
The OpenOffice.org Source Project

Technical Overview

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638
1.512.434.1511

Copyrights and Trademarks

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, California 94303, U.S.A. All rights reserved.

This documentation is distributed under licenses restricting its use. You may make copies of and redistribute it, but you may not
modify or make derivative works of this documentation without prior written authorization of Sun and its licensors, if any.

Sun, Sun Microsystems, the Sun logo, StarPortal, StarOffice,the StarOffice logo, Java, JavaBeans, JavaScript, and the Java
Coffee Cup are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX ® is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Contents

Preface...6
History ..

Summary ...7
OpenOffice.org Components ...9

OpenOffice.org Suite..
OpenOffice.org wordprocessor application ...
OpenOffice.org spreadsheet application..
OpenOffice.org presentation application...
OpenOffice.org drawing application...
OpenOffice.org data charting application..

System Integration ..10
Interoperability ... 13

File Formats ...14
Component Technology...15
The OpenOffice.org Component Technology ...16

Openness ... 19
XML File Format..19
Application Programming Interfaces ..20

Application Areas...
Design Principles..
Architectural Paradigm..
Object Model..
Common Design Patterns ..
Module Categories..
Summary..

Architecture ... 25
Layered architecture..25
System abstraction layer ..26

Operating system layer..
Runtime library...
Standard Template library ...

Visual Class library...
Infrastructure layer..

Virtual Operating System layer..
Tools libraries...
Universal Network Objects..
Universal Content Broker ..
OpenOffice.org Compound Objects ...
OpenOffice.org Scripting and Basic library ..

Framework layer...
OpenOffice.org Application framework library..
SVX Library...

Application layer...
Build Environment ...

Open Source projects...
The Build Experience..

Build Requirements ..
Downloading the Source ..
Build Prerequisites..
Build and Install Instructions ..
Build Tools & Makefiles ..
Build Environment..
Build Troubleshooting..
Porting to Other Systems ..
Build Documentation & Infrastructure..

Outlook ..
Current Source Tree..

Future Steps ...
An Open World Component Technology ..

Current Situation...
A Short Term Solution ..
Vision ..
Unified Component Ware..
Outlook ..

Appendix A..

5

0Preface

The purpose of this paper is to provide a technical overview of the OpenOffice.org source
project.

It is expected that as the OpenOffice.org source project matures, some of these details
will evolve. This document will be updated periodically to reflect the nature of these
changes to the OpenOffice.org source project. If you would like to contribute to any
updates to this document, please join the OpenOffice.org general mailing list
(www.openoffice.org).

The names used in this document for OpenOffice components, such as "OpenOffice.org
wordprocessor application" are placeholders. The OpenOffice.org community will
ultimately decide what these final names will be. This document will be updated when
the component names have been finalized.

History
Version Publication Date Change Notes
Version 1.0 9/12/2000 First version of this paper.

6

1Summary

Through the OpenOffice.org source project, Sun Microsystems is open-sourcing the
technology that powers its StarOffice™ office productivity application suite. Sun
recognizes that the open source community expects openness, interoperability, and
adherence to standards and, now that the underlying technology of the StarOffice suite
will be available to the community in the form of the OpenOffice.org sources and
binaries, Sun presents in this document the OpenOffice.org suite's technological
foundations and where they stand with respect to these expectations.

The OpenOffice.org suite's high level of interoperability derives from the standards it
supports as well as its premier import/exp ort interfaces with the various office
productivity applications produced by Microsoft. The OpenOffice.org suite employs a
component-based development system that exemplifies all the important characteristics
of Component Ware - consistent interface allocation, support for important component
standards, transparent localization components, batch job capability, and platform
independence.

OpenOffice.org's component technology is open, object oriented, interface based, and
independent of both platform and development system. The OpenOffice.org API is
version independent, scalable, durable, and re-applicable. Because the component
technology is used in its implementation, the OpenOffice.org API is programming
language independent.

XML replaces binary as OpenOffice.org's file format and becomes the suite's new native
file format. Sun and OpenOffice.org are positioning XML, with its extremely high
standards profile, as the next standard for exchange of office documents.

7

2OpenOffice.org Components

OpenOffice.org Suite
OpenOffice.org is a unified suite of productivity applications for all common office
applications, including such functions as word processing, spreadsheets, drawings,
presentations, data charting and formula editing. All components of the suite employ the
same user interface concepts and underlying technology. They interoperate closely with
one another, supporting features like inter-application copy-and paste and drag-and-drop
for creating compound documents. It is straightforward to embed a spreadsheet in a text
document, for example. They also interoperate well with other common desktop
productivity application suites, including the various office productivity applications
produced by Microsoft, for ease of document exchange. A scripting environment called
OpenOffice.org Basic is supported in all OpenOffice.org components to automate work
or build solutions.

OpenOffice.org wordprocessor application1
The OpenOffice.org wordprocessor application is a powerful tool for creating
professional documents, reports, newsletters, and brochures. It is easy to integrate images
and charts in documents, create business letters and extensive text documents with
professional layouts, as well as create and publish Web content.

OpenOffice.org spreadsheet application
The OpenOffice.org spreadsheet application features decision making analysis tools for
performing advanced spreadsheet functions and data analysis. Charting tools generate
presentation applicationive, high-quality 2D and 3D charts.

1Component names are placeholders and will be replaced with actual names when said names are finalized;

see the Preface for more information.

8

OpenOffice.org presentation application
The OpenOffice.org presentation application is a tool for creating multimedia
presentations. Included are 2D and 3D clipart, special effects animation, and high-impact
drawing tools.

OpenOffice.org drawing application
The OpenOffice.org drawing application is a vector-oriented drawing module that
enables the creation of dynamic 3D illustrations and special effects.

OpenOffice.org data charting application
The OpenOffice.org data charting application presents complex data in visually
presentation applicationive ways, from colorful 3D charts to simple pie, bar, and line
diagrams.

System Integration
The overarching goal for the OpenOffice.org suite is to provide a comprehensive set of
solutions for all office related functionality in an open world. The focus for all
OpenOffice.org components is office functionality.

This is the reason why all office components should provide a perfect integration into
already existing environments. Instead of competing with already accepted applications,
the OpenOffice.org source project will provide the flexibility to use the office
functionality in these applications as integrated parts. This will allow the use, for
example, of office productivity files from a variety of vendors, including Microsoft, as
mail attachments on every platform. In the future, it will also open up a way to build
highly sophisticated applications and solutions with integrated office functionality.

Future releases of the OpenOffice.org applications should provide the flexibility to use
different messaging components for Mail and News or let the user decide which tools he
wants to use to explore the filesystem, while at the same time the office components can
be an integrated part inside this application to deal with word-processing, spreadsheet,
etc. related content.

Some technology used in the StarOffice product was licensed from other companies.
Accordingly we are not able to provide the following technologies as Open Source under
the OpenOffice.org source project:
?Bristol XPrinter - printing on UNIX ® platforms

9

?L&H International CorrectSpell, Intl. Electronic Thesaurus - spell checking,
international dictionaries & thesaurus

?Inso Word for Word - document filters for document formats other than MS Office

?Adabas D - database engine

Future releases of the OpenOffice.org components may provide open source replacement
for these parts, which will provide similar functionality.

10

3Interoperability

For exchanging information it is important that two individuals have a common language.
For exchange electronic information today it is not hard to transport this information to
different system, instead the problem is in most cases that users use different applications
to do their work and to create content. So very often in the domain of office productivity
you can only read the document with the same application you created the content,
because the file format are proprietary. In some case it is also required to use the same
release of the application, the same operation system release or run this on the same
platform.

To give the use the freedom to use application and the system which is appropriate for his
work, it is important that the system is able to handle a widespread set of file formats.
Especially for word-processing, spreadsheet, presentation it is often necessary to be able
to read the different binary formats used by the various office productivity applications
produced by Microsoft.

On the other hand interoperability is not only necessary for content. It is also necessary
that the components which are able to process the different file formats can be used in an
heterogeneous environment to build up solutions. Otherwise you would be locked into
another application space. Today's software technology is moving forward from having
libraries to component technology, which will not only allow using different
programming languages to build solutions, instead it will in most cases support using a
scripting language to provide the logical glue between high-level component build
rapidly easy adaptable software solutions.

File Formats
One of our primary objectives is to provide interoperability with existing solutions in the
same application domain. We support a wide range of standard file formats such as

11

HTML, RTF, GIF, and JPEG as well as Microsoft's proprietary file formats because of
their widespread use. OpenOffice.org provides the highest quality document import and
export functionality for the various office productivity applications produced by
Microsoft.
Documents formats
ASCII CSV Microsoft Excel for Windows 97/2000
ASCII Text Microsoft Word for Windows 6.0
dBase Microsoft Word for Windows 95
DIF Microsoft Word for Windows 97/2000
Encoded Text PowerPoint 97/2000
HTML Rich Text Format (RTF)
Lotus 1 -2-3 1.0 DOS SYLK
Lotus 1 -2-3 1.0 Windows Text DOS
Lotus Freelance Text OS/2
Microsoft Excel for Windows 5.0 Text Unix
Microsoft Excel for Windows 95 Text Win
Graphic formats
Adobe Photoshop (psd) Portable Network Graphics (png)
AutoCAD (dxf) PPM
CompuServe Graphics (gif) SGF
Computer Graphics Metafile (cgm) SGV
Encapsulated PostScript (eps) SUN Raster-Format
JPEG Bitmaps (jpg) TGA
Kodak Photo-CD (pcd) TIFF-Bitmap
Macintosh PICT (pct) Truevision TARGA (tga)
MS Windows Metafile (EMF) Windows Bitmap (Bmp)
OS/2 Metafile (met) Windows Metafile (wmf)
Paint Brush (pcx) XBM
PBM XPM
PGM

Component Technology
Despite the rise of the graphical user interface and a constant flow of new innovations in
the software industry, software development has become only more complicated over the
years. Creating high quality applications increases demands on the user, which in turn
lead to more and more expendable programs. Component based program development
systems promise a welcome change in this trend. They are based on the JavaBeans
architecture or the Component Object Model (COM), which are also called Component
Ware. The programmer can access previously prepared components (building blocks)
with these products, and use them in applications. The components are ready for
immediate use once they have been adapted to the operational area.

The authors of the StarOffice product experienced this situation three years ago when
developing a new software architecture, which for the first time made an office suite
available on different platforms for use as an important building block. In the subsequent
planning and development period, a need for the following attributes in this new
architecture was realized:
?Consistent Interface Allocation

An important aspect in Component Ware development is the way the overall

12

application is dissected into individual units. The programmer must be offered exactly
the needed number of single components. The more complex the application, the
more difficult it is to distribute these components reasonably. The simpler and more
logical the application, the higher its acceptability.

?Support for Various Component Standards
While the COM standard in Windows software is the most widely known component
standard, the JavaBeans components and CORBA interfaces are among the most
common in the professional business field and are accepted as standards in the open
world. Since there is not yet a general established industry standard in this area for all
platforms, the component model has to provide bridges between these different
technologies.

?Localization-Transparent Components
Current Component Ware extensions should take advantage of the network for
component communication. Pure client components are inapplicable for modern
network use. Modern Component Ware must allow for delegation of a portion of an
application to a central server. On the other hand, components running locally on a
desktop system should not lose performance because of network communication
protocols when all components are running on one machine.

?Batch Job Ability
Previous Component Ware products employed a visual and user fixed basic approach
for batch operations. User queries with hard coded components can bring the
complete server operation to a halt. For batch operations within the server it should be
possible to process content without requiring a visual representation.

?Platform Independence
Especially in these times of network computers and operating system upheaval, it is
important that modern Component Ware be able to select a platform independent
extension. The interface should be defined in a platform independent way so that
program code can be easily ported.

The OpenOffice.org Component
Technology
The OpenOffice.org suite provides a component technology named Universal Network
Objects, which adheres to all these requirements of modern Component Ware and it is
formed on the Object Technology level, which is the basis upon which the
OpenOffice.org API is set up.

This component technology is:

13

?Open
It supports all the popular component standard communication protocols such as
CORBA, JavaBeans, OLE Automation (Windows Scripting Host, Visual Basic,
Delphi, and so forth), JavaScript, Phyton, Pearl, etc. scripting languages, as well as
native integration in the C++ and C programming languages.

?Object Oriented
It is object oriented and therefore supports concepts such as aggregation, inheritance,
exception handling and polymorphism.

?Interface Based
Its functions are integrated into various interfaces. Function areas of similar structures
have access to the same interfaces, so that the programmer can easily feel at home in
the component world.

?Platform Independent
It is specified to be platform independent and is available on all platforms that run
OpenOffice.org.

?Exception Able
It offers exception ability, which means that it can allow itself to be mapped onto the
inserted development system mechanism - for example onto C++ Exceptions and Java
Exceptions.

?Development System Independent
It can be used with all current development environments and programming
languages, including C++, C, Visual Basic, Windows Scripting Host and all systems
which support COM, CORBA, JavaBeans componenets, and OLE Automation.

?Network Able
Components based on the component technology can communicate on a network and
can also delegate functions on a remote server, for example, to offer access to the
complete text processing functions on Internet appliances.

14

4Openness

Opening up all specification, file formats, technologies and last but not least the source
code, will help ensure that no one can be locked into an application, platform or
environment space. But just providing all this information to everyone is not enough.
Openness will also required that already existing open standards and technologies were
used when ever appropriate and also the project over time will evolve newer technologies
and adapt other open standards.

XML File Format
We adopted XML to replace the old binary file format and become the OpenOffice.org
suite's new native file format. Our goals were twofold: to have a comp lete specification
encompassing all components, and to provide an open standard for office documents.
One single XML format applies to different types of documents - e.g., the same definition
applies for tables in texts and in spreadsheets. XML is ideal as an open standard because
of the free availability of XML specifications and DTDs, and XML's support for XSL,
XSLT, Xlink, SVG, MathML, and many other important and emerging standards.

Beside replacing the binary file format with XML, the OpenOffice.org suite will use
XML internal for exchanging any type of content between the different applications.
OpenOffice.org provides today an infrastructure for using different XML components.
The XML-Parser and the XML-Printer are all implemented as components. Every of
these component support the Simple API for XML (SAX). This infrastructure will allow
in the future to dynamically configure a pipelines of different XML components, like
XML-Parser, XSLT-Processor, etc. to process XML-Input and Output. This will allow
transformation of XML-Data into different formats on the fly, without storing
intermediate files and parse them again for every transformation step.

15

Application Programming Interfaces
The OpenOffice.org API is based on the OpenOffice.org component technology and
consists of a wide range of interfaces defined in a CORBA-like IDL.

While the component technology determines how the components or applications
communicate with each other, the OpenOffice.org API defines the interface for accessing
office functionality from different programming languages. This interface structure is
very important in determining the degree to which re-application of a development is
possible.

The interfaces defined by the OpenOffice.org API are characterized as follows:
?They are completely defined component interfaces with the environment.

?They are version independent and scalable.

?They are durable.

?They are re-applicable.

Unlike other office suite APIs, the OpenOffice.org API does not simply reflect the
features of preexisting implementations. Rather, it has been designed from the viewpoint
of application and component developers. It offers programming interfaces for nearly all
OpenOffice.org components and makes it possible to integrate new components.

Application Areas
There are multiple ways to use OpenOffice.org APIs. First, there is the typical macro
programming for running certain tasks automatically. Secondly, parts of OpenOffice.org
can be run as components of other programs; e.g., OpenOffice.org components are
accessible as JavaBeans components.

A more advanced application is to modify OpenOffice.org components by wrapping them
into replacement components or integrating completely new components with
OpenOffice.org.

A very interesting application area is to replace the user interface of OpenOffice.org and
build a completely different application domain.

Design Principles
Some principles that are important in all our designs are:
?orthogonality

The API consists of interfaces which can easily be combined to serve special needs of
certain objects.

16

?scalability
We distinguish between functionality that is commonly needed and that which is
required by specialized versions. Developers can always start with a minimum set of
interfaces and add more step by step to embody more features.

?reusability
We avoid creating specialized interfaces when a generic version is possible.

?Remote usability
Services can be used efficiently from different processes or even different machines.

?multithread enabled
Services can be used from multiple threads.

Architectural Paradigm
Our architectural decision is Interfaces and Support-Classes instead of
Implementation Inheritance.

Interfaces and Support-Classes means that objects communicate only by interfaces.
Support classes are used for recurring implementations. This was the choice for our
design because components are highly independent of environment, language and version

Implementation Inheritance means partly implemented base classes from which
specialized classes derive interface and implementation. This paradigm was not our
choice, because in larger systems this leads to fat interfaces or deep inheritance hierarchy.
In addition, components depend on the environment, mostly via their base class, and are
programming language dependent and highly version dependent.

Object Model
The OpenOffice.org API is designed for and implemented using the OpenOffice.org
Component Technology. Therefore the OpenOffice.org API is programming language
independent and can be used from C/C++, Java, and several scripting languages. For
other languages, only a language binding needs to be provided to access the whole
OpenOffice.org API. The API is made up by following stereotypes:
?implementation classes

These are not actually part of the API, but are mentioned here for better
understanding. Implementation classes are implementations of services using a real
programming language. Normally developers who use services do not have to deal
with the implementation itself on the API level. Objects are usually not translated into
language concepts for an application that uses them, but rather for the implementer of
the class. A good example is an implementation class similar to a concrete Java-class.

?services
Specifications of objects are called services. One can think of a service as a contract
which is beneficial to both sides: the implementation class that supports certain

17

services and the application that uses this component for those services. Services
usually describe the interfaces which they implement and a set of their properties.
Although services are normally not translated into language concepts, a service may
be considered to be similar to an abstract Java class.

?interfaces
Specifications of a single aspect on an API level are called interfaces. A service can
be considered to be a legally proven text module for contracts. Services can be
combined to create contracts. Interfaces are very much like Java technology
interfaces.

?structs
Plain data blocks are specified as structs . Structs, therefore, do not have methods.
The advantage of structs is that they can transferred as they are to a different process
or even a different machine, which increases efficiency of interprocess and remote
calls. With Java technology, structs are represented as a class which consist only of
data members and get and set methods.

?exceptions
Exceptions are extraordinary results from method calls. Exceptions are used for error
handling just as in the Java technology.

?constants/constant groups/enums
Constant values are split into two categories: constants - which can be grouped and
can have numeric or character string values, and enums - which contain a fixed set of
numeric values. In the Java technology, both are represented as classes with constant
data members.

Common Design Patterns
The OpenOffice.org API uses heavily designed patterns, which provide a very consistent
overall design. Some examples of application domain unspecific design patterns are:
?Factory environment/container

New instances of services are created using factories. Factories of contents can
emanate from the container object or from the environment. For efficiency, factories
for iterators of all kinds, including cursors, are provided by the container.

?Property Sets/-Access etc.
A set of interfaces makes the properties specified in the services accessible. Properties
can be viewed as non-structural data members of objects, such as color or font. The
variety of access interfaces covers the spectrum from convenient local access to fast
remote access.

?Collections/Containers
A collection in our terminology gives access to a set of similar sub-objects. A
container allows replacement, insertion and removal of these sub-objects. A wide
variety of predefined interfaces is available for this design pattern.

18

?Enumerators/Iterators/Cursors
Enumerators, iterators and cursors are used for efficiently listing contained objects.
Cursors in text play an especially major role, because indexing of text is not
reasonable.

?X...Supplier
To access structural but optional data members, we frequently offer supplier
interfaces which in many cases only have one get method.

?Events
Where it is of interest to get notification about certain status changes, there are
services that offer methods to register and unregister listener interfaces. When the
event occurs, a method at the listener interface is called and the event is given as an
argument. This is the same as in the event concept in JavaBeans.

?Exceptions for Error Handling
Exceptions constitute our principal error handling concept. For asynchronous calls,
exceptions are transferred in callback events.

Module Categories
The OpenOffice.org API is organized in a hierarchical module concept which follows
Java technology package or CORBA conventions.
?office specific interfaces

e.g. For text documents, spreadsheet documents, drawing and presentation documents

?integration framework
These interfaces make it possible to integrate new components into OpenOffice.org,
e.g.: configuration management , Universal Content Broker

?application domain independent
This very important category contains interfaces for property access, collections and
contains, or streaming operations, as well as for attaching scripting engines and many
more interfaces.

?component system
The base of the suite is the handful of interfaces which are necessary to deal with
object model topics such as lifetime control, querying interfaces, building bridges and
instantiating remote objects.

Summary
The results and benefits of the OpenOffice.org source projects principles and activities to
date are manyfold. One can build new applications from components without modifying
source code. One can use a familiar programming language. The entire API is
documented in a reference manual – http://soldc.sun.com/staroffice. A

19

first release of a Development Kit, containing support of the OpenOffice.org Basic and
also Java technology, is available.

20

5Architecture

The OpenOffice.org source project is based on an architecture that can provide
comprehensive personal productivity to different UNIX-based systems and may be ported
many other platforms as well. This is because the whole technology is based on a
platform-independent approach. Less than 10% of the code is platform dependent – this
acts as an abstraction layer for the upper software components. Because of the
availability of C++-Compilers on every major platform, C++ is used as an
implementation language. This allows to port the OpenOffice.org technology to a wide
range of different platforms. The decision for an object oriented language gives the
OpenOffice.org source project the opportunity deliver a fully object oriented architecture.

The following information will give just a rough overview over the overall architecture.
Some components of the OpenOffice.org source project like the help-system or the setup
application are not covered here. Many parts of the OpenOffice.org source project
consists of more than one CVS module. In many cases one block in the architecture is
covered by more then five CVS modules in the source tree.

Layered architecture
The whole architecture is based on a layered approach. There are four defined layers
where each covers a special area of the functionality.
?System Abstraction Layer

This layer encapsulate all system specific APIs and provide a consistent object
oriented API to access system resources in a platform independent manner.

?Infrastructure Layer
A platform independent environment for building application, components and
services is provided by this layer. It covers many aspects of an object oriented API for
a complete object oriented platform including a component model, scripting,
compound documents, etc.

21

?Framework Layer
To allow the reuse of implementations in different applications the layer provides the
framework or environment for each application and all shared functionality like
common dialogs, file access or the configuration management

?Application Layer
All OpenOffice.org applications are part of this layer. The way these applications
interact is based on the lower layers The chart shown below was created to depict the
architecture of the StarOffice suite but it is the same for the OpenOffice.org suite:

System abstraction layer
The layered approach of the system architecture is one of the important facts to allow the
easy porting of the technology to wide range of different system platforms. For this the
architecture defines a virtual layer witch is called the System Abstraction Layer (SAL).
All platform depended implementation take place below this layer or are part of some
optional modules. In an ideal world an implementation of the SAL specific functionality
and recompiling the upper layer module will allow you to run the applications. To
provide the whole set of functionality the optional platform specific modules, like
telephony support or speech recognition, have to be ported, too. To reduce the porting
effort the set of functionality provide by the SAL is reduced to a minima set available on
every platform. Also for some system the layer includes some implementations to
emulate some functionality or behavior. For example on systems where no native multi
threading is supported, the layer can support so called “user land” threads.

STL RTL OSL

VCL

OS / GUI

TOOLSVOS

UNO SOSBL

SVXSFX

SW SD SC SCH SM

UCB

S
ta

rO
ffi

ce
 A

P
I

System
Abstraction

Layer

Infrastructure
Layer

Framework
Layer

Application
Layer

22

At this time the implementation of the platform dependent and independent parts of the
graphical library is linked into one dynamically loaded shared library. So there is no
well defined set of libraries which build up the SAL.

Operating system layer
The operating system layer (OSL) encapsulate all the operating system specific
functionality for using and accessing system specific resources like files, memory,
sockets, pipes, etc. The OSL is a very thin layer with an object oriented API. In contrast
to the upper layer this object oriented API is a C-API. This will allow to easily port this
layer to different platform using different implementation languages. For embedded
systems or internet appliances for examples an assembler language can be used to realize
the implementation.

Runtime library
The runtime library provides all semi platform independent functionality. There is an
implementation for string classes provide. Routines for conversion of strings to different
character sets are implemented. The memory management functionality resides in this
module.

Standard Template library
As a generic container library the standard template library is used. It supplies
implementations for list, queues, stacks, maps, etc.

Visual Class library
The visual class library is one of the core libraries of the OpenOffice.org technology. The
VCL encapsulate all access to the different underlying GUI systems. The implementation
is separated into two major parts. One is completely platform independent an includes an
object oriented 2D graphics API with metafiles, fonts, raster operations and the whole
widget set use by the OpenOffice.org suite. This approach virtually guarantees that all
widgets have the same behavior independently of the used GUI system on the different
platforms. Also the look&feel and the functionality of the widgets are on all platforms the
same.

Because of this design VCL doesn't encapsulate the native widgets or controls of the
underlying GUI system. The platform dependent part implements a 2D-graphic drawing
canvas which is used by the platform independent parts. This canvas redirect every
functionality directly to the underlying GUI system. Currently there exists
implementation for the Win32, X-Windows, OS/2 and Mac. The access to the printing
functionality, clipboard and Drag&Drop is also realized inside the VCL.

23

Infrastructure layer

Virtual Operating System layer
To make the usage of system resources like files, threads, sockets,etc. more convenient
the virtual operating system encapsulate all the functionality of the operating system
layer into C++ classes. The C++ classes here offer an easy to use access to all system
resource in a object oriented way.

Tools libraries
There are different small libraries building up a set of tool functionality. This includes a
common implementation for handling date and time related data. There is in
implementation for structured storages available. Other implementation provide a generic
registry, typesafe management and persistence of property data.

Universal Network Objects
The so called Universal Network Objects are the component technology used inside the
OpenOffice.org products. The component technology does not depend on any graphical
subsystem, but is heavily based on multithreading and network communication
capabilities.

The system consist of several pieces. An IDL-Compiler, which generates out of the
specified definition of an interface a binary representation and the associated C-Header or
Java technology files. The binary representation is platform and language independent
and is at runtime used to marshall argument for remote function calls or to generate code
on the fly for a specific language to access the implementation provided by the interface.
This technique reduced the amount of generated code for the different language binding
tremendously. The drawback is that not only for every language binding a specific
backend for the code generation is needed, it is that for every specific compiler a bridging
module is needed at runtime.

Many parts of the UNO technology are implemented as UNO components. This helps to
create a very flexible system and also the extension of the system at runtime. For example
by providing new bridges or communication protocols. UNO provides transparent access
to components over the network or locally. For the communication over the network IIOP
can be used. If the component are realized as shared libraries the component can be
loaded by UNO into to the process memory of the application and every access of the
component is just like a function call without any marshalling of arguments which is
required for remote function call.

24

Universal Content Broker
The Universal Content Broker allow all upper layers to access different kind of structure
content transparently. The UCB consists of a core and several Universal Content
Providers which are used to integrate different access protocols. The current
implementations provides content provides for the HTTP protocol, FTP protocol,
WebDAV protocol and access to the local file system.

The UCB does not only provide access to the content, it also provides the associated meta
information to the content. Actually there is synchronous and asynchronous mode for
operations supported.

OpenOffice.org Compound Objects
The Compound Object implementation provide the functionality to build compound
documents, where for examples a spreadsheet is embedded in a word-processing
document.

The current imp lement provides a platform independent implementation of all this
functionality for compound documents and for embedding of visual controls like multi
media players or different kind of viewers. All content of compound document is stored
in a structured storage. The current implementation is compatible to the OLE structure
storage format. This allows access OLE compound documents on every platform where
OpenOffice.org is available. On the Windows platform the implementation interact with
the OLE services and will so allow a tight integration of all OLE capable applications.

OpenOffice.org Scripting and Basic library
The scripting functionality coming with the OpenOffice.org suite is a BASIC dialect
featuring an interpreter that parses the source statements and generates meta instructions.
These instructions can be executed directly by the supplied meta instructions processor or
can be made persistent in modules or libraries for later access. All functionality supplied
by the upper level application components is accessed via a scripting interface in the
component technology. This will help ensure that new components using the
OpenOffice.org component technology can be fully scriptable without spending a huge
amount of effort.

The scripting interfaces are also implemented as components which will allow an easy
integration of other scripting languages. The interfaces provide functionality like core
reflection and introspection similar to the functionality by the Java platform.

25

Framework layer

OpenOffice.org Application framework library
The Application framework library provides an environment for all applications. All
functionality shared by all application and not provided by any other layer is realized
here. For the framework every visual application has to provide a shell and can provide
several views. The library provides all basics functionality so only the application
specific features have to be added.

The Framework is also responsible for content detection and aggregation. The template
management is provided here and the configuration management too. The Framework is
in some areas related to the compound documents, because of the functionality for
merging or switching menu- and toolbars. Also the capability for customization of all
applications is provided by the library.

SVX Library
The SVX library provides shared functionality for all applications which is not related to
a framework. So part of the library is a complete object oriented drawing layer which is
used by several applications for graphic editing and output. Also a complete 3D-
rendering systems is part of the drawing functionality.

The common dialogs for font selection, color chooser, etc. are all part of this library. Also
the whole database connectivity is realized here.

Application layer
All applications like the wordprocessor application, spreadsheet application, presentation
application, charting application, etc. build up this layer. All this application are realized
as shared libraries, which are loaded by the application framework at runtime. The
framework provides the environment for all this application and also provides the
functionality how these application can interact.

26

6Build Environment

The following information provides an overview of the proposed Build Experience for
OpenOffice.org and how we hope it will evolve. This information is intended for
developers and engineering managers.

Open Source projects
Open Source projects follow by now a very familiar pattern when it comes to providing a
Build Experience. This translates as follows:
1. cvs checkout OpenOffice
2. ./configure
3. make
4. make install

The build tools are well known to the Open Source community - i.e., gmake, autconf, etc.
This is the Build Experience that we want OpenOffice.org source project developers to
work within. Not only should this be the sum total of the commands involved, but more
importantly milestone builds should build cleanly on all supported platforms.

The OpenOffice.org technology in its first release under the OpenOffice.org source
project will not support the mode described above. The mode initially supported will not
be far from this model, and it will contain the foundation for evolving to this model. The
only implication is that build tools may not be the ones most familiar to the open source
community. Sun is committed to providing a product that builds. This document will
describe this Build Experience.

It is important to understand that the Build Experience will be an evolving model, one
that will grow and gain from the experience of the Open Source Developer Community.

27

The task facing us is a challenging one. The OpenOffice.org suite is a very large
application from any standpoint. It is a complex application consisting mainly of C++
code employing templates and exception handling and supporting independent language
binding for a distributed component based architecture.

The Build Experience
The Build Experience will cover the following areas:
?Build Requirements

?Downloading the Source

?Build Prerequisites

?Build and Install Instructions

?Build Tools & Makefiles

?Build Environment

?Build Troubleshooting

?Porting to New Platforms

?Build Documentation and Infrastructure

Build Requirements
The OpenOffice.org sources will build on the Solaris(TM) operating environment, Linux,
and WIN32 platform. Work is in progress on the Macintosh platform. Each system will
describe the software and hardware requirements to build on their respective systems.
Typical of these will the version of gcc, the Java Technology JDK , hard disk and RAM
sizes.

It is crucial that these requirements be understood at the outset. Building the
OpenOffice.org sources is not a task to be taken lightly. It may turn out to be the largest
open source project ever in terms of source size and time to build. The source and build
environment size is in the region of 328MB and consists of approximately 20,000 files. It
can take up to 18 hours to fully build from scratch, but this is rarely needed. The build
environment is prepared to allow working with milestone builds.

28

Downloading the Source
The source may be downloaded using CVS, or ftp can be employed to download gzipped
tarballs of the source. In addition, milestone completed builds will be made available in
gzipped tarball format plus daily snapshots of the source.

Build Prerequisites
The OpenOffice.org technology relies on a number of external sources to be built.
Instructions on where to locate and download these will be available.

Build and Install Instructions
The OpenOffice.org technology will use autoconf to check the integrity of the build
environment and to set up the correct build environment on the supported platforms.

After setting up the build environment, the build and install instructions will support the
make and make install concepts. Details on building all the source as well as build
components will be available.

Build Tools & Makefiles
The OpenOffice.org technology is built using dmake from the http://dmake.wticorp.com .
This is itself an open sourced project. The syntax is a make like syntax. The dmake
options will support a dmake all, dmake <component> and dmake install concepts.

The OpenOffice.org source project team has also developed a number of development
tools including support for Interface Definition Language formats, resource pre-
processors and bitmap creators. All these will be fully explained.

Build Environment
The OpenOffice.org technology relies on a large set of environment variables as well as
compiler pre-processor options and flags. These will be documented to support greater
understanding of the build environment among developers

The OpenOffice.org technology is a CVS module based source tree. These CVS modules
will have an overview explanation plus an explanation of the order in which they are
built.

Build Troubleshooting
A troubleshooting guide and Build FAQ will be published to support developers.

29

Porting to Other Systems
The OpenOffice.org technology for its supported platforms will rely on a bootstrap
process that is in place in order to build it. To port the OpenOffice.org technology,
developers will need to know how to create this bootstrap in the first place.

Build Documentation & Infrastructure
An online Build manual will exist to cover all the topics described above. There will also
be a support infrastructure in place to deal with specific build is sues. Bugzilla will be
employed to store all bugs and issues arising from the build.

Outlook
Providing a clean Build Experience which is familiar and consistent to the Open Source
Community is not only our aim but we see it as critical to the success of this project.
Although this experience has not yet reached full fruition, Sun has determined not to
delay the release of the source for this reason. It is more important that we engage with
the community than to wait until we have replicated the same build experience. To this
end we are committed to providing as clean a build as possible now while putting an
infrastructure in place to allow us to evolve to a more standard model.

Current Source Tree
The OpenOffice.org source project will be among the largest open source projects. There
are about 70 CVS modules with more than 20,000 files providing about 7,600,000 lines
of code.

Appendix A gives a first overview over all CVS modules with a short description of the
purpose. Additional information will be made available at the website
http://www.openoffice.org .

30

7Future Steps

An Open World Component Technology

Current Situation
Nowadays there is no Component Technology in the Open world which is accepted by
everyone. There exist different open source projects which are based on a component
model, but each of them uses its own concept or technology.

In the Desktop domain there is KDE and GNOME. Both of them are using CORBA as a
low-level communication layer but the component models on top are completely different
in each project. So today it is essentially impossible to write a component which can be
used in both desktop environments. Also the current CORBA specification doesn't
include a model for compound documents or other desktop software related functionality.
So there are different efforts underway to overcome these problems, but they lack
interoperability. Another issue with most CORBA implementations is that these were
designed to run distributed network based applications using remote services. So using
such CORBA implementation with all the network communication overhead in an
infrastructure for a desktop component model, which in most cases will run on one local
machine, will be in most cases the wrong approach.

When the Mozilla open source project started, there was a requirement to have a
lightweight component model which could be easily ported to different platforms. So
XPCOM was created.

The reasons why the OpenOffice.org suite currently employs its own component model
are all based on these issues. Additionally, there is the requirement to provide a similar
set of office suite functionality and technology to the widely used Microsoft products in
this domain.

31

A Short Term Solution
As discussed above, there is no component technology available which is well accepted,
portable and used prevalently. So to to provide office functionality in different
environments, it is necessary that different component technologies be supported.
Supporting different component technologies is difficult but possible, but supporting
different concepts or philosophies is quite impossible.

Because OpenOffice.org's component technology is able to use software bridges to
access other components' worlds, it is possible to integrate the office components into
different environments, such as GNOME and Mozilla. The bridging can be easily done in
an environment where the basic concept for the components are quite similar. In any
other case in can be very hard to provide this bridging functionality hiding all conceptual
differences. In most cases developers and users will have to deal with the different
concepts and philosophies. One of the annoying problems for example will be the
different naming convention. Also if a bridge needs to deal with a complex conversion of
arguments and calling conventions, performance issues could arise.

So in the near future we will provide bridges from OpenOffice.org component
technology to XPCOM and Bonobo. OpenOffice.org components can than be used in
these environment as integrated components.

Vision
The past has shown the importance of a homogenous component technology and an
object model which integrates all software components into one easy-to-use building set.
The usage existing building blocks in different development environment like C/C++,
Java technology, Phyton, Pearl, VB, etc. should be transparently provided by a
component technology.

The object model should define the reuse of existing interfaces and components and the
matching of concepts over a wide array of applications. It should define common base
concepts that will be used no matter what component is being reused or what application
is being built.

One challenge for the Open World will be to provide one efficient component technology
and a homogenous, superior object model for the desktop, the office productivity suite,
and the browser.

Unified Component Ware
A unified Component Technology should fulfill all requirements gave rise to today's
different solutions. This will not guarantee that the technology will fulfill all future
requirements, but it will allow the replacement of the existing solutions over time and it
will increase acceptance by the Open World. To ensure a high level of acceptance, open
standards should be used whenever appropriate.

32

CORBA is an open standard that is widely accepted for building heterogeneous
distributed systems. On the other hand the CORBA specification falls short in the areas
of compound documents and small components for personal productivity. This has
changed to some extent with the CORBA 3.0 specification, but there are still open issues.
For a desktop environment there is a need for support of in-process components and for
local communication features, which are today still open to implementation in the
CORBA environment. To the extent that these features are transparent to all components,
there is no need for a clear specification, but in most cases today the developer of the
component and the developer of the application using these components has to deal with
this situation. Another problem for an open component system is the lack of a technology
and a concept for writing cross-platform graphical components.

ORBit is the CORBA implementation used by most of the GNOME components. It is
fast and lean, allowing the use of CORBA in areas that would not normally seem
practical. It supports much of the CORBA 2.2 standard, and has hooks that allow easy
integration with GNOME programs. ORBit provides language binding for Perl, C++, Tcl,
Python, ADA and Eiffel, but currently not for Java technology. It allows C and C++
objects in the same address space to short-circuit calls (i.e. no on-the-wire marshaling)
for maximum speed. The ORBit is a good candidate starting point for an open
component technology. It could provide the functionality for all communication
infrastructure and will allow interoperability with CORBA. While CORBA is an accepted
standard, the ice Component Model provides the ability to bridge easily from one
component environment to another, which will for example allow the usage of
components in the Microsoft world. Also, the Mozilla XPCOM technology is a very
lightweight and lean system that it could provide some advantages for an overall system.

On top of this communication and low level object infrastructure there should be a clear
definition of interfaces for commonly used functionality, such as factories and reference-
counted objects. There is also a requirement for a clear concept for lifetime management
of components, activation, security and the integration into a graphical subsystems. All
these interfaces should be designed for use in many different application domains.

Especially for personal productivity tools and desktop environments, we need a clear
concept and definition of interfaces to build up an infrastructure for:
?Compound Documents and Component Reuse

?Document Models

?Content Storage

?Monikers

?Control Components

?Component activation (Shared library components, process-based components and
distributed components)

?Printing

33

It is important that these specifications be useful in many application domains, and that
standards that cover existing areas be used and supported.

Not every developer wants to deal with all the details of a component model. Therefore,
to achieve acceptance, it is important to provide helper libraries for different languages
that make the usage and the implementation of components as easy as possible.

Outlook
We have started an initiative for a new homogenous component technology by talking to
several developers in different open source projects. We will work together with different
groups to provide a leading edge component technology for a desktop environment and
distributed applications. To the extent that standards are available and meet the
requirements, they will be used. We would like to see the best pieces of today's existing
technologies (e.g. Bonobo, XPCOM, UNO ...) be integrated into this technology.

Also we would like to start an effort with several open source projects to define the
concept, the naming conventions and philosophy for an Open World component mode.
By the time the component model is available it will be used by all OpenOffice.org
components, and the OpenOffice.org API will be adapted over time to meet the
specification of the new component model. In the future this will allow writing highly
sophisticated applications and solutions by using existing components exclusively.

34

8Appendix A

Project Modules Description
Xml file formats
 xmloff Import/Exportfilter for XML
 sax SAX UNO -components for xml-parsing and writing.
L10N
 i18n Internationalization Functionality.
 transex3 L10N Tools
openoffice.org
wordprocessor
application

 sw OpenOffice.org wordprocessor application
 starmath OpenOffice.org math application
 lingu Linguistics stub
Openoffice.org
spreadsheet
application

 sc openoffice.org spreadsheet application
 scaddins openoffice.org spreadsheet application addins
Graphic
applications

 sd OpenOffice.org drawing application
 sch OpenOffice.org charting application
 goodies Collection of graphic filters and 2d and 3d drawing
 Svx Collection of graphic layers and Collection of API used by all

OpenOffice.org Applications
Database Access
 sdb Database driver layer.
 dbaccess Database access layer
 connectivity OpenOffice.org Base Connectivity
Porting
 sal

system abstraction
layer

Low level API for the integration of all supported platforms.

Buildtools and
Buildenvironment

 solenv Buildenvironment tools
 dmake Make application
 rscpp Preprocessor for the Resource Compiler.
 xml2cmp Processor for Uno-ComponentDescriptions
 jtools Java technology helper applications
 config_office Helper for buildenvironment configuration
Graphic System
Layer

 vcl Visual Class Library
 rsc Resource compiler

35

Project Modules Description
 toolkit VCL Implementation of the UNO Toolkit and the UNO Controls
 UnoControls UNO controls
 forms Forms implementation
Printing
 xprinter Stubs for the Bristol X -Printer
Scripting Engines
 basic Basic interpreter and the basic runtime library
 basctrl Basic IDE
Utilities
 tools Common used base classes (string, date, time, streams, ...)
 svtools Collection of Patterns and help classes
 std2 STL port - a derivative from the SGI/STL.
 io UNO I/O services
 eventattacher Component based event handling
 unzip Compression library
 unotools UNO helper classes
 extensions Additional components
 external External references
 configmgr Configuration management
 sot Compatible storage implementation.
Installation
 setup2 Setup Application
 scp Packaging scripts
 Scptools Packaging tools
 Instsetoo Installation set creation
 Readlicense Readme and license texts
 Extras Demo documents, help files, resources...
 Wizards Wizards
UCB (Universal
Content Broker)

 chaos Universal Content Broker
 inet Internet transport protocols (FTP, HTTP, LDAP, IMAP, NNTP,

POP3, SMTP).
 uui UCB Graphical User Interface Components
 ucbhelper Helper classes for UCB users and Content Provider implementers
 store Reliable, recoverable storage filesystem
 ldapber
StarOffice API
 api IDL definitions of all interfaces of the OpenOffice.org API
 offuh Generates UNO headers.
UDK (Uno
Development Kit) /
Componenet
Technology

 cppu C++ UNO core, C++ bridges
 unoidl Interface Definition La nguage compiler.
 cppuhelper C++ UNO implementation helpers
 javaunohelper Java technology Uno helper implementations
 jurt Java technology UNO Runtime
 bridges UNO bridges from any language
 remotebridges UNO interprocess bridges
 stoc OpenOffice.org components - basic UNO services
 cpputools Collection of UNO utility and runtime programs
 registry Registry
 codemaker IDL compiler backend
 rdbmaker
 vos Object orientated Framework above sal. This module encapsulates

sal in C++ classes for ease of use.
Object Integration
 So3 Compound document implementation
 Sj2 Integration of embedded objects
 Ie Integration of internet explorer
Application
Framework

 Sfx2 Application framework

36

Project Modules Description
 offmgr Database components
 res Bitmap resources
 idl IDL compiler for the resources.
 framework Provides Frames Hierarchy for logical managing of

components/documents.
 desktop OpenOffice.org (desktop) application
 DocumentProperties Document properties handling

	The OpenOffice.org Source Project: Technical Overview
	2000 Sun Microsystems, Inc.
	Contents
	Preface
	History

	Summary
	OpenOffice.org Components
	OpenOffice.org Suite
	OpenOffice.org wordprocessor application
	OpenOffice.org spreadsheet application
	OpenOffice.org presentation application
	OpenOffice.org drawing application
	OpenOffice.org data charting application

	System Integration

	Interoperabilithy
	File Formats
	Component Technology
	The OpenOffice.org Component Technology

	Openness
	XML File Format
	Application Programming Interfaces
	Application Areas
	Design Principles
	Architectural Paradigm
	Object Model
	Common Design Patterns
	Module Categories
	Summary

	Architecture
	Layered architecture
	System abstraction layer
	Operating system layer
	Runtime library
	Standard Template library
	Visual Class library

	Infrastructure layer
	Virtual Operating System layer
	Tools libraries
	Universal Network Objects
	Universal Content Broker
	OpenOffice.org Compound Objects
	OpenOffice.org Scripting and Basic library

	Framework layer
	OpenOffice.org Application framework library
	SVX Library

	Application layer

	Build Environment
	Open Source projects
	The Build Experience
	Build Requirements
	Downloading the Source
	Build Prerequisites
	Build and Install Instructions
	Build Tools & Makefiles
	Build Environment
	Build Troubleshooting
	Porting to Other Systems
	Build Documentation & Infrastructure

	Outlook
	Current Source Tree

	Future Steps
	An Open World Component Technology
	Current Situation
	A Short Term Solution
	Vision
	Unified Component Ware
	Outlook

	Appendix A

	
	Sun Microsystems Title Page

