
AMQP Illustrations

Table of Contents:

AMQP Transport Topology

AMQP MOM Topology

AMQP Broker-Broker Global Forwarding Topology

AMQP Model Entity Relationship Diagram

Walk Through: Delivery into Message Queues

Walk Through: Consumption from Message Queues

JMS Concepts Modelled in AMQP

Global Addressing and Message Relay

Global Addressing and Internet Subscriptions

Note: This document specifically does not address the
creation of LAN Federations or HA Broker configurations;
these may be outside the remit of protocol standardisation.

2 December 2008 – Post Transport/Model Integration

Corresponds to Model Draft 91

AMQP Transport Peer-to-Peer Topology
The API implementations see more detail, under the covers of AMQP. In addition to MOM messaging, they have to deal with the
details of maintaining and securing a network connection between the client and the broker. This is how the lower level transport
stack looks to a systems engineer.

Internet

Client

Broker

Broker

Broker
Client

Client

Client

Client

Client

C
lie

nt

C
lie

nt

C
lie

nt

AMQP Broker-to-Broker Global Forwarding
Global addressing will relay messages from local queues on a client-local broker to queues resident on the destination organisations broker.
This is very similar to SMTP. Also, as with SMTP relaying is strongly discouraged as it may compromise security.

Firewalls

Client Application

AMQP API
JMS / WCF / Native

AMQP Transport

Network (TCP/IP)

AMQP TCP/IP Binding

Network (TCP/IP)

AMQP Session

Port 5672

Client Broker

Queue Link

Broker(s)
Port 5672

Administration

AMQP Session

Queuing Application

Message Queuing & Routing

Messaging Session

State Encoding & Transfer

Network Connectivity

AMQP End-to-End MOM Topology (WORK+)
This is the message transmission path as the sending and receiving applications perceive it.
It is important to note that the Message transmission path is a game of two halves; the deposit in a queue half, and the collect from the queue half.
This decoupling of sender and recipient is the prime purpose of message oriented middleware.

(read) 1
6

Work Queue
“appWork”

<tail>

Link
Queue->Queue

Address Queue
“publicName”

Sending
Client

Receiving
Client

Logical store-and-forward transmission path

Link
Queue->Session

Message

AMQP Broker

SessionSession

Transport

Notes on Addressing, Queues and Links (previously Bindings):

An Address is just a name made known to a publishing Client by those who would like to solicit messages from that client.

An Address is the fully-qualified name of a Queue (queue_name@broker-host). By using more than one Queue (as shown) an organisation can
decouple where a message is sent to from how and where it is processed. This is useful to enable administrators to modify the topology without
their client(s) knowledge. So, while every Queue in AMQP has a name and can be directly accessed for enqueue and dequeue operations, only
naïve applications with simple needs will do this.

The Addressing format of queue-name@host-name or queue-name@domain-name is intended to draw a deliberate comparison with email
addressing. However, for local delivery on the same Broker, no domain name need be used in the Address. Domain names are only required for
relaying to remote Brokers, discussed elsewhere.

The Address is opaque to the sending Client, but behind that Address, the owner of the Broker creates Links (either administratively or dynamically)
to deliver Messages sent to that Address to one or more Message Queues on the same or different Brokers, and from there to receiving Clients.

Links automatically route messages between Queues (from a Source to a Target) optionally filtering using a predicate. Links are also used to
transfer Messages from a Queue to a Client. Messages sent to an Queue will be considered by the Links which have that Queue as their Source.
Links may inspect Messages from their specified Source to determine whether to transfer or copy it to the Target.

A Queue can have many Links transferring Messages to many Targets (one Target per Link). The parts of the Message which get inspected by a
given Link are the “routing key(s)” of the Link. Each Link may have different “routing keys” from other Link on the same Source. Link predicates
are specified using a subset of SQL 92 (though vendor extensions can be applied here to permit other ways of specifying the predicate).

A common example of a Link predicate is in Publish/Subscribe Messaging, where a Message's Subject will matched on a pattern to determine
which Clients will get the Message. Such a Link would have the routing key of “Subject” matched against a Client supplied pattern argument.
Note that any field could have been the routing key, it didn't have to be “Subject”.

So, when Addressing a Message, the Address forms the primary means of directing the Message, but other Message Properties may be involved
as well. In such cases, the Sending Client will need a complete specification of how to populate the Message they send; but this forms a natural
part of the interface contract between sending and receiving user applications.

Transfer Agent Admin Agent

Model

Transport to other
Brokers

Transport

6
<tail>

Transmission
Queue(s)

AMQP Model Entity Relationship Diagram
This diagram shows the perceived entities which the client an discover in a compliant broker, and the relationships between them. A compliant
broker may be implemented differently, but MUST exhibit these same perceivable entities.

Link

Advanced
Message
Queue

Predicate

sourcetarget

evaluate

Message
enqueue

Zero or More

Zero or One

Exactly One

Legend:

move
or copy

messages

AMQueue
Entry

contains

Queue Entry Detail (WORK NEEDED)

Available

Dequeued

Acquired Dequeue

Acquire()

Dequeue

Release()

AMQueue entries may have the following states:

Start:
Acquired: Y/N
End: Y/N

{ optional (DTX like) transport protocol command :
park seqno
unpark from seqno}

Link Detail (WORK NEEDED)

Queue1link/transfer

In AMQP, an Address is essentially
just a durable Queue with a well
known name..

Clients publish Messages to these
well known queues.

It is good practice to separate well
known names from the queues an
application may actually use to
process Messages – this allows the
application to change its topology
at a future date without impacting
addresses used by Clients (who
might be external to your
organisation). Think of these public
Queues as being akin to PO Boxes.

The Broker can use internal Links
to forward messages to other
internal queues for your
applications benefits based on
Message properties, etc.

Since some Queue Names are well
known to Clients (they may well be
hard coded in applications, for
example) the have value. Hence
there are implementation specific
ACL checks on which Clients may
send to a given Queue, and which
Queues may Link to other Queues
(why? Imagine if I could request the
post office to redirect mail for 10
Downing Street to my home
instead!)

A Link also controls how Messages
are transported from one Queue to
another within the Broker.

Links route/copy Messages
destined for a given source Queue
into the associated target Queue
optionally based on a Predicate.

For a given Queue, all Links which
have that Queue as a Source and
which match the Predicate, and
which have capacity in their Target
Queue will result in copied
Message deliveries to the
associated Target Queues.

A Queue holds messages until
all interested Clients have had
the opportunity to consume
them.

In a high throughput system it
is desirable to arrange for
Queues to contain as few
messages as possible. This
implies that there are enough
subscribing Clients consuming
quickly enough to match or
exceed the rate of the
publishing Clients.

In a more batch-oriented
system a Queue may be
deliberately allowed to fill until
some predetermined time or
number of Messages held
triggers a Client jobs to begin
and dequeue and process the
messages.

It is important that an AMQP
implementation support both
styles of client application
usage.

Clients create Messages
and Address them.

The client then uses its
Session to Open a Link to a
Queue. It can then
Transfer the Message over
the Link to the Queue on
the Broker. This process is
repeated for each separate
Queue the Client wants to
directly address;. This is
very similar to SMTP.

The Broker evaluates the
Message and related
commands against its
configuration and Access
Control Lists. The Broker
may reject the Clients
request to access certain
named Queues.

After a Message as been
transferred onto a Queue
via a Link the Message has
been accepted for delivery.
Subsequently the Broker
can perform onward routing
and copying via Queue-to-
Queue Links the
administrator may have
preconfigured within the
Broker.

Delivery into Message Queues

1Queue
“myQueue”Session

<head>open(“myQueue”)
transfer(msg)

Simple scenario...

Delivery into queues is the first half of the end-to-end MOM delivery process.

Client A
Session

Client B
Session

Queue:
“StockTicker”

Queue:
“US-Payments”

Queue:
“ServiceBus”

Subject REGEXP “stocks.ny.*”

PREDICATE

 Subject REGEXP “stocks.uk.*”

Subject REGEXP “stocks.tk.*”

BusEvt=“Pay” and Ccy!=“USD”

BusEvt = “Unwind”

usaQ

Queue1worldQ

Queue1usPayQ

link/transfer

link/transfer

link/transfer

BusEvt=“Pay” and Ccy=“USD”

Queue1wrldPayQ

Queue1unwindQ

Well-Known
Queue

In-Broker Links Work QueueSession

Link
Source: N/A

Target: “workQueue”
Predicate: None

Message

Link QueueSession

Comprehensive scenario and walk through...

2
(new)

StockTicker worldQ

StockTicker

StockTicker

SOURCE TARGET

worldQ

usaQ

Subject REGEXP “stocks.ny.*”

PREDICATE

StockTicker

SOURCE TARGET

usaQ

StockTicker

StockTicker

StockTicker

PREDICATESOURCE TARGET

unwindQ

worldPayQ

usPayQ

2

3

4

5

6

7

8

AMQueue
Name: Qabc
No Exclusive

AMQueue
Name: Q123

Permit ExclusiveName: Lunique1
Durable: True

Name: Lunique2
Durable: True

Name: #L1234
Durable: False

Name: #L3456
Durable: False

Client A
Session

Client B
Session

A Link is an iterator over the underlying
AMQueue combined with a Predicate which
picks from its Source end the Messages of
interest to its Target end.

There can be more than one Link
originating from an AMQueue and they are
independent; this enables an AMQueue to
in effect have many Heads (but only one
Tail).

Messages are always logically transported
through a Link.
The AMQueue manages the allocation of
Messages to Links (this how messages on
one Queue can be shared out between
multiple subscribers each with arbitrary
criteria).

When a Link is first created, it usually first
inspects the Message on the Tail of the
AMQueue, which has the effect of
considering only Messages subsequent to
that Message.

A Link may also start any arbitrary point in
the AMQueue.

Client Session creates a
Temporary Link in order to
dequeue message from a
Queue.

The AMQP Transport controls
the AMQP Session to effect
transfers off the Link across the
network.

In the “topic” case it will be
common for the Temporary Link
to initialise at the Tail and in the
“queue” case it will be common
for the Link to initialise at the
Head.

When a Session is destroyed, it
first ensures all the Temporary
Links it created are destroyed.

An AMQueue holds Messages until
all Links have had the opportunity
to inspect them.

AMQueues also apply ordering,
capacity limits, TTL, persistence
and various admission and
disposition policies (which may be
implementation specific).

An AMQueue owns its outbound
Links.

AMQueues manage message
locking and disposal. A AMQueue
should not dispose of a Message
until all Links have had the
opportunity to inspect them, though
the precise mechanism is
implementation specific

Clients may have many
Consumers to many
Selectors on many
Queues.

<head>

Consumption from Message Queues

(Read) 1

Queue
Name: Queue

Link
(with optional

selection predicate)

Client
Session

<head>

(New) 2

Simple scenario...

I'm using the name “Stable Queues” (a la Stable Storage) to encompass the idea of a safety-deposit-box style drop-point.
Collecting Messages from Queues in a configurable way is the second half of the MOM end-to-end process.

SessionLinkQueue

Comprehensive scenario and walk through...
SessionQueueQueue Link

TARGET:
Addr: N/ASOURCE:

Addr: Q123
Predicate:*

SOURCE (c1):
Addr: Qabc
Predicate:

currency='USD”
sent-lastid: msgid
 nxt2evalid-: msgid
transfers-sent: int
transfer-limit: int

TARGET: (c0|1):
Addr: Q123

rcvd-lastid: msgid
transfers-recvd: int

Client C
(Not there;
no session)

SOURCE:
Addr: Qabc
Predicate:

currency=”GBP”

TARGET:
Addr: N/A

rcvd-lastid: msgid
transfers-recvd: int

TARGET:
Addr: N/A

SOURCE:
Addr: Q123
Predicate: *

Link

TARGET:
Addr: N/A

rcvd-lastid: msgid
transfers-recvd: int

SOURCE:
Addr: Queue

currency='USD”
sent-lastid: msgid
 nxt2evalid-: msgid
transfers-sent: int
transfer-limit: int

JMS Concepts Modelled in AMQP

Durable or
Transient

Queue

Link
(optionally with SQL 92 Predicate) Session

data flow data flow

MessageConsumer / QueueReceiver
Here, the JMS Selector concept is modelled using AMQP Selector+Consumer to pick Messages from the Queue.

JMS
Queue

JMS
QueueReceiver

JMS
Session

Selector

MessageConsumer / TopicSubscriber

Transient
Private
Queue

Session

JMS
Topic

JMS
TopicSubscriber

JMS
Session

Selector

Transient
Queue

Links to
 match

messages

data flow

MessageConsumer / DurableTopicSubscriber

Durable
Queue

Durable Link
Name == ClientId1_Queue1

Predicate == SQL92

Session
{ClientID = 1}

JMS
Durable
Topic??

JMS
DurableTopicSubscriber

JMS
Session

Selector

Here, the JMS Selector concept is modelled using a Queue to represent the Topic and AMQP Bindings to route Messages from the
Topic using Topic Bindings to copy the Messages into Private Queues, one Private Queue for each subscriber to the Topic.

Here, the JMS Selector concept is modelled using a Queue to represent the Topic and AMQP Bindings to route Messages from the
Topic using Topic Bindings to copy the Messages into Private Queues, one Private Queue for each subscriber to the Topic.

Transient
Private
Queue

Session

Durable Link
Name == ClientID2_Queue1

Predicate == SQL92

Session
{ClientID = 2}

AMQP supports more Message distribution patterns than JMS specifies. This slide illustrates how JMS behaviours can be
achieved through AMQP constructs.

PubSub can be implemented in 2 ways

Transient
Private

Link

Transient
Private

Link

Local Broker (foo.com)

AMQP Global Addressing – Message Relay

Queue
“myQueue1”

Session

Remote address scenario...

Link

Transmit Queue
foo.com%bar.com

Transfer
Agent

Internet

Msg1 Msg2

Transmit Queue
foo.com%biz.net

Msg 3

Transfer
Agent

Link

Queue
“myQueue2”

Session Session

Link Link

Queue
“myQueue3”

Link

Transfer
Agent

Session

Link

Session

LinkLink

Internet

Transfer
Agent

Internetbar.com
broker

biz.net
broker

Walk Through...

When a Client Addresses a message
using address@host notation, the
portion after the @ is used as a host
name where the Broker may be found
which understands the address
component.

If the IP address matches one of the IP
addresses of the host where the broker
is running, or is localhost, or blank,
then the message is delivered to a local
Address within the Broker, as normal.

If the host is on a different machine
then the Broker's Linking mechanism
will enqueue the Message on a
Transmission Queue specific to the
remote host.

Logically speaking, there is one
Transmission Queue for each remote
host. All Messages which have
Addresses which reference the same
remote host (see spec. for details) are
placed onto the same Transmission
Queue. This is to ensure that the
relative ordering of Message delivery
both with and between queues (esp.
within a Transaction) is retained.

An entity known as a Transfer Agent
dequeues Messages from each
Transmission Queue and enqueues
them to the appropriate remote Brokers
at some time in the future. Whether
the sending or receiving Transfer Agent
initiates the request is administrator
configured, as is the duration/frequency
of connection duration (batch
communication is legitimate use case).

Transfer Agents interact with the local
and remote Brokers exactly as if they
were normal receiving/sending Clients.
The Transmission Agent ensures that
Messages are delivered at least once,
with duplicate suppression based on
unique Message Identity (to prevent the
need for 2 phase commit). Ideally
source Transaction Boundaries would
be preserved during the Transfer
process, but this is not mandated.

A relayed Message retains its Message
Identity on all Brokers visited. The
number of Brokers to be visited should
be minimised – MOM routing is not a
substitute for IP routing.

Transfer Agents must authenticate with
the remote Broker, and the Message
published the Message on the receiving
Broker will be associated with the User
account of the Transfer Agent as
configured in the receiving Broker.

In the receiving Broker, the Message is
processed for delivery to Queues via
Links just as usual; or indeed further
relaying.

Between firms, it is envisaged that DNS
SRV records will be used to identify the
gateway host providing AMQP services
to the inbound connections from the
Internet.

Link Link Link

Transmit Queue
foo.com%bar.com

Trasmit Queue
foo.com%biz.net

Msg1

Msg2

Msg 3

Msg1

Msg2
Msg 3

Msg2Msg1 Msg 3

Bar Client 1 Biz ClientBar Client 2

Session Session

Session Session

Foo Client 1 Foo Client 2

Msg1:
myQueue1
@bar.com

Msg2:
myQueue2
@bar.com

Msg3:
myQueue3
@biz.net

AMQP Global Addressing – Internet Subscription

Walk Through...

The aim of Global Subscription Relay is
to enable de-queuing of information
from a well known Address Queue
within another organisation, whilst
adhering to good Internet Security
practices.

The direction of connection initiation
should always be from higher trust
zones to lower trust zones.

Because of the active nature of this
activity, concerns to robustness and
prevention of resource abuse are
paramount.

To this end, the data provider
administratively creates a Queue to act
as a sink for events published (3) on a
Source Broker (2).

Bindings would then be used to “push”
all Messages published to the Topic
into a Broker in a DMZ (1).

The broker in the DMZ (1) will hold
Messages on its Topic queue awaiting
the client DMZ broker (4) to connect to
it.

The provider DMZ broker (1) has an
administratively created Consumer with
a well known name and appropriate
ACL awaiting the client connection.

The client DMZ Broker (4) connects to
the provider DMZ Broker (1) using a
Transfer Agent where the “from” end is
remote.

The client DMZ broke (4)r then uses
normal connection semantics to replay
and dequeue messages from the
provider DMZ broker (1).

Once the messages are in the client
DMZ broker (4) they can be similarly
propagated into the clients LAN
environment (5) for use by the ultimate
subscribing clients (6).

Strictly speaking Brokers (5+2) are not
needed, however, they will be
commonly created to ease
administration of onward data flows
unless latency requirements are
demanding.

NOTES:
Check vs nntp subscription model,
imap model. Key difference how
current is determined/stored and how
replay is handled.

4: DMZ
Broker

5: Target
Broker

1: DMZ
Broker

2: Source
Broker

6: Sub.
Client

3: Pub.
Client

Internet

Client
DMZ

Provider
DMZ

Client
LAN

Provider
LAN

Arrows indicate connection initiation
(from/to)

Topic
Queue

Publisher
Client

Session

Topic
QueueTopic

Queue
Topic

Queue

TransferAgt

TransferAgtTransferAgt

Subscriber
Client

Session

Data ProviderData Requester

This connection is a
remote connection

initiated by the
requesting DMZ broker's

binding agent.

Consumer

Arrows indicate message flow direction
(from/to)

AMQP Data Flow

Network Topology

AMQP as a Directed Graph
(NOT READY FOR REVIEW)
Process
Process graph breath first.
For each Source, for each Binding
The Binding Acquires a message from the Source; this is the Current Binding Message

Arrows indicate message
flow direction (from/to)

Distributer

Queue: Name
Queue: Credit

Entry 1
Entry 2

Queue: Name
Queue: Credit

Entry 1
Entry 2

Queue
Entry 1
Entry 2

Queue: Name
Queue: Credit

Entry 1
Entry 2

Source:Name
 Source: MessageID
Source: Predicate

Target: Name

For any given Link to Flow:

Predicate & All(Credit)

Each Binding must maintain its
own source queue cursor.

Questions: Persistence of
Binding information.

Channel to Client

Source:Name
 Source: MessageID

Source: Predicate
Target: Name

Credit ?

Client Side
Queue

(No-Entries)

Bindings Acquire Message from Source
Identifies Sinks
Checks Credit Availability on Sink
Copies Message to Sink if Credit
Decrement Credit in Sink
Ack Acquired Message in Source

Garbage Collect All Sources and free up
Credit

Repeat for all Links

Client → Server: Flow 1
{Server Side Representation of Channel:
Credit = 1

PROCESS GRAPH

Transmission
Queue

Source:Name
 Source: MessageID
Source: Predicate

Target: Name

Source:Name
 Source: MessageID
Source: Predicate

Target: Name

	AMQP Illustrations
	2 Dec 2008 John O'Hara, AMPQ Organization
	Contents
	AMQP Transport Topology
	AMQP MOM Topology
	AMQP Model
	Delivery into Queues
	Consumption from Queues
	JMS Concepts Modelled in AMQP
	AMQP Global Addressing & Message Relay
	AMQP Global Addressing - Internet Subscription
	AMQP as a Directed Graph

	
	AMQP Title page

