrates very neatly with X509 CA checking.

6.3.2.2 Aliasing of Transfer Service

To allow for a more symmetric way of addressing remote nodes, AMQP Brokers automatically alias all node
names of the form x@y to the transfer service node amqp$admin. That is a client may open a link to
queue@example.com on the local broker to which they are connected. Such aliases have a responsibility to
ensure that message sent to them have the “to” property set to the same address as the node alias name.
Special aliases of the form @<broker name> allow the sending of messages to any node at the named remote

AMQP v. 1-0 Page 30 of 38

mailto:queue_name@example.com
mailto:queue@example.com
mailto:x@y
mailto:queue_name@machine.dns.name

 . AMQP Message Brokers

broker. Implementations which provide access control may find it easier to block access do amqp$admin
and instead grant access only to necessary aliases.

AMQP v. 1-0 Page 31 of 38

 . AMQP Message Brokers

6.3.3 Distributed Transactions (amqp$dtxCoordinator) (TODO)

IMPORTANT NOTE:

THIS FACILITY IS SOLELY FOR THE USE OF A TRANSACTION MANAGER TUNNELLING XA
COMMANDS TO THE BROKER FOR ONWARD RELAY TO A TRANSACTION CO-ORDINATOR.

DTX IS AN OPTIONAL EXTENSION

The Distributed Transaction provides support for the X-Open XA architecture.

As depicted on the following figure, a Transaction Manager uses the RM Client XA interface to demarcate
Transaction boundaries and coordinate Transaction outcomes. RM Clients use the dtx Start and End
commands to associate a Transaction with a Terminal. The Transactional Terminal is then exposed to the
application driving the Transaction, and may be used to Transactionally produce and consume messages. RM
clients use the dtx coordination commands to propagate Transaction outcomes and recovery operations to the
AMQP server. A second coordination session can be used for that purpose.

 +---+---------------+ +--------+
 | | prepare/commit/rollback +----| |
+-------------+ XA | X |===============|==========>| CC | |
| TM |<=====| A | | +----| |
+-------------+ | |===========+ | Coordination | |
 ^ +---+ start/end | | Session | AMQP |
 | start/ | | | | Broker | |
 | commit/ +---+ RM Client | | Transactional | |
 | rollback | A | | | Session | |
+------------+ | M | | | +----| |
| Application|<======| Q |===========+===|==========>| TC | |
+------------+produce| P | | +----| |
 consume+---+---------------+ +--------+

Co-ordination commands are sent to the amqp$dtxCoordinator service.

AMQP v. 1-0 Page 32 of 38

 . Using AMQP

7 Using AMQP
7.1 Single Broker Topologies

7.1.1 Point-to-Point: Single Producer/Consumer

In the simplest possible case, we have one producer “P”, sending messages to one queue “Q” and one
consumer “C” which consumes all the messages from “Q”.

The Broker must be configured with a Queue “Q”. The producing client opens a session with the broker.
On the session it creates a link to send messages to address “Q”. The producer then sends any messages
over that link. On the consuming side, the consumer “C” also opens a sessions with the broker, and creates a
destructive a link to receive messages from address “Q”. As messages arrive in Q, they are sent to the
consumer.

Since the destructive link from the Q to C has no filter, it will always point to the (single) head of the queue.
Unless messages have been sent with differing priorities, this head will always be the oldest message in the
queue.

Messages are removed from the queue one the consumer has informed the queue it has completed the
processing of the message. If the session between the broker and he consumer is destroyed while there are
messages that have been sent to the consumer but which have not yet been acknowledged as processed, then
they will be returned to the queue.

7.1.2 Point-to-Point: Shared Work Queue

Extending the single producer/consumer model slightly we have the case where messages on the queue Q
represent items of work, and the work can be done by any one of a number of consuming clients C1...Cn.
Each message should be processed by one and only one consumer.

AMQP v. 1-0 Page 33 of 38

Producer Consumer

Broker

Queue

 . Using AMQP

Again the Broker must be configured with a Queue “Q”. The producing client opens a session with the
broker. On the session it creates a link to send messages to address “Q”. The producer then sends any
messages over that link.

On the consuming side, each consumer “Ci” also opens a session with the broker, and creates a destructive a
link to receive messages from address “Q”. As messages arrive in Q, they are sent to the consumer. The fact
that the link is “destructive” ensures that the message is “locked” on Q until the consumer it has been sent to
informs the queue that the message has been processed. Thus each message is sent to one and only one
queue. In general an AMQP does not mandate how a broker should balance the distribution of message
between clients in such a scenario. It is expected that the broker should make efforts to evenly share out
work between competing consumers, but should never wait to send a message to one consumer if there is an
alternative consumer able to take the message immediately,

7.1.3 Point-to-Point: Shared Work Queue Using Filters

A slightly different take on the shared work queue is where we wish to place constraints on which consumer
(or set of consumers) a particular message might go to. As an example let us assume that the messages
contain some property “complexity” which is a numeric value; and that some consumers only wish to see
messages where the complexity it less than 5, whereas other consumers will accept all messages.

AMQP v. 1-0 Page 34 of 38

P

C
1

Broker

Q

Destru
ctive Link Q-C 1

C
n

Destructive Link Q-C
n

 . Using AMQP

Here the destructive links which have the filter “where complexity < 5” may be pointing at a head of the
queue that in advance of the “true” head of the queue at which the other links are pointing.

7.1.4 Publish/Subscribe: Transient Pub/Sub

The principle differences between point-to-point and publish/subscribe style messages are that

i) Messages should be sent to every subscriber, not individually distributed between them

ii) If there is no client listening for a message as it arrives in the broker, then it is conventionally
discarded – not stored until such a client subscribes.

iii) Messages are not removed when one client has processed them, only when all active consumers
have processed them.

By convention publish/subscribe systems are described in terms of “topics” rather than queues. AMQP has
no distinct notion of “topics” - instead publish/subscribe is implemented using queues, although these
queues have specific properties.

Within the AMQP broker model there are two ways that one may implement such a publish/subscribe
topology. The simplest way is to simply define the topic as a queue to which no destructive links may be
established. Each subscriber creates a non-destructive link to the queue. Depending on the link-configured
desired behaviour may initial point to the head, the tail, or some intermediate point on the queue. Once all
consuming links have irrevocably moved past a given message in the queue then that message is
unreachable and can (depending on queue-configuration) be marked for deletion.

AMQP v. 1-0 Page 35 of 38

P

C
1Broker

Q

Where complexity < 5

C
n

C
i

Where complexity < 5

C
j

 . Using AMQP

7.1.5 Publish/Subscribe: Durable Pub/Sub (TODO)

7.2 Multiple Broker Topologies

The topology used to connect Brokers and Clients on the Internet may be very different to the point-to-point
and publish-and-subscribe messaging that the Client applications configure within and between Brokers.
This is similar to Internet mail, where end users use email addresses perhaps unaware that the email service
itself is built on top of IP addresses and port numbers and a handful of constituent protocols.

AMQP v. 1-0 Page 36 of 38

Illustration 1: Example AMQP Internet Topology

Internet

Client

Broker

Broker

Broker

Client

Client

Client

Client

Client

C
li

e
n

t

C
li

e
n

t

C
li

e
n

t

Firewalls

P

C
1Broker

Q

C
n

C
i

C
j

Messages marked as
deleted as all links
irrevocably passed.

New link created
with pointer at tail
of queue.

 . Glossary

8 Glossary
8.1 Message (TODO)

8.2 Container

A Container represents a single physical or logical process which contains some number of AMQP nodes.
Each Container has a globally unique identifier. For a given transport protocol this identifier may be
associated with one or more network addresses. Authentication within AMQP is always with respect to a
specific container. Examples of Containers are Brokers and Clients. Network connections are opened
between Containers.

8.3 Node

A Node in the AMQP Network is a Message Source and/or a Message Sink. Messages are sent forwarded
from one Node to another. Examples of Nodes are Queues, Message producers and Message Consumers. A
Node are addressed by well-known names. Node names are scoped to the container in which the Node
resides. A Node may have many names within the container.

8.4 Address

An AMQP address logically consists of the pair (Node Name, Container Id). Within a specific Container the
Node name is in itself sufficient. More generally a network name or address may take the place of the
container id. Thus the pair (name, example.com) would form an address. Such an address can be more
conveniently written as name@example.com.

8.5 Link

A Link is a unidirectional transport for messages which is established between two Nodes. All Message
transfers occur along Links. A Link may be between two Nodes in the same container, or Nodes in different
containers. Link lifetime may be tied to the Nodes between which it transfers Messages, or to the lifetime of
the Session on which it was created. Links may be either destructive (upon successful and acknowledged
transfer the message is discarded by the source node) or non-destructive (a copy of the message is sent, but
other links from the same Node will also be offered the same message). Nodes may have multiple incoming
and/or multiple outgoing Links.

AMQP v. 1-0 Page 37 of 38

 . Glossary

8.6 Session (TODO)

8.7 Queue (TODO)

8.8 Broker

A Broker is a Container in the AMQP Network that offers queuing services to other Containers (clients).
Brokers are typically long-lived and would usually contain at least one Queue. Brokers that contain more
than one Queue may be administratively configured to internally distribute messages to other Queues via the
creation of broker-internal Links. Ordinarily a Broker requires authentication from any client nodes. In a
transactional Session the broker functions as the transactional resource.

8.9 Client

Clients are end-user applications which connect to a Broker for the purpose of sending and/or receiving
Messages. Clients may be on the same LAN or WAN within an organisation, or located in different
organisations separated by firewalls and bureaucratic procedures. AMQP provides for a range of messaging
semantics within an organisation, and connectivity to foreign organisations.

Presently AMQP does not prescribe the form of the Client API, only the capabilities of the Broker and how
to communicate with it, but recommendations are given on how to map other technologies to AMQP.

8.10 Transaction (TODO)

End of Document

AMQP v. 1-0 Page 38 of 38

	AMQP 1.0 Draft for discussion Revision 200 JA/RS/RG
	4 Mar 2009 AMQP Working Group
	1 Introduction (TODO)
	1.1 Overview

	2 Logical Model
	2.1 Nodes and Links
	2.2 Messages
	2.3 Credit
	2.4 Containers
	2.5 Sessions
	2.6 Commands
	2.7 Transactions
	2.7.1 Local Transactional Mode (TODO)
	2.7.2 Distributed Transactional Mode (TODO)

	2.8 Requirements for a Transport (TODO)

	3 Data Types
	3.1 Primitive Types
	3.1.1 Integral types:
	3.1.2 Floating point and decimals
	3.1.3 Other Primitive Types
	3.1.4 Compound Types

	3.2 Programming Language Mappings

	4 Links
	4.1 Link Properties
	4.2 Transferring Messages
	4.3 Message Receipt
	4.4 Link Modes
	4.4.1 Destructive Link
	4.4.2 Non-Destructive Link
	4.4.3 Link Mode Uses

	5 Messages
	5.1 Description
	5.1 Message Properties
	5.2 Message Identity
	5.3 Property Names
	5.4 Standard Properties
	5.5 Standard Message Encoding

	6 AMQP Message Brokers
	6.1 Overview
	6.2 Queues
	6.2.1 Purpose
	6.2.2 Description
	6.2.3 Queue Properties
	6.2.4 Common Queue Configurations

	6.3 Services
	6.3.1 Broker Management (amqp$admin)
	6.3.1.1 Command Encoding (TODO)
	6.3.1.2 Responses Results (TODO)
	6.3.1.3 Error Handling (TODO)

	6.3.2 Inter-Broker Transfer (amqp$transfer)
	6.3.2.1 Addressing
	6.3.2.2 Aliasing of Transfer Service

	6.3.3 Distributed Transactions (amqp$dtxCoordinator) (TODO)

	7 Using AMQP
	7.1 Single Broker Topologies
	7.1.1 Point-to-Point: Single Producer/Consumer
	7.1.2 Point-to-Point: Shared Work Queue
	7.1.3 Point-to-Point: Shared Work Queue Using Filters
	7.1.4 Publish/Subscribe: Transient Pub/Sub
	7.1.5 Publish/Subscribe: Durable Pub/Sub (TODO)

	7.2 Multiple Broker Topologies

	8 Glossary
	8.1 Message (TODO)
	8.2 Container
	8.3 Node
	8.4 Address
	8.5 Link
	8.6 Session (TODO)
	8.7 Queue (TODO)
	8.8 Broker
	8.9 Client
	8.10 Transaction (TODO)

	
	AMQP Title Page

