
Interactive Financial Exchange 

 
Version 1.0.1 

XML Implementation Specification 
April 26, 2000 

 
© 2000 IFX Forum, Inc. All rights reserved





Interactive Financial Exchange XML Implementation Specification 

Version 1.0.1 April 26, 2000 i 

Contents 
1 OVERVIEW .............................................................................................................................. 1-1 

1.1 INTRODUCTION............................................................................................................................. 1-1 
1.1.1 Governing Principles............................................................................................................ 1-2 

1.2 IFX XML DATA TRANSPORT OVER IP.......................................................................................... 1-3 
1.2.1 Data Transport...................................................................................................................... 1-3 
1.2.2 Request and Response Model .............................................................................................. 1-4 

1.3 DEFINITIONS ................................................................................................................................ 1-4 
1.3.1 User ...................................................................................................................................... 1-4 
1.3.2 Client .................................................................................................................................... 1-5 
1.3.3 Server ................................................................................................................................... 1-5 
1.3.4 Tag........................................................................................................................................ 1-5 
1.3.5 Element ................................................................................................................................ 1-5 
1.3.6 Aggregate ............................................................................................................................. 1-5 
1.3.7 Request................................................................................................................................. 1-5 
1.3.8 Response .............................................................................................................................. 1-5 

2 XML IMPLEMENTATION OF IFX....................................................................................... 2-1 
2.1 STRUCTURE.................................................................................................................................. 2-1 

2.1.1 IFX Client ............................................................................................................................ 2-1 
2.1.2 IFX Server............................................................................................................................ 2-1 
2.1.3 HTTP Headers...................................................................................................................... 2-2 
2.1.4 IFX XML Document Type Declaration................................................................................ 2-2 

2.2 XML DETAILS.............................................................................................................................. 2-3 
2.2.1 Compliance .......................................................................................................................... 2-3 
2.2.2 Valid XML Characters.......................................................................................................... 2-3 
2.2.3 Comments Supported ........................................................................................................... 2-4 

2.3 DATA TYPES ................................................................................................................................. 2-4 
2.3.1 Character .............................................................................................................................. 2-4 
2.3.2 Narrow Character ................................................................................................................. 2-4 
2.3.3 Boolean ................................................................................................................................ 2-5 
2.3.4 Numeric................................................................................................................................ 2-5 
2.3.5 Binary................................................................................................................................... 2-5 
2.3.6 Dates, Times, and Time Zones ............................................................................................. 2-6 
2.3.7 Currency Amount ................................................................................................................. 2-7 
2.3.8 Definition of Data Types in the DTD................................................................................... 2-7 

2.4 XML IMPLEMENTATION OF IFX EXTENSIONS .............................................................................. 2-8 
2.5 FILE-BASED ERROR RECOVERY.................................................................................................... 2-8 

1 Overview 
1.1 Introduction 
The Interactive Financial Exchange (IFX) Specification provides a robust and scalable framework for the 
exchange of financial data and instructions independent of a particular network technology or computing 
platform. The information-sharing potential of IFX has been designed to support communication not only 
between a Financial Institution and its customers, but also between a Financial Institution and its Service 
Providers. 



Interactive Financial Exchange XML Implementation Specification 

1-2 April 26, 2000 Version 1.0.1 

 

CUSTOMERS 

Consumers 
Families 

Taxpayers 
Small Business 

INSTITUTION
(CSP) 

 
SERVICE 

PROVIDER 
(xSP) 

 
IFX is an open specification that anyone can implement: any Service Provider, software developer, or other 
party. It uses widely accepted open standards for data formatting (such as XML), connectivity (such as TCP/IP 
and HTTP), and security (such as SSL). 

The IFX Business Message Specification defines the request and response messages used by each financial 
service as well as the common framework and infrastructure to support the communication of those messages. 
This specification does not describe any specific product implementation. 

This XML Implementation Specification is a companion document to the IFX Business Messages Specification 
1.0.1. It defines the specific XML conventions that govern the syntax specified in the accompanying Document 
Tag Definition (DTD). 

1.1.1 Governing Principles 
We applied several principles in the development of the XML implementation of IFX: 

• Faithfully render the business messages – Unless a compelling rationale dictates 
otherwise, the XML implementation should use the same message, aggregate, and tag structure as 
the business message specification expresses. One departure from the aggregate and tag structure 
is in the representation of time-related datatypes. These aggregates have been defined to be 
consistent with the XML schema definition of the timeInstant datatype, which in turn references 
the ISO 8601 standard representation of time.  

• Favor the format of the business messages over XML optimizations such as use of 
attributes. We recognize the potential performance trade-off here and may revisit this trade-off in 
future releases. 

• Enhance extensibility through XML namespaces – XML namespaces complement the 
extensibility mechanism defined in the business messages specification. 

• Rely on channel level encryption (such as SSL or SMIME) for privacy and data 
integrity – IFX provides built-in mechanisms for authentication, but does not provide facilities to 
protect privacy and guarantee data integrity between end-points. The XML implementation relies 
on channel level mechanisms for these aspects of message security. 

• Support batch and interactive styles of communication – While the IFX business 
messages manifest themselves as request / response pairs, applications may choose to issue one 
XML IFX request at a time and then wait for the associated response; or applications may transmit 
numerous requests at a time and likewise receive and process a batch of response messages. We 
have intentionally minimized the XML overhead to accommodate both forms of interaction. 

• Remain application protocol independent – The XML implementation of IFX is 
independent of the protocols used to transport the messages between the client and server 
computers. While IFX XML will probably use HTTP in most situations, FTP or SMTP, or any 
number of queuing systems could be used as message transport protocols as well. Likewise, while 
IFX / HTTP(S) / TCP / IP will probably be the most common stack used for communication of 
IFX messages, other stacks may be used as well (for example, IFX / MQ / SNA). 

The key rule of IFX syntax is that each tag is either an element or an aggregate. Data is contained between the 
element start tag and its respective end tag. An aggregate tag begins a sequence of enclosed elements or inner 
aggregates, which must end with a matching tag; for example, <Aggregate> ... </Aggregate>.  



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 1-3 

The file sent by IFX does not require any white space between adjacent tags. White space anywhere within an 
element is significant.  

1.2 IFX XML Data Transport over IP 
The design of IFX is as a client and server system. An end-user uses a client application to communicate with a 
server at a Customer Service Provider. The form of communication is requests from the client to the server and 
responses from the server back to the client. Likewise, the Customer Service Provider acts as a client to a 
backend service provider. 

This implementation of IFX uses an Internet protocol suite to provide the communication channel between a 
client and a server. Internet protocols are the foundation of the public Internet and a private network can also 
use them. The specific suite of Internet protocols used is HTTP, SSL, TCP and IP. SSL is optional, and it is used 
to provide security for the communications between the HTTP client and server. SSL 3.0 is recommended, 
especially for server-to-server application of IFX, since mutual authentication by X.509 certificates can be 
implemented. 

1.2.1 Data Transport 
IFX documents can exist outside the context of client/server communication. For example, they can exist as 
files on persistent storage devices. Nonetheless, this specification focuses primarily on client/server 
communication of IFX documents. 

1.2.1.1 HTTP Post Data Transport 
Clients generally use the HyperText Transport Protocol (HTTP) to communicate to an IFX server. The World 
Wide Web throughout uses the same HTTP protocol. In principle, a Customer Service Provider can use any off-
the-shelf web server to implement its support for IFX. 

To communicate by means of IFX over the Internet, the client must establish an Internet connection. Clients and 
servers may also rely on private IP network connections, such as IP encapsulation over a frame relay permanent 
virtual circuit (PVC), for IFX communication. 

Clients use the HTTP POST command to send a request to the previously acquired Uniform Resource Locator 
(URL) for the desired Customer Service Provider. The URL presumably identifies a Common Gateway 
Interface (CGI) or other process on a CSP server that can accept IFX requests and produce a response. 

The POST identifies the data as being of type text/xml. Use text/xml as the return type as well. Fill in other 
fields per the HTTP 1.0 spec. Here is a typical request: 
POST http://www.CSP.com/IFX.cgi HTTP/1.0 HTTP headers 
User-Agent:MyApp 5.0 
Content-Type: text/xml 
Content-Length: 1032 
 
... IFX Document ... 
A blank line (a carriage return and a linefeed pair—CRLF) defines the separation between the HTTP headers 
and the start of the IFX XML document. See Chapter 2, “XML Implementation of IFX” for more information 
about the specific use of XML in the IFX specification. 

The structure of a response is similar to the request, with the first line containing the standard HTTP result, as 
shown next. The content length is given in bytes. 
HTTP 1.0 200 OK HTTP headers 
Content-Type: text/xml 
Content-Length: 8732 
 
... IFX Document ... 



Interactive Financial Exchange XML Implementation Specification 

1-4 April 26, 2000 Version 1.0.1 

1.2.2 Request and Response Model 
The basis for IFX is the request and response model. One or more requests can be batched in a single file. This 
file typically includes a signon request and one or more service-specific requests. Unless otherwise specified 
within this specification, a CSP server must process all of the requests and return a single response file. This 
batch model lends itself to Internet transport as well as other off-line transports. Both requests and responses 
are plain text files, formatted using a grammar based on Extensible Markup Language (XML). The use of XML 
allows IFX to evolve over time while continuing to support older clients and servers. In principle, a Customer 
Service Provider can use any off-the-shelf XML parser/builder to implement its support for IFX. 

Here is a simplified example of an IFX request transmission. The indentation in this example is only for 
readability; white space between elements in an XML document is neither required, nor prohibited. For 
complete details, see Section 2.2.2 of this document. 
POST http://www.CSP.com/IFX.cgi HTTP/1.0 HTTP headers 
User-Agent:MyApp 5.0 
Content-Type: text/xml 
Content-Length: 1032 
 
<?xml version="1.0" encoding="UTF-8" ?> XML header 
 
(start of IFX document) 
 
<?ifx version="1.0.1" oldfileuid="***" IFX XML PI 
newfileuid="***" ?> 
 
<!DOCTYPE IFX PUBLIC "-//IFX//DTD IFX1.0.1//EN" XML Doctype Declaration 
"http://www.ifxforum.org/IFX1.0.1/xml/ifx.dtd" 
[private markup]> Private XML Markup 
 
<IFX> IFX request 
... IFX requests ... 
</IFX> (end of IFX document) 
The response format follows a similar structure. Although a response such as a statement response contains all 
of the details of each message, each element is identified using tags. 
HTTP 1.0 200 OK HTTP headers 
Content-Type: text/xml 
Content-Length: 8732 
 
<?xml version="1.0" encoding="UTF-8" ?> XML header 
 
<?ifx version="1.0.1" oldfileuid="***" IFX XML PI 
newfileuid="***" ?> 
 
<!DOCTYPE IFX PUBLIC "-//IFX//DTD IFX1.0.1//EN" XML Doctype Declaration 
"http://www.ifxforum.org/IFX1.0.1/xml/ifx.dtd" Pointer to public DTD 
[private markup]> Private XML Markup 
 
<IFX> IFX response   
... IFX responses ... 
</IFX> (end of IFX document) 

1.3 Definitions 
1.3.1 User 
User refers to the person or entity interfacing with the IFX client to cause it to generate IFX requests. 



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 1-5 

1.3.2 Client 
Client refers specifically to software that generates IFX requests. This may be a personal finance manager, a 
web browser running locally interactive code (such as with a Java or ActiveX control), a web server, a proxy, 
or many other possibilities. 

1.3.3 Server 
Server refers specifically to the software that receives IFX requests, processes them, and generates IFX 
responses. 

1.3.4 Tag 
A tag the generic name for either a start tag or an end tag. A start tag consists of a field name surrounded by 
angle brackets. An end tag is the same as a start tag, with the addition of a forward slash immediately preceding 
the field name. For example, the start tag for the field named “Foo” looks like this: 
<Foo> 
while the end tag for the same field looks like this: 
</Foo> 
XML defines empty-element tags, which are used when an element has no content. They have the form 
<Foo/>. Empty-element tags are not allowed in the IFX XML implementation.  

1.3.5 Element 
An IFX document contains one or more elements. An element is some data bounded by a leading start tag and a 
trailing end tag. For example, an element “Foo,” containing data “bar,” would look like this: 
<Foo>bar</Foo> 
Note that this definition differs slightly from the World Wide Web Consortium (W3C) XML definition of 
element in that an IFX element must contain data, but may not contain other elements. A W3C XML element 
containing other elements is defined in IFX as an aggregate. The W3C is the worldwide standards body for 
web technology. 

For more information on the W3C and their standards, see their web site at http://www.w3c.org. 

1.3.6 Aggregate 
An aggregate is a collection of elements and/or other aggregates. An aggregate may not contain any data itself, 
but rather contains elements containing data, and/or recursively contains aggregates. 

1.3.7 Request 
A request is information sent by the client. An IFX request file is the entire XML file sent by the client, 
including the XML header. An individual request generally is an aggregate ending in “Rq.”  

1.3.8 Response 
A response is information sent by the server. An IFX response file is the entire XML file sent by the server, 
including the XML header. An individual response generally is an aggregate ending in “Rs.” 





Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 2-1 

2 XML Implementation of IFX 
This chapter describes various topics involving the implementation of IFX in XML. This includes the basic 
structure of an IFX document in XML as well as description of how different data types are represented. This 
chapter also describes how to implement custom tags as well as file based error recovery. 

2.1 Structure 
As described in Chapter 1, this book explains how IFX is represented in XML and sent over the network via 
HTTP. The IFX data file consists of standard HTTP header and one IFX XML block. This XML block consists 
of a signon message and zero or more additional IFX messages wrapped in service wrappers. All IFX data will 
have the following form: 

HTTP headers 
IFX XML document 

The behavior for both an IFX client and an IFX server has been specified to encourage uniform usage of the 
specification. 

2.1.1 IFX Client 
A proper client should separate the components of an IFX request using a single CRLF between each 
component. A proper request thus has the form: 
 

HTTP headers 
CRLF(s) 
MIME type information 
CRLF(s) 
IFX document 

 

2.1.2 IFX Server 
An IFX server should expect IFX request components and elements to be separated by the appropriate number 
of CRLF characters. However, as per W3C recommendations, an IFX server should also accept just a LF as a 
separator. This behavior is as per the recommendation of the W3C. 

 
http://www.w3.org/Protocols/HTTP/OldClients.html  (W3C recommendations) 
 
The text has been included below for ease of reference: 
Note: Server tolerance of bad clients  
Whilst it is seen appropriate for testing parsers to check full conformance to this specification, it is 
recommended that operational parsers be tolerant of deviations.  
 
In particular, lines should be regarded as terminated by the Line Feed, and the preceding Carriage Return 
character ignored.  
 
Any HTTP Header Field Name which is not recognized should be ignored in operational parsers.  
 
It is recommended that servers use URIs free of “variant” characters whose representation differs in some of the 
national variant character sets, punctuation characters, and spaces. This will make URIs easier to handle by 
humans when the need (such as debugging, or transmission through non-hypertext systems) arises.  
 
Copyright © 1992, W3C. 
 



Interactive Financial Exchange XML Implementation Specification 

2-2 April 26, 2000 Version 1.0.1 

2.1.3 HTTP Headers 
The HTTP response returns the standard HTTP result code on the first line. HTTP defines a number of status 
codes. Servers can return any standard HTTP result. However, IFX servers should expect clients to collapse 
these codes into the following three cases: 

Code Meaning Action 

200 OK The request was processed and a valid IFX result is returned. 

4xx Bad request The request was invalid and was not processed. Clients should report this as an 
internal error. 

5xx Server error The server is unavailable. Clients should retry shortly. 
The server must return an IFX response file for all 200 and 4xx HTTP codes. 

An HTTP code of 200 indicates that the file is correct in syntax and data types (including string length). In 
cases where the file contains one or more incorrect element values, but is correct in syntax and data type, the 
HTTP code must still be 200, and appropriate IFX response codes must be generated for all messages. 

In cases where content is of incorrect data type, the HTTP code must be 4xx, and the server must not process 
any messages contained within the file. 

In cases where there is a server failure, and the HTTP response code is 5xx, the server may still return an IFX 
response document with a <Status> aggregate, indicating the type of failure. 

For more information regarding the specific 4xx and 5xx codes, consult the IETF HTTP specification. 

IFX requires the following HTTP standard headers: 

Code Value Explanation 

Content-type text/xml The MIME type for Interactive Financial Exchange XML 

Content-length length Length of the data after removing HTTP headers 
When responding with multi-part MIME, the main type must be multi-part/x-mixed-replace;  
one of the parts uses text/xml. 

2.1.4 IFX XML Document Type Declaration 
The contents of an IFX file consist of an XML block, including a processing instruction named “IFX” in the 
document type declaration. 

2.1.4.1 XML Processing Instruction 
The XML processing instruction is formatted per the W3C XML standard: 
<?xml version="1.0" encoding="UTF-8" ?> 
The version number is the version number of XML.  

2.1.4.1.1 Encoding 
Encoding defines the text encoding used for character data. The supported values match those of XML 1.0, per 
W3C recommendations. 

2.1.4.2 IFX Processing Instruction 
The IFX processing instruction parameters are in the standard parameter=“value” syntax. 

The first parameter must always be version with a version number. This entry identifies the contents as an IFX 
file and provides the version number of the IFX content. 

The IFX processing instruction is formatted as follows: 
<?ifx version="1.0.1" oldfileuid="00000000-0000-0000-0000-000000000000" 
newfileuid="00000000-0000-0000-0000-000000000000" ?> 



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 2-3 

The version parameter is required. All other parameters are optional.  

2.1.4.2.1 Version 
Version in the IFX processing instruction specifies the version number of the IFX specification and must be 
consistent with the Document Type Definition (DTD) used for parsing as specified in the DOCTYPE 
Declaration. For example, the first IFX version with XML implementation is version 1.0.1. 

The version tag identifies semantic and/or syntactic changes. In the case of IFX, this corresponds to the 
specification and DTD. Purely for identification purposes, each change increments the version tag’s minor 
number. If an incompatible change is introduced, such that an older DTD cannot parse the file, the major 
number should change. See the general discussion of version control, later in this chapter. 

2.1.4.2.2 Oldfileuid and Newfileuid 
Newfileuid uniquely identifies this request file. The newfileuid, which clients supporting file-based error 
recovery must send with every request file and which servers must echo in the response, serves several 
purposes: 

• Servers may use the newfileuid to quickly identify duplicate request files. 
• Clients and servers may use newfileuid in conjunction with oldfileuid for file-based error recovery.  
• Servers may use the newfileuid to manage the session keys associated with Type 1 application-

level security. For more information about security, refer to IFX Message Specification. 
Oldfileuid is used together with newfileuid only when the client and server support file-based error recovery. 
Oldfileuid identifies the last request and response that was received and processed by the client.  

See discussion on file-based error recovery in Section 2.5 of this document.  

2.1.4.3 DOCTYPE Declaration 
The DOCTYPE declaration is formatted per the W3C XML standard: 
<!DOCTYPE IFX PUBLIC "-//IFX/DTD IFX 1.0.1//EN" 
"http://www.ifxforum.org/IFX1.0.1/xml/ifx.dtd" [private markup goes here]> 

2.1.4.4 Root Element 
The root element of an IFX XML document is the <IFX> tag. It can contain optional namespace attributes for 
IFX files that have custom elements. e.g. 
 <IFX xmlns="-//IFX//IFX 1.0.1//EN" xmlns:com.xyz="-//XYZ//XYZ 1.0//EN/-
//IFX//IFX 1.0.1//EN"> 
See discussion on custom element implementation in Section 2.4 of this document. 

2.2 XML Details 
2.2.1 Compliance 
IFX is XML 1.0 compliant. The W3C maintains a specification describing the rules and structure of XML 
documents. For more information on XML, refer to http://www.w3c.org. 

2.2.2 Valid XML Characters 
IFX tags that require a value can be set to any sequence of XML characters. To be valid, a value must contain at 
least one character that is not a blank character. In other words, a value cannot contain only white space. 
However, all white space within an element is considered to be “important” (i.e., part of the value). 



Interactive Financial Exchange XML Implementation Specification 

2-4 April 26, 2000 Version 1.0.1 

2.2.2.1 Special Characters 
Within XML, a few characters must be handled as special characters. To represent a special character, use the 
corresponding escape sequence. 

Character Escape sequence 

< (less than) &lt; 

> (greater than) &gt; 

& (ampersand) &amp; 
For example, the string “AT&amp;T” encodes “AT&T”.  

2.2.3 Comments Supported 
IFX files may contain comments. Comments, in accordance with XML rules, must begin with “<!--” and end 
with “-->”. 

2.3 Data Types 
This section describes how the data types used in IFX are represented in XML. Please refer to the IFX Business 
Message Specification for the semantic and logical description of each time. The following are the supported 
data types: 

Character Closed Enum 

Narrow Character Open Enum 

Binary Long 

Boolean Identifier 

YrMon, Date, Time, DateTime, and Timestamp Phone Number 

Decimal Universally Unique Identifier (UUID) 

Currency Amount URL 

 

2.3.1 Character 
Character fields are identified as a Data Type of “C-n,” where n is the maximum number of allowed Unicode 
characters. If n is absent, the element may contain any amount of characters. 

Note: N refers to the number of characters in the resultant string. Depending on the character encoding, each 
character may be represented by one or more bytes. For example, UTF-8 uses two bytes to encode characters 
represented in ISO Latin-1 as single bytes in the range 128 through 255 decimal. In addition, characters may be 
encoded as multi-byte "character entities", and XML encodes the ampersand, less-than symbol, and greater-
than symbol as "&amp;", "&lt;", and "&gt;" when they appear as document content. Therefore, an element of 
type C-40 may be represented by more than 40 bytes in a UTF-8 encoded XML stream. 

2.3.2 Narrow Character 
Narrow Character fields are identified as a Data Type of “NC-n”, where n is the maximum number of allowed 
characters. Narrow Character elements must contain only ISO Latin-1 characters. 

Note: N refers to the number of characters in the resultant string. Depending on the character encoding, each 
character may be represented by one or more bytes. For example, UTF-8 uses two bytes to encode characters 
represented in ISO Latin-1 as single bytes in the range 128 through 255 decimal. In addition, XML encodes the 
ampersand, less-than symbol, and greater-than symbol as "&amp;", "&lt;", and "&gt;" when they appear as 
document content. Therefore, an element of type NC-40 may be represented by more than 40 bytes in a UTF-8 
encoded XML stream. 



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 2-5 

2.3.2.1 Identifier 
The Identifier data type is a specialized version of Narrow Character type. Identifiers have a maximum length 
of 36. A server generally uses identifiers as database keys. 

2.3.2.1.1 UUID 
The UUID data type is a specialized version of Identifier, and must contain 36 characters. UUIDs are identifiers 
that are unique across both space and time, with respect to the space of all UUIDs. The method for computing 
UUIDs is detailed in the IFX Business Message Specifications. Applications can often obtain conforming 
UUIDs by calls to the operating system or the run-time environment.  

2.3.2.2 URL 
A Uniform Resource Locator (URL) is of the Narrow Character data type with a length of up to 1024 
characters (NC-1024). URLs are defined in RFC 1738, which is a subset of the Uniform Resource Identifier 
(URI) specification (RFC 2396). URLs contain only the printable US-ASCII characters 32 through 126 
decimal. 

2.3.2.3 Phone Number 
A Phone Number is of the Narrow Character data type with a length of up to 32 characters (NC-32). The phone 
number must be formatted as specified in the IFX Business Message Specification. 

2.3.3 Boolean 
The Boolean data type has two states, true or false. True is represented by the literal character 1 (one), while 
false is represented by the literal character 0 (zero). Unless otherwise specified in this specification, an optional 
element of type Boolean is implied to be false (0) if it is absent. 

2.3.4 Numeric 
Numeric data types accept the ISO-646 digits (0–9), period (.), plus (+), and minus (-) characters. The period is 
only permitted as a separator between the integer and the fractional amount (i.e., a decimal point), for type 
Decimal only. Thousands separators are not allowed. 

All numeric formats use a leading sign. Negative numbers use a minus sign (-), while positive numbers use a 
plus sign (+). Absence of a sign implies a positive number. 

2.3.4.1 Long 
The Long data type is an Integer expressed as a Base-10, ASCII character set string representation of a 32-bit 
signed integer in the range -2147483648 to +2147483647. Elements of type Long do not permit a decimal 
point. 

2.3.4.2 Decimal 
The Decimal data type indicates a numeric value that is up to fifteen (15) digits in length, excluding any 
punctuation (e.g. sign or decimal), is not restricted to integer values and has a decimal point that can be placed 
anywhere from the left of the leftmost digit to the right of the rightmost digit. Absence of a decimal point 
implies one to the right of the rightmost digit (i.e., an integer). 

Example: +1234567890.12345 is acceptable, while 12345678901234567 is not. 

The Decimal data type is always expressed as a Base-10, ASCII-character-set string. 

2.3.5 Binary 
The binary data type is implemented as an aggregate containing up to three elements: 

Tag Type Usage Description 



Interactive Financial Exchange XML Implementation Specification 

2-6 April 26, 2000 Version 1.0.1 

Tag Type Usage Description 

<ContentType> Open Enum Optional Specified in IETF RFC 2046.  

Defined values: hex, base64. 

Default if not present: hex 

<BinLength> Long Required Identifies the size of the binary data in number of 
bytes before encoding. 

<BinData> NC Required Encoded binary data.  
 

2.3.6 Dates, Times, and Time Zones 
There is one format for representing dates, times, and time zones. The complete form is: 

YYYY-MM-DDTHH:mm:ss.ffffff±HH:mm 

where all punctuation and the “T” are literal characters; “YYYY” represents a four-digit year; “MM” represents a 
two-digit month; “DD” represents a two-digit date; the first “HH” represents a two-digit, 24-hour format hour; 
the first “mm” represents a two-digit minute; “ss” represents a two-digit second; and “ffffff” represents fractional 
seconds, and may be of any length.. The second “HH” and “mm” describe the time zone offset from 
coordinated universal time (UTC), in hours and minutes, respectively. The “±” can be either a “+” or a “-” 
depending on whether the time zone offset is positive or negative. 

Note: IFX requires the recipient of an IFX message to store the value to at least the same precision 
as sent, or milliseconds, which ever is less precise. 

2.3.6.1 DateTime 
Tags specified as type DateTime and generally starting with the letters “DT” accept a fully formatted 
date/time/timezone string. For example, “1996-10-05T13:22:00.124-5:00” represents October 5, 1996, at 1:22 
and 124 milliseconds PM, in Eastern Standard Time. This is the same as 6:22 PM Coordinated Universal Time 
(UTC). 

Several portions of a DateTime element are optional. The following table describes the optional components 
and the meaning if they are absent: 

Component Meaning if absent 

±HH:mm (time zone offset) +00:00 (UTC) 

THH:mm:ss.ffffff±HH:mm (time component) T00:00:00+00:00 (midnight, UTC) 

:ss.ffffff (seconds and fractional seconds) :00.000000 (zero seconds) 

.ffffff (fractional seconds) .000000 (zero fractional seconds) 

Note: times zones are specified by an offset, which defines the time zone. Valid offset values are in 
the range from -12:59 to +12:59, and the sign is required. 

Take care when specifying an ending date without a time. If the last transaction returned for a bank statement 
download was January 5, 1996 10:46AM, Eastern Standard Time, and if the <EndDt> was given as just January 
5, the transactions on January 4 after 7:00PM, Eastern Standard Time, (noon minus the five-hour offset) would 
be resent. If results are available only daily, then just using dates and not times will work correctly. 

2.3.6.2 Date 
Tags specified as type Date accept dates in the YYYY-MM-DD format. 

2.3.6.3 YrMon 
Tags specified as type YrMon accept years and months in the YYYY-MM format. 



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 2-7 

2.3.6.4 Time 
Tags specified as type Time and generally ending with the letters “TM” accept times in the following format: 

hh:mm:ss.ffffff±HH:mm 

The seconds, milliseconds and time zone offset are still optional, and default as specified in Section 2.3.6.1. 

2.3.7 Currency Amount 
 The Currency Amount data type is implemented as an aggregate containing up to four elements, as specified in 
the Business Message Specification. 

2.3.8 Definition of Data Types in the DTD 
In addition to defining the structure of the IFX XML document, the IFX DTD also provides type information 
for each element. The type information is provided in the form of an attribute list for the element. The attributes 
defining the types have a “dt” Namespace prefix. The first attribute is the name of the type and the second 
attribute is the attribute of the type (e.g. maximum length of a string type). Here are some examples: 

 
<!-- Datatype Namespace declaration --> 
<!ATTLIST IFX xmlns:dt CDATA #FIXED "urn:schemas-microsoft-com:datatypes"> 
 
<!-- Element and Type definition for Addr1 -->  
<!ELEMENT Addr1 #PCDATA> 
<!ATTLIST Addr1 dt:type NMTOKEN #FIXED 
"string" 
     
  dt:maxlength CDATA 
#FIXED "32"> 
<!--#ENTITY % Addr1 #DataType(A-32)--> 
 
<!-- Element and Type definition for BillStatusCode --> 
<!ELEMENT BillStatusCode #PCDATA> 
<!ATTLIST BillStatusCode dt:type NMTOKEN #FIXED "string"  
 dt:enumeration CDATA #FIXED "New Viewed Delivered Withdrawn Retired 
Undelivered"> 
<!--#ENTITY % BillStatusCode #Enum("New", "Viewed", "Withdrawn", "Retired", 
"Undelivered")--> 

Note: An OFX 1.5.1 style of type definition (in comments) is also included to allow OFX software to 
easily migrate to IFX. 

The following table shows how the different types are declared in the DTD using attributes and the comment 
style: 

IFX Type Type Declaration using Attributes OFX-style Type 
Declaration 

Character (C-n) dt:type=“string” 
dt:maxLength=“n” 

DataType(A-n) 

Narrow Character dt:type=“string” 
dt:maxLength=“n” 

DataType(A-n) 

Identifier dt:type=“string” 
dt:maxLength=“32” 

DataType(A-32) 

UUID dt:type =“uuid” DataType(A-36) 

Boolean dt:type =“boolean” DataType(BOOL) 

Long dt:type =“integer” DataType(I-n) 

Decimal dt:type =“decimal” DataType(N-n) 



Interactive Financial Exchange XML Implementation Specification 

2-8 April 26, 2000 Version 1.0.1 

DateTime dt:type =“dateTime” DataType(DATE) 

Date dt:type =“date” DataType(DATE) 

YrMon dt:type =“yrMon” DataType(DATE) 

Time dt:type =“time” DataType(TIME) 

Timestamp dt:type =“dateTime” DataType(DATE) 

URL dt:type =“uri” DataType(A-1024) 

Closed Enum dt:type =“string” 
dt:enumeration =“value1, value2, …” 

Enum(“value1”, “value2”, …) 

Open Enum dt:type =“string” dt:type =“string” 

Binary Aggregate. See Section 2.3.5. N/A 

Currency Amount Aggregate. See Section 2.3.7. DataType(N-n) 

Phone Number dt:type =“string” 
dt:maxLength =“32” 

DataType(A-32) 

 

2.4 XML Implementation of IFX Extensions 
An organization that provides a customized client and server that communicate by means of  
 IFX might wish to add new requests and responses or even specific elements to existing requests and 
responses. To ensure that each organization can extend the specification without the risk of conflict, IFX 
defines a style of tag naming that lets each organization have its own name space. Please refer to the IFX 
Business Message Specification, Section 2.7.1, for detail discussions of IFX Extensions. 

IFX Extensions are implemented in XML by the use of Namespace. For more information about Namespace in 
XML, refer to http://www.w3.org/TR/1999/REC-xml-names-19990114. 

2.5 File-based Error Recovery 
File-based error recovery allows an IFX client to retrieve a response file that was previously generated by the 
IFX server. This provides an alternative way for error recovery from synchronization or audit. In file-based 
error recovery, the servers keep a copy of the entire response file they last sent. Clients requesting that servers 
prepare for error recovery generate a universally unique ID for each file they send. In the IFX headers, there are 
two tags associated with error recovery: 

• oldfileuid – UID of the last request and response that was successfully received and processed by 
the client 

• newfileuid – UID of the current file 
Servers use the following rules: 

• If newfileuid is absent, the client is not requesting file-based error recovery for this session. The 
server does not need to save the response file. If newfileuid is absent and oldfileuid matches a 
previous request file (see below), the client may be ending use of file-based error recovery. 

• If newfileuid matches a previous request file, the client is requesting error recovery. The server 
should send the matching saved response file. 

Note: If newfileuid matches a previous request file’s UID then the request file identified by the 
newfiluid must contain exactly the same set of messages as the previous request file. Servers can 
reject the file if it contains new or modified messages. In particular, clients should disallow 
<CustPswdModRq> messages during error recovery. 

• If newfileuid is present and does not match a previous request file, the client is preparing for error 
recovery. The server should save the response file in case the data does not reach the client. 



Interactive Financial Exchange XML Implementation Specification 
 

Version 1.0.1 April 26, 2000 2-9 

• If oldfileuid is absent, the server should not search for a response file to delete. Clients should 
initiate file-based error recovery by omitting oldfileuid and providing a newfileuid set to a unique 
value. 

• If oldfileuid matches a file saved on the server, then oldfileuid is a file that the client has 
successfully processed and the server can delete it. 

• If oldfileuid is present and does not match a previous request file, the server should ignore the 
presence of this processing instruction. Either the server has purged the associated request file 
without explicit request from the client or the client is requesting error recovery with identical 
headers to the initial request attempt (in which case newfileuid should match a previous request 
file). 

Note: While it may indicate a client error for oldfileuid and newfileuid to hold identical values, the 
server must ignore the oldfileuid. Earlier rules in this list detail how the server should handle the 
request file (based solely upon the newfileuid value). 

A server need not save more than one file per client data file thread (history of newfileuid values), but because 
of possible multiclient or multidata file usage, it might need to save several files for a given user. A server 
should save files for as long as possible, but not indefinitely (2 months is recommended). If an error recovery 
attempt comes after the corresponding error recovery file is purged, the server will not recognize the request as 
an attempt at error recovery. The server would simply process it as a new request. In this case, the server should 
recognize duplicate <RqUID>s for client-initiated work, such as payments, and then reject them individually. 
Server-generated responses would be lost to the client. A server should not save a response file when it is 
useless to do so. Specifically, the Accept server should not save a response file when the request fails parsing or 
when the request was rejected due to a <SignonRq> problem (for example, invalid <CustId>). 


	XML Implementation Specification
	April 26, 2000 Version 1.0.1
	Contents
	1 Overview
	1.1 Introduction
	1.2 IFX XML Data Transport over IP
	1.3 Definitions

	2 XML Implementation of IFX
	2.1 Structure
	2.2 XML Details
	2.3 Data Types
	2.4 XML Implementation of IFX Extensions
	2.5 File-based Error Recovery


	 
	IFX Title Page

